CN103242036B - Method for preparing composite ceramic core - Google Patents
Method for preparing composite ceramic core Download PDFInfo
- Publication number
- CN103242036B CN103242036B CN201210032969.8A CN201210032969A CN103242036B CN 103242036 B CN103242036 B CN 103242036B CN 201210032969 A CN201210032969 A CN 201210032969A CN 103242036 B CN103242036 B CN 103242036B
- Authority
- CN
- China
- Prior art keywords
- ceramic core
- powder
- composite ceramic
- preparation
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000002131 composite material Substances 0.000 title claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 28
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002002 slurry Substances 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 55
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 27
- 238000002360 preparation method Methods 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 14
- -1 polyethylene Polymers 0.000 claims description 13
- 239000004698 Polyethylene Substances 0.000 claims description 12
- 239000012188 paraffin wax Substances 0.000 claims description 12
- 229920000573 polyethylene Polymers 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 7
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000005642 Oleic acid Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- 235000013871 bee wax Nutrition 0.000 claims description 2
- 239000012166 beeswax Substances 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 239000004902 Softening Agent Substances 0.000 claims 5
- 239000013543 active substance Substances 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 2
- 235000019809 paraffin wax Nutrition 0.000 claims 2
- 235000019271 petrolatum Nutrition 0.000 claims 2
- 238000007605 air drying Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229960001866 silicon dioxide Drugs 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 7
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract description 2
- 238000002791 soaking Methods 0.000 abstract description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 abstract 1
- 239000004014 plasticizer Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
技术领域 technical field
本发明属于陶瓷材料制备领域,特别涉及精密铸造飞机发动机涡轮叶片用陶瓷型芯制备技术。The invention belongs to the field of preparation of ceramic materials, in particular to the preparation technology of ceramic cores for precision casting aircraft engine turbine blades.
背景技术 Background technique
随着现代航空技术的发展,对飞机发动机涡轮叶片的承温能力的要求也越来越高,一般来说,涡轮前进口温度每提高100℃,发动机推力可以增加10%左右;为了使涡轮部件适应不断提高的涡轮前进口温度,必须从以下两个方面提高涡轮叶片的工作温度,一是提高叶片材料本身的承温能力,二是通过改善叶片冷却结构来提高叶片的冷却效果。到目前为止,叶片材料的承受高温能力有了很大提高,但是与叶片实际需求相比,还远不能达到要求,因此,需要不断更新叶片冷却结构,提高叶片冷却效果,满足先进发动机的要求。With the development of modern aviation technology, the requirements for the temperature bearing capacity of the turbine blades of the aircraft engine are getting higher and higher. To adapt to the ever-increasing turbine inlet temperature, the working temperature of the turbine blade must be increased from the following two aspects. One is to increase the temperature bearing capacity of the blade material itself, and the other is to improve the cooling effect of the blade by improving the cooling structure of the blade. So far, the ability of blade materials to withstand high temperatures has been greatly improved, but compared with the actual needs of the blades, it is still far from meeting the requirements. Therefore, it is necessary to continuously update the blade cooling structure to improve the cooling effect of the blades and meet the requirements of advanced engines.
高效气冷却叶片的典型特点是叶片具有空腔结构,且该空腔结构非常复杂,传统工艺中叶片采用精密铸造的方法制备,叶片的空腔需采用陶瓷型芯才能形成,陶瓷型芯在高温环境下要有较高的强度、较高的抗蠕变能力,同时在叶片铸造后还必须能采用化学方法容易脱除,因此,陶瓷型芯要有合适的致密度,如果致密度太低,则高温强度和抗蠕变能力明显下降,如果致密度太高,则不利于陶瓷型芯的脱除;因此,制备具有较高高温性能且容易采用化学方法脱除的陶瓷型芯,则需要保持陶瓷型芯的强度的同时还要保持一定的孔隙率,这一矛盾给陶瓷型芯的制备带来了相当大的难度。The typical feature of high-efficiency air-cooled blades is that the blade has a cavity structure, and the cavity structure is very complex. In the traditional process, the blade is prepared by precision casting. The cavity of the blade needs to be formed by a ceramic core. It must have high strength and high creep resistance in the environment. At the same time, the blade must be easily removed by chemical methods after casting. Therefore, the ceramic core must have a suitable density. If the density is too low, Then the high temperature strength and creep resistance will decrease obviously. If the density is too high, it will be unfavorable for the removal of the ceramic core; The strength of the ceramic core must also maintain a certain porosity, and this contradiction brings considerable difficulty to the preparation of the ceramic core.
