CN103242270A - Method for preparing furfural compounds from biomass - Google Patents
Method for preparing furfural compounds from biomass Download PDFInfo
- Publication number
- CN103242270A CN103242270A CN2013102041425A CN201310204142A CN103242270A CN 103242270 A CN103242270 A CN 103242270A CN 2013102041425 A CN2013102041425 A CN 2013102041425A CN 201310204142 A CN201310204142 A CN 201310204142A CN 103242270 A CN103242270 A CN 103242270A
- Authority
- CN
- China
- Prior art keywords
- furfural
- biomass
- hydroxymethylfurfural
- reaction
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Furan Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明涉及一种从生物质制备糠醛类化合物的方法,具体包括固体酸催化剂的制备及其反应工艺,本发明的方法还可以用于生物质的衍生物。它包括以下步骤:将生物质或其衍生物和固体酸催化剂加入到反应器,充满保护气,采用有机溶剂/饱和无机盐水溶液两相反应体系,在温和条件下即可高收率得到糠醛、5-羟甲基糠醛。本发明优点在于:反应结束后,所生成的糠醛、5-羟甲基糠醛被高效萃取到上层有机相中,固体酸催化剂及未反应的底物留存在底层水相中,通过简单分离即可得到糠醛、5-羟甲基糠醛或其混合物,作为反应中间体可以制备精细化学品和液态燃料;所用催化剂无污染且可回收再利用,具有良好的工业化应用前景。The invention relates to a method for preparing furfural compounds from biomass, specifically including the preparation of solid acid catalyst and its reaction process, and the method of the invention can also be used for derivatives of biomass. It includes the following steps: adding biomass or its derivatives and a solid acid catalyst into the reactor, filling it with protective gas, adopting an organic solvent/saturated inorganic salt solution two-phase reaction system, and obtaining furfural, 5-Hydroxymethylfurfural. The advantage of the present invention is that after the reaction, the generated furfural and 5-hydroxymethylfurfural are efficiently extracted into the upper organic phase, and the solid acid catalyst and unreacted substrate remain in the bottom water phase, which can be achieved by simple separation The obtained furfural, 5-hydroxymethylfurfural or a mixture thereof can be used as a reaction intermediate to prepare fine chemicals and liquid fuels; the catalyst used is non-polluting and recyclable, and has good industrial application prospects.
Description
技术领域technical field
本发明属于催化化学、有机化学和工业精细化学品合成领域,特别涉及的是一种从生物质制备糠醛类化合物的固体酸催化剂及反应工艺,更具体的说是涉及一种催化生物质制备糠醛和5-羟甲基糠醛的催化剂和反应工艺。The invention belongs to the fields of catalytic chemistry, organic chemistry and industrial fine chemical synthesis, and particularly relates to a solid acid catalyst and a reaction process for preparing furfural compounds from biomass, and more specifically relates to a catalyst for preparing furfural from biomass Catalyst and reaction process with 5-hydroxymethylfurfural.
背景技术Background technique
现今,煤、石油和天然气等化石燃料仍然是世界范围内最主要的燃料来源。但化石燃料属于一次性不可再生能源,据预测,在未来的一个世纪里化石燃料将会消耗殆尽。而生物质因其可持续性、洁净性、来源广泛性、安全性等一系列优点,以生物质资源生产能源和精细化学品的研究已成为能源研究领域的热点问题。在这一系列研究中,糖脱水反应是生物质利用中重要的反应之一,同时产品糠醛、5-羟甲基糠醛、乙酰丙酸、乳酸、甲酸等也是商业上具有特定结构和性能的平台化合物。在这些平台化合物中,糠醛、5-羟甲基糠醛是一类重要的呋喃化合物,可以用于制备液体燃料2-甲基呋喃,2,5-二甲基呋喃、长链烷烃、药物中间体2,5-二甲酰呋喃、聚酯单体2,5-呋喃二甲酸等。因此开发一种实用、高效的固体酸催化剂及及其反应工艺,高产率地制备糠醛、5-羟甲基糠醛,是生物质有效利用的一个重要途径。Today, fossil fuels such as coal, oil and natural gas are still the most important fuel sources worldwide. But fossil fuels are one-time non-renewable energy, and it is predicted that fossil fuels will be exhausted in the next century. Because of a series of advantages such as sustainability, cleanliness, wide range of sources, and safety, the research on the production of energy and fine chemicals from biomass resources has become a hot issue in the field of energy research. In this series of studies, the sugar dehydration reaction is one of the important reactions in biomass utilization, and the products furfural, 5-hydroxymethylfurfural, levulinic acid, lactic acid, formic acid, etc. are also commercial platforms with specific structures and properties compound. Among these platform compounds, furfural and 5-hydroxymethylfurfural are an important class of furan compounds, which can be used to prepare liquid fuel 2-methylfuran, 2,5-dimethylfuran, long-chain alkanes, and pharmaceutical intermediates 2,5-diformylfuran, polyester monomer 2,5-furandicarboxylic acid, etc. Therefore, developing a practical and efficient solid acid catalyst and its reaction process to prepare furfural and 5-hydroxymethylfurfural with high yield is an important way for the effective utilization of biomass.
