CN103235019A - Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage - Google Patents
Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage Download PDFInfo
- Publication number
- CN103235019A CN103235019A CN2013101285687A CN201310128568A CN103235019A CN 103235019 A CN103235019 A CN 103235019A CN 2013101285687 A CN2013101285687 A CN 2013101285687A CN 201310128568 A CN201310128568 A CN 201310128568A CN 103235019 A CN103235019 A CN 103235019A
- Authority
- CN
- China
- Prior art keywords
- electrode
- cyclodextrin
- nanometer composite
- graphene
- heavy metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000858 Cyclodextrin Polymers 0.000 title claims abstract description 50
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 150000001875 compounds Chemical class 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 55
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 29
- 229910021397 glassy carbon Inorganic materials 0.000 claims abstract description 28
- 150000002500 ions Chemical class 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 6
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000007853 buffer solution Substances 0.000 claims description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 229910052793 cadmium Inorganic materials 0.000 claims description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 7
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 229930003268 Vitamin C Natural products 0.000 claims description 4
- 239000012279 sodium borohydride Substances 0.000 claims description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 4
- 238000005171 square wave anodic stripping voltammetry Methods 0.000 claims description 4
- 239000011718 vitamin C Substances 0.000 claims description 4
- 235000019154 vitamin C Nutrition 0.000 claims description 4
- 229920000557 Nafion® Polymers 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 3
- SJSWRKNSCWKNIR-UHFFFAOYSA-N azane;dihydrochloride Chemical compound N.Cl.Cl SJSWRKNSCWKNIR-UHFFFAOYSA-N 0.000 claims description 3
- 238000002484 cyclic voltammetry Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 238000005189 flocculation Methods 0.000 claims description 3
- 230000016615 flocculation Effects 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 2
- 238000001132 ultrasonic dispersion Methods 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 238000004090 dissolution Methods 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000008363 phosphate buffer Substances 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-N potassium;chloric acid Chemical compound [K+].OCl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-N 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 238000004457 water analysis Methods 0.000 claims 1
- 239000002114 nanocomposite Substances 0.000 abstract description 28
- 238000000034 method Methods 0.000 abstract description 25
- 230000008569 process Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000012086 standard solution Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000003950 stripping voltammetry Methods 0.000 description 5
- 238000003968 anodic stripping voltammetry Methods 0.000 description 4
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000007974 sodium acetate buffer Substances 0.000 description 4
- 238000000840 electrochemical analysis Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- CSVGEMRSDNSWRF-UHFFFAOYSA-L disodium;dihydrogen phosphate Chemical compound [Na+].[Na+].OP(O)([O-])=O.OP(O)([O-])=O CSVGEMRSDNSWRF-UHFFFAOYSA-L 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 2
- 239000011540 sensing material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001075 voltammogram Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001451 bismuth ion Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- -1 mercury ions Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种环糊精/石墨烯纳米复合物修饰电极的制备以及将其用于重金属离子的同时痕量检测,属于纳米复合材料和环境监测领域。本发明主要是利用环糊精/石墨烯纳米复合物修饰玻碳电极为工作电极,以饱和甘汞电极为参比电极,铂丝电极为对电极,通过方波阳极溶出伏安法对痕量重金属离子进行同时定量分析测定。本发明制得的电极重现性、稳定性良好,操作过程简单、快速,并且大大提高了检测的灵敏度,其检测出重金属离子的极限值达到了10-11M级。
The invention relates to the preparation of a cyclodextrin/graphene nanocomposite modified electrode and its use for simultaneous trace detection of heavy metal ions, belonging to the fields of nanocomposite materials and environmental monitoring. The present invention mainly uses the cyclodextrin/graphene nanocomposite modified glassy carbon electrode as the working electrode, the saturated calomel electrode as the reference electrode, and the platinum wire electrode as the counter electrode, and the trace Heavy metal ions were simultaneously quantitatively analyzed and determined. The electrode prepared by the invention has good reproducibility and stability, and the operation process is simple and fast, and the detection sensitivity is greatly improved, and the limit value of detecting heavy metal ions reaches 10 -11 M level.
Description
技术领域:Technical field:
本发明属于纳米复合材料和环境监测领域,具体涉及一种环糊精/石墨烯纳米复合物修饰玻碳电极的制备方法及用于检测痕量重金属离子。 The invention belongs to the field of nanocomposite materials and environmental monitoring, and in particular relates to a preparation method of a cyclodextrin/graphene nanocomposite modified glassy carbon electrode and a method for detecting trace heavy metal ions.
背景技术:Background technique:
随着工农业的迅速发展,重金属离子的污染正在逐年加剧。重金属不仅可以在环境中长期存在,还可通过食物链在人和动植物体内富集。近年来,重金属污染因其对环境和人类健康造成的威胁日趋严重,已在全世界范围内引起了高度重视。 With the rapid development of industry and agriculture, the pollution of heavy metal ions is increasing year by year. Heavy metals can not only exist in the environment for a long time, but also accumulate in humans, animals and plants through the food chain. In recent years, heavy metal pollution has attracted great attention all over the world because of its increasingly serious threat to the environment and human health.
目前,检测重金属离子的方法主要包括:原子吸收光谱法、荧光光谱法、 电感耦合等离子体质谱分析法以及电化学分析法。与传统方法相比, 电化学分析法因其简便,快速,灵敏,准确等优势而得到了更广泛的应用。本发明基于电化学分析法中的阳极溶出伏安法(Anodic Stripping Voltammetry ASV)来进行检测。其主要包含沉积和溶出两个过程,即:首先,将被检测离子在一定电位下沉积还原在工作电极的表面。然后,反向扫描电极电位时,已沉积的物质发生氧化反应而溶出,同时记录溶出伏安曲线。阳极溶出伏安法的灵敏度取决于感应材料的电活性,所以本发明采用石墨烯复合物来进行修饰电极。 At present, the methods for detecting heavy metal ions mainly include: atomic absorption spectrometry, fluorescence spectrometry, inductively coupled plasma mass spectrometry and electrochemical analysis. Compared with traditional methods, electrochemical analysis has been more widely used because of its simplicity, rapidity, sensitivity, and accuracy. The present invention detects based on anodic stripping voltammetry (Anodic Stripping Voltammetry ASV) in the electrochemical analysis method. It mainly includes two processes of deposition and stripping, namely: first, the detected ions are deposited and reduced on the surface of the working electrode under a certain potential. Then, when the electrode potential is reversely scanned, the deposited substance undergoes an oxidation reaction and dissolves, and the stripping voltammetry curve is recorded at the same time. The sensitivity of anodic stripping voltammetry depends on the electrical activity of the sensing material, so the present invention uses graphene composites to modify electrodes.