发明内容 Contents of the invention
本发明的目的:为了解决上述问题,本发明提供了一种制备具有高强度且易脱除的陶瓷型芯的方法,满足了高效冷却制备飞机发动机涡轮叶片的需要。Purpose of the present invention: In order to solve the above problems, the present invention provides a method for preparing a high-strength and easy-to-remove ceramic core, which meets the needs of efficiently cooling and preparing aircraft engine turbine blades.
本发明的具体工艺:Concrete process of the present invention:
1、制备增塑剂:将石蜡或其混合物熔化,在此状态下逐渐加入聚乙烯,不断搅拌,升温至120℃-160℃,直至聚乙烯完全溶解到石蜡中,搅拌均匀后进行过滤,备用;1. Preparation of plasticizer: Melt paraffin or its mixture, gradually add polyethylene in this state, keep stirring, and heat up to 120°C-160°C until polyethylene is completely dissolved in paraffin, stir evenly and filter for later use ;
2、制备二氧化硅浆料:将增塑剂熔化,逐渐加入二氧化硅热粉料,边加入粉料边搅拌,搅拌同时还要加入0.5%-1.0%的表面活性剂,搅拌时间2-8小时;2. Preparation of silica slurry: melt the plasticizer, gradually add silica hot powder, stir while adding powder, and add 0.5%-1.0% surfactant at the same time, stirring time 2- 8 hours;
3、内层陶瓷型芯成型:将二氧化硅浆料温度控制在100-140℃,采用注射成型方式进行内层陶瓷型芯成型;3. Molding of the inner ceramic core: control the temperature of the silica slurry at 100-140°C, and use injection molding to form the inner ceramic core;
4、焙烧:将内层陶瓷型芯装入氧化铝粉填料中进行焙烧,终烧温度为1150-1190℃,时间3-5小时;4. Roasting: Put the inner ceramic core into the alumina powder filler for firing, the final firing temperature is 1150-1190°C, and the time is 3-5 hours;
5、配制氧化铝或氧化钇或氧化锆料浆:料浆的组合为氧化铝粉与铝溶胶或氧化钇粉与氧化钇溶胶或氧化锆与锆溶胶组成;5. Preparation of alumina or yttrium oxide or zirconia slurry: the combination of slurry is composed of alumina powder and aluminum sol or yttrium oxide powder and yttrium oxide sol or zirconia and zirconium sol;
6、浸泡、干燥:在负压条件下将陶瓷型芯浸泡在氧化铝或氧化钇或氧化锆料浆中2-6小时,然后在空气中进行干燥;6. Soaking and drying: Soak the ceramic core in alumina or yttrium oxide or zirconia slurry for 2-6 hours under negative pressure, and then dry it in the air;
7、烧结:将干燥后的陶瓷型芯进行再烧结,终烧温度为1350-1550℃,时间20-60分钟,最后制得复合陶瓷型芯。7. Sintering: Re-sinter the dried ceramic core with a final firing temperature of 1350-1550°C for 20-60 minutes to obtain a composite ceramic core.