美国威斯康辛大学的Dumesic教授等人发现用盐酸催化果糖脱水时,产物5-羟甲基糠醛的收率可以高达70%以上(Science,2006,312,1933)。Chheda等人发现在包含水、二甲基亚砜(DMSO)和7∶3甲基异丁基酮(MIBK)/2-丁醇组成的水/有机两相体系中,用无机酸(盐酸、硫酸或磷酸)作催化剂时,可以有效地催化蔗糖、淀粉及纤维二糖等碳水化合物发生脱水反应,并且高选择性的制备出5-羟甲基糠醛(Green Chemistry,2007,9,342)。中国专利CN102617524利用硫酸的酸式盐和硫酸正盐作为催化剂在水和有机溶剂组成的两相体系中制备了5-羟甲基糠醛;中国专利CN102827110A以硅铝酸类化合物和液体酸组合也在水和有机溶剂组成的两相体系中制备了5-羟甲基糠醛。但是当以无机酸或可溶性盐为催化剂时,催化剂和产物难以分离,且催化剂无机酸对反应设备腐蚀严重,污染环境。美国加州大学的Davis课题组采用两相体系,在低pH条件下,采用固体催化剂Sn-Beta分子筛将葡萄糖转化成5-羟甲基糠醛,其选择性和得率分别为70%和57%(ACS Catalysis,2011,1,408)。但在这个反应中,固体催化剂Sn-Beta主要起到异构化葡萄糖到果糖的作用,而果糖脱水到5-羟甲基糠醛时仍然需要加入无机酸(如盐酸),因此也难以避免无机酸引入的弊端。Zhao等人采用葡萄糖为原料,离子液体氯代1-甲基-3-乙基咪唑为反应介质,CrCl2为催化剂,得到HMF收率约为70%(Science,2007,316,1597)。Zhang等人在微波加热的条件下也利用离子液体作为介质,CrCl3作为催化剂,实现了玉米秸秆、稻草及松木的转化,5-羟甲基糠醛的收率及糠醛的收率分别为45~52%和23~31%(Tetrahedron Letters,2009,50,5403)。中国专利CN102321055A公布了一种以富含纤维素的生物质为原料制备5-羟甲基糠醛的方法,经过处理后,以离子液体为介质,CrCl3·6H2O为催化剂,5-羟甲基糠醛的收率可达52%。但目前离子液体的制作成本太高,其作为反应介质的应用仅限于实验室研究,不具备成本低的优势;同时所用的铬盐属于游离状态,对环境有害且难以从离子液体中分离不具备环保的优势,因而限制其进一步工业应用。如何将生物质有效、无污染的转化成5-羟甲基糠醛或糠醛,仍然未能有效解决。Professor Dumesic and others at the University of Wisconsin in the United States found that when hydrochloric acid was used to catalyze the dehydration of fructose, the yield of the product 5-hydroxymethylfurfural could be as high as 70% or more (Science, 2006, 312, 1933). Chheda et al. found that in a water/organic biphasic system comprising water, dimethyl sulfoxide (DMSO) and 7:3 methyl isobutyl ketone (MIBK)/2-butanol, the use of inorganic acids (hydrochloric acid, When sulfuric acid or phosphoric acid) is used as a catalyst, it can effectively catalyze the dehydration reaction of carbohydrates such as sucrose, starch and cellobiose, and prepare 5-hydroxymethylfurfural with high selectivity (Green Chemistry, 2007, 9, 342). Chinese patent CN102617524 has prepared 5-hydroxymethylfurfural in a two-phase system composed of water and an organic solvent by using the acid salt of sulfuric acid and the normal salt of sulfuric acid as a catalyst; 5-Hydroxymethylfurfural was prepared in a two-phase system composed of water and organic solvent. However, when inorganic acids or soluble salts are used as catalysts, it is difficult to separate the catalysts from the products, and the inorganic acids of the catalysts severely corrode the reaction equipment and pollute the environment. The Davis research group of the University of California in the United States adopted a two-phase system, and under low pH conditions, the solid catalyst Sn-Beta molecular sieve was used to convert glucose into 5-hydroxymethylfurfural, and the selectivity and yield were 70% and 57% ( ACS Catalysis, 2011, 1, 408). However, in this reaction, the solid catalyst Sn-Beta mainly plays the role of isomerizing glucose to fructose, and when fructose is dehydrated to 5-hydroxymethylfurfural, it is still necessary to add inorganic acid (such as hydrochloric acid), so it is difficult to avoid inorganic acid Introduced disadvantages. Zhao et al. used glucose as a raw material, ionic liquid 1-methyl-3-ethylimidazole chloride as a reaction medium, and CrCl as a catalyst to obtain HMF with a yield of about 70% (Science, 2007, 316, 1597). Zhang et al. also used ionic liquid as a medium and CrCl3 as a catalyst under the condition of microwave heating to realize the conversion of corn stalks, rice straw and pine wood. The yields of 5-hydroxymethylfurfural and furfural were 45-45%. 52% and 23-31% (Tetrahedron Letters, 2009, 50, 5403). Chinese patent CN102321055A discloses a method for preparing 5 - hydroxymethylfurfural from cellulose -rich biomass. The yield of furfural can reach 52%. However, the current production cost of ionic liquid is too high, and its application as a reaction medium is limited to laboratory research, which does not have the advantage of low cost; at the same time, the chromium salt used is in a free state, which is harmful to the environment and difficult to separate from ionic liquid. The advantage of environmental protection limits its further industrial application. How to convert biomass effectively and pollution-free into 5-hydroxymethylfurfural or furfural has not yet been effectively solved.
发明内容:Invention content:
本发明的目的在于提供一种简单直接的将生物质及其衍生物催化转化为糠醛、5-羟甲基糠醛的方法,此过程环境友好、条件温和、成本低廉,以克服已有技术中成本高、能耗高、反应设备要求高和催化剂不能回收重复使用等缺点。The purpose of the present invention is to provide a simple and direct catalytic conversion of biomass and its derivatives into furfural and 5-hydroxymethylfurfural. High, high energy consumption, high requirements for reaction equipment, and the catalyst cannot be recycled and reused.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
本发明提供了一种高效催化转化生物质制备糠醛、5-羟甲基糠醛的固体酸催化剂,该催化剂具有两种酸性位,Lewis酸性位和酸性位,可以催化生物质及其衍生物的直接转化。在有机溶剂/饱和无机盐水溶液的双相体系中,80~240℃的温度下反应0.5-48小时,糠醛和5-羟甲基糠醛的收率分别在8~80%范围内变动。The invention provides a solid acid catalyst for efficiently catalytically converting biomass to prepare furfural and 5-hydroxymethylfurfural. The catalyst has two acid sites, Lewis acid site and Acid sites, which can catalyze the direct conversion of biomass and its derivatives. In the two-phase system of organic solvent/saturated inorganic salt solution, react at a temperature of 80-240 DEG C for 0.5-48 hours, and the yields of furfural and 5-hydroxymethylfurfural vary in the range of 8-80%.
所用固体酸催化剂同时具有Lewis酸性位和酸性位,其中Lewis酸起到异构化作用,酸起到水解和脱水作用。该种催化剂是过渡金属的氧化物、磷酸盐、硫酸盐,也可以是经过过渡金属离子交换的分子筛或粘土矿物。其中过渡金属的氧化物、磷酸盐、硫酸盐可以通过沉淀法、溶胶-凝胶法和水热合成法制备;所述过渡金属离子交换的分子筛和粘土矿物是通过过渡金属的氯化物、硝酸盐、醋酸盐、溴化物与分子筛和粘土矿物交换而得,所述分子筛或矿物为ZSM-5、Beta、MCM-41、SBA-15、5A、13X、Ca-蒙脱土、Na-蒙脱土;所述的过渡金属包括Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Sn、Zn、Fe、Co以及其中的一种或多种的混合物。The solid acid catalyst used has both Lewis acidic sites and Acidic sites, where the Lewis acid plays the role of isomerization, Acid acts on hydrolysis and dehydration. The catalyst is transition metal oxide, phosphate, sulfate, or molecular sieve or clay mineral exchanged by transition metal ions. Wherein transition metal oxides, phosphates, and sulfates can be prepared by precipitation, sol-gel, and hydrothermal synthesis; the transition metal ion-exchanged molecular sieves and clay minerals are prepared by transition metal chlorides, nitrates , acetate, bromide exchanged with molecular sieves and clay minerals, the molecular sieves or minerals are ZSM-5, Beta, MCM-41, SBA-15, 5A, 13X, Ca-montmorillonite, Na-montmorillonite Earth; the transition metals include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Sn, Zn, Fe, Co and a mixture of one or more thereof.