石墨烯是一种由sp2杂化碳原子堆积而成的二维蜂窝状晶格结构的新型碳材料,其厚度仅为0.35nm, 是世界上最薄的二维材料。石墨烯因其具有比表面积大,载流子迁移快,导热性能好以及机械强度高等优异的物理、化学性能,而在新型复合材料,光电功能材料与器件,太阳能电池以及传感器材料等方面有着广泛的应用前景。但石墨烯的团聚使其比表面积减少,进一步降低其吸附能力,限制了它的进一步广泛应用。本发明用环糊精来修饰石墨烯,不仅克服了团聚的影响,同时也增加了其对重金属离子的选择和吸附能力。以此纳米复合物作为感应材料,发明了一种检测快,灵敏度高,重现性好的同时检测痕量重金属离子的方法,且该方法对环境和人类健康无毒无害。 Graphene is a new type of carbon material with a two-dimensional honeycomb lattice structure stacked by sp 2 hybridized carbon atoms. Its thickness is only 0.35nm, which is the thinnest two-dimensional material in the world. Graphene is widely used in new composite materials, photoelectric functional materials and devices, solar cells and sensor materials because of its excellent physical and chemical properties such as large specific surface area, fast carrier migration, good thermal conductivity and high mechanical strength. application prospects. However, the agglomeration of graphene reduces its specific surface area, further reduces its adsorption capacity, and limits its further widespread application. The invention uses cyclodextrin to modify graphene, which not only overcomes the influence of agglomeration, but also increases its selection and adsorption capacity for heavy metal ions. Using this nanocomposite as a sensing material, a method for detecting trace heavy metal ions with fast detection, high sensitivity and good reproducibility was invented, and the method is non-toxic and harmless to the environment and human health.
发明内容:Invention content:
本发明的目的在于提供一种环糊精/石墨烯纳米复合物修饰玻碳电极及检测痕量重金属离子的方法,具体包括环糊精/石墨烯纳米复合物修饰玻碳电极的制备,并以此电极作为工作电极,同时采用购买的饱和甘汞电极为参比电极,铂丝电极为对电极,通过构成的三电极体系来完成对重金属离子的痕量检测。检测过程中采用方波阳极溶出伏安法。 The object of the present invention is to provide a cyclodextrin/graphene nanocomposite modified glassy carbon electrode and a method for detecting trace heavy metal ions, specifically comprising the preparation of a cyclodextrin/graphene nanocomposite modified glassy carbon electrode, and using This electrode is used as the working electrode, and the purchased saturated calomel electrode is used as the reference electrode, and the platinum wire electrode is used as the counter electrode. The trace detection of heavy metal ions is completed through the constituted three-electrode system. Square wave anodic stripping voltammetry was used in the detection process.
本发明一种环糊精/石墨烯纳米复合物修饰玻碳电极的制备方法,包括如下步骤: A method for preparing a cyclodextrin/graphene nanocomposite modified glassy carbon electrode of the present invention comprises the following steps:
1. 玻碳电极的预处理:将玻碳电极(直径3毫米) 在抛光布上用0.05微米的Al2O3粉末抛光至镜面。抛光后先在超纯水中超声清洗2 分钟, 再依次用无水乙醇、超纯水超声清洗5分钟,最后用氮气吹干,待用。 1. Pretreatment of the glassy carbon electrode: the glassy carbon electrode (3 mm in diameter) is polished to a mirror surface with 0.05 micron Al 2 O 3 powder on a polishing cloth. After polishing, ultrasonic cleaning was performed in ultrapure water for 2 minutes, followed by absolute ethanol and ultrapure water for 5 minutes, and finally dried with nitrogen gas for later use.
2. 环糊精/石墨烯纳米复合物修饰玻碳电极的制备: 2. Preparation of cyclodextrin/graphene nanocomposite modified glassy carbon electrode:
首先,利用改进的Hummers 方法通过石墨的氧化、机械剥离、絮凝干燥等步骤制备氧化石墨烯。具体操作步骤如下:在50-5000毫升圆底烧瓶中加入10-100毫升质量浓度为95-98%浓硫酸和20-100毫升质量浓度为65-68%的浓硝酸,在0℃冰浴条件下磁力搅拌5-50分钟,然后加入2-200克天然鳞片石墨,剧烈搅拌防止团聚,待分散均匀后,加入10-100克氯酸钾,最后撤去冰浴室温下反应20-150小时,待反应完成后,将产物洗涤,超声剥离,用氢氧化钠絮凝并于20-80℃干燥2-10小时,研磨,得氧化石墨烯固体粉末。 First, graphene oxide was prepared by the modified Hummers method through graphite oxidation, mechanical exfoliation, flocculation drying and other steps. The specific operation steps are as follows: in a 50-5000 milliliter round bottom flask, add 10-100 milliliters of concentrated sulfuric acid with a mass concentration of 95-98% and 20-100 milliliters of concentrated nitric acid with a mass concentration of 65-68%. Stir under magnetic force for 5-50 minutes, then add 2-200 grams of natural flake graphite, stir vigorously to prevent agglomeration, after the dispersion is uniform, add 10-100 grams of potassium chlorate, and finally remove the ice bath and react at room temperature for 20-150 hours, until the reaction is complete Finally, the product is washed, ultrasonically stripped, flocculated with sodium hydroxide, dried at 20-80° C. for 2-10 hours, and ground to obtain graphene oxide solid powder.
将氧化石墨烯溶于去离子水中,加入过量羟丙基- -环糊精, 超声分散10-60分钟,在微波辅助下反应10分钟-2小时, 微波功率为100-800瓦,反应温度为20-80℃,随后加入还原剂, 于50-100℃下反应10-120分钟, 反应完毕后,在3000-10000转/分钟的转速下离心,并用无水乙醇反复洗涤,以除去未反应的羟丙基--环糊精, 最后于30-120℃下真空干燥2-20小时,即得产物环糊精/石墨烯纳米复合物。 Dissolve graphene oxide in deionized water, add excess hydroxypropyl- -Cyclodextrin, ultrasonically dispersed for 10-60 minutes, reacted with microwave assistance for 10 minutes-2 hours, microwave power 100-800 watts, reaction temperature 20-80°C, then add reducing agent, at 50-100°C React for 10-120 minutes. After the reaction is completed, centrifuge at a speed of 3000-10000 rpm and wash repeatedly with absolute ethanol to remove unreacted hydroxypropyl- - Cyclodextrin, and finally vacuum drying at 30-120° C. for 2-20 hours to obtain the product cyclodextrin/graphene nanocomposite.