本发明工艺中,增塑剂中,石蜡质量百分比为80-95%,聚乙烯为2-5%,其余为蜂蜡或硬脂酸;In the process of the present invention, in the plasticizer, the mass percentage of paraffin is 80-95%, polyethylene is 2-5%, and the rest is beeswax or stearic acid;
本发明工艺中,内层型芯陶瓷粉料为二氧化硅基陶瓷粉料;In the process of the present invention, the inner core ceramic powder is silica-based ceramic powder;
本发明工艺中,二氧化硅基陶瓷粉料中加入的表面活性剂为油酸或其他脂肪醇类物质;In the process of the present invention, the surfactant added in the silica-based ceramic powder is oleic acid or other fatty alcohols;
本发明工艺中,二氧化硅基陶瓷浆料成型采用注射成型的方式成型,成型压力为0.4-0.8MPa,注射时间为20-120秒,保压时间为20-120秒;In the process of the present invention, the silica-based ceramic slurry is molded by injection molding, the molding pressure is 0.4-0.8MPa, the injection time is 20-120 seconds, and the holding time is 20-120 seconds;
本发明工艺中,二氧化硅基陶瓷型芯中的增塑剂采用填料方法脱除,填料采用三氧化二铝粉末,粒度为100-300目工业用氧化铝粉;In the process of the present invention, the plasticizer in the silica-based ceramic core is removed by a filler method, and the filler is aluminum oxide powder with a particle size of 100-300 mesh industrial alumina powder;
本发明工艺中,二氧化硅基陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,温度低于500℃;终烧结阶段采用高温烧结,硅基烧结在1150℃-1190℃,保温时间3-5小时,然后炉冷至室温;In the process of the present invention, the dewaxing stage of the silica-based ceramic core adopts low-temperature slow-rising sintering, and the temperature is lower than 500°C; the final sintering stage adopts high-temperature sintering, the silicon-based sintering is at 1150°C-1190°C, and the holding time is 3-5 hours , and then the furnace was cooled to room temperature;
本发明工艺中,配制的氧化铝或氧化钇或氧化锆料浆,料浆的组合为氧化铝粉与铝溶胶或氧化钇与氧化钇溶胶或氧化锆与锆溶胶组成,粉液质量比为(1-2)∶1,粉的粒径为100nm-1000nm,溶胶中粒子尺寸为5-20nm;In the process of the present invention, the prepared alumina or yttrium oxide or zirconia slurry is composed of alumina powder and aluminum sol or yttrium oxide and yttrium oxide sol or zirconia and zirconium sol, and the powder-liquid mass ratio is ( 1-2): 1, the particle size of the powder is 100nm-1000nm, and the particle size in the sol is 5-20nm;
本发明工艺中,内层陶瓷型芯在负压条件下进行氧化铝或氧化钇或氧化锆料浆浸泡,压力为0.01-0.05MPa;In the process of the present invention, the inner ceramic core is immersed in alumina, yttrium oxide or zirconia slurry under negative pressure, and the pressure is 0.01-0.05MPa;
本发明工艺中,内层陶瓷型芯浸泡氧化铝或氧化钇或氧化锆料浆后,需在22-24℃相对湿度50%-70%条件下干燥4-12小时,然后将陶瓷型芯进行再浸泡及再干燥,重复该过程2-5次,外层厚度控制在0.05-2mm;最后将该陶瓷型芯在1300℃-1550℃烧结20-120分钟,随炉冷却;In the process of the present invention, after the inner layer ceramic core is soaked in alumina or yttrium oxide or zirconia slurry, it needs to be dried for 4-12 hours at 22-24°C with a relative humidity of 50%-70%, and then the ceramic core is Re-soak and re-dry, repeat the process 2-5 times, the thickness of the outer layer is controlled at 0.05-2mm; finally, the ceramic core is sintered at 1300°C-1550°C for 20-120 minutes, and cooled with the furnace;
本发明工艺中,陶瓷型芯烧结后,将陶瓷型芯浸入热固性酚醛树脂中或尿素中,取出在空气中干燥。In the process of the present invention, after the ceramic core is sintered, the ceramic core is immersed in thermosetting phenolic resin or urea, taken out and dried in the air.
本发明的有益效果在于:采用本发明的制备方法制备的复合陶瓷型芯,在1500-1580℃的高温环境下具有12-25MPa的较高强度,较高的抗变形能力(挠度为0.5-1.8mm),同时陶瓷型芯有34-37%合适的致密度,利于陶瓷型芯的脱除。The beneficial effect of the present invention is that: the composite ceramic core prepared by the preparation method of the present invention has a higher strength of 12-25 MPa and a higher resistance to deformation (deflection of 0.5-1.8 mm), and the ceramic core has a suitable density of 34-37%, which is beneficial to the removal of the ceramic core.