所述生物质是玉米秸秆、甘蔗渣、稻壳、木屑、木条、纤维素、半纤维素;碳水化合物是淀粉、蔗糖、葡萄糖、菊糖、果糖、木糖。The biomass is corn stalks, bagasse, rice hulls, sawdust, wood sticks, cellulose, hemicellulose; the carbohydrates are starch, sucrose, glucose, inulin, fructose, and xylose.
采用的反应体系为有机溶剂/饱和无机盐水溶液的两相反应体系,其中无机盐包括LiCl、KCl、NaCl、CsCl、CaCl2、MgCl2、LiBr、NaBr、KBr、Na2SO4以及它们任意比例的混合物;有机溶剂是四氢呋喃,甲苯,己烷,丙酮,甲基异丁基酮,1,4-二氧六环,1-丁醇,2-丁醇以及它们任意比例的混合物。The reaction system adopted is a two-phase reaction system of organic solvent/saturated aqueous inorganic salt solution, where the inorganic salts include LiCl, KCl, NaCl, CsCl, CaCl 2 , MgCl 2 , LiBr, NaBr, KBr, Na 2 SO 4 and their arbitrary proportions The mixture; the organic solvent is tetrahydrofuran, toluene, hexane, acetone, methyl isobutyl ketone, 1,4-dioxane, 1-butanol, 2-butanol and their mixtures in any proportion.
对于水溶性的碳水化合物,反应也可以在固定床反应器中连续进行,碳水化合物的饱和无机盐水溶液和有机溶剂分开进料,温度控制在100~200℃,空速控制在0.5-60h-1。For water-soluble carbohydrates, the reaction can also be carried out continuously in a fixed-bed reactor, the saturated inorganic salt solution of carbohydrates and the organic solvent are fed separately, the temperature is controlled at 100-200°C, and the space velocity is controlled at 0.5-60h -1 .
反应结束后,静止,所生成的糠醛、5-羟甲基糠醛被高效萃取到上层有机相中,固体酸催化剂、无机盐及未反应的底物留存在底层水相中,通过简单分离即可得到糠醛、5-羟甲基糠醛或其混合物的有机溶液;所得有机相可以直接用于液态燃料的制备,也可以把所得有机相减压蒸馏、干燥,制备高纯度的糠醛和5-羟甲基糠醛。After the reaction is over, stand still, and the generated furfural and 5-hydroxymethylfurfural are efficiently extracted into the upper organic phase, while the solid acid catalyst, inorganic salt and unreacted substrate remain in the bottom water phase, which can be achieved by simple separation Obtain an organic solution of furfural, 5-hydroxymethylfurfural or a mixture thereof; the obtained organic phase can be directly used in the preparation of liquid fuel, or the obtained organic phase can be distilled and dried under reduced pressure to prepare high-purity furfural and 5-hydroxymethylfurfural base furfural.
本发明有以下优点:The present invention has the following advantages:
1.与传统质子酸催化剂脱水制备糠醛、5-羟甲基糠醛的方法相比,本发明使用的固体酸催化剂制备简单、成本低、活性高,无须其它无机酸的加入可以直接将生物质,特别是淀粉或纤维素等复杂生物质高效地催化转化成5-羟甲基糠醛,环境友好,不易造成设备腐蚀,易于分离。1. Compared with the method for preparing furfural and 5-hydroxymethylfurfural by dehydration of traditional protonic acid catalyst, the solid acid catalyst used in the present invention is simple to prepare, low in cost and high in activity, and can directly convert biomass without adding other inorganic acids, In particular, complex biomass such as starch or cellulose is efficiently catalytically converted into 5-hydroxymethylfurfural, which is environmentally friendly, does not easily cause equipment corrosion, and is easy to separate.
2.反应采用两相体系,糠醛、5-羟甲基糠醛的收率较高且反应过程绿色无污染,操作条件温和,工艺简单成本低;同时水相中产生的糠醛、5-羟甲基糠醛能及时地被萃取到有机相中,在促使水相中糖脱水制备糠醛、5-羟甲基糠醛反应的进一步进行的同时,还能避免糠醛、5-羟甲基糠醛在水相中与糖类进一步反应形成胡敏素,在提高选择性的同时,减少了催化剂的失活,提高了催化剂的使用寿命和糠醛、5-羟甲基糠醛的收率。2. The reaction adopts a two-phase system. The yield of furfural and 5-hydroxymethylfurfural is high, and the reaction process is green and pollution-free. Furfural can be extracted into the organic phase in time, while promoting the dehydration of sugar in the water phase to prepare furfural and 5-hydroxymethylfurfural, it can also avoid furfural and 5-hydroxymethylfurfural in the water phase. Carbohydrates are further reacted to form humin, which reduces the deactivation of the catalyst while increasing the selectivity, and improves the service life of the catalyst and the yield of furfural and 5-hydroxymethylfurfural.
具体实施方式Detailed ways
为了便于理解本发明,本发明列举实施例如下,但所述实施例仅用于帮助理解本发明,不应视为对本发明的具体限制。In order to facilitate the understanding of the present invention, the present invention enumerates the following examples, but the examples are only used to help understand the present invention, and should not be regarded as specific limitations to the present invention.
实施例1-8Examples 1-8
离子交换法制备催化剂:称取一定质量的分子筛或粘土矿物和金属氯化物、硝酸盐、醋酸盐或溴化物,然后一并加入到盛有300mL水的烧杯中,在特定温度下进行离子交换,一段时间后将烧杯内的催化剂取出,抽滤洗涤,100℃温度下过夜干燥。Catalyst preparation by ion exchange method: Weigh a certain mass of molecular sieves or clay minerals and metal chlorides, nitrates, acetates or bromides, and then add them to a beaker containing 300mL of water, and perform ion exchange at a specific temperature After a period of time, the catalyst in the beaker was taken out, filtered and washed, and dried overnight at a temperature of 100°C.
在八个相同型号的反应器中加入体积比为7∶3的甲基异丁基酮和饱和氯化钾的水溶液溶液10mL,然后加入0.5g葡萄糖,分别加入实施例1-8催化剂各0.1g,拧紧反应器的螺丝,充满氮气保护气,分别置于八个不同的加热套内,将加热套分别升至160℃,恒温,搅拌,反应3小时后停止反应。将反应体系冷却至室温,离心分离出催化剂。反应液用高效液相色谱分析,不同催化剂反应取得的结果如表1所示。In eight reactors of the same type, 10 mL of an aqueous solution of methyl isobutyl ketone and saturated potassium chloride with a volume ratio of 7: 3 was added, then 0.5 g of glucose was added, and 0.1 g of the catalysts of Examples 1-8 were added respectively. , tighten the screws of the reactor, fill with nitrogen protective gas, place in eight different heating mantles respectively, raise the heating mantles to 160°C respectively, keep the temperature constant, stir, and stop the reaction after 3 hours of reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation. The reaction solution was analyzed by high-performance liquid chromatography, and the results obtained from the reactions of different catalysts are shown in Table 1.