将上述步骤制得的环糊精/石墨烯纳米复合物用溶剂溶解,控制其浓度为0.5-50毫克/毫升,再加入环糊精/石墨烯纳米复合物溶液体积0.1-10%的5%的Nafion,超声分散10-60分钟,得到均匀的分散液。用微量移液枪移取3-10微升上述分散液,滴涂在处理好的玻碳电极表面,室温下干燥,得到环糊精/石墨烯纳米复合物修饰的电极。为了对比,用同样的方法制备石墨烯修饰玻碳电极和环糊精修饰玻碳电极。 Dissolve the cyclodextrin/graphene nanocomposite prepared in the above steps with a solvent, control its concentration to be 0.5-50 mg/ml, and then add 5% of the cyclodextrin/graphene nanocomposite solution volume 0.1-10% For Nafion, ultrasonically disperse for 10-60 minutes to obtain a uniform dispersion. Use a micropipette to pipette 3-10 microliters of the above dispersion, drop-coat it on the surface of the treated glassy carbon electrode, and dry it at room temperature to obtain a cyclodextrin/graphene nanocomposite modified electrode. For comparison, graphene-modified glassy carbon electrodes and cyclodextrin-modified glassy carbon electrodes were prepared by the same method.
本发明还提供一种检测痕量重金属离子的方法,适用于环境检测和水质分析中重金属离子的痕量检测。其具体的测定方法如下:将上述制备的环糊精/石墨烯纳米复合物修饰电极作为工作电极、饱和甘汞电极作为参比电极、铂丝电极为对电极,由此构成三电极体系。测定重金属离子时,将三电极体系先置于20毫升的0.1摩尔/升pH为3.0-6.0的缓冲溶液中,用循环伏安法扫描数次直至得到平滑的曲线,以完成工作电极表面的活化。然后在搅拌条件下,用微量移液枪依次向上述缓冲溶液中加入一定浓度的重金属离子溶液,在电位-0.4~-1.8伏下富集30-600秒,然后用方波阳极溶出伏安法反向扫描,同时记录溶出伏安曲线。 The invention also provides a method for detecting trace heavy metal ions, which is suitable for trace detection of heavy metal ions in environmental detection and water quality analysis. The specific measurement method is as follows: the cyclodextrin/graphene nanocomposite modified electrode prepared above is used as the working electrode, the saturated calomel electrode is used as the reference electrode, and the platinum wire electrode is used as the counter electrode, thus forming a three-electrode system. When measuring heavy metal ions, first place the three-electrode system in 20 ml of 0.1 mol/L buffer solution with a pH of 3.0-6.0, and use cyclic voltammetry to scan several times until a smooth curve is obtained to complete the activation of the working electrode surface . Then, under stirring conditions, use a micropipette to add a certain concentration of heavy metal ion solution to the above buffer solution in sequence, enrich at a potential of -0.4 to -1.8 volts for 30-600 seconds, and then use square wave anodic stripping voltammetry Reverse scanning, while recording the stripping voltammetry curve.
本发明所用还原剂为氨水、水合肼、氢氧化钠、硼氢化钠和维生素C中的一种或几种。 The reducing agent used in the present invention is one or more of ammonia water, hydrazine hydrate, sodium hydroxide, sodium borohydride and vitamin C.
本发明所用溶剂为去离子水、乙醇、丙酮、N,N-二甲基甲酰胺中的一种或几种。 The solvent used in the present invention is one or more of deionized water, ethanol, acetone and N,N-dimethylformamide.
本发明所用缓冲溶液为醋酸-醋酸钠、氯化铵-盐酸、磷酸一氢钠-磷酸二氢钠缓冲溶液中的一种。 The buffer solution used in the present invention is one of acetic acid-sodium acetate, ammonium chloride-hydrochloric acid, sodium monohydrogen phosphate-sodium dihydrogen phosphate buffer solution.
本发明所用重金属离子溶液为铅、镉、汞、银、铬、铜、锌、铋溶液中的一种或几种。 The heavy metal ion solution used in the present invention is one or more of lead, cadmium, mercury, silver, chromium, copper, zinc and bismuth solutions.
本发明的有益效果如下所述: The beneficial effects of the present invention are as follows:
本发明提供的环糊精/石墨烯的纳米复合物同时具备了环糊精的主-客体识别能力、富集性能和石墨烯的优异的导电性、大的比表面积。水溶性环糊精分子的修饰不仅克服了石墨烯的团聚,更有利于对重金属离子的选择性捕捉。 The cyclodextrin/graphene nanocomposite provided by the invention has both the host-guest recognition ability and enrichment performance of the cyclodextrin and the excellent conductivity and large specific surface area of the graphene. The modification of water-soluble cyclodextrin molecules not only overcomes the agglomeration of graphene, but also facilitates the selective capture of heavy metal ions.
另外,本发明通过电化学溶出伏安法,以环糊精/石墨烯纳米复合物修饰的玻碳电极为工作电极对痕量重金属离子进行同时检测,操作过程简单、快速,检测方法重现性、稳定性好,并且大大提高了检测的灵敏度。环糊精的修饰,对重金属离子有很好的检测效果,尤其是铅离子和镉离子的检出限分别达到了9.42×10-11摩尔/升 和 6.73×10-11摩尔/升。 In addition, the present invention uses the cyclodextrin/graphene nanocomposite-modified glassy carbon electrode as the working electrode to simultaneously detect trace heavy metal ions through electrochemical stripping voltammetry. The operation process is simple and fast, and the detection method is reproducible. , good stability, and greatly improved the detection sensitivity. The modification of cyclodextrin has a good detection effect on heavy metal ions, especially the detection limits of lead ion and cadmium ion reached 9.42×10 -11 mol/L and 6.73×10 -11 mol/L, respectively.
附图说明:Description of drawings:
图1 环糊精/石墨烯纳米复合物的合成原理及该复合物与重金属离子之间的相互作用示意图。 Fig. 1 Schematic diagram of the synthesis principle of cyclodextrin/graphene nanocomposite and the interaction between the complex and heavy metal ions.
图2 氧化石墨烯(a)和环糊精/石墨烯纳米复合物(b)的透射电镜图。 Fig. 2 TEM images of graphene oxide (a) and cyclodextrin/graphene nanocomposite (b).