附图说明 Description of drawings
图1是本发明优选实施例一制备的复合陶瓷型芯的外观图。Fig. 1 is an appearance view of a composite ceramic core prepared in preferred embodiment 1 of the present invention.
图2是本发明优选实施例二制备的复合陶瓷型芯的外观图。Fig. 2 is an appearance view of the composite ceramic core prepared in preferred embodiment 2 of the present invention.
具体实施方式 Detailed ways
实施例一Embodiment one
将石蜡熔化并加入1%的聚乙烯,不断搅拌,升温至130℃,直至聚乙烯完全溶解到石蜡中,逐渐加入热粉料,粉料与增塑剂的质量比为85∶15,粉料为粗石英粉与细石英粉,二者的质量配比为30∶70,边加入陶瓷粉料边搅拌,搅拌同时还要加入总质量1.0%的表面活性剂油酸,搅拌时间6小时;待增塑剂、粉料、表面活性剂混合均匀后,温度保持在120℃之间。采用注射法压制陶瓷型芯,成型压力为0.4MPa,注射时间为20秒,保压时间为60秒;将陶瓷型芯装入填料中,填料采用三氧化二铝粉末,粒度为200目工业用氧化铝粉;陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速度为5℃/分钟,升至500℃时保温1小时;终烧温度1150℃,时间4小时。配制氧化铝料浆,料浆的组成为氧化铝粉与铝溶胶溶液组成,粉液质量比为1∶1,氧化铝粉的粒径为200nm,溶胶中粒子尺寸为10nm;将内层陶瓷型芯在0.01MPa条件下氧化铝料浆中浸泡20分钟,然后取出陶瓷型芯在24℃相对湿度70%条件下干燥4小时,重复该工艺过程4次,然后将该陶瓷型芯在1450℃烧结20分钟,随炉冷却;最后,将陶瓷型芯浸入热固性酚醛树脂中或尿素中,取出在空气中干燥。Melt the paraffin and add 1% polyethylene, keep stirring, heat up to 130°C until the polyethylene is completely dissolved in the paraffin, then gradually add hot powder, the mass ratio of powder to plasticizer is 85:15, powder It is coarse quartz powder and fine quartz powder, and the mass ratio of the two is 30:70. While adding ceramic powder, stir, and at the same time, add 1.0% surfactant oleic acid with a total mass of 1.0%, and stir for 6 hours; After the plasticizer, powder, and surfactant are mixed evenly, the temperature is kept between 120°C. The ceramic core is pressed by injection method, the molding pressure is 0.4MPa, the injection time is 20 seconds, and the pressure holding time is 60 seconds; the ceramic core is loaded into the filler, and the filler is made of aluminum oxide powder with a particle size of 200 mesh for industrial use. Alumina powder; the dewaxing stage of the ceramic core is sintered with low temperature and slow heating, the heating rate is 5°C/min, and it is kept for 1 hour when it rises to 500°C; the final firing temperature is 1150°C, and the time is 4 hours. Prepare alumina slurry, which is composed of alumina powder and aluminum sol solution, the mass ratio of powder to liquid is 1:1, the particle size of alumina powder is 200nm, and the particle size in the sol is 10nm; the inner layer ceramic type Soak the core in alumina slurry at 0.01MPa for 20 minutes, then take out the ceramic core and dry it at 24°C with a relative humidity of 70% for 4 hours, repeat this process 4 times, and then sinter the ceramic core at 1450°C Cool with the furnace for 20 minutes; finally, immerse the ceramic core in thermosetting phenolic resin or urea, take it out and dry it in the air.
制备的陶瓷型芯见图1,从图1可以看出本发明实施例一制备的复合陶瓷型芯具有典型的内外层结构;同时具有优良的综合性能,经检测1500℃高温抗弯强度可达到15MPa,挠度值可达到0.8mm;而传统制备工艺中采用硅基制备的陶瓷型芯其1500℃高温抗弯强度只达到7MPa,挠度值已达到1.8mm。The prepared ceramic core is shown in Figure 1. From Figure 1, it can be seen that the composite ceramic core prepared in Example 1 of the present invention has a typical inner and outer layer structure; at the same time, it has excellent comprehensive performance. After testing, the high temperature bending strength of 1500 ° C can reach 15MPa, the deflection value can reach 0.8mm; while the 1500°C high-temperature bending strength of the ceramic core made of silicon base in the traditional preparation process only reaches 7MPa, and the deflection value has reached 1.8mm.