表1不同催化剂催化葡萄糖生成5-羟甲基糠醛的收率Table 1 Different catalysts catalyze the yield of 5-hydroxymethylfurfural from glucose
实施例9-17Examples 9-17
在九个相同型号的反应器中加入体积比为7∶3的甲基异丁基酮和不同无机盐种类的饱和水溶液10mL,然后分别加入0.5g葡萄糖和实施例5的催化剂0.1g,拧紧反应器的螺丝,充满氮气保护气,分别置于九个不同的加热套内,将加热套分别升至160℃,恒温,搅拌,反应3小时后停止反应。将反应体系冷却至室温,离心分离出催化剂。反应液用高效液相色谱检测,不同饱和无机盐溶液下反应取得的结果如表2所示。In nine reactors of the same model, add 10 mL of saturated aqueous solution of methyl isobutyl ketone and different inorganic salts with a volume ratio of 7:3, then add 0.5 g of glucose and 0.1 g of the catalyst of Example 5 respectively, and tighten the reaction The screw of the device was filled with nitrogen protective gas, and placed in nine different heating mantles respectively. The heating mantles were raised to 160°C, kept at constant temperature, stirred, and the reaction was stopped after 3 hours of reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation. The reaction solution was detected by high performance liquid chromatography, and the results obtained from the reaction under different saturated inorganic salt solutions are shown in Table 2.
表2不同饱和无机盐溶液下5-羟甲基糠醛的收率The yield of 5-hydroxymethylfurfural under different saturated inorganic salt solutions of table 2
实施例18-27Examples 18-27
在十个相同型号的反应器中加入体积比为7∶3的不同有机溶剂和饱和氯化钾溶液,然后分别加入0.5g葡萄糖和实施例5的催化剂0.1g,拧紧反应器的螺丝,充满氮气保护气,分别置于十个不同的加热套内,将加热套分别升至160℃,恒温,搅拌,反应3小时后停止反应。将反应体系冷却至室温,离心分离出催化剂。反应液用高效液相色谱检测,不同有机溶剂下反应取得的结果如表3所示。In ten reactors of the same model, add different organic solvents and saturated potassium chloride solution with a volume ratio of 7: 3, then add 0.5 g of glucose and 0.1 g of the catalyst of Example 5 respectively, tighten the screw of the reactor, and be full of nitrogen Protective gas was placed in ten different heating mantles respectively, and the heating mantles were raised to 160° C., kept at constant temperature, stirred, and reacted for 3 hours to stop the reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation. The reaction solution was detected by high-performance liquid chromatography, and the results obtained in different organic solvents are shown in Table 3.
表3不同有机溶剂下5-羟甲基糠醛的收率The yield of 5-hydroxymethylfurfural under different organic solvents of table 3
实施例28-36Examples 28-36
在九个相同型号的反应器中加入体积比为7∶3的甲基异丁基酮有机溶剂和饱和氯化钾的水溶液,然后分别加入0.5g其它种类的生物质和实施例5的催化剂0.1g,拧紧反应器的螺丝,充满氮气保护气,分别置于十一个不同的加热套内,将加热套分别升至160℃,恒温,搅拌,反应3小时后停止反应。将反应体系冷却至室温,离心分离出催化剂。反应液用高效液相色谱检测,不同生物质原料下反应取得的结果如表4所示。Add the methyl isobutyl ketone organic solvent and the aqueous solution of saturated potassium chloride that volume ratio is 7:3 in nine reactors of the same model, then add respectively the catalyst 0.1 of the biomass of 0.5g other kinds and embodiment 5 g. Tighten the screws of the reactor, fill it with nitrogen protective gas, place it in eleven different heating mantles, raise the heating mantles to 160°C respectively, keep the temperature constant, stir, and stop the reaction after 3 hours of reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation. The reaction solution was detected by high performance liquid chromatography, and the results obtained from the reaction under different biomass raw materials are shown in Table 4.
表4不同生物质或其衍生物作原料糠醛和5-羟甲基糠醛的收率Table 4 different biomass or its derivatives are used as the yield of raw material furfural and 5-hydroxymethylfurfural
实施例37Example 37
我们选择木糖为模型底物,以NbOPO4为催化剂,在固定床反应器中进行水可溶性碳水化合物的连续转化,木糖的饱和无机盐水溶液和四氢呋喃有机溶剂分开进料,水溶液和有机溶剂的体积比控制在1∶4,总的空速控制40h-1,催化剂质量为1g,颗粒大小为40~60目,反应温度控制在160℃,床层压力控制在2.2MPa,N2流速控制在30mL/min。在不同时间段取样,反应液用高效液相色谱检测,糠醛的收率可以达到67%左右,且催化剂寿命较长,连续反应50h后糠醛的收率保持稳定。We choose xylose as the model substrate and use NbOPO 4 as the catalyst to carry out the continuous conversion of water-soluble carbohydrates in a fixed-bed reactor. The saturated inorganic salt solution of xylose and the THF organic solvent are fed separately. The volume ratio is controlled at 1:4, the total space velocity is controlled at 40h -1 , the catalyst mass is 1g, the particle size is 40-60 mesh, the reaction temperature is controlled at 160°C, the bed pressure is controlled at 2.2MPa, and the N 2 flow rate is controlled at 30mL/min. Samples were taken at different time periods, and the reaction solution was detected by high performance liquid chromatography. The yield of furfural can reach about 67%, and the catalyst has a long service life. After continuous reaction for 50 hours, the yield of furfural remains stable.
实施例38~42Examples 38-42
溶胶-凝胶法制备催化剂:利用过渡金属的硝酸盐,醋酸盐、醇盐做原料,柠檬酸或其铵盐作为螯合剂,利用溶胶-凝胶法合成介孔、大孔结构的过渡金属氧化物,磷酸盐和硫酸盐及其混合物。Preparation of catalyst by sol-gel method: use transition metal nitrate, acetate, alkoxide as raw material, citric acid or its ammonium salt as chelating agent, use sol-gel method to synthesize transition metal with mesoporous and macroporous structure Oxides, phosphates and sulfates and mixtures thereof.
在五个相同型号的反应器中加入体积比为7∶3的甲基异丁基酮有机溶剂和饱和氯化钾的水溶液10mL,然后加入0.5g葡萄糖,分别加入实施例37-41催化剂各0.1g,拧紧反应器的螺丝,充满氮气保护气,分别置于八个不同的加热套内,将加热套分别升至160℃,恒温,搅拌,反应3h后停止反应。将反应体系冷却至室温,离心分离出催化剂。反应液用高效液相色谱检测,不同催化剂反应取得的结果如表5所示。In five reactors of the same type, 10 mL of methyl isobutyl ketone organic solvent and saturated potassium chloride aqueous solution with a volume ratio of 7:3 were added, then 0.5 g of glucose was added, and 0.1 g of the catalysts of Examples 37-41 were added respectively. g. Tighten the screws of the reactor, fill it with nitrogen protective gas, place it in eight different heating mantles respectively, raise the heating mantles to 160° C., keep the temperature constant, stir, and stop the reaction after 3 hours of reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation. The reaction solution was detected by high-performance liquid chromatography, and the results obtained by reacting with different catalysts are shown in Table 5.