图3 石墨烯、氧化石墨烯、环糊精、环糊精/石墨烯纳米复合物的热失重曲线图。 Fig. 3 Thermogravimetric curves of graphene, graphene oxide, cyclodextrin, and cyclodextrin/graphene nanocomposites.
图4 在含有铅和镉(1.0×10-7摩尔/升)的0.1摩尔/升pH 4.5醋酸-醋酸钠缓冲溶液中,裸玻碳电极,石墨烯修饰玻碳电极,环糊精修饰玻碳电极及环糊精/石墨烯纳米复合物修饰玻碳电极的方波阳极溶出伏安图。 Figure 4 In 0.1 mol/L pH 4.5 acetic acid-sodium acetate buffer solution containing lead and cadmium (1.0×10 -7 mol/L), bare glassy carbon electrode, graphene-modified glassy carbon electrode, cyclodextrin-modified glassy carbon electrode Square-wave anodic stripping voltammograms of electrode and cyclodextrin/graphene nanocomposite modified glassy carbon electrode.
图5 多种不同浓度铅和镉溶液的方波阳极溶出伏安图(a),峰电流的大小表征金属离子的浓度。峰电流与(b)铅和(c)镉离子浓度的线性关系图。 Figure 5 Square-wave anodic stripping voltammogram (a) of various concentrations of lead and cadmium solutions, the peak current represents the concentration of metal ions. Linear plots of peak current versus (b) lead and (c) cadmium ion concentrations.
具体实施方式:Detailed ways:
下面通过附图和具体实施例对本发明作进一步的详细描述。 The present invention will be further described in detail through the accompanying drawings and specific embodiments below.
实施例1 第一步,即环糊精/石墨烯纳米复合物修饰玻碳电极的制备。 Example 1 The first step is the preparation of a cyclodextrin/graphene nanocomposite modified glassy carbon electrode.
(1)玻碳电极的预处理:将玻碳电极(直径3毫米) 在抛光布上用0.05微米的Al2O3粉末抛光至镜面。抛光后先在超纯水中超声2 分钟, 再依次用无水乙醇、超纯水超声清洗5分钟,最后用氮气吹干,待用。 (1) Pretreatment of the glassy carbon electrode: the glassy carbon electrode (3 mm in diameter) was polished to a mirror surface with 0.05 micron Al 2 O 3 powder on a polishing cloth. After polishing, ultrasonically clean in ultrapure water for 2 minutes, followed by ultrasonic cleaning with absolute ethanol and ultrapure water for 5 minutes, and finally blow dry with nitrogen gas for use.
(2)环糊精/石墨烯纳米复合物修饰玻碳电极的制备: (2) Preparation of cyclodextrin/graphene nanocomposite modified glassy carbon electrode:
首先,利用改进的Hummers 方法通过石墨的氧化、机械剥离、絮凝干燥等步骤制备氧化石墨烯。具体操作步骤如下:在500毫升圆底烧瓶中加入72毫升质量浓度为95-98%的浓硫酸和36毫升质量浓度为65-68%的浓硝酸,在0℃冰浴条件下磁力搅拌15分钟,然后加入4克天然鳞片石墨,剧烈搅拌防止团聚,待分散均匀后,加入44克氯酸钾,最后撤去冰浴室温下反应96小时。待反应完成后,将产物洗涤,超声剥离,用氢氧化钠絮凝并于40℃干燥6小时得氧化石墨烯固体粉末。 First, graphene oxide was prepared by the modified Hummers method through graphite oxidation, mechanical exfoliation, flocculation drying and other steps. The specific operation steps are as follows: add 72 milliliters of concentrated sulfuric acid with a mass concentration of 95-98% and 36 milliliters of concentrated nitric acid with a mass concentration of 65-68% in a 500 milliliter round bottom flask, and magnetically stir for 15 minutes under 0 ° C ice bath conditions , then add 4 grams of natural flake graphite, stir vigorously to prevent agglomeration, after the dispersion is uniform, add 44 grams of potassium chlorate, and finally remove the ice and react at room temperature for 96 hours. After the reaction was completed, the product was washed, ultrasonically stripped, flocculated with sodium hydroxide and dried at 40° C. for 6 hours to obtain graphene oxide solid powder.
称取40毫克氧化石墨烯溶解于80毫升去离子水中,再加入1.0克 羟丙基--环糊精, 超声分散20分钟;在微波辅助下反应30分钟,微波功率为450瓦,反应温度为50℃;随后加入500微升氨水和100微升水合肼, 于75℃下反应30分钟, 反应完毕后,将混合物倒入离心管中,在8000转/分钟的转速下离心15分钟,并用大量的无水乙醇反复洗涤,以除去未反应的羟丙基--环糊精, 最后于70℃下真空干燥6小时,即得产物环糊精/石墨烯纳米复合物。其制备原理见图1,形貌和热稳定性分别见图2和图3 。 Weigh 40 mg of graphene oxide and dissolve in 80 ml of deionized water, then add 1.0 g of hydroxypropyl- -Cyclodextrin, ultrasonically dispersed for 20 minutes; reacted for 30 minutes under the assistance of microwave, the microwave power is 450 watts, and the reaction temperature is 50°C; then add 500 μl of ammonia water and 100 μl of hydrazine hydrate, and react at 75°C for 30 minutes , After the reaction is complete, pour the mixture into a centrifuge tube, centrifuge at 8000 rpm for 15 minutes, and wash repeatedly with a large amount of absolute ethanol to remove unreacted hydroxypropyl- - Cyclodextrin, and finally vacuum-dried at 70° C. for 6 hours to obtain the product cyclodextrin/graphene nanocomposite. The preparation principle is shown in Figure 1, and the morphology and thermal stability are shown in Figure 2 and Figure 3, respectively.
将上述步骤制得的环糊精/石墨烯纳米复合物1毫克用1毫升N,N-二甲基甲酰胺溶解,再加入20微升5%的Nafion, 超声分散得到均匀的分散液。用微量移液枪移取5微升上述分散液,滴涂在处理好的玻碳电极表面,室温下干燥,得到环糊精/石墨烯纳米复合物修饰的电极。为了对比,用同样的方法制备石墨烯修饰玻碳电极和环糊精修饰玻碳电极。由图4可知,环糊精/石墨烯纳米复合物修饰玻碳电极的性能远远好于其他的电极。 Dissolve 1 mg of the cyclodextrin/graphene nanocomposite prepared in the above steps with 1 ml of N,N-dimethylformamide, then add 20 microliters of 5% Nafion, and ultrasonically disperse to obtain a uniform dispersion. Use a micropipette to pipette 5 microliters of the above dispersion, drop-coat it on the surface of the treated glassy carbon electrode, and dry it at room temperature to obtain a cyclodextrin/graphene nanocomposite modified electrode. For comparison, graphene-modified glassy carbon electrodes and cyclodextrin-modified glassy carbon electrodes were prepared by the same method. It can be seen from Figure 4 that the performance of the cyclodextrin/graphene nanocomposite modified glassy carbon electrode is much better than other electrodes.