实施例二Embodiment two
将石蜡熔化并加入1%的聚乙烯,不断搅拌,升温至130℃,直至聚乙烯完全溶解到石蜡中,逐渐加入热粉料,粉料与增塑剂的质量比为85∶15,粉料为粗石英粉与细石英粉,二者的质量配比为30∶70,边加入陶瓷粉料边搅拌,搅拌同时还要加入总质量1.0%的表面活性剂油酸,搅拌时间6小时;待增塑剂、粉料、表面活性剂混合均匀后,温度保持在120℃之间。采用注射法压制陶瓷型芯,成型压力为0.4MPa,注射时间为20秒,保压时间为60秒;将陶瓷型芯装入填料中,填料采用三氧化二铝粉末,粒度为200目工业用氧化铝粉;陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速度为5℃/分钟,升至500℃时保温1小时;终烧温度1150℃,时间4小时。配制氧化锆料浆,料浆的组成为氧化锆粉与锆溶胶溶液组成,粉液质量比为1∶1,氧化锆粉的粒径为200nm,溶胶中粒子尺寸为10nm;将内层陶瓷型芯在0.01MPa条件下氧化锆料浆中浸泡20分钟,然后取出陶瓷型芯在24℃相对湿度70%条件下干燥4小时,重复该工艺过程4次,然后将该陶瓷型芯在1390℃烧结40分钟,随炉冷却;最后,将陶瓷型芯浸入热固性酚醛树脂中或尿素中,取出在空气中干燥。Melt the paraffin and add 1% polyethylene, keep stirring, heat up to 130°C until the polyethylene is completely dissolved in the paraffin, then gradually add hot powder, the mass ratio of powder to plasticizer is 85:15, powder It is coarse quartz powder and fine quartz powder, and the mass ratio of the two is 30:70. While adding ceramic powder, stir, and at the same time, add 1.0% surfactant oleic acid with a total mass of 1.0%, and stir for 6 hours; After the plasticizer, powder, and surfactant are mixed evenly, the temperature is kept between 120°C. The ceramic core is pressed by injection method, the molding pressure is 0.4MPa, the injection time is 20 seconds, and the pressure holding time is 60 seconds; the ceramic core is loaded into the filler, and the filler is made of aluminum oxide powder with a particle size of 200 mesh for industrial use. Alumina powder; the dewaxing stage of the ceramic core is sintered with low temperature and slow heating, the heating rate is 5°C/min, and it is kept for 1 hour when it rises to 500°C; the final firing temperature is 1150°C, and the time is 4 hours. Prepare zirconia slurry, the slurry is composed of zirconia powder and zirconium sol solution, the mass ratio of powder to liquid is 1:1, the particle size of zirconia powder is 200nm, and the particle size in the sol is 10nm; the inner ceramic type Soak the core in zirconia slurry for 20 minutes under the condition of 0.01MPa, then take out the ceramic core and dry it for 4 hours at 24°C with a relative humidity of 70%, repeat this process 4 times, and then sinter the ceramic core at 1390°C For 40 minutes, cool with the furnace; finally, immerse the ceramic core in thermosetting phenolic resin or urea, take it out and dry it in the air.
图2是本发明优选实施例二制备的复合陶瓷型芯的外观图,从图中可以看出复合陶瓷型芯具有典型的内外层结构,具有优良的综合性能,1550℃高温抗弯强度可达到12MPa,挠度值可达到1.2mm;而传统制备工艺中采用硅基制备的陶瓷型芯其1550℃高温抗弯强度只达到3MPa,挠度值已达到3.2mm。Fig. 2 is the appearance diagram of the composite ceramic core prepared in the preferred embodiment 2 of the present invention. It can be seen from the figure that the composite ceramic core has a typical inner and outer layer structure, has excellent comprehensive performance, and the high temperature bending strength of 1550 ° C can reach 12MPa, the deflection value can reach 1.2mm; while the 1550°C high-temperature bending strength of the ceramic core made of silicon base in the traditional preparation process only reaches 3MPa, and the deflection value has reached 3.2mm.