表5不同催化剂催化作用下5-羟甲基糠醛的收率The yield of 5-hydroxymethylfurfural under the catalytic action of different catalysts in table 5
实施例43~47Examples 43-47
将实施例11反应后的催化剂离心,用水和乙醇洗涤3遍,然后将其置于100℃的烘箱内烘干2h。之后将催化剂取出加入反应器内,同时加入体积比为7∶3的甲基异丁基酮有机溶剂和饱和氯化钾溶液,以及0.5g葡萄糖,拧紧反应器的螺丝,充满氮气保护气,置于加热套内,将加热套分别升至160℃,恒温,搅拌,反应3h后停止反应。将反应体系冷却至室温,离心分离出催化剂,反应液用高效液相色谱检测;之后的循环采用同样的方法,其循环过程同实施例43,连续循环5次,结果如表6所示。The reacted catalyst in Example 11 was centrifuged, washed three times with water and ethanol, and then dried in an oven at 100° C. for 2 hours. Catalyst is taken out to add in the reactor afterwards, add simultaneously the methyl isobutyl ketone organic solvent and saturated potassium chloride solution that volume ratio is 7: 3, and 0.5g glucose, tighten the screw of reactor, be full of nitrogen protection gas, place In the heating mantle, the heating mantle was raised to 160° C., kept at constant temperature, stirred, and reacted for 3 hours to stop the reaction. The reaction system was cooled to room temperature, and the catalyst was separated by centrifugation, and the reaction solution was detected by high performance liquid chromatography; the same method was used for subsequent cycles, and the cycle process was the same as in Example 43, and the cycle was repeated 5 times. The results are shown in Table 6.
表6催化剂循环使用结果Table 6 Catalyst recycling results
通过以上实施例可以看出,本发明制备了一种含有两种酸性位的固体酸催化剂,在和有机溶剂/饱和无机盐溶液组成的两相体系中,直接且快速的实现生物质催化转化制备糠醛、5-羟甲基糠醛;此过程环境友好、条件温和、成本低廉,催化剂可以回收重复使用,是一种理想的制备糠醛类化合物的固体酸催化剂,具有良好的工业应用前景。It can be seen from the above examples that the present invention has prepared a solid acid catalyst containing two kinds of acid sites, and in a two-phase system composed of organic solvent/saturated inorganic salt solution, it can directly and rapidly realize the catalytic conversion of biomass to prepare Furfural and 5-hydroxymethylfurfural; this process is environmentally friendly, with mild conditions and low cost, and the catalyst can be recycled and reused. It is an ideal solid acid catalyst for preparing furfural compounds and has a good industrial application prospect.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310204142.5A CN103242270B (en) | 2013-05-28 | 2013-05-28 | A kind of from biomass-making the method for Furnan products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310204142.5A CN103242270B (en) | 2013-05-28 | 2013-05-28 | A kind of from biomass-making the method for Furnan products |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103242270A true CN103242270A (en) | 2013-08-14 |
CN103242270B CN103242270B (en) | 2016-05-11 |
Family
ID=48922175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310204142.5A Active CN103242270B (en) | 2013-05-28 | 2013-05-28 | A kind of from biomass-making the method for Furnan products |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103242270B (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103626633A (en) * | 2013-11-14 | 2014-03-12 | 中国科学院广州能源研究所 | Method for promoting solid catalyst to depolymerize cellulose |
CN104138753A (en) * | 2014-07-29 | 2014-11-12 | 华南理工大学 | Tin-based montmorillonite catalyst, preparation method and application of tin-based montmorillonite catalyst for catalyzing xylose to prepare furfural |
CN104923280A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Compound solid acid catalyst with high nitrate conversion rate and preparation method thereof |
CN104923266A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Complex solid acid catalyst suitable for synthesizing ethyl ether by ethanol dehydration and preparation method therefor |
CN104923300A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Paddy rice ash-based composite solid acid catalyst and preparation method thereof |
CN104923311A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-adsorption complex solid acid catalyst and preparation method therefor |
CN104923267A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-selectivity compound solid acid catalyst and preparation method therefor |
CN104923265A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Recyclable compound solid acid catalyst and preparation method therefor |
CN104923301A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-temperature-resistant cryolite-based composite solid acid catalyst and preparation method therefor |
CN104923307A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Low-energy consumption non-corrosive compound solid acid catalyst and preparation method therefor |
CN104923302A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-strength composite solid acid catalyst and preparation method therefor |
CN104923304A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Activated carbon loaded composite solid acid catalyst and preparation method thereof |
CN105251514A (en) * | 2015-09-07 | 2016-01-20 | 江苏大学 | Carbon-containing hierarchical pore Brnsted acid/Lewis acid dual-functional catalyst, preparation method and applications |
CN105503789A (en) * | 2015-10-29 | 2016-04-20 | 常州大学 | Method for catalytic conversion of xylose into furfural by use of montmorillonite-supported metal ion solid acid |
CN106467507A (en) * | 2015-08-18 | 2017-03-01 | 北京大学 | A kind of preparation method of 5-hydroxymethylfurfural |
CN106492874A (en) * | 2016-09-06 | 2017-03-15 | 安徽理工大学 | A kind of formula and application conditions for preparing 5 Hydroxymethylfurfural effective catalysts |
CN107199043A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | Solid acid catalyst and its preparation method and application and the method for preparing Furnan products |
CN107199028A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | Solid acid catalyst and its preparation method and application and the method for preparing Furnan products |
CN107337657A (en) * | 2017-07-20 | 2017-11-10 | 中国科学院广州能源研究所 | A kind of method for preparing 5 hydroxymethylfurfurals using monose green |
CN107822196A (en) * | 2017-10-19 | 2018-03-23 | 湖北中烟工业有限责任公司 | The method of tobacco aromaticss and the application of the tobacco aromaticss are prepared using xylose hydrolysis |
CN108164481A (en) * | 2018-01-03 | 2018-06-15 | 江苏理工学院 | A kind of preparation method of 5 hydroxymethyl furfural |
CN108484539A (en) * | 2018-05-21 | 2018-09-04 | 河南农业大学 | A method of directly preparing 5- ethoxyl methyl furfurals using biomass straw |
CN109485622A (en) * | 2018-12-10 | 2019-03-19 | 北京化工大学 | A method of synthesis 5 hydroxymethyl furfural |
CN109513462A (en) * | 2018-11-15 | 2019-03-26 | 农业部环境保护科研监测所 | A kind of catalyst and its preparation method and application adding hydrogen for 5 hydroxymethyl furfural |
CN110064397A (en) * | 2019-05-06 | 2019-07-30 | 东南大学 | A kind of application of preparation and its catalytic cellulose dehydration of magnetic catalyst |