第二步. 即环糊精/石墨烯纳米复合物修饰玻碳电极用于重金属离子的检测。将上述制备的环糊精/石墨烯纳米复合物修饰玻碳电极作为工作电极,饱和甘汞电极作为参比电极、铂丝电极为对电极,由此构成三电极体系。测定重金属离子时,将三电极体系先置于20毫升0.1摩尔/升pH为4.5的醋酸-醋酸钠缓冲溶液中,用循环伏安法以300毫伏/秒的速度扫描数次直至得到平滑的曲线,以完成工作电极表面的活化。然后在搅拌的条件下,用微量移液枪向上述溶液中依次加入一定量不同浓度的铅和镉标准溶液,然后在电位-1.2伏下富集120秒,用方波阳极溶出伏安法反向扫描同时记录溶出伏安曲线。 The second step. The cyclodextrin/graphene nanocomposite modified glassy carbon electrode is used for the detection of heavy metal ions. The cyclodextrin/graphene nanocomposite modified glassy carbon electrode prepared above was used as the working electrode, the saturated calomel electrode was used as the reference electrode, and the platinum wire electrode was used as the counter electrode, thus forming a three-electrode system. When measuring heavy metal ions, first place the three-electrode system in 20 ml of 0.1 mol/L acetic acid-sodium acetate buffer solution with a pH of 4.5, and use cyclic voltammetry to scan several times at a speed of 300 mV/s until a smooth curve to complete the activation of the working electrode surface. Then, under the condition of stirring, a certain amount of lead and cadmium standard solutions with different concentrations were sequentially added to the above solution with a micropipette, then enriched at a potential of -1.2 volts for 120 seconds, and reacted with square wave anodic stripping voltammetry. The stripping voltammetry curve was recorded simultaneously with the scan.
实施例2 按实施例1的制备方法,只是将所述的还原剂由氨水和水合肼改为氢氧化钠溶液和硼氢化钠,同样得到如图2、3所示的结果。 Example 2 According to the preparation method of Example 1, except that the reducing agent was changed from ammonia water and hydrazine hydrate to sodium hydroxide solution and sodium borohydride, the results shown in Figures 2 and 3 were also obtained.
实施例3 按实施例1的制备方法,只是将所述的还原剂由氨水和水合肼改成硼氢化钠,同样得到如图2、3所示的结果。 Example 3 According to the preparation method of Example 1, except that the reducing agent was changed from ammonia water and hydrazine hydrate to sodium borohydride, the results shown in Figures 2 and 3 were also obtained.
实施例4 按实施例1 的制备方法,只是将所述的还原剂由氨水和水合肼改为氢氧化钠溶液和维生素C,同样得到如图2、3所示的结果。 Example 4 According to the preparation method of Example 1, except that the reducing agent was changed from ammonia water and hydrazine hydrate to sodium hydroxide solution and vitamin C, the results shown in Figures 2 and 3 were also obtained.
实施例5 按实施例1的制备方法,只是将所述的还原剂由氨水和水合肼改为维生素C,同样得到如图2、3所示的结果。 Example 5 According to the preparation method of Example 1, except that the reducing agent was changed from ammonia water and hydrazine hydrate to vitamin C, the results shown in Figures 2 and 3 were also obtained.
实施例6 按实施例1的方法,只是将所述的溶剂由N,N-二甲基甲酰胺改为乙醇,同样得到如图4、5所示的结果。 Example 6 According to the method of Example 1, except that the solvent was changed from N,N-dimethylformamide to ethanol, the results shown in Figures 4 and 5 were also obtained.
实施例7按实施例1的方法,只是将所述的溶剂由N,N-二甲基甲酰胺改为丙酮,同样得到如图4、5所示的结果。 Example 7 Following the method of Example 1, except that the solvent was changed from N,N-dimethylformamide to acetone, the results shown in Figures 4 and 5 were also obtained.
实施例8 按实施例1的方法,只是将所述的缓冲溶液由醋酸-醋酸钠缓冲溶液改为氯化铵-盐酸缓冲溶液,同样得到如图4、5所示的结果。 Example 8 According to the method of Example 1, only the buffer solution was changed from acetic acid-sodium acetate buffer solution to ammonium chloride-hydrochloric acid buffer solution, and the results shown in Figures 4 and 5 were also obtained.
实施例9 按实施例1的方法只是将所述的缓冲溶液由醋酸-醋酸钠缓冲溶液改为磷酸一氢钠-磷酸二氢钠缓冲溶液。同样得到如图4、5所示的结果。 Example 9 According to the method of Example 1, the buffer solution was changed from acetic acid-sodium acetate buffer solution to sodium monohydrogen phosphate-sodium dihydrogen phosphate buffer solution. The results shown in Figures 4 and 5 are also obtained.
实施例10 按实施例1的方法只是将重金属离子标准溶液由铅和镉离子标准溶液改为铅、镉和铋离子标准溶液,同样得到如图4、5所示的结果。 Example 10 According to the method of Example 1, the standard solution of heavy metal ions is changed from the standard solution of lead and cadmium ions to the standard solution of lead, cadmium and bismuth ions, and the results shown in Figures 4 and 5 are also obtained.
实施例11 按实施例1的方法只是将重金属离子标准溶液由铅和镉离子标准溶液改为铅、镉和汞离子标准溶液,同样得到如图4、5所示的结果。 Example 11 According to the method of Example 1, the standard solution of heavy metal ions is changed from the standard solution of lead and cadmium ions to the standard solution of lead, cadmium and mercury ions, and the results shown in Figures 4 and 5 are also obtained.