实施例三Embodiment Three
将石蜡熔化并加入1%的聚乙烯,不断搅拌,升温至130℃,直至聚乙烯完全溶解到石蜡中,逐渐加入热粉料,粉料与增塑剂的质量比为85∶15,粉料为粗石英粉与细石英粉,二者的质量配比为30∶70,边加入陶瓷粉料边搅拌,搅拌同时还要加入总质量1.0%的表面活性剂油酸,搅拌时间6小时;待增塑剂、粉料、表面活性剂混合均匀后,温度保持在120℃之间。采用注射法压制陶瓷型芯,成型压力为0.4MPa,注射时间为20秒,保压时间为60秒;将陶瓷型芯装入填料中,填料采用三氧化二铝粉末,粒度为200目工业用氧化铝粉;陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速度为5℃/分钟,升至500℃时保温1小时;终烧温度1150℃,时间4小时。配制氧化钇料浆,料浆的组成为氧化钇粉与钇溶胶溶液组成,粉液质量比为1∶1,氧化钇粉的粒径为200nm,溶胶中粒子尺寸为10nm;将内层陶瓷型芯在0.01MPa条件下氧化钇料浆中浸泡20分钟,然后取出陶瓷型芯在24℃相对湿度70%条件下干燥4小时,重复该工艺过程5次,然后将该陶瓷型芯在1400℃烧结30分钟,随炉冷却;最后,将陶瓷型芯浸入热固性酚醛树脂中或尿素中,取出在空气中干燥。Melt the paraffin and add 1% polyethylene, keep stirring, heat up to 130°C until the polyethylene is completely dissolved in the paraffin, then gradually add hot powder, the mass ratio of powder to plasticizer is 85:15, powder It is coarse quartz powder and fine quartz powder, and the mass ratio of the two is 30:70. While adding ceramic powder, stir, and at the same time, add 1.0% surfactant oleic acid with a total mass of 1.0%, and stir for 6 hours; After the plasticizer, powder, and surfactant are mixed evenly, the temperature is kept between 120°C. The ceramic core is pressed by injection method, the molding pressure is 0.4MPa, the injection time is 20 seconds, and the pressure holding time is 60 seconds; the ceramic core is loaded into the filler, and the filler is made of aluminum oxide powder with a particle size of 200 mesh for industrial use. Alumina powder; the dewaxing stage of the ceramic core is sintered with low temperature and slow heating, the heating rate is 5°C/min, and it is kept for 1 hour when it rises to 500°C; the final firing temperature is 1150°C, and the time is 4 hours. Prepare yttrium oxide slurry, the slurry is composed of yttrium oxide powder and yttrium sol solution, the mass ratio of powder to liquid is 1:1, the particle size of yttrium oxide powder is 200nm, and the particle size in the sol is 10nm; Soak the core in yttrium oxide slurry for 20 minutes under the condition of 0.01MPa, then take out the ceramic core and dry it for 4 hours at 24°C with a relative humidity of 70%, repeat the process 5 times, and then sinter the ceramic core at 1400°C For 30 minutes, cool with the furnace; finally, immerse the ceramic core in thermosetting phenolic resin or urea, take it out and dry it in the air.
实施例三制备的复合陶瓷型芯具有典型的内外层结构,具有优良的综合性能,1500℃高温抗弯强度可达到18MPa,挠度值可达到0.9mm。而采用硅基制备的陶瓷型芯其1500℃高温抗弯强度只达到7MPa,挠度值已达到1.8mm。The composite ceramic core prepared in Example 3 has a typical inner and outer layer structure, and has excellent comprehensive performance. The high temperature bending strength at 1500°C can reach 18MPa, and the deflection value can reach 0.9mm. However, the high-temperature flexural strength of the ceramic core made of silicon base only reaches 7MPa at 1500°C, and the deflection value has reached 1.8mm.