CN111116527A (en) * | 2020-01-08 | 2020-05-08 | 莆田达凯新材料有限公司 | Method for preparing 5-hydroxymethylfurfural by hydrolyzing 5-chloromethylfurfural |
CN111298798A (en) * | 2020-03-10 | 2020-06-19 | 齐鲁工业大学 | A kind of preparation method of tin-based magnetic catalyst and application method for preparing uronic acid |
CN111333599A (en) * | 2013-09-03 | 2020-06-26 | 威尔迪亚公司 | Method for extracting and converting hemicellulose sugar |
CN112076779A (en) * | 2020-10-16 | 2020-12-15 | 东南大学 | Hafnium modified molecular sieve catalyst and preparation method thereof |
CN112321652A (en) * | 2020-10-27 | 2021-02-05 | 齐鲁工业大学 | Method for efficiently separating high-quality lignin from biomass |
CN112337418A (en) * | 2020-10-22 | 2021-02-09 | 华中科技大学 | A kind of reaction system and method for continuously producing furan and combustible gas from biomass |
CN112341410A (en) * | 2020-10-27 | 2021-02-09 | 齐鲁工业大学 | Method for preparing furfural and 5-hydroxymethylfurfural by efficient conversion of biomass |
WO2021046996A1 (en) * | 2019-09-11 | 2021-03-18 | 中国科学院大连化学物理研究所 | Method for improving synthesis efficiency of 5-hydroxymethylfurfural |
CN112574142A (en) * | 2020-11-27 | 2021-03-30 | 浙江大学 | Method for preparing 2, 5-furandimethanol from biomass sugar |
CN112570006A (en) * | 2019-09-27 | 2021-03-30 | 北华大学 | Novel supported polyacid catalyst and application thereof in preparation of furfural |
CN112608289A (en) * | 2020-12-21 | 2021-04-06 | 中国科学院广州能源研究所 | Method for efficiently preparing 5-hydroxymethylfurfural by catalyzing bio-based fructose through organic solvent-ionic liquid composite system |
CN112625012A (en) * | 2020-12-21 | 2021-04-09 | 中国科学院广州能源研究所 | Method for preparing 5-hydroxymethylfurfural by catalyzing glucose with tin modified molecular sieve catalyst |
CN113788806A (en) * | 2021-09-10 | 2021-12-14 | 常州大学 | A kind of method for preparing furfural by utilizing chitosan-based solid acid catalyst |
CN114345376A (en) * | 2022-01-07 | 2022-04-15 | 浙江华康药业股份有限公司 | Acidic ion buffer solution catalyst, preparation method thereof, and system and method for preparing furfural by using catalyst |
CN114426528A (en) * | 2020-09-25 | 2022-05-03 | 中国石油化工股份有限公司 | A kind of method for continuously preparing 5-Hydroxymethylfurfural |
CN114805254A (en) * | 2022-04-11 | 2022-07-29 | 合肥利夫生物科技有限公司 | Preparation method of 5-hydroxymethylfurfural |
CN115368324A (en) * | 2021-05-18 | 2022-11-22 | 南京林业大学 | Method for catalyzing cellulose degradation and converting cellulose into high value-added chemicals by using molecular sieve loaded bimetal |
CN115677631A (en) * | 2022-09-15 | 2023-02-03 | 北京理工大学 | Method and device for continuously synthesizing biomass derived furan compound |
CN115677630A (en) * | 2022-12-05 | 2023-02-03 | 盱眙凹土能源环保材料研发中心 | A method for preparing furfural and 5-hydroxymethylfurfural from straw |
CN117101708A (en) * | 2023-08-24 | 2023-11-24 | 陕西科技大学 | Sulfonic functional molecular sieve solid acid and preparation method and application thereof |
CN117986211A (en) * | 2022-11-07 | 2024-05-07 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN117986210A (en) * | 2022-11-01 | 2024-05-07 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118005583A (en) * | 2022-08-24 | 2024-05-10 | 中国科学院大连化学物理研究所 | A preparation method of 5-hydroxymethylfurfural using inorganic salt |
CN118005582A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005581A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005580A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118005578A (en) * | 2022-08-18 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005579A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026971A (en) * | 2022-11-14 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026969A (en) * | 2022-11-07 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026973A (en) * | 2022-11-14 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026970A (en) * | 2022-11-11 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118126000A (en) * | 2022-12-02 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118126001A (en) * | 2022-12-02 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118125999A (en) * | 2022-12-01 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118164928A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural in a continuous manner using cellulose organic-inorganic two-phase |
CN118164929A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | Method for preparing 5-hydroxymethylfurfural by organic-inorganic two-phase continuous fructose |
CN118164930A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | Method for preparing 5-hydroxymethylfurfural by cellulose aqueous phase continuous method |
CN118184607A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural by continuous adsorption of cellulose organic-inorganic two-phase |
CN118184608A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural by organic-inorganic two-phase continuous adsorption of fructose |
CN118184609A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | Method for continuously preparing 5-hydroxymethylfurfural from cellulose by adsorption method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101941957A (en) * | 2010-08-13 | 2011-01-12 | 中国科学院山西煤炭化学研究所 | Method for producing hydroxymethylfurfural by using two-phase method |
CN102101851A (en) * | 2009-12-18 | 2011-06-22 | 中国科学院大连化学物理研究所 | Method for catalytic preparation of 5-hydroxymethyl furfural from carbohydrates |
CN102477020A (en) * | 2010-11-29 | 2012-05-30 | 中国科学院大连化学物理研究所 | A kind of method that catalyzes carbohydrate to prepare 5-hydroxymethylfurfural |
WO2013049711A1 (en) * | 2011-09-29 | 2013-04-04 | Bio Architecture Lab, Inc. | Methods for preparing 2,5-furandicarboxylic acid |
-
2013
- 2013-05-28 CN CN201310204142.5A patent/CN103242270B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102101851A (en) * | 2009-12-18 | 2011-06-22 | 中国科学院大连化学物理研究所 | Method for catalytic preparation of 5-hydroxymethyl furfural from carbohydrates |
CN101941957A (en) * | 2010-08-13 | 2011-01-12 | 中国科学院山西煤炭化学研究所 | Method for producing hydroxymethylfurfural by using two-phase method |
CN102477020A (en) * | 2010-11-29 | 2012-05-30 | 中国科学院大连化学物理研究所 | A kind of method that catalyzes carbohydrate to prepare 5-hydroxymethylfurfural |
WO2013049711A1 (en) * | 2011-09-29 | 2013-04-04 | Bio Architecture Lab, Inc. | Methods for preparing 2,5-furandicarboxylic acid |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111333599A (en) * | 2013-09-03 | 2020-06-26 | 威尔迪亚公司 | Method for extracting and converting hemicellulose sugar |
CN103626633A (en) * | 2013-11-14 | 2014-03-12 | 中国科学院广州能源研究所 | Method for promoting solid catalyst to depolymerize cellulose |