由图5可知,环糊精/石墨烯修饰玻碳电极对Pb2+和Cd2+有很好的溶出伏安响应,且随着Pb2+和Cd2+浓度的增加,峰电流的响应也逐渐增大。将峰电流的强度与金属离子的相应浓度进行线性拟合来做进一步分析可知,在1×10-10~9×10-9M范围内,峰电流与Pb2+的浓度成线性关系,线性方程为 y()=0.223x(nM)+0.145,其最低检出限为9.42×10-11M。与此相比,在5×10-10~9×10-9M范围内,峰电流与Cd2+的浓度成线性关系,且线性方程为y()=0.281x(nM)-0.086,最低检出限为6.73×10-11M。 It can be seen from Figure 5 that the cyclodextrin/graphene modified glassy carbon electrode has a good stripping voltammetry response to Pb 2+ and Cd 2+ , and with the increase of the concentration of Pb 2+ and Cd 2+ , the peak current response also gradually increased. The intensity of the peak current is linearly fitted with the corresponding concentration of metal ions for further analysis. It can be seen that in the range of 1×10 -10 to 9×10 -9 M, the peak current has a linear relationship with the concentration of Pb 2+ , and the linear The equation is y( )=0.223x(nM)+0.145, the lowest detection limit is 9.42×10 -11 M. In contrast, in the range of 5×10 -10 ~ 9×10 -9 M, the peak current has a linear relationship with the concentration of Cd 2+ , and the linear equation is y( )=0.281x(nM)-0.086, the lowest detection limit was 6.73×10 -11 M.
本发明制备的电极有着良好的稳定性和重现性,对于同一根修饰电极,10次重复测试的相对标准偏差为1.93%。而对于同时制备的6根平行电极,其相对标准偏差也在5%之内。除此之外,在整个测试过程中,电极并不需要重新制备或活化,这进一步证明我们制备的电极具有良好的稳定性和重现性。 The electrode prepared by the invention has good stability and reproducibility, and for the same modified electrode, the relative standard deviation of 10 repeated tests is 1.93%. And for the 6 parallel electrodes prepared at the same time, the relative standard deviation is also within 5%. In addition, the electrodes did not need to be re-prepared or activated during the whole testing process, which further proves the good stability and reproducibility of our prepared electrodes.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310128568.7A CN103235019B (en) | 2013-04-15 | 2013-04-15 | Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310128568.7A CN103235019B (en) | 2013-04-15 | 2013-04-15 | Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103235019A true CN103235019A (en) | 2013-08-07 |
CN103235019B CN103235019B (en) | 2014-10-15 |
Family
ID=48883070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310128568.7A Expired - Fee Related CN103235019B (en) | 2013-04-15 | 2013-04-15 | Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103235019B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969320A (en) * | 2014-05-07 | 2014-08-06 | 深圳市宇驰检测技术有限公司 | Anodic stripping voltammetric detection method for cadmium in rice |
CN104049012A (en) * | 2014-06-23 | 2014-09-17 | 西北工业大学 | Method for preparing cyclodextrin and nanogold modified glassy carbon electrode |
CN104122309A (en) * | 2014-07-22 | 2014-10-29 | 济南大学 | Preparation and application of cyclodextrin-Cu@Ag electrochemical immunosensor |
CN104181299A (en) * | 2014-09-12 | 2014-12-03 | 山东理工大学 | Preparation method and application of platinum hybrid copper oxide multi-walled carbon nanotube sensor |
CN104353439A (en) * | 2014-11-12 | 2015-02-18 | 安徽师范大学 | Preparation method and application of adsorbent |
CN104535641A (en) * | 2015-01-22 | 2015-04-22 | 广西师范学院 | Method for detecting concentration of cadmium ions |
CN104569122A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting concentration of copper ions in solution |
CN104569120A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting concentration of zinc ions |
CN104569121A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting lead ion concentration in solution |
CN104597091A (en) * | 2015-01-22 | 2015-05-06 | 广西师范学院 | Preparation method for modified electrode |
CN104777207A (en) * | 2015-04-10 | 2015-07-15 | 武汉大学 | Three-dimensional nitrogen-doped graphene composite material as well as preparation method and application thereof |
CN105140046A (en) * | 2015-09-29 | 2015-12-09 | 湘潭大学 | A kind of preparation method and application of nano-γ-MnO2/graphene airgel composite material |
CN105911120A (en) * | 2016-04-13 | 2016-08-31 | 中国科学院过程工程研究所 | Sulfur-doped graphene oxide modified glassy carbon electrode, preparation method and detection method for heavy metals in water |
CN106269840A (en) * | 2016-08-29 | 2017-01-04 | 付融冰 | A kind of electrode restorative procedure of contaminated soil or subsoil water |
CN107597070A (en) * | 2017-10-30 | 2018-01-19 | 江南大学 | It is a kind of using hybrid silicon cyclodextrin as novel hybride sorbing material of core shell structure and preparation method thereof |
CN107643331A (en) * | 2017-09-06 | 2018-01-30 | 山西大学 | A kind of electrode face finish material and its preparation method and application |
CN107741445A (en) * | 2017-08-30 | 2018-02-27 | 河海大学 | A kind of screen printing electrode and its preparation method and application |
CN108039449A (en) * | 2017-12-07 | 2018-05-15 | 福建荣华科技有限公司 | The preparation method and lithium ion battery of lithium ion battery |
CN108061748A (en) * | 2017-12-07 | 2018-05-22 | 哈尔滨商业大学 | For detecting the preparation method of the nanometer bismuth oxide graphene composite film electrode of lead ion and cadmium ion |
CN109100403A (en) * | 2018-07-27 | 2018-12-28 | 华南师范大学 | The graphene composite material modified electrode of cyclodextrin functionalization and its preparation and application |
CN109164151A (en) * | 2018-10-09 | 2019-01-08 | 石河子大学 | A kind of CoNiO of trace detection copper ion2The method of nanometer-material-modified glass-carbon electrode |
CN109254067A (en) * | 2018-09-21 | 2019-01-22 | 东华大学 | A kind of glass-carbon electrode and its preparation and application based on the modification of rhodamine b/ redox graphene |
CN109613081A (en) * | 2018-11-23 | 2019-04-12 | 天津科技大学 | A kind of detection tyramine molecular electrochemical sensor and its preparation method and application |
CN110003363A (en) * | 2019-04-16 | 2019-07-12 | 合肥工业大学 | Electrochemical Modification composite material and preparation method thereof and electrochemical sensor |
CN110082410A (en) * | 2019-05-08 | 2019-08-02 | 甘肃中商食品质量检验检测有限公司 | The preparation and application of gold nanoparticle load beta-cyclodextrin functionalization graphene biosensor |
CN110586640A (en) * | 2019-10-26 | 2019-12-20 | 闫娜 | Method for removing and recovering heavy metals in polluted soil |