综上所述,采用本发明的制备方法制备的复合陶瓷型芯,在1500-1580℃的高温环境下具有12-25MPa的较高强度,较高的抗变形能力(挠度为0.5-1.8mm),同时陶瓷型芯有34-37%合适的致密度,利于陶瓷型芯的脱除,满足了高效冷却制备飞机发动机涡轮叶片的需要。In summary, the composite ceramic core prepared by the preparation method of the present invention has a higher strength of 12-25MPa and a higher resistance to deformation (deflection of 0.5-1.8mm) in a high-temperature environment of 1500-1580°C At the same time, the ceramic core has a suitable density of 34-37%, which is beneficial to the removal of the ceramic core and meets the needs of efficient cooling for preparing aircraft engine turbine blades.
以上所述仅为本发明的较佳实施例,并非用以限定本发明的申请范围;凡其他未脱离本发明所揭示的实质下所完成的等效改变或修饰,均应包含在下述的权利要求书范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of application of the present invention; all other equivalent changes or modifications that do not deviate from the essence disclosed in the present invention should be included in the following rights within the scope of the request.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210032969.8A CN103242036B (en) | 2012-02-14 | 2012-02-14 | Method for preparing composite ceramic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210032969.8A CN103242036B (en) | 2012-02-14 | 2012-02-14 | Method for preparing composite ceramic core |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103242036A CN103242036A (en) | 2013-08-14 |
CN103242036B true CN103242036B (en) | 2014-09-17 |
Family
ID=48921945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210032969.8A Expired - Fee Related CN103242036B (en) | 2012-02-14 | 2012-02-14 | Method for preparing composite ceramic core |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103242036B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104446576A (en) * | 2013-09-18 | 2015-03-25 | 辽宁省轻工科学研究院 | Ceramic core enhanced by quart fiber |
CN104649685B (en) * | 2013-11-19 | 2017-11-17 | 中国科学院金属研究所 | A kind of ceramic core injection moulding plasticizer and preparation method thereof |
CN103693976A (en) * | 2013-12-09 | 2014-04-02 | 中国航空工业集团公司北京航空材料研究院 | Method for preparing silicon oxide-based ceramic core for titanium and titanium alloy casting |
CN105272181A (en) * | 2015-10-16 | 2016-01-27 | 沈阳工业大学 | Preparation technology of composite ceramic core |
CN108178637A (en) * | 2016-12-08 | 2018-06-19 | 辽宁法库陶瓷工程技术研究中心 | A kind of yttrium oxide single crystal casting ceramic core and preparation method |
CN107640963B (en) * | 2017-10-20 | 2020-09-29 | 东方电气集团东方汽轮机有限公司 | Preparation method of gradient ceramic core material |
CN109928780A (en) * | 2017-12-18 | 2019-06-25 | 沈阳航发精密铸造有限公司 | A kind of manufacturing method of ceramic core surface inertness coat |
CN108484140A (en) * | 2018-03-01 | 2018-09-04 | 辽宁航安特铸材料有限公司 | The ceramic layered core of two-component |
CN109304424B (en) * | 2018-10-22 | 2020-03-31 | 沈阳明禾石英制品有限责任公司 | Modified silicon oxide powder and preparation method thereof, ceramic core and preparation method thereof |
CN111593287B (en) * | 2020-05-29 | 2022-09-30 | 深圳市万泽中南研究院有限公司 | Method for forming ceramic core aluminum oxide coating by supersonic plasma spraying |
CN114273612B (en) * | 2021-12-27 | 2023-09-05 | 江苏永瀚特种合金技术股份有限公司 | Preparation method of ceramic core for refining grains on inner cavity surface of superalloy casting |
CN114180945A (en) * | 2021-12-29 | 2022-03-15 | 华中科技大学 | Additive manufacturing method for ceramic core-type shell integrated piece |
US12017268B2 (en) * | 2022-04-21 | 2024-06-25 | Chromalloy Gas Turbine Llc | Spherical fused silica compositions for injection molded ceramic cores and methods of making parts using such compositions |
CN114804842B (en) * | 2022-05-11 | 2022-12-09 | 西安交通大学 | Preparation method of ceramic core with controllable pore distribution and atmosphere |
CN114988852B (en) * | 2022-05-13 | 2023-09-05 | 潍坊科技学院 | Preparation method of ceramic core with multilayer sandwich structure |
CN115194084B (en) * | 2022-06-02 | 2025-06-17 | 中国航发北京航空材料研究院 | A high temperature resistant composite ceramic shell for precision casting |