CN104138753A (en) * | 2014-07-29 | 2014-11-12 | 华南理工大学 | Tin-based montmorillonite catalyst, preparation method and application of tin-based montmorillonite catalyst for catalyzing xylose to prepare furfural |
CN104923267A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-selectivity compound solid acid catalyst and preparation method therefor |
CN104923300A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Paddy rice ash-based composite solid acid catalyst and preparation method thereof |
CN104923311A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-adsorption complex solid acid catalyst and preparation method therefor |
CN104923265A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Recyclable compound solid acid catalyst and preparation method therefor |
CN104923301A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-temperature-resistant cryolite-based composite solid acid catalyst and preparation method therefor |
CN104923307A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Low-energy consumption non-corrosive compound solid acid catalyst and preparation method therefor |
CN104923302A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | High-strength composite solid acid catalyst and preparation method therefor |
CN104923304A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Activated carbon loaded composite solid acid catalyst and preparation method thereof |
CN104923266A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Complex solid acid catalyst suitable for synthesizing ethyl ether by ethanol dehydration and preparation method therefor |
CN104923280A (en) * | 2015-05-13 | 2015-09-23 | 安徽金邦医药化工有限公司 | Compound solid acid catalyst with high nitrate conversion rate and preparation method thereof |
CN106467507A (en) * | 2015-08-18 | 2017-03-01 | 北京大学 | A kind of preparation method of 5-hydroxymethylfurfural |
CN105251514A (en) * | 2015-09-07 | 2016-01-20 | 江苏大学 | Carbon-containing hierarchical pore Brnsted acid/Lewis acid dual-functional catalyst, preparation method and applications |
CN105251514B (en) * | 2015-09-07 | 2017-10-20 | 江苏大学 | Carbon containing multi-stage porous, bronsted acid/lewis acid difunctionalization catalyst and preparation method thereof and purposes |
CN105503789A (en) * | 2015-10-29 | 2016-04-20 | 常州大学 | Method for catalytic conversion of xylose into furfural by use of montmorillonite-supported metal ion solid acid |
CN107199043A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | Solid acid catalyst and its preparation method and application and the method for preparing Furnan products |
CN107199028A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | Solid acid catalyst and its preparation method and application and the method for preparing Furnan products |
CN107199043B (en) * | 2016-03-18 | 2020-03-24 | 中国石油化工股份有限公司 | Solid acid catalyst, preparation method and application thereof, and method for preparing furfural compound |
CN107199028B (en) * | 2016-03-18 | 2020-03-24 | 中国石油化工股份有限公司 | Solid acid catalyst, preparation method and application thereof, and method for preparing furfural compound |
CN106492874A (en) * | 2016-09-06 | 2017-03-15 | 安徽理工大学 | A kind of formula and application conditions for preparing 5 Hydroxymethylfurfural effective catalysts |
CN107337657A (en) * | 2017-07-20 | 2017-11-10 | 中国科学院广州能源研究所 | A kind of method for preparing 5 hydroxymethylfurfurals using monose green |
CN107337657B (en) * | 2017-07-20 | 2019-07-12 | 中国科学院广州能源研究所 | A kind of method that utilizes monosaccharide green to prepare 5-hydroxymethyl furfural |
CN107822196A (en) * | 2017-10-19 | 2018-03-23 | 湖北中烟工业有限责任公司 | The method of tobacco aromaticss and the application of the tobacco aromaticss are prepared using xylose hydrolysis |
CN108164481A (en) * | 2018-01-03 | 2018-06-15 | 江苏理工学院 | A kind of preparation method of 5 hydroxymethyl furfural |
CN108484539A (en) * | 2018-05-21 | 2018-09-04 | 河南农业大学 | A method of directly preparing 5- ethoxyl methyl furfurals using biomass straw |
CN108484539B (en) * | 2018-05-21 | 2021-07-06 | 河南农业大学 | A method for directly preparing 5-ethoxymethyl furfural by utilizing biomass straw |
CN109513462B (en) * | 2018-11-15 | 2021-07-20 | 农业部环境保护科研监测所 | A kind of catalyst for hydrogenation of 5-hydroxymethyl furfural and its preparation method and application |
CN109513462A (en) * | 2018-11-15 | 2019-03-26 | 农业部环境保护科研监测所 | A kind of catalyst and its preparation method and application adding hydrogen for 5 hydroxymethyl furfural |
CN109485622A (en) * | 2018-12-10 | 2019-03-19 | 北京化工大学 | A method of synthesis 5 hydroxymethyl furfural |
CN110064397A (en) * | 2019-05-06 | 2019-07-30 | 东南大学 | A kind of application of preparation and its catalytic cellulose dehydration of magnetic catalyst |
WO2021046996A1 (en) * | 2019-09-11 | 2021-03-18 | 中国科学院大连化学物理研究所 | Method for improving synthesis efficiency of 5-hydroxymethylfurfural |
CN112570006A (en) * | 2019-09-27 | 2021-03-30 | 北华大学 | Novel supported polyacid catalyst and application thereof in preparation of furfural |
CN111116527A (en) * | 2020-01-08 | 2020-05-08 | 莆田达凯新材料有限公司 | Method for preparing 5-hydroxymethylfurfural by hydrolyzing 5-chloromethylfurfural |
CN111298798A (en) * | 2020-03-10 | 2020-06-19 | 齐鲁工业大学 | A kind of preparation method of tin-based magnetic catalyst and application method for preparing uronic acid |
CN114426528B (en) * | 2020-09-25 | 2024-02-09 | 中国石油化工股份有限公司 | Method for continuously preparing 5-hydroxymethylfurfural |
CN114426528A (en) * | 2020-09-25 | 2022-05-03 | 中国石油化工股份有限公司 | A kind of method for continuously preparing 5-Hydroxymethylfurfural |
CN112076779A (en) * | 2020-10-16 | 2020-12-15 | 东南大学 | Hafnium modified molecular sieve catalyst and preparation method thereof |
CN112337418B (en) * | 2020-10-22 | 2021-08-10 | 华中科技大学 | Reaction system and method for continuously preparing furan and combustible gas from biomass |
CN112337418A (en) * | 2020-10-22 | 2021-02-09 | 华中科技大学 | A kind of reaction system and method for continuously producing furan and combustible gas from biomass |
CN112341410A (en) * | 2020-10-27 | 2021-02-09 | 齐鲁工业大学 | Method for preparing furfural and 5-hydroxymethylfurfural by efficient conversion of biomass |
CN112321652A (en) * | 2020-10-27 | 2021-02-05 | 齐鲁工业大学 | Method for efficiently separating high-quality lignin from biomass |
CN112574142A (en) * | 2020-11-27 | 2021-03-30 | 浙江大学 | Method for preparing 2, 5-furandimethanol from biomass sugar |
CN112608289A (en) * | 2020-12-21 | 2021-04-06 | 中国科学院广州能源研究所 | Method for efficiently preparing 5-hydroxymethylfurfural by catalyzing bio-based fructose through organic solvent-ionic liquid composite system |