CN110806437A (en) * | 2019-11-15 | 2020-02-18 | 中南大学 | Black phosphorus nanosheets/maltosyl-β-cyclodextrin modified glassy carbon electrode and its application |
CN110907516A (en) * | 2019-12-06 | 2020-03-24 | 湖南环境生物职业技术学院 | Compound modified electrode and application thereof in simultaneous determination of contents of 2, 7-naphthalenediol and bisphenol A in water |
CN111781268A (en) * | 2020-07-15 | 2020-10-16 | 吉林省海森博科技有限公司 | Voltammetry-based method for detecting heavy metal ions in brackish water |
CN112903778A (en) * | 2021-02-04 | 2021-06-04 | 中南大学 | Graphene oxide-amino-β-cyclodextrin/black phosphorus modified glassy carbon electrode and its preparation method and application |
CN114864932A (en) * | 2022-06-21 | 2022-08-05 | 深圳名飞远科技有限公司 | Preparation method of sodium ion battery positive electrode material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183557A (en) * | 2011-01-22 | 2011-09-14 | 青岛大学 | Preparation method of cyclodextrin functionalized graphene |
CN102288661A (en) * | 2011-05-06 | 2011-12-21 | 北京化工大学 | Carbon heterostructure material / beta-cyclodextrin complex modified electrode and preparation method thereof |
-
2013
- 2013-04-15 CN CN201310128568.7A patent/CN103235019B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183557A (en) * | 2011-01-22 | 2011-09-14 | 青岛大学 | Preparation method of cyclodextrin functionalized graphene |
CN102288661A (en) * | 2011-05-06 | 2011-12-21 | 北京化工大学 | Carbon heterostructure material / beta-cyclodextrin complex modified electrode and preparation method thereof |
Non-Patent Citations (7)
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103969320A (en) * | 2014-05-07 | 2014-08-06 | 深圳市宇驰检测技术有限公司 | Anodic stripping voltammetric detection method for cadmium in rice |
CN104049012A (en) * | 2014-06-23 | 2014-09-17 | 西北工业大学 | Method for preparing cyclodextrin and nanogold modified glassy carbon electrode |
CN104049012B (en) * | 2014-06-23 | 2016-08-24 | 西北工业大学 | A kind of cyclodextrin and the preparation method of In Glassy Carbon Electrode Modified With Nano-gold |
CN104122309B (en) * | 2014-07-22 | 2015-08-19 | 济南大学 | A kind of preparation of cyclodextrin-Cu@Ag electrochemical immunosensor |
CN104122309A (en) * | 2014-07-22 | 2014-10-29 | 济南大学 | Preparation and application of cyclodextrin-Cu@Ag electrochemical immunosensor |
CN104181299A (en) * | 2014-09-12 | 2014-12-03 | 山东理工大学 | Preparation method and application of platinum hybrid copper oxide multi-walled carbon nanotube sensor |
CN104181299B (en) * | 2014-09-12 | 2016-01-06 | 山东理工大学 | A kind of preparation method of platinum hybrid cupric oxide multi-wall carbon nano-tube tube sensor and application |
CN104353439A (en) * | 2014-11-12 | 2015-02-18 | 安徽师范大学 | Preparation method and application of adsorbent |
CN104569121B (en) * | 2015-01-22 | 2017-02-22 | 广西师范学院 | Method for detecting lead ion concentration in solution |
CN104569120B (en) * | 2015-01-22 | 2017-02-22 | 广西师范学院 | Method for detecting concentration of zinc ions |
CN104535641A (en) * | 2015-01-22 | 2015-04-22 | 广西师范学院 | Method for detecting concentration of cadmium ions |
CN104569121A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting lead ion concentration in solution |
CN104597091B (en) * | 2015-01-22 | 2017-07-07 | 广西师范学院 | A kind of preparation method of modified electrode |
CN104569120A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting concentration of zinc ions |
CN104569122A (en) * | 2015-01-22 | 2015-04-29 | 广西师范学院 | Method for detecting concentration of copper ions in solution |
CN104569122B (en) * | 2015-01-22 | 2017-05-24 | 广西师范学院 | Method for detecting concentration of copper ions in solution |
CN104535641B (en) * | 2015-01-22 | 2017-05-24 | 广西师范学院 | Method for detecting concentration of cadmium ions |
CN104597091A (en) * | 2015-01-22 | 2015-05-06 | 广西师范学院 | Preparation method for modified electrode |
CN104777207B (en) * | 2015-04-10 | 2017-11-28 | 武汉大学 | A kind of three-dimensional nitrogen-doped graphene composite and its preparation method and application |
CN104777207A (en) * | 2015-04-10 | 2015-07-15 | 武汉大学 | Three-dimensional nitrogen-doped graphene composite material as well as preparation method and application thereof |
CN105140046A (en) * | 2015-09-29 | 2015-12-09 | 湘潭大学 | A kind of preparation method and application of nano-γ-MnO2/graphene airgel composite material |
CN105911120A (en) * | 2016-04-13 | 2016-08-31 | 中国科学院过程工程研究所 | Sulfur-doped graphene oxide modified glassy carbon electrode, preparation method and detection method for heavy metals in water |
CN105911120B (en) * | 2016-04-13 | 2018-07-06 | 中国科学院过程工程研究所 | Glass-carbon electrode, preparation method and the method for carrying out heavy metal analysis in water of sulfur doping graphene oxide modification |
CN106269840A (en) * | 2016-08-29 | 2017-01-04 | 付融冰 | A kind of electrode restorative procedure of contaminated soil or subsoil water |
CN107741445A (en) * | 2017-08-30 | 2018-02-27 | 河海大学 | A kind of screen printing electrode and its preparation method and application |
CN107643331A (en) * | 2017-09-06 | 2018-01-30 | 山西大学 | A kind of electrode face finish material and its preparation method and application |
CN107643331B (en) * | 2017-09-06 | 2019-09-24 | 山西大学 | A kind of electrode face finish material and its preparation method and application |
CN107597070A (en) * | 2017-10-30 | 2018-01-19 | 江南大学 | It is a kind of using hybrid silicon cyclodextrin as novel hybride sorbing material of core shell structure and preparation method thereof |
CN108061748A (en) * | 2017-12-07 | 2018-05-22 | 哈尔滨商业大学 | For detecting the preparation method of the nanometer bismuth oxide graphene composite film electrode of lead ion and cadmium ion |
CN108061748B (en) * | 2017-12-07 | 2020-03-27 | 哈尔滨商业大学 | Preparation method of nano bismuth trioxide graphene composite membrane electrode for detecting lead ions and cadmium ions |
CN108039449B (en) * | 2017-12-07 | 2020-02-11 | 福建荣华科技有限公司 | Preparation method of lithium ion battery and lithium ion battery |
CN108039449A (en) * | 2017-12-07 | 2018-05-15 | 福建荣华科技有限公司 | The preparation method and lithium ion battery of lithium ion battery |
CN109100403A (en) * | 2018-07-27 | 2018-12-28 | 华南师范大学 | The graphene composite material modified electrode of cyclodextrin functionalization and its preparation and application |
CN109254067A (en) * | 2018-09-21 | 2019-01-22 | 东华大学 | A kind of glass-carbon electrode and its preparation and application based on the modification of rhodamine b/ redox graphene |
CN109254067B (en) * | 2018-09-21 | 2020-08-11 | 东华大学 | A glassy carbon electrode modified by rhodamine b/reduced graphene oxide and its preparation and application |
CN109164151A (en) * | 2018-10-09 | 2019-01-08 | 石河子大学 | A kind of CoNiO of trace detection copper ion2The method of nanometer-material-modified glass-carbon electrode |
CN109613081A (en) * | 2018-11-23 | 2019-04-12 | 天津科技大学 | A kind of detection tyramine molecular electrochemical sensor and its preparation method and application |
CN109613081B (en) * | 2018-11-23 | 2021-05-28 | 天津科技大学 | A kind of detection tyramine molecular electrochemical sensor and its preparation method and application |
CN110003363A (en) * | 2019-04-16 | 2019-07-12 | 合肥工业大学 | Electrochemical Modification composite material and preparation method thereof and electrochemical sensor |
CN110082410A (en) * | 2019-05-08 | 2019-08-02 | 甘肃中商食品质量检验检测有限公司 | The preparation and application of gold nanoparticle load beta-cyclodextrin functionalization graphene biosensor |
CN110082410B (en) * | 2019-05-08 | 2021-02-02 | 甘肃中商食品质量检验检测有限公司 | Preparation and application of gold nanoparticle-loaded beta-cyclodextrin functionalized graphene biosensor |
CN110586640A (en) * | 2019-10-26 | 2019-12-20 | 闫娜 | Method for removing and recovering heavy metals in polluted soil |
CN110806437B (en) * | 2019-11-15 | 2020-08-04 | 中南大学 | Black phosphorus nanosheets/maltosyl-β-cyclodextrin modified glassy carbon electrode and its application |
CN110806437A (en) * | 2019-11-15 | 2020-02-18 | 中南大学 | Black phosphorus nanosheets/maltosyl-β-cyclodextrin modified glassy carbon electrode and its application |
CN110907516A (en) * | 2019-12-06 | 2020-03-24 | 湖南环境生物职业技术学院 | Compound modified electrode and application thereof in simultaneous determination of contents of 2, 7-naphthalenediol and bisphenol A in water |
CN110907516B (en) * | 2019-12-06 | 2022-08-02 | 湖南环境生物职业技术学院 | Compound modified electrode and application thereof in simultaneous determination of contents of 2, 7-naphthalenediol and bisphenol A in water |
CN111781268A (en) * | 2020-07-15 | 2020-10-16 | 吉林省海森博科技有限公司 | Voltammetry-based method for detecting heavy metal ions in brackish water |
CN112903778A (en) * | 2021-02-04 | 2021-06-04 | 中南大学 | Graphene oxide-amino-β-cyclodextrin/black phosphorus modified glassy carbon electrode and its preparation method and application |
CN114864932A (en) * | 2022-06-21 | 2022-08-05 | 深圳名飞远科技有限公司 | Preparation method of sodium ion battery positive electrode material |
Also Published As
Publication number | Publication date |
---|---|
CN103235019B (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103235019A (en) | Cyclodextrin/grapheme nanometer compound modified electrode, preparation method and usage | |
Wang et al. | Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor | |
Wen et al. | N-doped reduced graphene oxide/MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry | |
Wei et al. | Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode | |
Ngai et al. | Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide | |
Jiang et al. | A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix | |
Wang et al. | Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format | |
CN104634836B (en) | The application of the preparation method and its heavy metal ion detection of graphite oxide phase carbon nitride modified electrode | |
Liu et al. | A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine | |
Yu et al. | A highly sensitive determination of sulfite using a glassy carbon electrode modified with gold nanoparticles-reduced graphene oxide nano-composites | |
Yang et al. | A feasible C-rich DNA electrochemical biosensor based on Fe3O4@ 3D-GO for sensitive and selective detection of Ag+ | |
CN105842318A (en) | Preparation method and application of graphene/polypyrrole electrochemical sensor for trace-amount lead ion detection | |
CN108519412A (en) | Construction method of electrochemiluminescence sensor based on graphene-like C3N4 nanosheets and its application in Hg2+ detection | |
Liu et al. | Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters | |
Wang et al. | A simple and sensitive electrochemical sensing based on amine-functionalized metal–organic framework and polypyrrole composite for detection of lead ions in meat samples | |
Zhang et al. | Electrochemical sensor based on palladium loaded laser scribed graphitic carbon nanosheets for ultrasensitive detection of hydrazine | |
CN105973956A (en) | Graphene-cuprous oxide composite film modified acetylene black electrode and detection method for detection of vanillin in food | |
Qin et al. | Preparation of molecularly imprinted electrochemical sensors for selective detection of hydroxyl radicals based on reduced graphene oxide nanosilver (rGO/AgNPs) composites | |
CN108680635A (en) | One kind can be used for Cu2+Functionalized modification acupuncture pin electrode of detection and preparation method thereof | |
Chen et al. | In-situ deposition of gold nanoparticles on screen-printed carbon electrode for rapid determination of Hg2+ in water samples | |
CN108061748B (en) | Preparation method of nano bismuth trioxide graphene composite membrane electrode for detecting lead ions and cadmium ions | |
Zhu et al. | Acid-etched Fe/Fe 2 O 3 nanoparticles encapsulated into carbon cloth as a novel voltammetric sensor for the simultaneous detection of Cd 2+ and Pb 2 | |
CN111562294B (en) | A nanocomposite electrochemical sensor, construction method and use thereof in the detection of nitrite ions and iodide ions | |
Salandari-Jolge et al. | A copper oxide nanorod derived metal–organic framework nanocomposite: a robust and sensitive electrocatalyst for the detection of furazolidone | |
Li et al. | Electrochemiluminescence detection of silver ion based on trigeminal structure of DNA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20150415 |
|
EXPY | Termination of patent right or utility model |