CN119390458A (en) * | 2024-10-30 | 2025-02-07 | 中南大学 | A high-porosity and high-strength silicon-based ceramic, a preparation method and application thereof, and a method for removing a ceramic core for titanium alloy casting |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4139393A (en) * | 1973-10-15 | 1979-02-13 | Crucible Inc. | Ceramic core for use in making molds and dies |
CN1807344A (en) * | 2006-02-09 | 2006-07-26 | 沈阳黎明航空发动机(集团)有限责任公司 | Hollow cast ceramic core and its preparation method |
CN1880281A (en) * | 2005-06-16 | 2006-12-20 | 章浩龙 | Composite investment casting refractory material and its production method |
CN102266906A (en) * | 2010-06-02 | 2011-12-07 | 中国科学院金属研究所 | Preparation method of easy-to-remove ceramic mold core |
-
2012
- 2012-02-14 CN CN201210032969.8A patent/CN103242036B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4139393A (en) * | 1973-10-15 | 1979-02-13 | Crucible Inc. | Ceramic core for use in making molds and dies |
CN1880281A (en) * | 2005-06-16 | 2006-12-20 | 章浩龙 | Composite investment casting refractory material and its production method |
CN1807344A (en) * | 2006-02-09 | 2006-07-26 | 沈阳黎明航空发动机(集团)有限责任公司 | Hollow cast ceramic core and its preparation method |
CN102266906A (en) * | 2010-06-02 | 2011-12-07 | 中国科学院金属研究所 | Preparation method of easy-to-remove ceramic mold core |
Also Published As
Publication number | Publication date |
---|---|
CN103242036A (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103242036B (en) | Method for preparing composite ceramic core | |
CN103304227B (en) | Alumina-based ceramic core for directional solidification and preparation method thereof | |
CN105127373B (en) | A kind of double wall hollow blade preparation method of hollow ceramic core | |
CN106079030B (en) | A kind of method for fast mfg of the calcium oxide-based ceramic-mould of powder overlay film | |
CN107200597B (en) | direct solidification injection molding preparation method of high-porosity complex porous ceramic | |
CN105483440B (en) | A kind of environment-friendly type preparation method of automobile engine blade | |
CN103071764B (en) | For the CaZrO of titanium or titanium alloy hot investment casting 3the preparation method of shell | |
CN105272181A (en) | Preparation technology of composite ceramic core | |
KR20150124899A (en) | Method for producing silica-base ceramic core capable of adjusting a thermal expansion coefficient | |
CN101955353A (en) | Method for improving high-temperature performance of alumina-base ceramic core | |
CN102632200A (en) | Ceramic mold core cracking prevention process method for combustion engine blades | |
CN105642831A (en) | Mold shell for precision casting or directional solidification of TiAl-based alloy and method for manufacturing mold shell | |
WO2013018393A1 (en) | Ceramic core and method for producing same | |
CN104384452A (en) | Preparation technique for thin-walled silica-based ceramic mold core | |
CN102266906B (en) | A kind of preparation method of easy-to-remove ceramic core | |
CN106116533A (en) | The preparation method of high-porosity alumina base ceramic core | |
CN108164257A (en) | Core for precision casting and manufacturing method thereof | |
CN105732007B (en) | A kind of calcium oxide-based ceramic-mould fast preparation method for complex parts manufacture | |
CN102950251A (en) | Anti-interface reaction composite ceramic shell | |
CN112390633A (en) | ZrB2Nano powder reinforced silica-based ceramic core and preparation method thereof | |
US20160121390A1 (en) | Precision-casting core, precision-casting core manufacturing method, and precision-casting mold | |
CN105803255A (en) | High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof | |
KR101763122B1 (en) | Manufacturing method of ceramic core, ceramic core, precision casting method and precision casting products | |
CN110386809A (en) | A kind of silicon-base ceramic core and preparation method thereof | |
CN106478081A (en) | The method that vacuum carbothermal reduction strengthens vitreous silica high-temperature behavior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140917 |