CN112625012A (en) * | 2020-12-21 | 2021-04-09 | 中国科学院广州能源研究所 | Method for preparing 5-hydroxymethylfurfural by catalyzing glucose with tin modified molecular sieve catalyst |
CN112625012B (en) * | 2020-12-21 | 2023-06-09 | 中国科学院广州能源研究所 | Method for preparing 5-hydroxymethylfurfural by catalyzing glucose with tin modified molecular sieve catalyst |
CN112608289B (en) * | 2020-12-21 | 2023-09-05 | 中国科学院广州能源研究所 | A method for efficiently producing 5-hydroxymethylfurfural from bio-based fructose catalyzed by an organic solvent-ionic liquid composite system |
CN115368324A (en) * | 2021-05-18 | 2022-11-22 | 南京林业大学 | Method for catalyzing cellulose degradation and converting cellulose into high value-added chemicals by using molecular sieve loaded bimetal |
CN113788806A (en) * | 2021-09-10 | 2021-12-14 | 常州大学 | A kind of method for preparing furfural by utilizing chitosan-based solid acid catalyst |
CN114345376A (en) * | 2022-01-07 | 2022-04-15 | 浙江华康药业股份有限公司 | Acidic ion buffer solution catalyst, preparation method thereof, and system and method for preparing furfural by using catalyst |
CN114805254A (en) * | 2022-04-11 | 2022-07-29 | 合肥利夫生物科技有限公司 | Preparation method of 5-hydroxymethylfurfural |
CN118005578A (en) * | 2022-08-18 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005580A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118005579A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005582A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005581A (en) * | 2022-08-22 | 2024-05-10 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118005583A (en) * | 2022-08-24 | 2024-05-10 | 中国科学院大连化学物理研究所 | A preparation method of 5-hydroxymethylfurfural using inorganic salt |
CN115677631A (en) * | 2022-09-15 | 2023-02-03 | 北京理工大学 | Method and device for continuously synthesizing biomass derived furan compound |
CN117986210A (en) * | 2022-11-01 | 2024-05-07 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118026969A (en) * | 2022-11-07 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN117986211A (en) * | 2022-11-07 | 2024-05-07 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118026970A (en) * | 2022-11-11 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026971A (en) * | 2022-11-14 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118026973A (en) * | 2022-11-14 | 2024-05-14 | 中国科学院大连化学物理研究所 | Preparation method of 5-hydroxymethylfurfural |
CN118125999A (en) * | 2022-12-01 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118126000A (en) * | 2022-12-02 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN118126001A (en) * | 2022-12-02 | 2024-06-04 | 中国科学院大连化学物理研究所 | A kind of preparation method of 5-hydroxymethylfurfural |
CN115677630A (en) * | 2022-12-05 | 2023-02-03 | 盱眙凹土能源环保材料研发中心 | A method for preparing furfural and 5-hydroxymethylfurfural from straw |
CN118164928A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural in a continuous manner using cellulose organic-inorganic two-phase |
CN118164929A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | Method for preparing 5-hydroxymethylfurfural by organic-inorganic two-phase continuous fructose |
CN118164930A (en) * | 2022-12-09 | 2024-06-11 | 中国科学院大连化学物理研究所 | Method for preparing 5-hydroxymethylfurfural by cellulose aqueous phase continuous method |
CN118184607A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural by continuous adsorption of cellulose organic-inorganic two-phase |
CN118184608A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | A method for preparing 5-hydroxymethylfurfural by organic-inorganic two-phase continuous adsorption of fructose |
CN118184609A (en) * | 2022-12-12 | 2024-06-14 | 中国科学院大连化学物理研究所 | Method for continuously preparing 5-hydroxymethylfurfural from cellulose by adsorption method |
CN117101708A (en) * | 2023-08-24 | 2023-11-24 | 陕西科技大学 | Sulfonic functional molecular sieve solid acid and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103242270B (en) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103242270B (en) | A kind of from biomass-making the method for Furnan products | |
Yang et al. | Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst | |
Xia et al. | Catalytic conversion of glucose to 5-hydroxymethyfural over Fe/β zeolites with extra-framework isolated Fe species in a biphasic reaction system | |
Wang et al. | Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst | |
Zuo et al. | Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent | |
Wang et al. | Efficient catalytic conversion of lignocellulosic biomass into renewable liquid biofuels via furan derivatives | |
US8772515B2 (en) | Method to convert biomass to 5-(hydroxymethyl)-furfural (HMF) and furfural using lactones, furans, and pyrans as solvents | |
Dashtban et al. | Production of furfural: overview and challenges | |
US8785668B2 (en) | Method of catalytic conversion of carbohydrates into 5-hydroxymethylfurfural | |
Yang et al. | Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural | |
Fang et al. | Efficient conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by the chromium-exchanged montmorillonite K-10 clay | |
Sun et al. | Conversion of bamboo fiber into 5-hydroxymethylfurfural catalyzed by sulfamic acid with microwave assistance in biphasic system | |
Liu et al. | An efficient catalyst for the conversion of fructose into methyl levulinate | |
Zhang et al. | Conversion of carbohydrates into 5-hydroxymethylfurfural using polymer bound sulfonic acids as efficient and recyclable catalysts | |
US20140349351A1 (en) | Production of 5-Hydroxymethylfurfural From Fructose | |
CN104711007A (en) | Preparation method of aviation kerosene or diesel oil scope liquid alkane | |
CN104072450A (en) | Novel method for preparing 5-hydroxymethylfurfural and furfural by adopting biomass raw material | |
Sarmah et al. | Selective two-step synthesis of 2, 5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-Beta and octahedral MnO2 molecular sieves | |
Souzanchi et al. | Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor | |
JP7184132B2 (en) | Alcohol production method | |
Doiseau et al. | Synergy effect between solid acid catalysts and concentrated carboxylic acids solutions for efficient furfural production from xylose | |
Zhang et al. | Dehydration of biomass to furfural catalyzed by reusable polymer bound sulfonic acid (PEG-OSO 3 H) in ionic liquid | |
Jiang et al. | “One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid | |
Lu et al. | Microwave-assisted highly efficient transformation of ketose/aldose to 5-hydroxymethylfurfural (5-HMF) in a simple phosphate buffer system | |
Yoshida et al. | Furfural production from xylose and bamboo powder over chabazite-type zeolite prepared by interzeolite conversion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |