[go: up one dir, main page]

CN103230283B - Method for optimizing ultrasonic probe imaging plane space position calibration - Google Patents

Method for optimizing ultrasonic probe imaging plane space position calibration Download PDF

Info

Publication number
CN103230283B
CN103230283B CN201310130395.2A CN201310130395A CN103230283B CN 103230283 B CN103230283 B CN 103230283B CN 201310130395 A CN201310130395 A CN 201310130395A CN 103230283 B CN103230283 B CN 103230283B
Authority
CN
China
Prior art keywords
coordinate system
ultrasonic
dimensional
water tank
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310130395.2A
Other languages
Chinese (zh)
Other versions
CN103230283A (en
Inventor
王广志
丁辉
朱立人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201310130395.2A priority Critical patent/CN103230283B/en
Publication of CN103230283A publication Critical patent/CN103230283A/en
Application granted granted Critical
Publication of CN103230283B publication Critical patent/CN103230283B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声探头成像平面空间位置标定的优化方法,属于医学超声三维成像与超声图像融合领域,其特征在于,是一种标定超声探头成像平面的空间位置与空间位置传感器空间位置之间变换关系称为空间变换矩阵的优化方法,在三维定位系统辅助下按以下步骤实现:1.构建三维定位系统;2.制作N线模型;3.建立定位系统的坐标系集合;4.标定水箱模型摆放空间位置;5.采集不同位置下超声图像;6.提取N线标志并计算超声平面位置;7.将超声上N线标志点映射到三维空间平面上;8.对成像平面的三维坐标点与水箱模型上的N进行配准;9.进行优化计算;10.计算成像平面与位置传感器间的最优变换。其优点在于减少成像平面空间位置标定的偏差。

An optimization method for calibrating the spatial position of an imaging plane of an ultrasonic probe, which belongs to the field of medical ultrasonic three-dimensional imaging and ultrasonic image fusion, is characterized in that it is a method for calibrating the transformation relationship between the spatial position of the imaging plane of the ultrasonic probe and the spatial position of a spatial position sensor. It is an optimization method for the space transformation matrix, which is realized by the following steps with the assistance of the 3D positioning system: 1. Construct the 3D positioning system; 2. Make the N-line model; 3. Establish the coordinate system set of the positioning system; 4. Calibrate the placement of the water tank model 5. Collect ultrasound images at different positions; 6. Extract the N-line markers and calculate the position of the ultrasound plane; 7. Map the N-line marker points on the ultrasound to the three-dimensional space plane; 8. Compare the three-dimensional coordinate points of the imaging plane with N on the water tank model for registration; 9. Optimal calculation; 10. Calculate the optimal transformation between the imaging plane and the position sensor. Its advantage is to reduce the deviation of the spatial position calibration of the imaging plane.

Description

一种超声探头成像平面空间位置标定的优化方法An Optimal Method for Spatial Position Calibration of Ultrasonic Probe Imaging Plane

技术领域:Technical field:

本发明属于医学超声三维成像与超声图像融合领域,具体应用包括三维医学超声成像,以及医学超声图像与其它模式影像(如CT,MRI)的空间配准融合成像。The invention belongs to the field of medical ultrasonic three-dimensional imaging and ultrasonic image fusion, and its specific applications include three-dimensional medical ultrasonic imaging, and spatial registration fusion imaging of medical ultrasonic images and other modes of images (such as CT and MRI).

背景技术:Background technique:

医学超声图像作为一种无损、实时、价廉的影像学检查,在医学中已经得到广泛的应用,目前临床广泛使用的超声检查采用B型成像模式,即俗称的“B超”。B型成像获得的是随着时间实时变化的二维断层影像,医生凭借对人体解剖结构的了解,在头脑中形成关于人体内部三维结构组织正常与否的判断。随着医学影像技术的发展,三维超声成像越来越受到关注,目前有两种实现三维成像的方式,一种是直接采用三维超声探头,通过在四棱锥形的采样体积内进行超声探测,获得该三维采样体积内的超声回波,并重建三维的影像体数据;另一种方式是直接采用传统的B型成像模式,通过多个已知位置的二维断层超声图像的采集和空间灰度信息的拼接,重构出三维体积数据,完成三维成像。上述两种方法各有利弊,前者需要专门设计制造的三维超声探头,其成本高、探头体积大,使用不便,且需要专门配套的超声设备;后者可直接在现有的超声设备上通过计算机处理来增加三维成像功能,与在用的超声设备的兼容性好,使用便利,成本较低。As a nondestructive, real-time, and cheap imaging examination, medical ultrasound images have been widely used in medicine. At present, the ultrasound examination widely used in clinical practice adopts the B-mode imaging mode, commonly known as "B-ultrasound". B-type imaging obtains two-dimensional tomographic images that change in real time over time. Doctors rely on their understanding of human anatomy to form a judgment in their minds about whether the internal three-dimensional structure of the human body is normal or not. With the development of medical imaging technology, 3D ultrasound imaging has attracted more and more attention. At present, there are two ways to achieve 3D imaging. One is to directly use a 3D ultrasound probe to obtain ultrasonic detection in a rectangular pyramid-shaped sampling volume. The ultrasonic echoes in the three-dimensional sampling volume are used to reconstruct the three-dimensional image volume data; another way is to directly adopt the traditional B-mode imaging mode, through the acquisition of two-dimensional tomographic ultrasonic images of multiple known positions and the spatial grayscale The splicing of information reconstructs three-dimensional volume data and completes three-dimensional imaging. The above two methods have their own advantages and disadvantages. The former requires a specially designed and manufactured three-dimensional ultrasound probe, which is expensive, bulky, inconvenient to use, and requires specially matched ultrasound equipment; the latter can be directly used on existing ultrasound equipment through computer Processing to increase the three-dimensional imaging function, good compatibility with the ultrasound equipment in use, easy to use, and low cost.

在采用传统的B型成像模式进行三维影像的拼接重构时,核心的问题是需要准确知道各个二维断层超声图像之间的相对位置关系。目前通常采用的方法是在超声探头上固定一个位置跟踪传感器,精确跟踪超声探头在采集各个二维超声图像时的空间位置,从而进行三维拼接重构。在这种模式下,需要事先知道固结在超声探头上的空间位置传感器与超声探测成像 平面之间的相对空间位置关系,才能进行数据的三维拼接重构。因此需要设计一种方法,能够把探头成像平面与空间位置传感器之间的空间变换关系测量标定出来,这一过程称为探头 成像平面的空间位置标定When the traditional B-mode imaging mode is used for splicing and reconstruction of three-dimensional images, the core problem is to accurately know the relative positional relationship between each two-dimensional tomographic ultrasound images. At present, the commonly used method is to fix a position tracking sensor on the ultrasound probe to accurately track the spatial position of the ultrasound probe when collecting each two-dimensional ultrasound image, so as to perform three-dimensional splicing and reconstruction. In this mode, it is necessary to know the relative spatial position relationship between the spatial position sensor fixed on the ultrasonic probe and the imaging plane of the ultrasonic probe in advance , in order to carry out the three-dimensional splicing and reconstruction of the data. Therefore, it is necessary to design a method that can measure and calibrate the spatial transformation relationship between the imaging plane of the probe and the spatial position sensor. This process is called the spatial position calibration of the imaging plane of the probe .

在临床医学中,利用超声图像进行穿刺等体内探测的引导是常见的超声图像应用。但由于超声图像的分辨率相对较低,因此常需要借助其他模式影像与超声图像的融合,以充分发挥超声图像实时、安全,放射学图像(CT、MRI)的高分辨率、高精度的各自优势,为临床医生提供更加丰富和准确的解剖结构信息,帮助他们更好地完成穿刺活检等介入操作。在这种情况下,为了实现两种或多种影像的融合,其核心技术问题也是要实现两种影像空间位置的准确对齐,从而使两种模态的图像灰度信息互补。这种情况下同样需要对实时超声图像的空间位置进行跟踪,从而知道超声探头处于三维空间的什么位置,并与对应位置的CT或MRI的三维影像数据进行融合显示。因此,也需要高精度的探头成像平面的空间位置标定In clinical medicine, it is a common application of ultrasound images to guide in vivo detection such as puncture by using ultrasound images. However, due to the relatively low resolution of ultrasound images, it is often necessary to use the fusion of other modes of images and ultrasound images to give full play to the real-time and safe ultrasound images, and the high resolution and high precision of radiological images (CT, MRI). Advantages, provide clinicians with more abundant and accurate anatomical structure information, and help them better complete interventional operations such as needle biopsy. In this case, in order to achieve the fusion of two or more images, the core technical problem is to achieve accurate alignment of the spatial positions of the two images, so that the image gray information of the two modalities complements each other. In this case, it is also necessary to track the spatial position of the real-time ultrasound image, so as to know where the ultrasound probe is in the three-dimensional space, and perform fusion display with the three-dimensional image data of CT or MRI at the corresponding position. Therefore, high-precision calibration of the spatial position of the imaging plane of the probe is also required.

在上述技术发展过程中,已经发展了多种探头成像平面空间位置标定的方法,主要包括点模型、三线模型、平面模型、二维对准模型等种类。在Hsu P-W的博士论文见Hsu P-W.Freehandthree-dimensional ultrasound calibration,University of Cambridge;2007和Mercier见Mercier L,T,Lindseth F,et al.A review of calibration techniques for freehand3-D ultrasound systems.Ultrasound in medicine& biology.2005,31(2):143-165等人对这一领域的工作进行了归纳。During the development of the above technologies, a variety of methods for calibrating the spatial position of the imaging plane of the probe have been developed, mainly including point models, three-line models, plane models, and two-dimensional alignment models. For doctoral thesis at Hsu PW see Hsu PW. Freehandthree-dimensional ultrasound calibration, University of Cambridge; 2007 and Mercier see Mercier L, T, Lindseth F, et al. A review of calibration techniques for freehand3-D ultrasound systems. Ultrasound in medicine & biology. 2005, 31(2): 143-165 and others summarized the work in this field.

N线(也称Z线)模型见Comeau RM,Fenster A,Peters TM.Integrated MR and ultrasound imagingfor improved image guidance in neurosurgery.Paper presented at:Medical Imaging1998:Image Processing1998;Comeau RM,Sadikot AF,Fenster A,et al.Intraoperative ultrasound for guidance and tissue shift correction inimage-guided neurosurgery.Medical Physics.2000,27:787-800是最常用的一种二维对准模型。这种模型采用预先设计好位置的细线状目标,每三条细线组成一个英文字母“N”的形状。当把若干个N形线组放到一个用于超声探头标定的水箱中时,这些N形线之间的空间位置关系就固定下来了(见图2),我们将水箱与上面固定的用作超声成像目标的细线,作为一个整体模型,称为“水模”。在实用中可以通过水模的设计制造来保证其中每一组N线精确的空间位置,或者通过测量知道在水模中每一组N线所在的精确空间位置。当用超声探头对灌注了清水或超声耦合液的水模中的细线进行成像,三条一组的N形细线在超声图像上将呈现出三个亮斑目标E、F、G(见图3a,图3b)。从图2和图3可知,通过识别在超声成像平面上的某一组亮斑目标所呈现的是水模上的哪一组N线,就可以根据水模的结构设计方案,知道N线的两条直线边AB和CD在水箱模型坐标系中所对应的坐标值(见图2)。同时,如图3所示,当水模上ABCD点的三维空间位置已知,并通过超声图像测量得到E、F、G位置后,可以从相似三角形ΔEBF和ΔGCF,通过边EF与GF之比,得到边BF与CF之比。通过相似三角形原理,可以用超声图像上三个亮斑E、F、G两两之间距离的比例,获得其中的斜线点在三维空间中的Z坐标,从而得到F点的三维空间位置,这样就获得了一个超声图像上“N线标志点”。通过在一个超声图像平面上同时成像的多组“N线标志点”,可以拟合出水箱模型三维空间的一个平面(从三点确定平面的原理可知,需要大于3个N线标志点),即超声成像的平面。于是,根据这些N线标志点在水模中的三维坐标就可以计算出该超声成像平面相对于水模坐标系的空间位置。再通过查询采集该超声图像时,超声探头上固结的空间位置传感器在参考坐标系中的位置,并结合水模坐标系在参考坐标系中的空间位置,就可以计算得到所需要标定的超声图像的成像平面与固结在探头上的空间位置传感器之间的空间变换关系Ts-u见Comeau RM,Fenster A,Peters TM.Integrated MR and ultrasound imaging for improved image guidance in neurosurgery.Paperpresented at:Medical Imaging1998:Image Processing1998;Comeau RM,Sadikot AF,Fenster A,et al.Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery.Medical Physics.2000,27:787-800。N line (also known as Z line) model see Comeau RM, Fenster A, Peters TM. Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. Paper presented at: Medical Imaging1998: Image Processing1998; Comeau RM, Sadikot AF, Fenster A, et al al. Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Medical Physics. 2000, 27:787-800 is the most commonly used two-dimensional alignment model. This model uses thin line-shaped targets with pre-designed positions, and every three thin lines form the shape of an English letter "N". When several N-shaped wire groups are placed in a water tank used for ultrasonic probe calibration, the spatial position relationship between these N-shaped wires is fixed (see Figure 2), and we use the water tank and the above fixed as The thin line of the ultrasound imaging target, as a whole model, is called the "water model". In practice, the precise spatial position of each group of N lines can be guaranteed through the design and manufacture of the water mold, or the precise spatial position of each group of N lines in the water mold can be known through measurement. When the ultrasonic probe is used to image the thin lines in the water phantom filled with clear water or ultrasonic coupling fluid, three N-shaped thin lines in groups of three will appear on the ultrasonic image as three bright spot targets E, F, and G (see Fig. 3a, Figure 3b). It can be seen from Figure 2 and Figure 3 that by identifying which group of N-lines on the water model a certain group of bright spot targets on the ultrasonic imaging plane presents, the location of the N-line can be known according to the structural design of the water model. The coordinate values corresponding to the two straight lines AB and CD in the coordinate system of the water tank model (see Figure 2). At the same time, as shown in Figure 3, when the three-dimensional space position of point ABCD on the water model is known, and the positions of E, F, and G are obtained through ultrasonic image measurement, the ratio of sides EF to GF can be obtained from similar triangles ΔEBF and ΔGCF , get the ratio of edge BF to CF. Through the principle of similar triangles, the ratio of the distances between the three bright spots E, F, and G on the ultrasound image can be used to obtain the Z coordinate of the oblique point in the three-dimensional space, thereby obtaining the three-dimensional space position of point F, In this way, an " N-line marker point " on an ultrasound image is obtained. A plane in the three-dimensional space of the water tank model can be fitted by multiple sets of "N-line marker points" simultaneously imaged on an ultrasound image plane (from the principle of determining the plane by three points, more than 3 N-line marker points are required), That is, the plane of ultrasound imaging. Then, according to the three-dimensional coordinates of these N-line marker points in the water model, the spatial position of the ultrasonic imaging plane relative to the water model coordinate system can be calculated. Then by querying the position of the spatial position sensor consolidated on the ultrasonic probe in the reference coordinate system when collecting the ultrasonic image, combined with the spatial position of the water model coordinate system in the reference coordinate system, the required calibration ultrasonic See Comeau RM, Fenster A, Peters TM. Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. Paper presented at: Medical Imaging1998: Image Processing 1998; Comeau RM, Sadikot AF, Fenster A, et al. Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Medical Physics. 2000, 27:787-800.

然而,通过检索文献和分析现有的标定方法可以看到,实际的标定过程中由于超声成像时的有效成像声场有一定的厚度(如图3a所示),同时由于超声成像横向分辨率较差的问题,所得到的超声图像中,标志细线在横向(X轴方向)上扩散为较长的椭圆形亮斑(如图3b所示),导致无法在超声图像上准确地确定细线的位置。这不但影响到在超声图像中选取标志点E、F、G位置的准确度,而且,由于F点在水模坐标系下三维坐标的计算是由EF与FG长度的比值决定的,上述E、F、G位置的误差都会导致F点三维坐标的计算不准确。而且,在实际的水模设计中,为了保证在一幅超声图像中能够覆盖足够多的N形线组,AB线与CD线之间不可能太宽,这就导致图3中的θ角比较小,从而使在图像上标志点选取的位置误差在Z方向被放大。对成像中的多个单独提取的N线标志点来讲,这样就丢失了它们在水模坐标系下三维位置的准确性和这些标志点的共面性,从而导致计算得到的成像平面的位置不准确,因此所得到的超声图像的成像平面与空间位置传感器间的空间变换关系存在较大的不确定性误差。However, by searching the literature and analyzing the existing calibration methods, it can be seen that in the actual calibration process, the effective imaging sound field of ultrasound imaging has a certain thickness (as shown in Figure 3a), and at the same time, the lateral resolution of ultrasound imaging is poor In the obtained ultrasound image, the marked thin line diffuses into a long elliptical bright spot in the transverse direction (X-axis direction) (as shown in Figure 3b), which makes it impossible to accurately determine the location of the thin line on the ultrasound image. Location. This not only affects the accuracy of selecting the positions of marker points E, F, and G in the ultrasonic image, but also, since the calculation of the three-dimensional coordinates of point F in the water model coordinate system is determined by the ratio of the lengths of EF to FG, the above E, F, and G Errors in the positions of F and G will lead to inaccurate calculation of the three-dimensional coordinates of point F. Moreover, in the actual design of the water model, in order to ensure that enough N-shaped line groups can be covered in one ultrasound image, the distance between the AB line and the CD line cannot be too wide, which leads to the comparison of the θ angle in Figure 3 Small, so that the position error of the marker point selection on the image is amplified in the Z direction. For multiple independently extracted N-line marker points in imaging, the accuracy of their three-dimensional positions in the water model coordinate system and the coplanarity of these marker points are lost, resulting in the calculated position of the imaging plane Inaccurate, so there is a large uncertainty error in the spatial transformation relationship between the imaging plane of the obtained ultrasonic image and the spatial position sensor.

通过分析其他研究者报道的研究结果,可以看到传统的N线模型标定处理过程中,在成像平面厚度方向(与超声图像平面相垂直的方向)上平移分量的数据离散性都较大,这说明传统N线法对该分量的估计精度较低。Pagoulatos等见Pagoulatos N,Haynor DR,Kim Y.A fastcalibration method for3-D tracking of ultrasound images using a spatial localizer.Ultrasound in medicine\&biology.2001,27(9):1219-1229的研究论文中虽然未强调这种误差,但其数据明确显示出这一问题的存在。Hsu P-W见Hsu PW,Prager RW,Gee AH,et al.Real-time freehand3D ultrasound calibration.Ultrasound in medicine & biology.2008,34(2):239-251和Chen等见Chen T,Thurston A,Moghari M,et al.Areal-time ultrasound calibration system with automatic accuracy control and incorporation of ultrasound sectionthickness.Proceedings of SPIE.2008,6918:2A1-11和Chen TK,Thurston AD,Ellis RE,et al.A real-time freehandultrasound calibration system with automatic accuracy feedback and control.Ultrasound in medicine & biology.2009,35(1):79-93的研究也对这个问题进行了探讨,并称该问题为“厚度误差”(elevational error)。这一误差的主要来源是超声的波束厚度和分辨率问题导致所探测的细线在超声图像上扩散为比较大的亮斑,导致对其位置估计的误差,这种误差在传统标定方法中是普遍存在的。By analyzing the research results reported by other researchers, it can be seen that during the calibration process of the traditional N-line model, the data of the translation component in the thickness direction of the imaging plane (the direction perpendicular to the ultrasound image plane) has a large dispersion. It shows that the estimation accuracy of the traditional N-line method is low. See Pagoulatos N, Haynor DR, Kim YA fastcalibration method for 3-D tracking of ultrasound images using a spatial localizer.Ultrasound in medicine\&biology.2001,27(9):1219-1229 in the research paper of Pagoulatos et al. error, but its data clearly show the existence of this problem. Hsu PW See Hsu PW, Prager RW, Gee AH, et al. Real-time freehand3D ultrasound calibration. Ultrasound in medicine & biology. 2008, 34(2):239-251 and Chen et al See Chen T, Thurston A, Moghari M , et al.Areal-time ultrasound calibration system with automatic accuracy control and incorporation of ultrasound sectionthickness.Proceedings of SPIE.2008,6918:2A1-11 and Chen TK,Thurston AD,Ellis RE,et al.A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound in medicine & biology. 2009, 35(1): 79-93 also discussed this issue, and called it "elevational error ". The main source of this error is that the thickness and resolution of the ultrasonic beam cause the detected thin line to diffuse into a relatively large bright spot on the ultrasonic image, resulting in an error in its position estimation. This error is ubiquitous.

为克服这种缺陷,在文献中见朱立人,李文骏,丁辉,王广志,一种提高N线模型探头标定精度的解算方法,中国生物医学工程学报,31(3):337-343,2012,已经提出了一种通过“共面约束”来改进 N线标志点提取精度,从而提高探头成像平面位置标定精度的方法,实验数据表明该方法可以改善精度性能。但该方法是靠硬性地将所提取的N线标志点向一个人工拟合出的虚拟平面上投影,由于所拟合出的平面本身就存在误差,通过投影处理只能够部分地改善各个N线标志点不共面所造成的影响,但无法保证该平面的准确性。In order to overcome this defect, see Zhu Liren, Li Wenjun, Ding Hui, Wang Guangzhi, a solution method to improve the calibration accuracy of N-line model probes in the literature, Chinese Journal of Biomedical Engineering, 31(3):337-343, 2012, A method has been proposed to improve the accuracy of N-line marker point extraction by "coplanar constraints", thereby improving the calibration accuracy of the imaging plane of the probe . Experimental data show that this method can improve the accuracy performance. However, this method relies on rigidly projecting the extracted N-line marker points onto an artificially fitted virtual plane. Since there are errors in the fitted plane itself, each N-line can only be partially improved through projection processing. The impact caused by the non-coplanar marker points, but the accuracy of the plane cannot be guaranteed.

Hsu P-W等人的研究则建议引入多个成像平面的图像,其处理方法是在常规标定处理结束后,附加一个单独的步骤来精化对厚度方向平移量的估计见Hsu PW,Prager RW,Gee AH,et al.Real-time freehand3D ultrasound calibration.Ultrasound in medicine & biology.2008,34(2):239-251。他们的研究证明,在传统解算框架下,引入多个层片的信息有助于提高标定变换的重复性。然而,这样的方法需要增加额外的处理步骤,且需要使用改进的N线模型才能进行见Hsu PW,Prager RW,Gee AH,et al.Real-time freehand3D ultrasound calibration.Ultrasound in medicine & biology.2008,34(2):239-251;另外,该方法首先假设了常规标定后除成像厚度方向以外的其他位置分量都是准确的,而在多数的实际应用中该假设未必能成立。The research of Hsu P-W et al. proposes to introduce images of multiple imaging planes. The processing method is to add a separate step after the routine calibration process to refine the estimation of the translation in the thickness direction. See Hsu PW, Prager RW, Gee AH, et al. Real-time freehand3D ultrasound calibration. Ultrasound in medicine & biology. 2008,34(2):239-251. Their research proves that under the traditional solution framework, the introduction of information from multiple slices can help improve the repeatability of the calibration transformation. However, such methods require additional processing steps and require the use of a modified N-line model. See Hsu PW, Prager RW, Gee AH, et al. Real-time freehand3D ultrasound calibration. Ultrasound in medicine & biology.2008, 34(2):239-251; In addition, this method first assumes that all other position components except the imaging thickness direction are accurate after conventional calibration, but this assumption may not be true in most practical applications.

考虑上述标定方法的不足,本发明对基于N线模型的探头成像平面空间位置标定方法进 行了改进。针对传统N线标定方法完全依赖单幅二维超声图像提取目标点位置并解算三维位 置,使成像厚度方向误差较大的问题,我们提出借助超声探头上固结的空间位置传感器得到多 个相对位置固定且已知的成像平面,通过对这些成像平面上目标点的提取,借助空间位置传感 器信息来重建各平面上提取的二维标志点的三维空间位置,进而通过这些三维目标点与被成像 的水模中细线之间的配准和优化计算,达到探头成像平面空间位置的准确标定。由于本方法可以有效利用高精度空间位置传感器重建二维标志点的三维相对位置信息,使传统的超声图像中提取标志点的厚度误差,分散到各个超声成像平面上,在空间取向上具有了随机性,可以减少传统方法中由于丢失共面性所造成的成像平面空间位置标定的偏差。Considering the shortcomings of the above-mentioned calibration method, the present invention improves the spatial position calibration method of the imaging plane of the probe based on the N-line model . In view of the problem that the traditional N-line calibration method completely relies on a single two-dimensional ultrasonic image to extract the position of the target point and calculate the three-dimensional position , resulting in a large error in the thickness direction of the imaging, we propose to use the spatial position sensor consolidated on the ultrasonic probe to obtain multiple The relative positions of the imaging planes are fixed and known. By extracting the target points on these imaging planes, the three-dimensional spatial positions of the two-dimensional marker points extracted on each plane are reconstructed with the help of the spatial position sensor information, and then through these three-dimensional target points. The registration and optimization calculation with the thin lines in the imaged water model can achieve accurate calibration of the spatial position of the imaging plane of the probe. Because this method can effectively use the high-precision spatial position sensor to reconstruct the three-dimensional relative position information of the two-dimensional marker points, the thickness error of the marker points extracted in the traditional ultrasonic image is dispersed to each ultrasonic imaging plane, and the spatial orientation has randomness. It can reduce the deviation of the spatial position calibration of the imaging plane caused by the loss of coplanarity in the traditional method.

发明内容:Invention content:

本发明的目的是要提供一种新的超声探头成像平面位置的标定方法和处理流程,从而减 少由于超声成像所固有的有效声场厚度和成像分辨率较低所造成的标定误差,提高标定的精 度。所设计的方法与流程可以适用于以光学或电磁空间位置传感器来跟踪超声探头的空间位置的三维超声成像系统,或利用这些空间位置传感器跟踪超声探头进行多模式三维医学影像融合的系统,成为一种在这类超声仪器的制造和使用中,精确有效标定系统探头超声图像平面空间位置的方法和设备。本发明可以克服现有的N线模型标定时,单纯依靠在二维超声图像上对已经扩散并模糊的目标点进行位置提取所造成的“厚度误差”,从而使目标点脱离共面性的缺点,使超声成像平面的测量和标定更加科学合理、简便易行,所设计的方法与流程的实用性强,在超声仪器中具有明确的使用价值。 The purpose of the present invention is to provide a new calibration method and processing flow for the imaging plane position of an ultrasonic probe, thereby reducing the calibration error caused by the inherent effective sound field thickness and low imaging resolution of ultrasound imaging, and improving the accuracy of calibration. precision . The designed method and process can be applied to a three-dimensional ultrasound imaging system that uses optical or electromagnetic spatial position sensors to track the spatial position of the ultrasonic probe, or a system that uses these spatial position sensors to track the ultrasonic probe for multi-mode three-dimensional medical image fusion. A method and device for accurately and effectively calibrating the spatial position of the ultrasonic image plane of a system probe in the manufacture and use of such ultrasonic instruments. The present invention can overcome the disadvantage of "thickness error" caused by simply relying on the position extraction of diffused and blurred target points on the two-dimensional ultrasonic image when the existing N-line model is calibrated, so that the target points are out of coplanarity , making the measurement and calibration of the ultrasonic imaging plane more scientific, reasonable, simple and easy to implement, and the designed method and process are highly practical and have clear use value in ultrasonic instruments.

在研究中我们注意到,当采用传统的N线模型进行标定处理时,由于每一幅超声图像上的目标点是单独提取和估算的,这些标志点误差最大的方向都出现在垂直超声成像平面的方向,因此难于通过多幅图像误差平均化的方法减少这种误差,即使如一些文献中所做的,通过采集多幅二维超声图像进行标定,误差也总是在与探头成像平面垂直的方向比较突出。因此我们希望通过本发明的处理方法和策略,克服这种误差的取向性,减少标定的误差。In the research, we noticed that when the traditional N-line model is used for calibration processing, since the target points on each ultrasound image are extracted and estimated separately, the direction with the largest error of these marker points appears in the vertical ultrasound imaging plane Therefore, it is difficult to reduce this error by averaging the errors of multiple images. Even if it is calibrated by collecting multiple two-dimensional ultrasound images as done in some literatures, the error is always in the direction perpendicular to the imaging plane of the probe. The direction is more prominent. Therefore, we hope to overcome the orientation of this error and reduce the error of calibration through the processing method and strategy of the present invention.

我们同时又注意到,使用N线模型进行超声成像平面空间位置标定的过程,实际上就是通过N线模型的一幅或几幅特定姿态的二维切片图像上目标点的位置,重建和估计这些切片在三维空间中的位置和姿态信息的过程。因此,标定问题的本质是把二维的超声断层图像上提 取的二维目标点,与三维空间的一批细线对象进行配准的问题。这种技术的核心是一种二维影像上目标点到三维模型切片的配准。从理论上讲,如同所有单平面二维影像到三维空间的配准技术一样,在垂直于二维影像的方向,其误差总是最大的,而通过将配准问题扩展到三维空间,有可能减小特定方向较大的误差,从而使标定的综合精度有所提高。我们考虑将一组相对位置已知的多个取向的二维超声图像上的目标点,借助探头上空间位置传感器的信息,映射到空间非平行分布的若干个成像平面上,即:将若干组二维的标志点空间分布,恢复为一组三维的空间分布,然后再通过三维空间到三维空间的配准计算,将标志点配准到已知的三维细线模型上,从而提高标定的精度。与传统标定方法相比,本发明方法有可能在各个方向上通过误差的均化和重新分布,得到更精确的位置标定结果。At the same time, we noticed that the process of using the N-line model to calibrate the spatial position of the ultrasonic imaging plane is actually to reconstruct and estimate the position of the target point on one or several two-dimensional slice images of a specific posture of the N-line model. The process of slicing position and pose information in 3D space. Therefore, the essence of the calibration problem is to register the two-dimensional target points extracted from the two-dimensional ultrasonic tomographic image with a batch of thin line objects in the three-dimensional space. The core of this technique is the registration of target points on a 2D image to slices of a 3D model. Theoretically speaking, like all registration techniques of single-plane 2D images to 3D space, the error is always the largest in the direction perpendicular to the 2D image, and by extending the registration problem to 3D space, it is possible Reduce the large error in a specific direction, so that the overall accuracy of the calibration is improved. We consider that a group of target points on two -dimensional ultrasound images with multiple orientations whose relative positions are known are mapped to several imaging planes distributed in space non-parallel with the help of the information of the spatial position sensor on the probe. The spatial distribution of two-dimensional marker points is restored to a set of three-dimensional spatial distribution, and then through the registration calculation from three-dimensional space to three-dimensional space, the marker points are registered to the known three-dimensional thin line model, thereby improving the accuracy of calibration . Compared with the traditional calibration method, the method of the present invention may obtain more accurate position calibration results through the averaging and redistribution of errors in all directions.

根据这种思路,我们建立了一种通过多幅二维超声图像上标志点与三维的N线模型进行配准优化的处理策略,并设计了可行的处理方法和处理流程。在这种二维与三维配准问题的框架下,通过超声探头上的光学或电磁传感器引入不同角度和位置的信息,能够显著提高最终标定结果的准确度和精度。根据我们的文献调研,未发现有研究者从这种首先进行二维到三维的位置重建、再进行三维空间配准和优化的角度去阐述超声成像平面的标定问题,因此我们提出的处理策略和处理方法具有新颖性和独创性。According to this idea, we established a processing strategy for registration optimization of landmark points on multiple 2D ultrasound images and a 3D N-line model, and designed a feasible processing method and process. Under the framework of this two-dimensional and three-dimensional registration problem, the accuracy and precision of the final calibration result can be significantly improved by introducing information of different angles and positions through optical or electromagnetic sensors on the ultrasound probe. According to our literature research, we have not found any researchers who have expounded the calibration of ultrasound imaging planes from the perspective of first performing 2D to 3D position reconstruction, and then performing 3D space registration and optimization. Therefore, our proposed processing strategy and The processing method is novel and original.

所发明的方法在系统构成和数据采集上,与传统的利用N线模型标定所需要的硬件装置是完全一样的,保持了N线模型标定的优点。在采集每个超声成像平面的时候,要同步地采集超声探头上固结的空间位置传感器的空间坐标和方向,这样就可以知道所采集的若干超声成像平面之间的相对位置关系。当采集完所需要的一组超声图像后,不再按照传统方法,通过提取超声图像上的二维标志点,并借助水模设计的细线三维位置信息,逐个计算N线标志点在水模坐标系中的三维位置,然后通过拟合计算成像平面的空间位置,从而计算得到位置传感器与成像平面之间的变换矩阵,而是进入本发明所设计的下述核心处理流程。In terms of system configuration and data acquisition, the invented method is exactly the same as the hardware device required by traditional N-line model calibration, and maintains the advantages of N-line model calibration. When acquiring each ultrasonic imaging plane, the spatial coordinates and directions of the spatial position sensors consolidated on the ultrasonic probe should be acquired synchronously, so that the relative positional relationship between the acquired ultrasonic imaging planes can be known. After collecting the required set of ultrasonic images, instead of following the traditional method, by extracting the two-dimensional marker points on the ultrasonic image and using the three-dimensional position information of the thin lines designed by the water model, the N-line marker points are calculated one by one in the water model. The three-dimensional position in the coordinate system is then calculated by fitting the spatial position of the imaging plane, thereby calculating the transformation matrix between the position sensor and the imaging plane, but entering the following core processing flow designed by the present invention.

(一)首先在超声成像平面上提取细线标志点的位置(在各超声成像面内的二维坐标),对应每一张超声图像,提取所有N形标志细线在超声图像上呈现亮斑的二维位置坐标;(1) First extract the position of the thin line marker points on the ultrasound imaging plane (two-dimensional coordinates in each ultrasound imaging plane), corresponding to each ultrasound image, extract all N-shaped marker thin lines to present bright spots on the ultrasound image The two-dimensional position coordinates of ;

(二)借助在超声图像采集时由空间位置传感器得到的各超声成像平面之间的相对位置关系,将二维的超声成像平面进行空间组合,形成呈一定三维空间分布的若干二维成像平面,并将这些平面之间的位置绑定,形成一组在三维空间分布的成像平面。然后再按照提取各标志点二维位置所对应的成像平面,以某一幅超声图像平面为参考,借助每幅图像采集时的空间位置传感器信息,逐次将各个成像平面上提取的二维标志点映射到对应的三维超声成像平面上,这样就形成了一批在三维空间分布的标志点,它们对应了从不同方向对细线模型进行切割时成像平面与细线的交点;(2) With the help of the relative positional relationship between the ultrasonic imaging planes obtained by the spatial position sensor during ultrasonic image acquisition, the two-dimensional ultrasonic imaging planes are spatially combined to form several two-dimensional imaging planes distributed in a certain three-dimensional space, And bind the positions between these planes to form a set of imaging planes distributed in three-dimensional space. Then, according to the imaging plane corresponding to the two-dimensional position of each marker point, with a certain ultrasound image plane as a reference, with the help of the spatial position sensor information when each image is collected, the two-dimensional marker points extracted on each imaging plane are successively extracted Mapped to the corresponding three-dimensional ultrasound imaging plane, thus forming a batch of marker points distributed in three-dimensional space, which correspond to the intersection points of the imaging plane and the thin line when cutting the thin line model from different directions;

(三)进行超声成像平面与水模位置匹配位置的初始化,利用采集的某一幅超声图像平面,按照传统N线标定方法,计算该成像平面相对于水模坐标系的初始三维空间位置,得到该成像平面到水模坐标系的初始空间变换矩阵,然后将上一步位置绑定的所有成像平面上的三维标志点,按照这个空间变换映射到水模对应的三维空间位置,形成三维空间分布的一批粗配准点(初始配准点);(3) Initialize the matching position between the ultrasonic imaging plane and the water model position. Using a certain ultrasonic image plane collected, according to the traditional N-line calibration method, calculate the initial three-dimensional space position of the imaging plane relative to the water model coordinate system, and get The initial space transformation matrix from the imaging plane to the water model coordinate system, and then map the three-dimensional marker points on all imaging planes bound to the position in the previous step to the corresponding three-dimensional space position of the water model according to this space transformation, forming a three-dimensional spatial distribution A batch of coarse registration points (initial registration points);

(四)在没有误差的理想情况下,上述三维标志点应当准确落在对应的细线上。由于利用上述某一幅超声图像计算出来的二维超声图像平面与三维水模之间存在一定的位置误差,必然会使其他各超声图像平面上的标志点与三维分布的细线之间也存在一定的偏离,我们的目标是希望找到一个空间变换,使上述所有三维空间分布的待配准标志点与三维水模上对应细线的距离达到最小,从而得到一个最优的变换关系。由于这些成像平面彼此之间不平行,可以克服传统方法所固有的由于标志点的最大误差都具有相近取向所造成的“厚度误差”。在处理中我们采用最优化计算方法进行迭代处理,通过改变整个待配准三维标志点组的空间位置和取向来寻找这个最优变换;(4) In an ideal situation without errors, the above-mentioned three-dimensional marker points should accurately fall on the corresponding thin lines. Since there is a certain position error between the two-dimensional ultrasonic image plane calculated by using one of the above ultrasonic images and the three-dimensional water model, there will inevitably be a gap between the marker points on the other ultrasonic image planes and the thin lines distributed in three dimensions. If there is a certain deviation, our goal is to find a space transformation that minimizes the distance between the above-mentioned three-dimensional spatial distribution of the registration mark points and the corresponding thin lines on the three-dimensional water model, so as to obtain an optimal transformation relationship. Since these imaging planes are not parallel to each other, the "thickness error" inherent in conventional methods due to the maximum error of marker points having similar orientations can be overcome. In the processing, we use the optimization calculation method for iterative processing, and find the optimal transformation by changing the spatial position and orientation of the entire 3D marker point group to be registered;

(五)根据上述考虑,设定优化的目标函数是各个超声成像平面上分布的待配准标志点与三维水模上对应细线的距离达到最小;空间初始位置是上面第三步计算得到的初始变换矩阵;可调整变量是水箱模型中的成像平面位置在6自由度空间的平移与旋转;于是可以基于以上条件进行最优化的迭代计算。通过设定寻优计算的误差阈值或最大迭代步数,控制迭代的终止,最终将得到一个优化了的空间变换矩阵,它代表了所采集的多个成像平面与水模的一个最佳匹配,得到的成像平面与传感器之间的变换是最优的;(5) According to the above considerations, the objective function of setting optimization is to minimize the distance between the points to be registered on each ultrasonic imaging plane and the corresponding thin lines on the three-dimensional water model; the initial position of the space is calculated in the third step above The initial transformation matrix; the adjustable variable is the translation and rotation of the imaging plane position in the water tank model in the 6-degree-of-freedom space; therefore, the optimal iterative calculation can be performed based on the above conditions. By setting the error threshold or the maximum number of iteration steps of the optimization calculation, and controlling the termination of the iteration, an optimized space transformation matrix will finally be obtained, which represents the best match between the collected multiple imaging planes and the water model. The resulting transformation between the imaging plane and the sensor is optimal;

(六)根据采集各超声图像时固结在探头上的空间位置传感器的空间位置,与上面得到的最佳匹配的一组切片的对应位置,计算得到超声图像的成像平面与固结在探头上的空间位置传感器之间的最佳空间变换关系也就是本发明所要寻找的目标。(6) According to the spatial position of the spatial position sensor solidified on the probe when collecting each ultrasonic image, and the corresponding position of a group of slices obtained above for the best match, calculate the imaging plane of the ultrasonic image and the position of the sensor solidified on the probe The optimal spatial transformation relationship between the spatial position sensors of That is the goal that the present invention is looking for.

本发明提供了一种提高超声探头成像平面空间位置标定精度的方法和完整的处理流程,可以减少由于超声成像所固有的声场厚度大和分辨率低所造成的标定误差。本发明所设计的方法与流程,可以成为在这类超声仪器的制造和使用中,精确有效地标定系统探头超声图像平面空间位置的方法。本发明克服了利用常用的N线模型标定时在超声图像上提取扩散的目标点位置所造成的“厚度误差”,使测量和标定的处理更加科学合理、简便易行,所设计的方法与流程的实用性强,具有很好的实用价值。The invention provides a method and a complete processing flow for improving the calibration accuracy of the ultrasonic probe imaging plane space position, which can reduce the calibration error caused by the inherently large sound field thickness and low resolution of the ultrasonic imaging. The method and process designed by the present invention can become a method for accurately and effectively calibrating the spatial position of the ultrasonic image plane of the system probe in the manufacture and use of this type of ultrasonic instrument. The present invention overcomes the "thickness error" caused by extracting the position of the diffused target point on the ultrasonic image when using the commonly used N-line model for calibration, and makes the processing of measurement and calibration more scientific, reasonable, simple and easy, and the designed method and flow The utility model has strong practicability and has good practical value.

附图说明Description of drawings

图1是整个测量标定系统的构成及各子系统坐标系之间关系的示意图;Figure 1 is a schematic diagram of the composition of the entire measurement and calibration system and the relationship between the coordinate systems of each subsystem;

1个人计算机1 personal computer

2三维定位测量仪2 Three-dimensional positioning measuring instrument

3定位发射器3 positioning transmitter

4三维探笔4 3D Probing Pen

5超声探头与定位传感器5 Ultrasonic probe and positioning sensor

6水箱模型6 water tank model

7超声成像仪7 Ultrasound Imager

图2是N线模型的几何示意与模型坐标系的定义;Figure 2 is the geometric representation of the N-line model and the definition of the model coordinate system;

1定位凹坑1 positioning pit

图3是N线标志点提取的几何原理和声场厚度与图像模糊造成提取误差的示意图;Figure 3 is a schematic diagram of the geometric principle of N-line marker point extraction and the extraction error caused by sound field thickness and image blur;

图3a具有厚度的成像声场与N线相交示意Figure 3a shows the intersection of the imaging sound field with thickness and the N line

图3b实际超声图像上细线的扩散光斑Figure 3b Diffuse spots of thin lines on the actual ultrasound image

图3c从水箱顶部看求解F点三维坐标的几何原理Figure 3c Viewed from the top of the water tank, the geometric principle for solving the three-dimensional coordinates of point F

图4采用本发明方法进行多成像平面同步标定的几何原理示意图;Fig. 4 adopts the schematic diagram of the geometric principle of multi-imaging plane synchronous calibration by the method of the present invention;

图5多成像平面与水模初步配准的几何关系示意图;Figure 5 is a schematic diagram of the geometric relationship between multiple imaging planes and the initial registration of the water model;

图6采用多超声图像平面进行优化计算的流程图;Fig. 6 is a flow chart of optimizing calculations using multiple ultrasound image planes;

图7实际计算得到的传统方法与本发明方法标定误差的比较图;The traditional method that Fig. 7 actually calculates obtains and the comparative figure of calibration error of the present invention's method;

图8本发明的程序流程图。Fig. 8 is the program flow chart of the present invention.

具体实施方式Detailed ways

为实现本发明所提出的解算方法,并验证其有效性,我们实际搭建了测试系统,并进行了性能测试对比实验,在同一套采集的超声图像和空间位置传感器数据上比较了传统N线标定方法与本发明方法的解算精度和标定的可重复性误差,以及误差随参与标定的超声图像数目下降的情况,实验证实了本发明的方法在具有多幅超声图像时,可以更快地使标定误差下降,在具有较大的“厚度误差”时的标定精度更好,从而可以使探头的标定过程更容易和更可靠。图8中给出本发明的程序流程图,具体实现的测试对比的例子如以下步骤所述:In order to realize the solution method proposed by the present invention and verify its effectiveness, we have actually built a test system and conducted a performance test comparison experiment, comparing the traditional N-line The calibration method and the solution accuracy of the method of the present invention and the repeatability error of calibration, and the situation that the error decreases with the number of ultrasonic images participating in the calibration, experiments have confirmed that the method of the present invention can be faster when there are multiple ultrasonic images. The calibration error is reduced, and the calibration accuracy is better when there is a larger "thickness error", so that the calibration process of the probe can be easier and more reliable. Provide the program flowchart of the present invention among Fig. 8, the example of the test comparison of concrete realization is as described in the following steps:

第1步,构建一个用于超声探头标定的三维定位测量系统。我们用于超声探头标定的三维定位测量系统,包括四个主要设备:三维定位测量仪、用于标定成像的水箱模型、医用超声成像系统和个人计算机。其中的三维定位测量仪、水箱模型、超声成像系统共同用于对被标定的超声探头进行测量,个人计算机用于测量数据的采集和数据处理。三维定位测量仪又包括以下四个主要部件:固定在超声探头上的6自由度空间位置传感器、高精度的三维定位探笔、作为空间参考坐标系的定位用无线发射装置及用于测量系统控制和数据采集传输的控制盒。超声成像系统包括被标定的超声探头和成像系统主机两大部分,用于产生待采集的水箱模型的超声图像,其中的被标定超声探头上固结了上述的6自由度空间位置传感器。个人计算机中安装了图像捕捉卡,用于采集从所述超声成像系统输出的超声图像,同时,个人计算机通过USB接口采集从所述三维定位测量仪控制盒输出的6自由度空间位置传感器的定位数据和三维定位探笔尖端的定位数据。用于超声探头标定的三维定位测量系统的构成如图1所示;In the first step, a three-dimensional positioning measurement system for ultrasonic probe calibration is constructed. Our three-dimensional positioning measurement system for ultrasonic probe calibration includes four main devices: three-dimensional positioning measuring instrument, water tank model for calibration imaging, medical ultrasound imaging system and personal computer. Among them, the three-dimensional positioning measuring instrument, the water tank model, and the ultrasonic imaging system are used to measure the calibrated ultrasonic probe, and the personal computer is used for the acquisition and data processing of the measurement data. The three-dimensional positioning measuring instrument includes the following four main components: a 6-degree-of-freedom spatial position sensor fixed on the ultrasonic probe, a high-precision three-dimensional positioning probe, a wireless transmitter for positioning as a spatial reference coordinate system, and a measuring system control And the control box for data acquisition and transmission. The ultrasonic imaging system includes two parts, the calibrated ultrasonic probe and the imaging system host, which are used to generate the ultrasonic image of the water tank model to be collected. The above-mentioned 6-DOF spatial position sensor is consolidated on the calibrated ultrasonic probe. An image capture card is installed in the personal computer to collect the ultrasonic image output from the ultrasonic imaging system. At the same time, the personal computer collects the positioning of the 6-degree-of-freedom spatial position sensor output from the control box of the three-dimensional positioning measuring instrument through the USB interface. data and positioning data of the 3D positioning probe tip. The composition of the three-dimensional positioning measurement system for ultrasonic probe calibration is shown in Figure 1;

第2步:制作N线模型。按以下步骤利用有机玻璃板和细尼龙线制作了一个N线标定模型:Step 2: Make the N line model. According to the following steps, a N-wire calibration model was made using a plexiglass plate and a thin nylon wire:

(1)首先,用有机玻璃板制作一个长方形的水箱1,其尺寸为240*180*120mm3,箱壁厚度为5mm。按照设计的N线数目和空间布局,在尺寸为240*180mm的前后两个相对的箱壁上对应的精确位置,同轴地钻出了一批直径为0.2mm的穿线小孔,用于穿过直径为0.08mm的细尼龙线,形成水箱内的一批N形线对。同时,在前后箱壁上四角距离箱体外缘5mm处,各钻出4个位置精确的锥形定位凹坑。我们制做的水箱上锥形定位凹坑的深度为0.2mm,锥顶角为90°。四个定位凹坑在箱壁平面上呈矩形分布,其水平方向距离为230mm,垂直方向距离为170mm。定位凹坑位置与上述穿线小孔的相对位置通过数控加工以保证其精确性,用于精确测量水箱和细线在空间定位系统中的位置,(1) First, make a rectangular water tank 1 with a plexiglass plate, the size of which is 240*180*120mm 3 , and the thickness of the tank wall is 5mm. According to the designed number of N wires and the spatial layout, a batch of small threading holes with a diameter of 0.2mm are coaxially drilled at the corresponding precise positions on the two opposite walls of the box with a size of 240*180mm for threading. Pass the thin nylon wire with a diameter of 0.08mm to form a batch of N-shaped wire pairs in the water tank. At the same time, at the four corners of the front and rear box walls, 5mm away from the outer edge of the box, four precisely positioned conical positioning pits are drilled. The depth of the conical positioning pit on the water tank we made is 0.2mm, and the apex angle of the cone is 90°. The four positioning pits are distributed in a rectangular shape on the plane of the box wall, the distance in the horizontal direction is 230mm, and the distance in the vertical direction is 170mm. The position of the positioning pit and the relative position of the above-mentioned small threading hole are processed by numerical control to ensure its accuracy, which is used to accurately measure the position of the water tank and the thin line in the space positioning system,

(2)在水箱制作完成后,如图2和图3a的局部放大图所示意,在箱壁上面的某个穿线小孔A中穿过直径为0.08mm的细尼龙线,并引到对侧箱壁上对应的同轴小孔B,将尼龙线拉紧固定后从小孔B折回到同侧壁板上水平高度相同的相邻小孔C,形成N形的斜线;将尼龙线拉紧后再从C折回到对侧壁板上的穿线小孔D,将尼龙线拉紧固定,使之在水箱中形成一个N形线对。如此重复,可以在水箱中构建若干组水平布置的N形线对,形成超声成像标定的目标物。图1中示意了三层水平布置的N线,最高一层包含3个N形,其余两层各包含5个N形。三层N线在水箱模型坐标系内的高度分别为65mm,95mm和125mm,N线在水平方向两平行边的距离为30mm,因此图3c中的θ角约为15°。各个N线的穿线小孔在水箱中的位置都是通过数控加工精确保证的。在实际使用中,为提高精度和保证成像视场中有足够多的N线组,可以根据超声探头的视场大小和超声图像分辨率,选择布置6~8层N线,每层的N线对数也可以布置3~6个,从而使超声图像能够采集到更多的细线目标,并使目标尽可能充满超声成像的视场。在水箱的整个穿线工作完成以后,利用硅胶封闭所有的穿线小孔,使水箱不漏水。然后在水箱中灌入纯净水,并使之超出最高层的细线30mm以上,将水箱静置1天,使水中的气泡逸出。由于所有细线都浸入水中,可以被探入水面的超声波成像探头所成像。这样就完成了用于标定的水箱模型的制作;(2) After the water tank is completed, as shown in the partial enlarged view of Figure 2 and Figure 3a, a thin nylon wire with a diameter of 0.08mm is passed through a threading hole A on the tank wall and led to the opposite side The corresponding coaxial small hole B on the box wall, tighten the nylon wire and then fold it back from the small hole B to the adjacent small hole C with the same horizontal height on the same side wall to form an N-shaped oblique line; pull the nylon wire Then turn back from C to the small threading hole D on the opposite side wall plate, tighten and fix the nylon wire so that it forms an N-shaped wire pair in the water tank. By repeating this, several groups of horizontally arranged N-shaped wire pairs can be built in the water tank to form the target object for ultrasonic imaging calibration. Figure 1 shows three layers of horizontally arranged N lines, the highest layer contains 3 N shapes, and the remaining two layers each contain 5 N shapes. The heights of the three-layer N lines in the coordinate system of the water tank model are 65mm, 95mm and 125mm respectively, and the distance between the two parallel sides of the N line in the horizontal direction is 30mm, so the θ angle in Figure 3c is about 15°. The positions of the threading holes of each N wire in the water tank are precisely guaranteed by numerical control machining. In actual use, in order to improve the accuracy and ensure that there are enough N-line groups in the imaging field of view, you can choose to arrange 6-8 layers of N-lines according to the size of the field of view of the ultrasound probe and the resolution of the ultrasound image. 3 to 6 logarithms can also be arranged, so that the ultrasonic image can collect more thin-line targets, and make the target fill the field of view of the ultrasonic imaging as much as possible. After the whole threading work of the water tank is completed, use silica gel to close all threading holes so that the water tank is watertight. Then pour pure water into the water tank, and make it exceed the thin line of the highest layer by more than 30mm, and let the water tank stand still for 1 day, so that the air bubbles in the water can escape. Since all the fine wires are submerged in water, they can be imaged by an ultrasound imaging probe that is lowered into the water. In this way, the production of the water tank model for calibration is completed;

第3步,建立所述用于超声探头标定的三维定位测量系统的各个相关坐标系和坐标系之间的变换关系:Step 3, establishing the transformation relationship between each relevant coordinate system and the coordinate system of the three-dimensional positioning measurement system used for ultrasonic probe calibration:

如图1所示,标定实验中涉及到四个坐标系。坐标系包括高精度三维定位测量系统所定义的参考坐标系,用XwYwZw表示,设在所述定位用无线发射装置上,坐标原点在所述发射装置中心;水箱模型坐标系,用XmYmZm表示,Xm是水箱长度方向,Zm是水箱宽度方向,Ym是水箱高度方向,坐标系的原点设在水箱前壁面左上角的定位凹坑上,各坐标轴的方向遵循右手法则;空间位置传感器坐标系,用XsYsZs表示,设在所述6自由度空间位置传感器上,坐标原点在所述空间位置传感器的中心;超声成像平面坐标系,用XuYu表示,设在超声图像上,坐标原点设在超声图像最上端的中点,Xu方向为图像水平方向,Yu方向为超声成像深度方向。为建立各个坐标系之间的变换关系,设定4*4的空间变换矩阵Tw-m是从所述水箱模型坐标系XmYmZm到所述参考坐标系XwYwZw的空间变换矩阵,Tw-s是从所述空间位置传感器坐标系XsYsZs到所述参考坐标系XwYwZw的空间变换矩阵,Ts-u是从所述超声成像平面坐标系XuYu到所述定位用的空间位置传感器坐标系XsYsZs的空间变换矩阵,Tu-m是从所述水箱模型坐标系XmYmZm到所述超声成像平面坐标系XuYu的空间变换矩阵;As shown in Figure 1, four coordinate systems are involved in the calibration experiment. The coordinate system includes the defined reference coordinate system of the high-precision three-dimensional positioning measurement system, represented by X w Y w Z w , which is set on the wireless transmitter device for positioning, and the coordinate origin is at the center of the transmitter device; the water tank model coordinate system, Expressed by X m Y m Z m , X m is the length direction of the water tank, Z m is the width direction of the water tank, Y m is the height direction of the water tank, the origin of the coordinate system is set on the positioning pit at the upper left corner of the front wall of the water tank, each coordinate axis The direction follows the right-hand rule; the spatial position sensor coordinate system, represented by X s Y s Z s , is set on the 6-DOF spatial position sensor, and the coordinate origin is at the center of the spatial position sensor; the ultrasonic imaging plane coordinate system, Denoted by X u Y u , it is set on the ultrasound image, the coordinate origin is set at the midpoint of the uppermost end of the ultrasound image, the X u direction is the horizontal direction of the image, and the Y u direction is the depth direction of the ultrasound imaging. In order to establish the transformation relationship between each coordinate system, the space transformation matrix T wm of 4*4 is set to be the space from the water tank model coordinate system X m Y m Z m to the reference coordinate system X w Y w Z w Transformation matrix, T ws is the space transformation matrix from the spatial position sensor coordinate system X s Y s Z s to the reference coordinate system X w Y w Z w , T su is the coordinate system from the ultrasound imaging plane X u Y u to the space position sensor coordinate system X s Y s Z s space transformation matrix used for positioning, T um is from the water tank model coordinate system X m Y m Z m to the ultrasonic imaging plane coordinate system X u The space transformation matrix of Y u ;

第4步,标定水模在参考坐标系中的空间位置Step 4, calibrate the spatial position of the water model in the reference coordinate system

我们根据定位凹坑的位置,确定了水箱模型坐标系XmYmZm,即将水箱前壁左上角的定位凹坑作为水箱模型坐标系原点,连接左右两上角定位凹坑的直线定义为Xm轴,连接左侧两个定位凹坑并向下方向的直线定义为Ym轴,将连接前后水箱壁定位凹坑的方向定义为Zm轴。这样在水箱模型坐标系中各个N形细线组都与Xm-Zm平面平行,各个N形的直线边都与Zm轴平行,且其在水箱模型坐标系中的位置坐标均已知,其具体布置如图2所示意。标定中首先要通过测量,标出从水箱模型坐标系到参考坐标系的变换矩阵Tw-m。我们采用加拿大NDI公司的高精度三维电磁定位系统进行测量,该系统包括附着在超声探头上的一个6自由度空间位置传感器、一支尖端定位精度为0.2mm的高精度三维定位探笔、以及用作参考位置的定位系统发射装置。如图1所示,选择定位系统发射装置为固定的参考坐标系XwYwZw,按照定位系统的使用说明,将水箱放在最适合定位发射装置检测的空间范围内,采用定位系统配备的高精度三维定位探笔的尖端,逐个探测水箱前、后壁上布置的各个定位凹坑的三维空间位置,并通过计算机顺序记录其在参考坐标系中的三维空间位置Pwi=(xwi,ywi,zwi),其中i=1,2,…,8,为水箱模型上定位凹坑的序号。从水箱模型坐标系的定义,可以得到这些定位凹坑在水箱模型坐标系中的坐标Pmi=(xmi,ymi,zmi)分别为:Pm1=(0,0,0)、Pm2=(230,0,0)、Pm3=(0,170,0)、Pm4=(230,170,0)、Pm5=(0,0,120)、Pm6=(230,0,120)、Pm7=(0,170,120)、Pm8=(230,170,120),其单位是mm,According to the position of the positioning pit, we determined the coordinate system of the water tank model X m Y m Z m , that is, the positioning pit at the upper left corner of the front wall of the water tank is used as the origin of the coordinate system of the water tank model , and the straight line connecting the left and right upper corners of the positioning pit is defined as The X m axis, the straight line connecting the two positioning pits on the left side and the downward direction is defined as the Y m axis, and the direction connecting the positioning pits of the front and rear water tank walls is defined as the Z m axis. In this way, in the water tank model coordinate system, each N-shaped thin line group is parallel to the X m -Z m plane, and each N-shaped straight line side is parallel to the Z m axis, and its position coordinates in the water tank model coordinate system are known , and its specific arrangement is shown in Figure 2. In the calibration, the transformation matrix T wm from the water tank model coordinate system to the reference coordinate system must be marked first by measurement. We use the high-precision three-dimensional electromagnetic positioning system of Canada NDI company for measurement. Positioning system transmitter used as a reference position. As shown in Figure 1, the launcher of the positioning system is selected as a fixed reference coordinate system X w Y w Z w , according to the instructions of the positioning system, the water tank is placed in the most suitable space for the detection of the positioning launcher, and the positioning system is equipped with The tip of the high-precision three-dimensional positioning probe pen detects the three-dimensional space positions of the positioning pits arranged on the front and rear walls of the water tank one by one, and records their three-dimensional space positions in the reference coordinate system sequentially by the computer P wi =(x wi , y wi , z wi ), where i=1, 2, ..., 8 are the serial numbers of the positioning pits on the water tank model. From the definition of the water tank model coordinate system, the coordinates P mi = (x mi , y mi , z mi ) of these positioning pits in the water tank model coordinate system can be obtained as: P m1 = (0,0,0), P m2 =(230,0,0), P m3 =(0,170,0), P m4 =(230,170,0), P m5 =(0,0,120), P m6 =(230,0,120), P m7 =( 0,170,120), P m8 = (230,170,120), the unit is mm,

记水箱模型坐标系XmYmZm到参考坐标系XwYwZw的空间变换矩阵Tw-m为:Note that the space transformation matrix T wm from the water tank model coordinate system X m Y m Z m to the reference coordinate system X w Y w Z w is:

TT ww -- nno == RR 00 tt 11 == rr 0000 rr 0101 rr 0202 00 rr 1010 rr 1111 rr 1212 00 rr 2020 rr 21twenty one rr 22twenty two 00 tt xx tt ythe y tt zz 11 -- -- -- (( 11 ))

其中左上角的3*3分块R为旋转变换矩阵,左下角的1*3分块t为平移变换。则8个定位凹坑在参考坐标系中的三维空间位置Pwi=(x wi ,y wi ,z wi )与其在水箱模型坐标系中的对应坐标Pmi=(xmi,ymi,zmi),满足以下空间变换方程:The 3*3 block R in the upper left corner is the rotation transformation matrix, and the 1*3 block t in the lower left corner is the translation transformation. Then the three-dimensional spatial positions P wi =( x wi ,y wi ,z wi ) of the eight positioning pits in the reference coordinate system and their corresponding coordinates P mi =(x mi ,y mi ,z mi ), satisfy the following space transformation equation:

xx ww 11 ythe y ww 11 zz ww 11 11 xx ww 22 ythe y ww 22 zz ww 22 11 xx ww 33 ythe y ww 33 zz ww 33 11 xx ww 44 ythe y ww 44 zz ww 44 11 xx ww 55 ythe y ww 55 zz ww 55 11 xx ww 66 ythe y ww 66 zz ww 66 11 xx ww 77 ythe y ww 77 zz ww 77 11 xx ww 88 ythe y ww 88 zz ww 88 11 == xx mm 11 ythe y mm 11 zz mm 11 11 xx mm 22 ythe y mm 22 zz mm 22 11 xx mm 33 ythe y mm 33 zz mm 33 11 xx mm 44 ythe y mm 44 zz mm 44 11 xx mm 55 ythe y mm 55 zz mm 55 11 xx mm 66 ythe y mm 66 zz mm 66 11 xx mm 77 ythe y mm 77 zz mm 77 11 xx mm 88 ythe y mm 88 zz mm 88 11 ·· TT ww -- mm -- -- -- (( 22 ))

因此,可以从方程组(2)求解出从水箱模型坐标系到参考坐标系之间的空间变换矩阵Tw-mTherefore, the space transformation matrix T wm from the water tank model coordinate system to the reference coordinate system can be solved from equation group (2).

第5步,对水模中的N线采集不同位置的多幅超声图像Step 5: Acquire multiple ultrasound images at different positions for the N line in the water model

如图1中所示,实验前先在超声探头上固定一个6自由度位置传感器,使之与超声探头间牢固连结不可移动。利用带有位置传感器的超声探头对水箱模型中的细线进行成像,选择成像清晰无伪影的成像位置,稳定住超声探头,进行图像和所对应的空间位置的采集。其中的超声图像通过医用超声仪器的图像输出接口输出,由安装在PC计算机中的视频采集卡(实验中采用OSPREY100视频捕捉卡)所捕捉,空间位置传感器在参考坐标系中的位置姿态矩阵可通过高精度三维定位测量系统直接读出,通过USB接口传到计算机中。采集的超声图像逐次输入计算机后,存储为Img(j),j=1,2,…,J,J为采集的超声图像数目,同时存储该超声图像对应的空间位置传感器的到参考坐标系的空间变换矩阵Tw-s(j)。在水模中的不同位置,用不同的探头姿态,重复采集存储若干幅不同平面的超声图像,并存储对应的空间位置传感器的空间变换矩阵Tw-s(j)。在我们的实验中每次都采集了7幅以上不同位置的超声图像和对应的定位数据。As shown in Figure 1, a 6-DOF position sensor is fixed on the ultrasonic probe before the experiment, so that it is firmly connected with the ultrasonic probe and cannot be moved. Use an ultrasonic probe with a position sensor to image the thin lines in the water tank model, select an imaging position with clear imaging and no artifacts, stabilize the ultrasonic probe, and collect images and corresponding spatial positions. The ultrasonic image is output through the image output interface of the medical ultrasonic instrument, and is captured by the video capture card installed in the PC computer (the OSPREY100 video capture card is used in the experiment). The position and attitude matrix of the spatial position sensor in the reference coordinate system can be obtained by The high-precision three-dimensional positioning measurement system is directly read out and transmitted to the computer through the USB interface. After the collected ultrasonic images are input into the computer one by one, they are stored as Img(j), j=1, 2,..., J, J is the number of collected ultrasonic images, and the corresponding spatial position sensor to the reference coordinate system is stored at the same time Space transformation matrix T ws (j). At different positions in the water model, with different probe attitudes, repeatedly acquire and store several ultrasonic images of different planes, and store the corresponding spatial transformation matrix T ws (j) of the spatial position sensor. In our experiment, more than 7 ultrasound images and corresponding positioning data of different positions were collected each time.

第6步,提取超声图像上标志点位置和计算该超声成像平面的位置Step 6, extract the position of the marker point on the ultrasound image and calculate the position of the ultrasound imaging plane

首先定义超声成像平面坐标系XuYu,如图1所示。在此坐标系下通过手工在每幅超声图像上对N形细线标志点亮斑的点选,提取各个标志亮斑在超声图像坐标系XuYu中的二维坐标。具体地,在超声图像Img(j)上按照先沿Xm递增,再按Ym递增的顺序,逐次手工点选所有在超声图像视野内的N线与超声图像平面相交所形成的三个一组亮斑中心的二维坐标位置,并按照每组N线被点选的顺序记下其序号k。设点选的一组N线的三条边在超声图像上的亮斑分别为E(j,k)、F(j,k)、G(j,k),其中k=1,2,…,Kj,Kj为在该幅超声图像Img(j)上获得的N线标志点的总数。记点选的亮斑的二维坐标为: X u ( E ) ( j , k ) = [ x u ( E ) ( j , k ) , y u ( E ) ( j , k ) ] , X u ( F ) ( j , k ) = [ x u ( F ) ( j , k ) , y u ( F ) ( j , k ) ] , X u ( G ) ( j , k ) = [ x u ( G ) ( j , k ) , y u ( G ) ( j , k ) ] , 可以根据图像分辨率得到所点选的三个点之间的距离|EF|jk和|EG|jkFirst define the ultrasound imaging plane coordinate system X u Y u , as shown in Figure 1. In this coordinate system, the two-dimensional coordinates of each marker bright spot in the ultrasound image coordinate system X u Y u are extracted by manually selecting the N-shaped thin-line marker spot on each ultrasound image. Specifically, on the ultrasound image Img(j), according to the order of increasing X m first, and then Y m increasing, manually select all the three ones formed by the intersection of the N lines in the field of view of the ultrasound image and the plane of the ultrasound image. The two-dimensional coordinate position of the center of the group of bright spots, and write down the sequence number k of each group of N lines in the order in which they were clicked. Let the bright spots on the ultrasonic image of the three sides of a group of selected N lines be E(j,k), F(j,k), G(j,k), where k=1,2,..., K j , K j is the total number of N-line marker points obtained on the ultrasound image Img(j). The two-dimensional coordinates of the selected bright spots are: x u ( E. ) ( j , k ) = [ x u ( E. ) ( j , k ) , the y u ( E. ) ( j , k ) ] , x u ( f ) ( j , k ) = [ x u ( f ) ( j , k ) , the y u ( f ) ( j , k ) ] , x u ( G ) ( j , k ) = [ x u ( G ) ( j , k ) , the y u ( G ) ( j , k ) ] , The distance |EF| jk and |EG| jk between the three selected points can be obtained according to the image resolution:

|| EFEF || jkjk == (( xx uu (( EE. )) (( jj ,, kk )) -- xx uu (( Ff )) (( jj ,, kk )) )) 22 ++ (( ythe y uu (( EE. )) (( jj ,, kk )) -- ythe y uu (( Ff )) (( jj ,, kk )) )) 22 ;; -- -- -- (( 33 ))

|| EGEG || jkjk == (( xx uu (( EE. )) (( jj ,, kk )) -- xx uu (( GG )) (( jj ,, kk )) )) 22 ++ (( ythe y uu (( EE. )) (( jj ,, kk )) -- ythe y uu (( GG )) (( jj ,, kk )) )) 22 .. -- -- -- (( 44 ))

按照上述方法对所有采集的超声图像上的N线标志点位置进行提取,并按照序号存储。According to the above method, the positions of the N-line marker points on all the collected ultrasound images are extracted and stored according to the serial numbers.

根据所处理的N线所在的列数和层数,得到第k组的穿线孔AkBkCkDk在水模上的Xm与Ym坐标值:According to the number of columns and the number of layers where the processed N lines are located, the X m and Y m coordinate values of the threading hole A k B k C k D k of the kth group on the water model are obtained:

Xx mm (( AA )) (( jj ,, kk )) == [[ xx mm (( AA )) (( jj ,, kk )) ,, ythe y mm (( AA )) (( jj ,, kk )) ,, zz mm (( AA )) (( jj ,, kk )) ]] -- -- -- (( 55 ))

Xx mm (( BB )) (( jj ,, kk )) == [[ xx mm (( BB )) (( jj ,, kk )) ,, ythe y mm (( BB )) (( jj ,, kk )) ,, zz mm (( BB )) (( jj ,, kk )) ]] -- -- -- (( 66 ))

Xx mm (( CC )) (( jj ,, kk )) == [[ xx mm (( CC )) (( jj ,, kk )) ,, ythe y mm (( CC )) (( jj ,, kk )) ,, zz mm (( CC )) (( jj ,, kk )) ]] -- -- -- (( 77 ))

Xx mm (( DD. )) (( jj ,, kk )) == [[ xx mm (( DD. )) (( jj ,, kk )) ,, ythe y mm (( DD. )) (( jj ,, kk )) ,, zz mm (( DD. )) (( jj ,, kk )) ]] -- -- -- (( 88 ))

其中,A孔与B孔同轴,C孔与D孔同轴,即: x m ( A ) ( j , k ) = x m ( B ) ( j , k ) , y m ( A ) ( j , k ) = y m ( B ) ( j , k ) , x m ( C ) ( j , k ) = x m ( D ) ( j , k ) , y m ( C ) ( j , k ) = y m ( D ) ( j , k ) , 且N线组内各孔在水模坐标系中等高,即: y m ( A ) ( j , k ) = y m ( B ) ( j , k ) = y m ( C ) ( j , k ) = y m ( D ) ( j , k ) . 再通过超声图像测量得到E(j,k)、F(j,k)、G(j,k)之间的距离(参见图3b,这里为简洁起见,省略了各符号的下标,下同)后,可以从相似三角形EBF和GCF,通过|EF|jk与|GF|jk之比得到|BF|jk与|CF|jk之比,从而得到F点在水箱模型坐标系中的Zm坐标(见图3c),从而得到F点的坐标,这样,对超声图像Img(j)中序号为k的一个N线对(三个一组的亮斑),可以得到一个水箱模型坐标系中的N线标志点F(j,k)的三维坐标。假设在图2中所示的水箱模型坐标系下,A点的三维坐标为:Among them, hole A is coaxial with hole B, and hole C is coaxial with hole D, namely: x m ( A ) ( j , k ) = x m ( B ) ( j , k ) , the y m ( A ) ( j , k ) = the y m ( B ) ( j , k ) , x m ( C ) ( j , k ) = x m ( D. ) ( j , k ) , the y m ( C ) ( j , k ) = the y m ( D. ) ( j , k ) , And the holes in the N line group are at the same height in the water model coordinate system, that is: the y m ( A ) ( j , k ) = the y m ( B ) ( j , k ) = the y m ( C ) ( j , k ) = the y m ( D. ) ( j , k ) . Then measure the distances between E(j,k), F(j,k), and G(j,k) through ultrasound images (see Figure 3b, here for the sake of brevity, the subscripts of each symbol are omitted, the same below ), the ratio of | BF | jk to |CF| jk can be obtained from the similar triangles EBF and GCF through the ratio of |EF| jk to |GF| (See Figure 3c), thus obtaining point F In this way, for an N-line pair (bright spot in a group of three) with the serial number k in the ultrasonic image Img(j), the N-line marker point F(j,k) in a water tank model coordinate system can be obtained 3D coordinates. Assuming that in the water tank model coordinate system shown in Figure 2, the three-dimensional coordinates of point A are:

X m ( A ) = [ x m ( A ) ( j , k ) , y m ( A ) ( j , k ) , z m ( A ) ( j , k ) ] , 则F点在水箱模型坐标系中的三维坐标 x m ( A ) = [ x m ( A ) ( j , k ) , the y m ( A ) ( j , k ) , z m ( A ) ( j , k ) ] , Then the three-dimensional coordinates of point F in the tank model coordinate system

X m ( F ) = [ x m ( F ) ( j , k ) , y m ( F ) ( j , k ) , z m ( F ) ( j , k ) ] 可以表示为: x m ( f ) = [ x m ( f ) ( j , k ) , the y m ( f ) ( j , k ) , z m ( f ) ( j , k ) ] It can be expressed as:

xx mm (( Ff )) (( jj ,, kk )) == xx mm (( AA )) (( jj ,, kk )) ++ || EFEF || jkjk || EGEG || jkjk ·&Center Dot; || BDBD || jkjk ythe y mm (( Ff )) (( jj ,, kk )) == ythe y mm (( AA )) (( jj ,, kk )) zz mm (( Ff )) (( jj ,, kk )) == zz mm (( AA )) (( jj ,, kk )) ++ || EFEF || jkjk || EGEG || jkjk ·· || ABAB || jkjk -- -- -- (( 99 ))

其中,j是用于标定的超声图像Img(j)的序号,k=1,2,…,Kj,Kj是在该幅图像上提取的标志点的数目。且: | BD | jk = ( x m ( D ) ( j , k ) - x m ( B ) ( j , k ) ) 2 , | AB | jk = ( z m ( B ) ( j , k ) - z m ( A ) ( j , k ) ) 2 . 在上式中,在Xm与Zm方向的坐标值是根据△BEF和△CGF的相似三角形关系,以及在水模制造时所定义好的基准点(此处为A点)的位置确定的,而F点在Ym方向的坐标值则由该N线所在层的位置得到。Wherein, j is the serial number of the ultrasonic image Img(j) used for calibration, k=1, 2,..., K j , and K j is the number of marker points extracted on the image. and: | BD | jk = ( x m ( D. ) ( j , k ) - x m ( B ) ( j , k ) ) 2 , | AB | jk = ( z m ( B ) ( j , k ) - z m ( A ) ( j , k ) ) 2 . In the above formula, the coordinate values in the X m and Z m directions are determined according to the similar triangle relationship between △BEF and △CGF, and the position of the reference point (here, point A) defined during the water mold manufacturing , and the coordinate value of point F in the Y m direction is obtained from the position of the layer where the N line is located.

对能够在图像Img(j)中得到的所有N线组都这样处理,成像得到的每一个序号k的二维N线标志点坐标都有一个模型坐标系下的三维坐标点与之构成顺序对应的点对。理想情况下,这些N线标志点在水箱三维坐标系中,将构成一个平面。我们可以对Img(j),利用方程(4)求解出从水箱模型坐标系到该超声图像平面坐标系之间的坐标映射关系Tu-m(j):All the N-line groups that can be obtained in the image Img(j) are processed in this way, and the two-dimensional N-line marker point coordinates of each serial number k obtained by imaging There is a three-dimensional coordinate point in the model coordinate system The point pairs corresponding to the sequence are formed. Ideally, these N-line marker points will form a plane in the three-dimensional coordinate system of the water tank. For Img(j), we can use equation (4) to solve the coordinate mapping relationship T um (j) between the water tank model coordinate system and the ultrasonic image plane coordinate system:

xx uu (( Ff )) (( jj ,, 11 )) ythe y uu (( Ff )) (( jj ,, 11 )) 00 11 xx uu (( Ff )) (( jj ,, 22 )) ythe y uu (( Ff )) (( jj ,, 22 )) 00 11 .. .. .. .. .. .. .. .. .. .. .. .. xx uu (( Ff )) (( jj ,, KK jj )) ythe y uu (( Ff )) (( jj ,, KK jj )) 00 11 == xx mm (( Ff )) (( jj ,, 11 )) ythe y mm (( Ff )) (( jj ,, 11 )) zz mm (( Ff )) (( jj ,, 11 )) 11 xx mm (( Ff )) (( jj ,, 22 )) ythe y mm (( Ff )) (( jj ,, 22 )) zz mm (( Ff )) (( jj ,, 22 )) 11 .. .. .. .. .. .. .. .. .. xx mm (( Ff )) (( jj ,, KK jj )) ythe y mm (( Ff )) (( jj ,, KK jj )) zz mm (( Ff )) (( jj ,, KK jj )) 11 ·&Center Dot; TT uu -- mm (( jj )) -- -- -- (( 1010 ))

或写成:or written as:

Xx uu 22 DD. (( jj ,, kk )) == Xx mm (( jj ,, kk )) ·&Center Dot; TT uu -- mm (( jj )) -- -- -- (( 1111 ))

其中j=1,2,…,J,J是所采集超声图像的数目,k=1,2,…,Kj,Kj是在该图像Img(j)上提取的N线标志点的数目。Where j=1,2,...,J,J is the number of ultrasonic images collected, k=1,2,...,K j , K j is the number of N-line marker points extracted on the image Img(j) .

第7步,将各幅二维超声图像上的N线标志点映射到三维空间分布的多幅成像平面上Step 7: Map the N-line marker points on each two-dimensional ultrasound image to multiple imaging planes distributed in three-dimensional space

如上述,在采集各幅超声图像时,超声探头在三维空间呈一定的分布,形成了对水模上细线在不同空间位置的切割。我们可以根据采集各幅超声图像时空间位置传感器的位置Tw-s(j),在参考坐标系中将多幅二维的超声成像平面在三维空间虚拟组合起来,形成呈一定三维空间分布的若干幅成像平面。在每个超声成像平面Img(j)上提取的任一个二维标志点位置是该超声图像平面在特定空间位置与水模中特定细线的交点,因此从超声成像角度看,这些交点是落在各自的虚拟成像平面内的二维标志点,从水模角度看,是这些细线被这一批空间分布的虚拟成像平面所切割而形成的一批在空间三维分布的平面与线的交点。我们的目标就是要找到:这些切割面片处于什么位置时,从多幅已知位置的二维超声图像上提取的标志点,与水模中的细线能够有最好的匹配。在实际计算中,并不需要真正求出这些虚拟成像平面的空间位置,而只需要按照采集各个超声图像Img(j)时位置传感器的位置Tw-s(j),将各个成像平面上提取的二维标志点位置按采集该图像时空间位置传感器的位置姿态映射到三维空间中,并组合在一起,就构成三维空间中的一批配准点,这批三维空间点可以与水模中的细线进行三维的配准,具体实现的算法见第8步。As mentioned above, when collecting each ultrasound image, the ultrasound probes are distributed in a certain way in the three-dimensional space, which forms the cutting of the thin lines on the water model at different spatial positions. According to the position T ws (j) of the spatial position sensor when each ultrasonic image is collected, we can virtually combine multiple two-dimensional ultrasonic imaging planes in the three-dimensional space in the reference coordinate system to form several images with a certain three-dimensional spatial distribution. imaging plane. The position of any two-dimensional marker point extracted on each ultrasound imaging plane Img(j) is the intersection of the ultrasonic image plane at a specific spatial position and a specific thin line in the water model. Therefore, from the perspective of ultrasonic imaging, these intersection points are two-dimensional marker points falling in their respective virtual imaging planes. From the perspective of the water model, they are These thin lines are cut by the batch of spatially distributed virtual imaging planes to form a batch of intersection points of three-dimensionally distributed planes and lines in space. Our goal is to find: when these cutting surfaces are located, the marker points extracted from multiple 2D ultrasound images with known positions can best match the thin lines in the water model. In actual calculation, it is not necessary to actually find the spatial positions of these virtual imaging planes, but only need to extract the two images extracted on each imaging plane according to the position T ws (j) of the position sensor when each ultrasonic image Img(j) is collected Dimensional landmark position According to the position and posture of the spatial position sensor when the image is collected, it is mapped to the three-dimensional space and combined together to form a batch of registration points in the three-dimensional space. These three-dimensional space points can be three-dimensionally registered with the thin lines in the water model. For the specific implementation algorithm, see step 8.

以扇形扫描超声探头的标定为例,借助空间位置传感器的位置信息Tw-s(j)而组合各个虚拟成像平面的几何概念如图4所示,图中5个扇形为5个虚拟成像平面,每幅扇形的二维超声图像上都可以提取若干标志点。Taking the calibration of the sector-scanning ultrasound probe as an example, the geometric concept of combining each virtual imaging plane with the help of the position information T ws (j) of the spatial position sensor is shown in Fig. 4. The five sectors in the figure are five virtual imaging planes, and each Several marker points can be extracted from a fan-shaped two-dimensional ultrasound image.

因此,第6步提取的各超声图像Img(j)上标志点位置可以借助采集每一幅超声图像Img(j)时位置传感器的位置变换矩阵Tw-s(j),逐次将各个成像平面上的二维标志点位置映射到三维空间的第j个对应虚拟成像平面上,这样就形成了一批在三维空间分布的标志点,它们对应了从不同方向对细线模型进行成像时多个成像平面与细线的交点。Therefore, the position of the marker point on each ultrasound image Img(j) extracted in step 6 With the help of the position transformation matrix T ws (j) of the position sensor when each ultrasound image Img(j) is collected, the positions of the two-dimensional marker points on each imaging plane can be successively mapped to the jth corresponding virtual imaging plane in the three-dimensional space , thus forming a batch of marker points distributed in three-dimensional space, which correspond to the intersection points of multiple imaging planes and thin lines when the thin line model is imaged from different directions.

为规范起见,我们统一将超声成像平面Img(j)上提取的标志点的 二维坐标写为:其中l=1,2,…,3×Kj,Kj是在图像Img(j)上所提取的N线标志点的数目;将映射到三维空间各个成像平面上的三维坐标记为 X u 3 D ( j , l ) = ( x u 3 D ( j , l ) , y u 3 D ( j , l ) , z u 3 D ( j , l ) ) , 则:For the sake of standardization, we unified the marker points extracted on the ultrasound imaging plane Img(j) Two-dimensional coordinates are written as: Among them, l=1,2,...,3×K j , K j is the number of N-line mark points extracted on the image Img(j); The three-dimensional coordinates mapped to each imaging plane in three-dimensional space are marked as x u 3 D. ( j , l ) = ( x u 3 D. ( j , l ) , the y u 3 D. ( j , l ) , z u 3 D. ( j , l ) ) , but:

Xx uu 33 DD. (( jj ,, ll )) == Xx uu 22 DD. (( jj ,, ll )) ·&Center Dot; TT ww -- sthe s (( jj )) -- -- -- (( 1212 ))

其中,Tw-s(j)是从所述个人计算机从三维定位测量仪获取的对应Img(j)成像平面的位置传感器的位置变换矩阵,j=1,2,…,J,J是采集的超声图像数目,l=1,2,…,3×Kj,Kj是在图像Img(j)上所提取的N线标志点的数目。映射到各个虚拟超声成像平面上的空间点如图4中各个扇面上的圆点所示意。Wherein, T ws (j) is the position transformation matrix of the position sensor corresponding to the Img (j) imaging plane obtained from the personal computer from the three-dimensional positioning measuring instrument, and j=1, 2, ..., J, J is the ultrasonic wave collected Number of images, l=1,2,...,3×K j , K j is the number of N-line marker points extracted on the image Img(j). The spatial points mapped to each virtual ultrasound imaging plane are shown as dots on each sector in FIG. 4 .

第8步:进行空间匹配位置的初始化Step 8: Initialize the spatial matching position

利用第6步的方程(10)可以根据从某一幅超声图像平面Img(j)上提取的各个N线标志点位置的三维坐标以及该超声图像上对应的亮斑的二维坐标求解出从水箱模型坐标系到该超声图像平面坐标系之间的坐标映射关系Tu-m(j)。该变换建立了从超声成像平面上标志点到水模中细线与成像平面交点之间的变换关系。由于在第7步中已经将提取的所有标志点按照其成像时的方位进行了三维空间重组,得到一批三维空间分布的待配准点当我们选择一幅超声图像求出该图像到水模间的变换关系后,可以利用该变换将所有三维成像空间的标志点映射到水模中与对应细线比较接近的初始位置。假设选择第n幅超声图像Img(n)进行初始化配准,则可以按照方程(13)求出变换矩阵Tu-m(n),即:Using the equation (10) in step 6, the three-dimensional coordinates of each N-line marker point position extracted from a certain ultrasound image plane Img(j) And the two-dimensional coordinates of the corresponding bright spot on the ultrasound image Solve the coordinate mapping relationship T um (j) from the water tank model coordinate system to the ultrasonic image plane coordinate system. This transformation establishes the transformation relationship from the marker point on the ultrasonic imaging plane to the intersection point of the thin line in the water model and the imaging plane. Since all the extracted marker points have been reconstructed in 3D space according to their imaging orientations in step 7, a batch of 3D spatially distributed points to be registered is obtained When we select an ultrasound image to obtain the transformation relationship between the image and the water model, we can use this transformation to transform all the landmark points in the three-dimensional imaging space Mapped to the initial position in the water model that is relatively close to the corresponding thin line. Assuming that the nth ultrasound image Img(n) is selected for initial registration, the transformation matrix T um (n) can be obtained according to equation (13), namely:

Xx uu (( Ff )) (( nno ,, kk )) == Xx mm (( Ff )) (( nno ,, kk )) ·&Center Dot; TT uu -- mm (( nno )) -- -- -- (( 1313 ))

然后,将得到的其它各个虚拟成像平面上的所有标志点(j=1,2,…,n-1,n+1,…J,l=1,2,…,3×Kj),随着平面Img(n)进行空间平移和旋转,变换到水箱模型坐标系中,这样就形成了一批在模型坐标系中待配准的三维坐标点 Then, all the marker points on other virtual imaging planes obtained (j=1,2,...,n-1,n+1,...J,l=1,2,...,3×K j ), perform spatial translation and rotation along with the plane Img(n), and transform to the water tank In the model coordinate system, a batch of 3D coordinate points to be registered in the model coordinate system are formed

Xx mm 33 DD. (( jj ,, kk )) == Xx uu 33 DD. (( jj ,, kk )) ·· TT ww -- sthe s -- 11 (( nno )) ·· TT uu -- mm -- 11 (( nno )) ;; jj == 1,21,2 ,, .. .. .. ,, JJ -- -- -- (( 1414 ))

== Xx uu 22 DD. (( jj ,, kk )) ·· TT ww -- sthe s (( jj )) ·· TT ww -- sthe s -- 11 (( nno )) ·· TT uu -- mm -- 11 (( nno ))

至此,所构建的虚拟超声成像平面上的三维空间标志点,已经变换到水箱模型坐标系中,并初步与水模上的细线配准在一起,即标志点与水模中的对应的细线将很接近,如示意图5所示。So far, the three-dimensional space marker points on the virtual ultrasound imaging plane have been transformed into the coordinate system of the water tank model, and initially registered with the thin lines on the water model, that is, the marker points and the corresponding thin lines in the water model The lines will be close together, as shown in Diagram 5.

第9步:设定优化的目标函数和初始值,并进行优化计算Step 9: Set the optimized objective function and initial value, and perform optimization calculation

通过第8步的处理,所有待配准的三维坐标点都已经映射到水模坐标系中,理想情况下这些点与水模上对应的细线应当重合(距离为零),但由于在超声图像上提取标志点时存在位置误差,因此到对应细线还可能有一定距离。我们选取优化目标函数是所有三维空间分布的标志点与三维水模上最近细线的平均距离最小。注意到在水模设计中的N形线是分布在不同高度层次的水平面上,因此每层细线的ym坐标是固定的,而对于N形线的平行边来讲,其xm坐标也是固定的,假设水模中共有R层N形线,每层有S条平行直线,可以对这些细线顺序编号,这些平行细线的直线方程可以写为:Through the processing of step 8, all the three-dimensional coordinate points to be registered have been mapped to the water model coordinate system. Ideally, these points should coincide with the corresponding thin lines on the water model (the distance is zero), but due to the There is a position error when extracting marker points on the image, so There may also be a certain distance to the corresponding thin line. We choose the optimization objective function to be the marker points of all three-dimensional spatial distributions The average distance to the nearest thin line on the 3D water model is the smallest. Note that the N-shaped lines in the design of the water model are distributed on the horizontal planes of different heights, so the y m coordinates of each layer of thin lines are fixed, and for the parallel sides of the N-shaped lines, the x m coordinates are also Fixed, assuming that there are R layers of N-shaped lines in the water model, and each layer has S parallel straight lines, these thin lines can be numbered sequentially, and the straight line equations of these parallel thin lines can be written as:

x m ( l ) = L x ( r , s ) ; y m ( l ) = L y ( r , s ) ; 其中 r = 1,2 , . . . , R s = 1,2 , . . . , S - - - ( 15 ) x m ( l ) = L x ( r , the s ) ; the y m ( l ) = L the y ( r , the s ) ; in r = 1,2 , . . . , R the s = 1,2 , . . . , S - - - ( 15 )

其中Lx(r,s)与Ly(r,s)分别是水模设计时定义好的的第r层第s条细平行线在水箱模型坐标系内的坐标,为给定的常数,l是各条细线的序号。Among them, L x (r, s) and Ly (r, s) are respectively the coordinates of the sth thin parallel line in the rth layer defined in the water model design in the coordinate system of the water tank model, which are given constants, l is the serial number of each thin line.

而N形线的斜边是分布在水模坐标系的水平面内,可以由斜线的起点和终点串线小孔(也同时是穿平行线的小孔)的位置定义其三维空间直线方程:The hypotenuse of the N-shaped line is distributed in the horizontal plane of the water model coordinate system, and its three-dimensional space linear equation can be defined by the positions of the starting point and the ending point of the diagonal line (also the small hole passing through the parallel line) of the oblique line:

xx -- xx mm (( ll )) xx mm (( ll ++ 11 )) -- xx mm (( ll )) == zz -- zz mm (( ll )) zz mm (( ll ++ 11 )) -- zz mm (( ll )) ;; ythe y mm (( ll )) == LL ythe y (( rr ,, sthe s )) ;; -- -- -- (( 1616 ))

因此,水模中所有细线的空间位置都被严格定义了。为求得空间标志点到其对应直线的距离,在上述初始化处理以后,可以直接求解某个标志点到所有直线的距离,对平行细线而言,只需要将中的x分量和y分量与细线之对应分量相减,并按照勾股定理计算距离,对斜线而言,由于它们水平分布,可以先求解x,z分量上距离,再与y分量合成。在得到到所有细线的距离后,选取其中的一个最小的距离D(j,l)作为空间点与三维水模上对应的最近细线的距离,这样可以得到标志点与三维水模上最近的细线的平均距离:Therefore, the spatial positions of all thin lines in the water model are strictly defined. In order to obtain the spatial marker points The distance to its corresponding straight line, after the above initialization processing, can directly solve a certain marker point The distance to all straight lines, for parallel thin lines, only need to be Subtract the x and y components of the thin line from the corresponding components of the thin line, and calculate the distance according to the Pythagorean theorem. For oblique lines, because they are distributed horizontally, you can first solve the distance on the x and z components, and then combine them with the y component . in getting After the distance to all thin lines, select one of the smallest distances D(j,l) as the space point The distance from the nearest thin line on the 3D water model, so that the marker point can be obtained Average distance from the nearest thin line on the 3D water model:

DD. avgavg == 11 JJ ·&Center Dot; KK jj ΣΣ ll == 11 33 ×× KK jj DD. (( jj ,, ll )) -- -- -- (( 1717 ))

其中,J为参与计算的超声图像数,Kj为在第j幅超声图像中能够提取到的标志点数目。Among them, J is the number of ultrasound images involved in the calculation, and K j is the number of marker points that can be extracted from the jth ultrasound image.

上述优化计算的初始空间位置Tu-m(n)是上面第8步利用某幅超声图像Img(n)计算得到的成像平面在水模坐标系中的空间位置。在此基础上可以调整Tu-m的变量进行优化迭代计算,通过优化计算使平均距离Davg极小化。被优化的变量是超声成像坐标系与水模坐标系之间的空间变换矩阵Tu-m(包含三个平移与三个旋转,共6自由度)。通过设定平均距离Davg的误差阈值(取为2mm)和最大迭代步数(500步),控制优化迭代过程的结束,最终得到了一个优化的变换矩阵,它代表了所采集的多成像平面与水模中细线目标的一个最佳匹配变换 The initial spatial position T um (n) of the above optimization calculation is the spatial position of the imaging plane in the water model coordinate system calculated by using a certain ultrasound image Img(n) in step 8 above. On this basis, the variable of T um can be adjusted for optimal iterative calculation, and the average distance D avg can be minimized through optimal calculation. The variable to be optimized is the space transformation matrix T um (including three translations and three rotations, a total of 6 degrees of freedom) between the ultrasound imaging coordinate system and the water model coordinate system. By setting the error threshold of the average distance D avg (taken as 2mm) and the maximum number of iteration steps (500 steps), the end of the optimization iterative process is controlled, and finally an optimized transformation matrix is obtained, which represents the acquired multi-imaging plane A Best Matching Transform to Thin Line Objects in Water Models

在本实例中我们采用了Matlab软件所带的优化工具箱中的顺序二次规划(sequentialquadratic programming algorithm,SQP)的优化计算工具进行寻优计算。当然也可以采用其它数学计算工具进行优化计算。In this example, we use the optimization calculation tool of sequential quadratic programming algorithm (SQP) in the optimization toolbox of the Matlab software for optimization calculation. Of course, other mathematical calculation tools can also be used for optimization calculation.

第10步:计算成像平面与传感器间的最优空间变换根据采集各超声图像Img(j)时固结在探头上的空间位置传感器的空间位置Tw-s(j),与第9步得到的最佳切片对应位置的空间变换借助图1中所定义的各个坐标系之间的关系,可知:对超声成像坐标系中的点集可以通过空间变换变换到水模坐标系中,得到对应的点集在实际计算中我们借助第7步中公式(12)将在各个超声图像上提取的标志点变换到三维空间虚拟成像平面上,得到点集用于求解最优的超声图像到传感器间的变换计算的流程如下。首先将超声图像上提取的标志点变换到虚拟成像平面,得到三维标志点位置:Step 10: Calculate the optimal spatial transformation between the imaging plane and the sensor According to the spatial position T ws (j) of the spatial position sensor fixed on the probe when each ultrasonic image Img(j) is collected, the spatial transformation of the position corresponding to the best slice obtained in step 9 With the help of the relationship between the various coordinate systems defined in Figure 1, it can be known that: for the point set in the ultrasound imaging coordinate system or can be transformed through space Transform to the water model coordinate system to get the corresponding point set In the actual calculation, we use the formula (12) in step 7 to extract the marker points on each ultrasound image Transform to the virtual imaging plane in three-dimensional space to obtain the point set Used to solve the optimal ultrasound image-to-sensor transformation The calculation flow is as follows. First, transform the marker points extracted from the ultrasound image to the virtual imaging plane to obtain the three-dimensional marker position:

Xx uu 33 DD. (( jj ,, ll )) == Xx uu 22 DD. (( jj ,, ll )) ·· TT ww -- sthe s (( jj )) ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ×× KK JJ -- -- -- (( 1818 ))

再将虚拟成像平面上的点集变换到水模坐标系中:Then point set on the virtual imaging plane Transform to the water model coordinate system:

Xx mm 33 DD. (( jj ,, ll )) == Xx uu 33 DD. (( jj ,, ll )) ·&Center Dot; TT ~~ uu -- mm -- 11 ;; ii == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ×× KK jj -- -- -- (( 1919 ))

然后,再将水模坐标系中的点集变换到传感器坐标系中:Then, the point set in the water model coordinate system Transform into sensor coordinate system:

Xx sthe s 33 DD. (( jj ,, ll )) == Xx mm 33 DD. (( jj ,, ll )) ·&Center Dot; TT ww -- mm ·&Center Dot; TT ww -- sthe s -- 11 (( jj )) ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ×× KK jj -- -- -- (( 2020 ))

其中,Tw-s(j)是采集超声图像Img(j)时位置传感器在参考坐标系中的位置,可以从定位系统读取,而Tw-m是第4步测量并求解得到的水模坐标系到参考坐标系之间的空间变换矩阵。Among them, T ws (j) is the position of the position sensor in the reference coordinate system when the ultrasonic image Img (j) is collected, which can be read from the positioning system, and T wm is the water model coordinate system measured and solved in the fourth step to Spatial transformation matrix between reference coordinate systems.

这样就获得了超声图像坐标系与对应的位置传感器坐标系中的一批成对的标志点数据:其中j=1,2,…,J,J是所采集的超声图像的数目,l=1,2,…,3×KJ,KJ是对应图像Img(j)能够提取到的N线标志点的数目。利用这些数据,可根据方程(21)计算出待求解超声图像坐标系到超声探头上的空间位置传感器间的全局最优变换 In this way, a batch of paired marker point data in the ultrasound image coordinate system and the corresponding position sensor coordinate system is obtained: and Where j=1,2,...,J, J is the number of ultrasonic images collected, l=1,2,...,3×K J , K J is the N-line mark that can be extracted from the corresponding image Img(j) the number of points. Using these data, the global optimal transformation between the ultrasonic image coordinate system to be solved and the spatial position sensor on the ultrasonic probe can be calculated according to equation (21)

Xx sthe s 33 DD. (( jj ,, ll )) == Xx uu 33 DD. (( jj ,, ll )) ·&Center Dot; TT ~~ sthe s -- uu -- -- -- (( 21twenty one ))

实际上,也可以另外的一个流程,得到同样的结果。我们可以按照采集图像的顺序,利用公式(22)来逐幅计算超声图像到传感器间的最优变换对任一幅图像Img(j):In fact, another process can also be used to obtain the same result. We can use the formula (22) to calculate the optimal transformation between the ultrasound image and the sensor one by one according to the order of the acquired images For any image Img(j):

Xx sthe s 33 DD. (( jj ,, kk )) == Xx uu 33 DD. (( jj ,, kk )) ·&Center Dot; TT ~~ sthe s -- uu (( jj )) ;; kk == 1,21,2 ,, .. .. .. ,, KK JJ -- -- -- (( 22twenty two ))

这样做的好处是从方程(11),(12)和(14),可以直接推导出待求解的超声图像到传感器间的最优变换为:The advantage of this is that from equations (11), (12) and (14), the optimal transformation between the ultrasonic image to be solved and the sensor can be directly deduced as:

TT ~~ sthe s -- uu (( jj )) == TT ~~ uu -- mm -- 11 ·· TT ww -- mm ·· TT ww -- sthe s -- 11 (( jj )) -- -- -- (( 23twenty three ))

最后,再将多幅超声图像标定出的最优空间变换矩阵进行平均,得到最优的标定结果 Finally, the optimal spatial transformation matrix calibrated by multiple ultrasound images is averaged to obtain the optimal calibration result

TT ~~ sthe s -- uu == 11 JJ ΣΣ jj == 11 JJ TT ~~ sthe s -- uu (( jj )) -- -- -- (( 24twenty four ))

其中J为采集的超声图像数目。利用方程(21)或公式(24)计算得到的就是本发明所要寻找的目标超声图像坐标系到超声探头上的空间位置传感器坐标系间的最优变换。where J is the number of ultrasound images acquired. Calculated using Equation (21) or Equation (24) It is the optimal transformation between the coordinate system of the target ultrasound image and the coordinate system of the spatial position sensor on the ultrasound probe that the present invention seeks.

综上所述,本发明的整个处理流程如图6所示。In summary, the entire processing flow of the present invention is shown in FIG. 6 .

为将本发明方法与传统N线方法进行对比,我们还按照N线标定方法,提取计算了所获取的各幅超声图像上每个“N线标志点”在水箱模型坐标系中的三维空间位置并通过这些位置拟合计算得到采集的超声成像平面的位置。同时通过对应的位置传感器的空间位置姿态,按照传统N线标定方法,计算得到超声成像平面Img(j)与位置传感器之间的空间变换关系Ts-u(j)。In order to compare the method of the present invention with the traditional N-line method, we also extracted and calculated the three-dimensional spatial position of each "N-line marker point" in the water tank model coordinate system on each ultrasonic image acquired according to the N-line calibration method And the positions of the collected ultrasound imaging planes are obtained through these position fitting calculations. At the same time, the spatial transformation relationship T su (j) between the ultrasonic imaging plane Img(j) and the position sensor is calculated according to the spatial position and attitude of the corresponding position sensor according to the traditional N-line calibration method.

为求解超声成像平面Img(j)与位置传感器之间的空间变换关系Ts-u(j),只需要找到一批在传感器坐标系中与超声成像平面坐标系中成对的空间点,进行标定。我们借助图1中所定义的各个坐标系之间的关系,记提取的N线标志点与Img(j)成像平面的交点F在水箱模型坐标系下的三维坐标这些空间点可以通过以下的方程(25)变换映射到位置传感器参考坐标系中,得到位置传感器参考坐标系下的三维坐标 X s ( F ) ( j , k ) = [ x s ( j , k ) , y s ( j , k ) , z s ( j , k ) ] : In order to solve the spatial transformation relationship T su (j) between the ultrasonic imaging plane Img(j) and the position sensor, it is only necessary to find a batch of paired spatial points in the sensor coordinate system and the ultrasonic imaging plane coordinate system for calibration. With the help of the relationship between the various coordinate systems defined in Figure 1, we record the three-dimensional coordinates of the intersection point F of the extracted N-line marker point and the Img(j) imaging plane in the water tank model coordinate system These spatial points can be transformed and mapped to the reference coordinate system of the position sensor by the following equation (25), and the three-dimensional coordinates in the reference coordinate system of the position sensor can be obtained x the s ( f ) ( j , k ) = [ x the s ( j , k ) , the y the s ( j , k ) , z the s ( j , k ) ] :

Xx sthe s (( Ff )) (( jj ,, kk )) == Xx mm (( Ff )) (( jj ,, kk )) ·&Center Dot; TT ww -- mm ·&Center Dot; TT ww -- sthe s -- 11 (( jj )) -- -- -- (( 2525 ))

其中,Tw-s(j)是Img(j)成像时位置传感器在参考坐标系中的空间位置变换矩阵,可以从定位系统实时读取,而Tw-m则是第4步求解的水箱模型坐标系到参考坐标系之间的空间变换矩阵。Among them, T ws (j) is the spatial position transformation matrix of the position sensor in the reference coordinate system during Img (j) imaging, which can be read from the positioning system in real time, and T wm is the coordinate system of the water tank model solved in the fourth step to Spatial transformation matrix between reference coordinate systems.

注意到上述传感器空间中的点在图像坐标系上的配对点就是在超声图像Img(j)上提取的N线对中斜线的二维坐标这样就构成了一批从图像坐标系到传感器参考坐标系间一一对应的点对通过将其写成齐次坐标,就可以计算它们之间的变换Ts-u,如方程(26):Note the points in the above sensor space The paired points on the image coordinate system are the two-dimensional coordinates of the oblique line in the N-line pair extracted on the ultrasound image Img(j) In this way, a batch of point pairs corresponding to each other from the image coordinate system to the sensor reference coordinate system is formed. and By writing them as homogeneous coordinates, the transformation T su between them can be calculated, as in equation (26):

Xx sthe s (( Ff )) (( jj ,, kk )) == Xx uu (( Ff )) (( jj ,, kk )) ·· TT sthe s -- uu (( jj )) -- -- -- (( 2626 ))

方程(26)得到的就是利用传统N线方法标定的一幅超声图像Img(j)的空间变换矩阵Ts-u(j),为改善其精度,可以将多幅超声图像标定出的空间变换矩阵进行平均,得到用多幅超声图像进行传统N线标定的结果,将其记为TT s-uEquation (26) obtains the spatial transformation matrix T su (j) of an ultrasonic image Img(j) calibrated by the traditional N-line method. In order to improve its accuracy, the spatial transformation matrix calibrated by multiple ultrasonic images can be On average, the result of traditional N-line calibration using multiple ultrasound images is obtained, which is denoted as T T su .

TT sthe s -- uu TT == 11 JJ ΣΣ jj == 11 JJ TT sthe s -- uu (( jj )) -- -- -- (( 2727 ))

其中J为采集的超声图像数目。where J is the number of ultrasound images acquired.

与传统处理流程相比较,可以看到传统的N线模型标定方法,直接利用水模设计数据和水模定位信息,利用超声图像上提取的二维标志点位置和相似三角形关系解算超声平面与水模细线交点,并利用所提取的配对点集,利用方程组(26)计算求解超声图像到传感器的空间变换Ts-u,而我们的发明,通过借助成像时多幅超声图像的相对位置信息,将多幅图像之间的空间关联关系利用起来,在水模坐标系中形成一族二维图像目标与三维细线之间距离的优化计算,从道理上,更加有效地利用了所获得的信息,因此可以提高标定的精度。Compared with the traditional processing flow, it can be seen that the traditional N-line model calibration method directly uses the water model design data and water model positioning information, and uses the two-dimensional marker points extracted from the ultrasonic image and the similar triangle relationship to solve the ultrasonic plane and water model thin line intersection point, and use the extracted paired point set to calculate and solve the space transformation T su from the ultrasonic image to the sensor by using the equation group (26), and our invention, by using the relative position information of multiple ultrasonic images during imaging , using the spatial correlation between multiple images to form an optimized calculation of the distance between a family of 2D image targets and 3D thin lines in the water model coordinate system, which makes more effective use of the obtained information , so the calibration accuracy can be improved.

我们采用上述处理流程进行了实际的实验测试。一共测试了8套数据,每套都包括7组不同位置采集的水模超声图像和对应的空间位置传感器数据。在处理中我们选取每套数据中的5组超声图像和定位数据用于成像平面与传感器空间位置的标定,而用另外两组数据用于精度的验证。因此每组数据一共有C5 7=21种组合,我们把这21组组合标定的平均精度作为总体计算的精度。实验中分别采用传统的N线模型计算方法和本发明的方法进行处理,将得到的标定精度进行比较。图7给出了一组典型的带有厚度误差的数据在计算过程中,标定误差随参与计算的超声图像数而下降的曲线。可以看到,当选用一幅超声图像进行标定时,采用我们的方法进行优化,可以在一定程度上减小误差,但标定误差依然比较大,而引进多幅超声图像以后,本发明方法的标定误差比传统方法更加迅速地下降,当采用3幅以上图像时,已经可以达到比较小的误差,而采用5幅图像进行标定时,得到了很好的标定效果。因此本发明的处理方法可以在采集少量超声图像和定位数据的基础上得到较高的标定精度。We used the above processing flow to carry out practical experimental tests. A total of 8 sets of data were tested, and each set included 7 sets of water model ultrasonic images collected at different locations and corresponding spatial position sensor data. In the processing, we selected 5 sets of ultrasound images and positioning data in each set of data for the calibration of the imaging plane and the spatial position of the sensor, and used the other two sets of data for accuracy verification. Therefore, there are a total of C 5 7 =21 combinations for each set of data, and we take the average precision calibrated by these 21 sets of combinations as the precision of the overall calculation. In the experiment, the traditional N-line model calculation method and the method of the present invention are respectively used for processing, and the obtained calibration accuracy is compared. Figure 7 shows a typical set of data with thickness errors. During the calculation process, the calibration error decreases with the number of ultrasound images involved in the calculation. It can be seen that when an ultrasonic image is selected for calibration, the error can be reduced to a certain extent by using our method for optimization, but the calibration error is still relatively large, and after introducing multiple ultrasonic images, the calibration of the method of the present invention The error decreases more rapidly than the traditional method. When more than 3 images are used, a relatively small error can be achieved, and when 5 images are used for calibration, a good calibration effect is obtained. Therefore, the processing method of the present invention can obtain higher calibration accuracy on the basis of collecting a small amount of ultrasonic images and positioning data.

发明人情况Inventor

发 明 人:王广志、丁辉、朱立人Inventors: Wang Guangzhi, Ding Hui, Zhu Liren

单    位:清华大学医学院生物医学工程系Unit: Department of Biomedical Engineering, School of Medicine, Tsinghua University

联系电话:(010)62783631Tel: (010)62783631

联 系 人:丁辉,E-mail:dinghuitsinghua.edu.cn Contact person: Ding Hui, E-mail: dinghuitsinghua.edu.cn

拟申请专利类型:发明专利Type of patent to be applied for: invention patent

Claims (1)

1.一种超声探头成像平面空间位置标定的优化方法,其特征在于,该优化方法是一种标定超声探头成像平面的空间位置与空间位置传感器空间位置之间变换关系的方法,即空间变换矩阵的优化方法,该优化方法是在一个三维定位测量系统的辅助下依次按以下步骤实现的:1. An optimization method for ultrasonic probe imaging plane spatial position calibration, characterized in that, the optimization method is a method for demarcating the transformation relationship between the spatial position of the ultrasonic probe imaging plane and the spatial position sensor spatial position, i.e. the spatial transformation matrix The optimization method is realized in the following steps with the assistance of a three-dimensional positioning measurement system: 步骤1、构建一个用于超声探头标定的三维定位测量系统:Step 1. Construct a 3D positioning measurement system for ultrasonic probe calibration: 所述用于超声探头标定的三维定位测量系统,包括:三维定位测量仪、水箱模型、医用超声成像系统和个人计算机,其中三维定位测量仪、水箱模型、超声成像系统共同用于对被标定的超声探头进行测量,而个人计算机用于测量数据的采集和数据处理,其中的三维定位测量仪包括:固定在超声探头上的6自由度空间位置传感器、尖端定位精度为0.2mm的三维定位探笔、作为空间参考坐标系的定位用无线发射装置,超声成像系统包括被标定的超声探头和成像系统主机,用于产生待采集的水箱模型的超声图像,其中的被标定超声探头上固结了上述的6自由度空间位置传感器,个人计算机中安装了图像捕捉卡,用于采集从所述超声成像系统输出的超声图像,同时,个人计算机通过USB接口采集从所述三维定位测量仪输出的6自由度空间位置传感器的定位数据和三维定位探笔尖端的定位数据;The three-dimensional positioning measuring system used for ultrasonic probe calibration includes: a three-dimensional positioning measuring instrument, a water tank model, a medical ultrasonic imaging system and a personal computer, wherein the three-dimensional positioning measuring instrument, the water tank model, and the ultrasonic imaging system are jointly used to measure the calibrated The ultrasonic probe is used for measurement, and the personal computer is used for the acquisition and data processing of measurement data. The three-dimensional positioning measuring instrument includes: a 6-degree-of-freedom spatial position sensor fixed on the ultrasonic probe, and a three-dimensional positioning probe with a tip positioning accuracy of 0.2mm , as a wireless transmitting device for the positioning of the spatial reference coordinate system, the ultrasonic imaging system includes a calibrated ultrasonic probe and an imaging system host for generating ultrasonic images of the water tank model to be collected, wherein the calibrated ultrasonic probe is consolidated with the above-mentioned A 6-DOF space position sensor, an image capture card is installed in the personal computer to collect the ultrasonic image output from the ultrasonic imaging system, and at the same time, the personal computer collects the 6-freedom image output from the three-dimensional positioning measuring instrument through a USB interface. The positioning data of the three-dimensional position sensor and the positioning data of the tip of the three-dimensional positioning probe; 步骤2、制作N线模型:所述N线模型是将多组排成“N”字形状的细线,分层并逐层等高地固定在一个长、宽、高三个方向尺寸事先设定的长方体水箱内,每个N字形构成一个“N线目标”,所述N线模型,是通过在长方体水箱的前后壁上做出贯穿的同轴小孔,在其中穿入细尼龙线而形成水箱内的N线,所述的N线模型根据所述超声探头的视场大小和影像分辨率,从上到下,布置3层N线,最高一层包含3个N线,其余两层各包含5个N形,以使超声影像能够采集较多的N线目标,并使所述各个N线目标尽可能充满超声成像的视场,各组N线在水箱模型坐标系内的高度和位置已事先设定,并通过水箱模型的制造来保证其位置精度,水箱前后两壁上在四角位置各布置四个定位测量的凹坑标记,各形成一个矩形,用于定义水箱坐标系并精确测量水箱摆放的位置;Step 2. Make an N-line model: The N-line model is to arrange multiple groups of thin lines in the shape of "N", layer by layer and fix them at equal heights layer by layer in a pre-set dimension in three directions of length, width and height. In the cuboid water tank, each N shape forms an "N-line target". The N-line model is formed by making coaxial small holes through the front and rear walls of the cuboid water tank, and passing thin nylon wires through them to form the water tank. According to the field of view size and image resolution of the ultrasonic probe, the N-line model in the N-line model has three layers of N-lines arranged from top to bottom, the highest layer contains three N-lines, and the remaining two layers each contain 5 N-shaped, so that the ultrasonic image can collect more N-line targets, and make each N-line target fill the field of view of the ultrasonic imaging as much as possible. The height and position of each group of N-lines in the coordinate system of the water tank model have been Set in advance, and ensure its position accuracy through the manufacture of the water tank model. Four pit marks for positioning and measurement are arranged on the four corners of the front and rear walls of the water tank, each forming a rectangle, which is used to define the coordinate system of the water tank and accurately measure the water tank. placement; 步骤3、建立所述用于超声探头标定的三维定位测量系统的坐标系集合:包括参考坐标系、水箱模型坐标系、空间位置传感器坐标系、超声成像平面坐标系,参考坐标系用XwYwZw表示,设在所述定位用无线发射装置上,坐标原点在所述发射装置中心;水箱模型坐标系用XmYmZm表示,Xm是水箱长度方向,Zm是水箱宽度方向,Ym是水箱高度方向,坐标系的原点设在水箱前壁面左上角的定位凹坑上,各坐标轴的方向遵循右手法则;空间位置传感器坐标系用XsYsZs表示,设在所述6自由度空间位置传感器上,坐标原点在所述空间位置传感器的中心;超声成像平面坐标系用XuYu表示,设在超声图像上,坐标原点设在超声图像最上端的中点,Xu方向为图像水平方向,Yu方向为超声成像深度方向,Step 3. Establish the set of coordinate systems of the three-dimensional positioning measurement system used for ultrasonic probe calibration: including reference coordinate system, water tank model coordinate system, spatial position sensor coordinate system, and ultrasonic imaging plane coordinate system. The reference coordinate system uses X w Y w Z w represents that it is located on the wireless transmitter device for positioning, and the coordinate origin is at the center of the transmitter device; the water tank model coordinate system is represented by X m Y m Z m , X m is the length direction of the water tank, and Z m is the width of the water tank direction, Y m is the height direction of the water tank, the origin of the coordinate system is set on the positioning pit in the upper left corner of the front wall of the water tank, and the directions of each coordinate axis follow the right-hand rule; the spatial position sensor coordinate system is represented by X s Y s Z s , set On the 6-DOF spatial position sensor, the coordinate origin is at the center of the spatial position sensor; the ultrasonic imaging plane coordinate system is represented by X u Y u , which is set on the ultrasonic image, and the coordinate origin is set at the uppermost midpoint of the ultrasonic image , X u direction is the image horizontal direction, Y u direction is the depth direction of ultrasound imaging, 为建立各个坐标系之间的变换关系,设定4*4的空间变换矩阵Tw-m是从所述水箱模型坐标系XmYmZm到所述参考坐标系XwYwZw的空间变换矩阵,Tw-s是从所述空间位置传感器坐标系XsYsZs到所述参考坐标系XwYwZw的空间变换矩阵,Ts-u是从所述超声成像平面坐标系XuYu到所述定位用的空间位置传感器坐标系XsYsZs的空间变换矩阵,Tu-m是从所述水箱模型坐标系XmYmZm到所述超声成像平面坐标系XuYu的空间变换矩阵;In order to establish the transformation relationship between each coordinate system, the space transformation matrix T wm of 4*4 is set to be the space from the water tank model coordinate system X m Y m Z m to the reference coordinate system X w Y w Z w Transformation matrix, T ws is the space transformation matrix from the spatial position sensor coordinate system X s Y s Z s to the reference coordinate system X w Y w Z w , T su is the coordinate system from the ultrasound imaging plane X u Y u to the space position sensor coordinate system X s Y s Z s space transformation matrix used for positioning, T um is from the water tank model coordinate system X m Y m Z m to the ultrasonic imaging plane coordinate system X u The space transformation matrix of Y u ; 步骤4、标定所述水箱模型摆放的空间位置,得到水箱模型坐标系XmYmZm到参考坐标系XwYwZw的空间变换矩阵:Step 4, calibrate the spatial position where the water tank model is placed, and obtain the space transformation matrix from the coordinate system X m Y m Z m of the water tank model to the reference coordinate system X w Y w Z w : 步骤4.1:采用所述三维定位测量系统配置的三维定位探笔的尖端,逐个探测位于所述定位用无线发射装置有效测量区内的水箱模型前后两壁上在四角位置布置的各四个定位凹坑在所述参考坐标系XwYwZw中的三维空间位置Pwi=(xwi,ywi,zwi),其中i=1,2,…,8,为定位凹坑的顺序号,Step 4.1: Use the tip of the three-dimensional positioning probe configured by the three-dimensional positioning measurement system to detect the four positioning recesses arranged at the four corners on the front and rear walls of the water tank model located in the effective measurement area of the wireless transmitting device for positioning one by one. The three-dimensional space position P wi of the pit in the reference coordinate system X w Y w Z w = (x wi , y wi , z wi ), where i=1, 2, ..., 8 are the sequence numbers for positioning the pits , 步骤4.2:按照同样的顺序查询或测定水箱模型设计制造中所述各定位凹坑在水箱模型坐标系中的坐标Pmi=(xmi,ymi,zmi),其中i=1,2,…,8,为定位凹坑的序号,Step 4.2: Query or measure the coordinates P mi =(x mi ,y mi ,z mi ) of each positioning pit in the water tank model coordinate system in the design and manufacture of the water tank model in the same order, where i=1,2, ..., 8, is the serial number of the positioning pit, 步骤4.3按下面方程组求解所述水箱模型坐标系到所述参考坐标系的空间变换矩阵Tw-m Step 4.3 solves the space transformation matrix T wm of described water tank model coordinate system to described reference coordinate system by following equation group xx ww 11 ythe y ww 11 zz ww 11 11 xx ww 22 ythe y ww 22 zz ww 22 11 xx ww 33 ythe y ww 33 zz ww 33 11 xx ww 44 ythe y ww 44 zz ww 44 11 xx ww 55 ythe y ww 55 zz ww 55 11 xx ww 66 ythe y ww 66 zz ww 66 11 xx ww 77 ythe y ww 77 zz ww 77 11 xx ww 88 ythe y ww 88 zz ww 88 11 == xx mm 11 ythe y mm 11 zz mm 11 11 xx mm 22 ythe y mm 22 zz mm 22 11 xx mm 33 ythe y mm 33 zz mm 33 11 xx mm 44 ythe y mm 44 zz mm 44 11 xx mm 55 ythe y mm 55 zz mm 55 11 xx mm 66 ythe y mm 66 zz mm 66 11 xx mm 77 ythe y mm 77 zz mm 77 11 xx mm 88 ythe y mm 88 zz mm 88 11 ·&Center Dot; TT ww -- mm ;; 步骤5、采集水箱模型中不同位置下的多幅超声图像:使用所述附有6自由度空间位置传感器的被标定超声探头,对水箱中的多组N线细线进行成像,将所述超声探头布置在所述水箱模型的上方,通过移动超声探头,在不相重叠或平行的不同成像平面内采集7幅以上的超声图像,并通过所述图像捕捉卡将采集的超声图像逐次输入所述个人计算机,存储为Img(j),j=1,2,…,J,J为采集的超声图像数目,同时,通过USB接口,读取采集每幅超声图像Img(j)时所述空间位置传感器在所述参考坐标系XwYwZw中的空间位置和姿态,并计算得到空间位置传感器坐标系XsYsZs到所述参考坐标系XwYwZw的空间变换矩阵Tw-s(j),所输入的超声图像可以在所述个人计算机的屏幕上显示,各N线细线的截面在超声图像上显示为亮斑;Step 5, collecting multiple ultrasonic images at different positions in the water tank model: use the calibrated ultrasonic probe with a 6-degree-of-freedom spatial position sensor to image multiple groups of N-line thin lines in the water tank, and image the ultrasonic The probe is arranged above the water tank model. By moving the ultrasonic probe, more than 7 ultrasonic images are collected in different imaging planes that are not overlapped or parallel, and the collected ultrasonic images are input into the Personal computer, stored as Img(j), j=1, 2,..., J, J is the number of ultrasonic images collected, and at the same time, through the USB interface, read the spatial position when collecting each ultrasonic image Img(j) The spatial position and attitude of the sensor in the reference coordinate system X w Y w Z w , and calculate the spatial transformation matrix from the spatial position sensor coordinate system X s Y s Z s to the reference coordinate system X w Y w Z w T ws (j), the input ultrasonic image can be displayed on the screen of the personal computer, and the cross-section of each N thin line is displayed as a bright spot on the ultrasonic image; 步骤6、提取各幅超声图像上N线标志点的位置和计算该超声平面的位置,步骤如下:Step 6, extracting the positions of the N-line marker points on each ultrasound image and calculating the position of the ultrasound plane, the steps are as follows: 步骤6.1在所述个人计算机上显示的超声图像Img(j)上按照先沿Xm递增,再按Ym递增的顺序,逐次手工点选所有在超声图像视野内的N线与超声图像平面相交所形成的一组三个亮斑中的每一个亮斑的二维坐标位置,并按照每组N线被点选的顺序记下其序号k,设点选的一组N线的三条边在超声图像上的亮斑分别为E(j,k)、F(j,k)、G(j,k),其中k=1,2,…,Kj,Kj为在该幅超声图像Img(j)上获得的N线标志点的总数,记点选的亮斑的二维坐标 X u ( E ) ( j , k ) = [ x u ( E ) ( j , k ) , y u ( E ) ( j , k ) ] , X u ( F ) ( j , k ) = [ x u ( F ) ( j , k ) , y u ( F ) ( j , k ) ] , 根据图像分辨率得到所点选的三个点之间的距离|EF|jk和|EG|jkStep 6.1 On the ultrasonic image Img(j) displayed on the personal computer, according to the order of increasing X m first, and then increasing Y m , manually select all the N lines in the field of view of the ultrasonic image to intersect with the ultrasonic image plane The two-dimensional coordinate position of each bright spot in the formed group of three bright spots, and write down its serial number k according to the order in which each group of N lines is selected, and set the three sides of the selected group of N lines at The bright spots on the ultrasonic image are E(j,k), F(j,k), G(j,k) respectively, where k=1,2,...,K j , K j is the ultrasonic image Img (j) The total number of N-line mark points obtained above, and the two-dimensional coordinates of the bright spot selected by the point x u ( E. ) ( j , k ) = [ x u ( E. ) ( j , k ) , the y u ( E. ) ( j , k ) ] , x u ( f ) ( j , k ) = [ x u ( f ) ( j , k ) , the y u ( f ) ( j , k ) ] , Get the distance |EF| jk and |EG| jk between the three selected points according to the image resolution: || EFEF || jkjk == (( xx uu (( EE. )) (( jj ,, kk )) -- xx uu (( Ff )) (( jj ,, kk )) )) 22 ++ (( ythe y uu (( EE. )) (( jj ,, kk )) -- ythe y uu (( Ff )) (( jj ,, kk )) )) 22 ;; || EGEG || jkjk == (( xx uu (( EE. )) (( jj ,, kk )) -- xx uu (( GG )) (( jj ,, kk )) )) 22 ++ (( ythe y uu (( EE. )) (( jj ,, kk )) -- ythe y uu (( GG )) (( jj ,, kk )) )) 22 ;; 按照步骤6.1的方法对所有采集的超声图像上的N线标志点位置进行提取,并按照序号存储,According to the method in step 6.1, the position of the N-line marker point on all the collected ultrasound images is extracted, and stored according to the serial number, 步骤6.2按以下步骤求出对于任意一幅超声图像Img(j)而言,从XmYmZm坐标系到超声成像平面坐标系Xu,Yu的空间变换矩阵Tu-m(j):Step 6.2 Calculate the space transformation matrix T um (j) from the X m Y m Z m coordinate system to the ultrasound imaging plane coordinate system X u , Y u for any ultrasound image Img(j) according to the following steps: 步骤6.2.1根据步骤6.1在超声图像上所点选的N线的序号k,选择水箱模型中对应位置的N线组,已知在水箱正、后面内壁上序号为k的某组N线的四个穿线小孔A、B、C、D在水箱模型坐标系XmYmZm中的三维坐标分别为Step 6.2.1 According to the sequence number k of the N-line selected on the ultrasonic image in step 6.1, select the N-line group corresponding to the position in the water tank model. The three-dimensional coordinates of the four threading holes A, B, C, and D in the coordinate system X m Y m Z m of the water tank model are respectively Xx mm (( AA )) (( jj ,, kk )) == [[ xx mm (( AA )) (( jj ,, kk )) ,, ythe y mm (( AA )) (( jj ,, kk )) ,, zz mm (( AA )) (( jj ,, kk )) ]] ,, Xx mm (( BB )) (( jj ,, kk )) == [[ xx mm (( BB )) (( jj ,, kk )) ,, ythe y mm (( BB )) (( jj ,, kk )) ,, zz mm (( BB )) (( jj ,, kk )) ]] ,, Xx mm (( CC )) (( jj ,, kk )) == [[ xx mm (( CC )) (( jj ,, kk )) ,, ythe y mm (( CC )) (( jj ,, kk )) ,, zz mm (( CC )) (( jj ,, kk )) ]] ,, Xx mm (( DD. )) (( jj ,, kk )) == [[ xx mm (( DD. )) (( jj ,, kk )) ,, ythe y mm (( DD. )) (( jj ,, kk )) ,, zz mm (( DD. )) (( jj ,, kk )) ]] ,, 其中A孔与B孔同轴,C孔与D孔同轴,即: y m ( A ) ( j , k ) = y m ( B ) ( j , k ) , x m ( C ) ( j , k ) = x m ( D ) ( j , k ) , y m ( C ) ( j , k ) = y m ( D ) ( j , k ) , 因此,连结A、B孔和连结C、D孔的两条细线构成了N线标志的直线边,连结B、C孔的细线构成了N线标志的斜边,设序号为j的超声图像Img(j)与序号为k的一组N线相切割,该幅超声图像与N线中的细线AB相交于E,与细线BC相交于F,与细线CD相交于G,定义E、F、G点在水箱模型中的三维坐标为:Among them, hole A is coaxial with hole B, and hole C is coaxial with hole D, namely: the y m ( A ) ( j , k ) = the y m ( B ) ( j , k ) , x m ( C ) ( j , k ) = x m ( D. ) ( j , k ) , the y m ( C ) ( j , k ) = the y m ( D. ) ( j , k ) , Therefore, the two thin lines connecting holes A and B and holes C and D constitute the straight line side of the N-line mark, and the thin lines connecting holes B and C constitute the hypotenuse of the N-line mark. The image Img(j) is cut with a group of N lines with the serial number k, the ultrasonic image intersects with the thin line AB in the N lines at E, intersects with the thin line BC at F, and intersects with the thin line CD at G, defined The three-dimensional coordinates of points E, F, and G in the water tank model are: Xx mm (( EE. )) (( jj ,, kk )) == [[ xx mm (( EE. )) (( jj ,, kk )) ,, ythe y mm (( EE. )) (( jj ,, kk )) ,, zz mm (( EE. )) (( jj ,, kk )) ]] ,, Xx mm (( Ff )) (( jj ,, kk )) == [[ xx mm (( Ff )) (( jj ,, kk )) ,, ythe y mm (( Ff )) (( jj ,, kk )) ,, zz mm (( Ff )) (( jj ,, kk )) ]] ,, Xx mm (( GG )) (( jj ,, kk )) == [[ xx mm (( GG )) (( jj ,, kk )) ,, ythe y mm (( GG )) (( jj ,, kk )) ,, zz mm (( GG )) (( jj ,, kk )) ]] 步骤6.2.2按下式求出该组序号为k的N线中F点在水箱模型坐标系XmYmZm中的三维坐标 X m ( F ) ( j , k ) = [ x m ( F ) ( j , k ) , y m ( F ) ( j , k ) , z m ( F ) ( j , k ) ] : Step 6.2.2 Calculate the three-dimensional coordinates of point F in the N line with serial number k in the water tank model coordinate system X m Y m Z m according to the following formula x m ( f ) ( j , k ) = [ x m ( f ) ( j , k ) , the y m ( f ) ( j , k ) , z m ( f ) ( j , k ) ] : xx mm (( Ff )) (( jj ,, kk )) == xx mm (( BB )) (( jj ,, kk )) ++ || EFEF || jkjk || EGEG || jkjk ·&Center Dot; || BDBD || jkjk ythe y mm (( Ff )) (( jj ,, kk )) == ythe y mm (( BB )) (( jj ,, kk )) zz mm (( Ff )) (( jj ,, kk )) == zz mm (( BB )) (( jj ,, kk )) ++ || EFEF || jkjk || EGEG || jkjk ·&Center Dot; || ABAB || jkjk 其中: | BD | jk = ( x m ( B ) ( j , k ) - x m ( D ) ( j , k ) ) 2 , | AB | jk = ( z m ( B ) ( j , k ) - z m ( D ) ( j , k ) ) 2 in: | BD | jk = ( x m ( B ) ( j , k ) - x m ( D. ) ( j , k ) ) 2 , | AB | jk = ( z m ( B ) ( j , k ) - z m ( D. ) ( j , k ) ) 2 步骤6.2.3个人计算机通过对该幅超声图像Img(j)上获得的所有完整N线亮斑的量测,得到所述各组N线标志点F在XmYmZm坐标系中的三维坐标k=1,2,…,Kj,Kj为在该幅超声图像Img(j)上获得的N线标志点的总数,Step 6.2.3 The personal computer obtains the coordinates of each group of N-line marker points F in the X m Y m Z m coordinate system by measuring all the complete N-line bright spots obtained on the ultrasonic image Img(j). 3D coordinates k=1,2,...,K j , K j is the total number of N-line marker points obtained on the ultrasonic image Img(j), 步骤6.2.4根据步骤(6.2.3)和步骤(6.2.2)得到的一幅超声图像j所对应的一组N线标志点F,在XmYmZm坐标系下的三维坐标表示为:,该点的坐标值通过步骤6.2.2已经求解得到,同一幅超声图像Img(j)上提取的不同序号k的F标志点在水箱三维坐标系中,将形成一个平面,而这些点在超声图像坐标系XuYu中的对应坐标为对Img(j),利用下面方程求解出从水箱模型坐标系到该超声图像平面坐标系之间的坐标映射关系Tu-m(j):Step 6.2.4 According to step (6.2.3) and step (6.2.2) obtained according to a set of N-line marker points F corresponding to an ultrasonic image j, the three-dimensional coordinate representation under the X m Y m Z m coordinate system for: , the coordinate value of this point has been solved through step 6.2.2, and the F mark points with different serial numbers k extracted on the same ultrasound image Img(j) In the three-dimensional coordinate system of the water tank, a plane will be formed, and the corresponding coordinates of these points in the ultrasound image coordinate system X u Y u are For Img(j), use the following equation to solve the coordinate mapping relationship T um (j) from the water tank model coordinate system to the ultrasonic image plane coordinate system: xx uu (( Ff )) (( jj ,, 11 )) ythe y uu (( Ff )) (( jj ,, 11 )) 00 11 xx uu (( Ff )) (( jj ,, 22 )) ythe y uu (( Ff )) (( jj ,, 22 )) 00 11 .. .. .. .. .. .. .. .. .. .. .. .. xx uu (( Ff )) (( jj ,, KK jj )) ythe y uu (( Ff )) (( jj ,, KK jj )) 00 11 == xx mm (( Ff )) (( jj ,, 11 )) ythe y mm (( Ff )) (( jj ,, 11 )) zz mm (( Ff )) (( jj ,, 11 )) 11 xx mm (( Ff )) (( jj ,, 22 )) ythe y mm (( Ff )) (( jj ,, 22 )) zz mm (( Ff )) (( jj ,, 22 )) 11 .. .. .. .. .. .. .. .. .. xx mm (( Ff )) (( jj ,, KK jj )) ythe y mm (( Ff )) (( jj ,, KK jj )) zz mm (( Ff )) (( jj ,, KK jj )) 11 ·&Center Dot; TT uu -- mm (( jj )) 或写成: X u 2 D ( j , k ) = X m ( j , k ) · T u - m ( j ) or written as: x u 2 D. ( j , k ) = x m ( j , k ) &Center Dot; T u - m ( j ) 其中j=1,2,…,J,J是所采集超声图像的数目,k=1,2,…,Kj,Kj是在该图像Img(j)上能够提取的N线标志点F的数目;Where j=1,2,...,J,J is the number of ultrasonic images collected, k=1,2,...,K j , K j is the N-line marker point F that can be extracted on the image Img(j) Number of; 步骤7、把所述二维超声图像上的N线标志点映射到三维空间分布的多成像平面上,所述多成像平面是指借助所述空间位置传感器在XwYwZw坐标系中得到的对应超声图像Img(j)的空间位置矩阵把各个二维超声成像平面在所述XwYwZw坐标系中组合起来,形成呈一定三维分布的多个成像平面,借助空间位置传感器信息将各个二维超声图像上提取的N线标志点映射到三维空间的成像平面上,然后将步骤6.1所提取的超声图像上的N线标志点按采集该图像时空间位置传感器的位置姿态组合在一起,构成三维空间中的一批配准点,统一将超声图像Img(j)上提取的N线标志点的二维坐标写为:其中l=1,2,…,3*Kj,Kj是在图像Img(j)上所提取的N线标志点的数目;映射到三维空间各个成像平面上的三维坐标为 X u 3 D ( j , l ) = ( x u 3 D ( j , l ) , y u 3 D ( j , l ) , z u 3 D ( j , l ) ) , 则:Step 7. Map the N-line marker points on the two-dimensional ultrasound image to the multi-imaging planes distributed in three-dimensional space, and the multi-imaging planes refer to the X w Y w Z w coordinate system by means of the spatial position sensor The resulting spatial position matrix corresponding to the ultrasound image Img(j) Combine each two-dimensional ultrasonic imaging plane in the X w Y w Z w coordinate system to form multiple imaging planes with a certain three-dimensional distribution, and use the spatial position sensor information to extract the N-line marks extracted from each two-dimensional ultrasonic image Points are mapped to the imaging plane in three-dimensional space, and then the N-line marker points on the ultrasound image extracted in step 6.1 According to the combination of the position and posture of the spatial position sensor when the image is collected, a batch of registration points in the three-dimensional space is formed, and the two-dimensional coordinates of the N-line marker points extracted on the ultrasonic image Img(j) are uniformly written as: Where l=1,2,...,3*K j , K j is the number of N-line marker points extracted on the image Img(j); The three-dimensional coordinates mapped to each imaging plane in three-dimensional space are x u 3 D. ( j , l ) = ( x u 3 D. ( j , l ) , the y u 3 D. ( j , l ) , z u 3 D. ( j , l ) ) , but: Xx uu 33 DD. (( jj ,, ll )) == Xx uu 22 DD. (( jj ,, ll )) ·&Center Dot; TT ww -- sthe s (( jj )) 其中,Tw-s(j)是从所述个人计算机从三维定位测量仪获取的对应Img(j)成像平面的位置传感器的位置变换矩阵,j=1,2,…,J,J是采集的超声图像数目,l=1,2,…,3*Kj,Kj是在图像Img(j)上所提取的N线标志点的数目;Wherein, T ws (j) is the position transformation matrix of the position sensor corresponding to the Img (j) imaging plane obtained from the personal computer from the three-dimensional positioning measuring instrument, and j=1, 2, ..., J, J is the ultrasonic wave collected Number of images, l=1,2,...,3*K j , K j is the number of N-line marker points extracted on the image Img(j); 步骤8、按以下步骤对一批映射到多成像平面的三维坐标点与水箱模型上的N线进行初始化配准:Step 8. According to the following steps, a batch of three-dimensional coordinate points mapped to multiple imaging planes Initialize the registration with the N line on the tank model: 步骤8.1,利用步骤6.1和步骤6.2.3得到的超声图像上N线标志点和对应的水箱模型中坐标任选一幅序号为n的超声图像,利用下面方程组计算从所述XmYmZm坐标系到XuYu坐标系之间的空间变换矩阵Tu-m(n):Step 8.1, use the N-line marker points on the ultrasound image obtained in step 6.1 and step 6.2.3 and the corresponding coordinates in the tank model Choose an ultrasonic image whose serial number is n, and use the following equations to calculate the space transformation matrix T um (n) from the X m Y m Z m coordinate system to the X u Y u coordinate system: Xx uu (( Ff )) (( nno ,, kk )) == Xx mm (( Ff )) (( nno ,, kk )) ·&Center Dot; TT uu -- mm (( nno )) 步骤8.2,利用步骤8.1得到的初始空间变换矩阵Tu-m(n),将步骤7得到的所有标志点的三维坐标j=1,2,…,n-1,n+1,…J,l=1,2,…,3*Kj映射到水箱模型坐标系中,计算得到一批在水箱模型坐标系中待配准的三维坐标点 Step 8.2, using the initial space transformation matrix T um (n) obtained in step 8.1, the three-dimensional coordinates of all marker points obtained in step 7 j=1,2,...,n-1,n+1,...J,l=1,2,...,3*K j is mapped to the coordinate system of the water tank model, and a batch of waiting in the coordinate system of the water tank model is calculated Registered 3D coordinate points Xx mm 33 DD. (( jj ,, ll )) == Xx uu 33 DD. (( jj ,, ll )) ·· TT ww -- sthe s -- 11 (( nno )) ·· TT uu -- mm -- 11 (( nno )) ;; 从而初步把在各超声平面上的N线标志点与水箱模型上的N线相配在一起,Therefore, initially match the N-line mark points on each ultrasonic plane with the N-line on the water tank model, 步骤9、设定优化计算的目标函数和初始值并进行优化计算:Step 9. Set the objective function and initial value of the optimization calculation and perform the optimization calculation: 优化目标函数是通过调整步骤8.1所述XmYmZm坐标系到XuYu坐标系之间的空间变换矩阵Tu-m,使步骤8.2得到的所有三维空间分布的待配准标志点与水箱上对应的细线的平均距离最小,Optimizing the objective function is to adjust the space transformation matrix T um between the X m Y m Z m coordinate system and the X u Y u coordinate system described in step 8.1, so that all the three-dimensional space distribution obtained in step 8.2 The landmark points to be registered The average distance from the corresponding thin line on the tank is the smallest, 因此被优化的变量为变换矩阵Tu-m的变量序列,优化计算的初始位置是利用第n幅超声图像计算得到的变换矩阵Tu-m(n),设共有J层图像参与计算,每层的标志点个数是Kj个,因此总共有J*Kj个三维点用于计算到水箱模型中细线的距离,通过直接求解某个标志点到水箱中所有直线的距离D,并选取其中的一个最小的距离D(j,l)作为空间点与三维水箱模型上对应的最近细线的距离,得到标志点与三维水箱模型上最近的细线的平均距离:Therefore, the variable to be optimized is the variable sequence of the transformation matrix T um , and the initial position of the optimization calculation is the transformation matrix T um (n) calculated by using the nth ultrasound image. It is assumed that a total of J layers of images participate in the calculation, and the marker points of each layer The number is K j , so there are a total of J*K j three-dimensional points used to calculate the distance to the thin line in the water tank model, by directly solving a certain marker point The distance D to all straight lines in the tank, and one of the smallest distances D(j,l) is selected as the space point The distance from the nearest thin line on the 3D water tank model to get the marker point Average distance from the nearest thin line on the 3D tank model: DD. avgavg == 11 JJ ·&Center Dot; KK jj ΣΣ jj == 11 JJ ΣΣ ll == 11 33 ** KK jj DD. (( jj ,, ll )) 选取平均距离Davg的误差阈值为2mm,最大迭代步数为500步,通过优化计算使平均距离Davg极小化,得到多成像平面与水箱模型中细线目标的一个最佳匹配变换,记为采用的优化工具是Matlab优化工具箱中的顺序二次规划函数,英文名称为sequential quadratic programming algorithm,简称SQP;The error threshold of the average distance D avg is selected as 2 mm, and the maximum number of iteration steps is 500 steps. The average distance D avg is minimized through optimization calculation, and an optimal matching transformation between the multi-imaging plane and the thin line target in the water tank model is obtained. for The optimization tool used is the sequential quadratic programming function in the Matlab optimization toolbox, the English name is sequential quadratic programming algorithm, referred to as SQP; 步骤10、计算成像平面与空间位置传感器间的最优空间变换 Step 10, calculate the optimal spatial transformation between the imaging plane and the spatial position sensor 步骤10.1,将各超声图像上提取的二维N线标志点坐标借助采集该图像时的空间位置传感器变换矩阵Tw-s(j),变换到三维空间,得到多个成像平面上的三维标志点位置 Step 10.1, the coordinates of the two-dimensional N-line marker points extracted on each ultrasound image With the help of the spatial position sensor transformation matrix T ws (j) when the image is collected, it is transformed into a three-dimensional space to obtain the three-dimensional marker point positions on multiple imaging planes Xx uu 33 DD. (( jj ,, ll )) == Xx uu 22 DD. (( jj ,, ll )) ·&Center Dot; TT ww -- sthe s (( jj )) ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ** KK jj 步骤10.2,将三维点集借助步骤9得到的最佳匹配变换映射到水箱模型坐标系XmYmZm中:Step 10.2, the three-dimensional point set With the help of the best matching transformation obtained in step 9 Mapped to the tank model coordinate system X m Y m Z m : Xx mm 33 DD. (( jj ,, ll )) == Xx uu 33 DD. (( jj ,, ll )) ·&Center Dot; TT ~~ uu -- mm -- 11 ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ** KK jj ,, 步骤10.3,将水箱模型坐标系XmYmZm中的点集变换到传感器坐标系XsYsZs中:Step 10.3, the point set in the tank model coordinate system X m Y m Z m Transform into the sensor coordinate system X s Y s Z s : Xx sthe s 33 DD. (( jj ,, ll )) == Xx mm 33 DD. (( jj ,, ll )) ·&Center Dot; TT ww -- mm ·&Center Dot; TT ww -- sthe s -- 11 (( jj )) ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ** KK jj ,, 步骤10.4,利用步骤10.3和步骤10.1中得到的对应点集利用下面方程组求解超声图像到传感器间的全局最优变换 Step 10.4, use the corresponding point set obtained in step 10.3 and step 10.1 and Use the following equations to solve the global optimal transformation between the ultrasound image and the sensor Xx sthe s 33 DD. (( jj ,, ll )) == Xx uu 33 DD. (( jj ,, ll )) ·· TT ~~ sthe s -- uu ;; jj == 1,21,2 ,, .. .. ,, JJ ;; ll == 1,21,2 ,, .. .. .. ,, 33 ** KK jj ,, 求解计算得到的就是所要标定的超声图像坐标系到超声探头上的空间位置传感器坐标系间的最优变换。Calculated by solving It is the optimal transformation between the ultrasonic image coordinate system to be calibrated and the spatial position sensor coordinate system on the ultrasonic probe.
CN201310130395.2A 2013-04-16 2013-04-16 Method for optimizing ultrasonic probe imaging plane space position calibration Expired - Fee Related CN103230283B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310130395.2A CN103230283B (en) 2013-04-16 2013-04-16 Method for optimizing ultrasonic probe imaging plane space position calibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310130395.2A CN103230283B (en) 2013-04-16 2013-04-16 Method for optimizing ultrasonic probe imaging plane space position calibration

Publications (2)

Publication Number Publication Date
CN103230283A CN103230283A (en) 2013-08-07
CN103230283B true CN103230283B (en) 2014-11-05

Family

ID=48878409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310130395.2A Expired - Fee Related CN103230283B (en) 2013-04-16 2013-04-16 Method for optimizing ultrasonic probe imaging plane space position calibration

Country Status (1)

Country Link
CN (1) CN103230283B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508132A1 (en) * 2018-01-04 2019-07-10 Koninklijke Philips N.V. Ultrasound system and method for correcting motion-induced misalignment in image fusion

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104207801B (en) * 2013-06-05 2016-08-24 上海工程技术大学 A kind of ultrasound detection image three-dimensional scaling method
CN104574329B (en) * 2013-10-09 2018-03-09 深圳迈瑞生物医疗电子股份有限公司 Ultrasonic fusion of imaging method, ultrasonic fusion of imaging navigation system
CN105534596B (en) * 2015-12-31 2018-03-09 精微视达医疗科技(武汉)有限公司 A kind of method and target wire body mould for locus calibration between binocular optical probe and Ultrasonic-B probe
JP7133474B2 (en) * 2016-05-31 2022-09-08 コーニンクレッカ フィリップス エヌ ヴェ Image-based fusion of endoscopic and ultrasound images
CN106344153B (en) * 2016-08-23 2019-04-02 深圳先进技术研究院 A kind of flexible puncture needle needle point autotracker and method
JP6629492B2 (en) * 2016-11-29 2020-01-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasound imaging system and method
CN106725595B (en) * 2016-12-05 2023-04-21 华南理工大学 Electromagnetic positioning and B-ultrasonic integrated probe calibration device and calibration method thereof
CN108261208B (en) * 2016-12-30 2020-08-07 无锡祥生医疗科技股份有限公司 Free M-type ultrasonic imaging system and method
CN106780481B (en) * 2017-01-06 2020-01-21 东软医疗系统股份有限公司 Method and device for detecting position of medical fiducial mark
EP3639056B1 (en) * 2017-06-15 2024-11-13 Koninklijke Philips N.V. Methods and systems for processing an ultrasound image
CN107928705A (en) * 2017-12-14 2018-04-20 暨南大学 A kind of ultrasonic probe scaling method and caliberating device based on magnetic tracking
CN110368028B (en) * 2018-04-13 2021-09-14 北京柏惠维康科技有限公司 Real-time registration method and device of space coordinate system
CN110772280B (en) * 2018-07-31 2023-05-23 佳能医疗系统株式会社 Ultrasonic diagnostic apparatus and method, and image processing apparatus and method
CN112638273A (en) * 2018-08-23 2021-04-09 皇家飞利浦有限公司 Biometric measurement and quality assessment
CN111096765B (en) * 2018-10-25 2023-06-20 深圳迈瑞生物医疗电子股份有限公司 Ultrasonic diagnostic apparatus, method of rapidly searching for unfinished section using the same, and storage medium storing the same
CN109580786B (en) * 2018-12-04 2020-07-24 广州三瑞医疗器械有限公司 Ultrasonic probe calibration method
EP3948490B1 (en) * 2019-03-26 2025-01-15 Telefonaktiebolaget LM Ericsson (publ) Determining a transformation between coordinate systems in an ultrasonic haptic device and a visual sensor device
CN110169823A (en) * 2019-04-24 2019-08-27 艾瑞迈迪科技石家庄有限公司 Ultrasonic probe scaling method, device, terminal and storage medium
CN110060337B (en) * 2019-04-25 2021-03-02 飞依诺科技(苏州)有限公司 Carotid artery ultrasonic scanning three-dimensional reconstruction method and system
JP7534330B2 (en) * 2019-05-12 2024-08-14 マジック アイ インコーポレイテッド Mapping 3D depth map data onto 2D images
CN110134261B (en) * 2019-05-22 2023-07-28 贵州大学 Electronic pen capable of restoring real writing
CN110335360B (en) 2019-05-24 2020-12-25 深圳大学 Three-dimensional element layout visualization method and device
CN110376286B (en) * 2019-06-13 2021-08-27 国网浙江省电力有限公司电力科学研究院 Intelligent automatic ultrasonic detection system and method for in-service basin-type insulator
CN111150461B (en) * 2020-02-04 2024-09-24 赵天力 Puncture needle positioning system and method
CN113491534A (en) * 2020-04-08 2021-10-12 上海优医基医疗器械有限公司 Ultrasonic probe calibration device and method
CN111596245B (en) * 2020-05-20 2021-04-16 山东大学 Optical and metal composite positioning method and system for calibration water tank
CN111671519B (en) * 2020-06-15 2022-04-08 新博医疗技术有限公司 Ultrasonic image calibration system and calibration method
CN111920453B (en) * 2020-08-14 2024-12-20 中国科学院苏州生物医学工程技术研究所 In-vivo interventional ultrasound probe with rotational positioning and ultrasound imaging system containing the same
CN112472132A (en) * 2020-12-18 2021-03-12 佟小龙 Device and method for positioning imaging area and medical imaging device
CN113081033A (en) * 2021-03-29 2021-07-09 孙鲲 Three-dimensional ultrasonic imaging method based on space positioning device, storage medium and equipment
CN113270172B (en) * 2021-03-31 2024-02-09 正雅齿科科技(上海)有限公司 Method and system for constructing contour lines in skull lateral position slice
CN113940699A (en) * 2021-10-11 2022-01-18 电子科技大学 Ultrasonic probe self-positioning device and self-positioning method thereof
CN114041820B (en) * 2021-11-01 2024-05-24 北京理工大学 Automatic space calibration method and device for ultrasonic probe
CN114004946A (en) * 2021-11-10 2022-02-01 南京芯传汇电子科技有限公司 Real-time processing method and device for dynamically loading SAR image in GIS
CN115005864B (en) * 2022-05-16 2024-08-20 天津大学 Ultrasonic probe calibration method based on electromagnetic positioning
CN118236039B (en) * 2024-05-24 2024-08-23 慧创科仪(北京)科技有限公司 Method and system for calibrating detection assembly for positioning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046081A (en) * 2008-03-27 2011-05-04 圣朱德医疗有限公司房颤分公司 Robotic catheter system
CN102846337A (en) * 2011-06-29 2013-01-02 清华大学 Three-dimensional ultrasound system, method and device for positioning target point of three-dimensional ultrasound system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046081A (en) * 2008-03-27 2011-05-04 圣朱德医疗有限公司房颤分公司 Robotic catheter system
CN102846337A (en) * 2011-06-29 2013-01-02 清华大学 Three-dimensional ultrasound system, method and device for positioning target point of three-dimensional ultrasound system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508132A1 (en) * 2018-01-04 2019-07-10 Koninklijke Philips N.V. Ultrasound system and method for correcting motion-induced misalignment in image fusion
WO2019134959A1 (en) * 2018-01-04 2019-07-11 Koninklijke Philips N.V. Ultrasound system and method for correcting motion-induced misalignment in image fusion

Also Published As

Publication number Publication date
CN103230283A (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103230283B (en) Method for optimizing ultrasonic probe imaging plane space position calibration
Prager et al. Rapid calibration for 3-D freehand ultrasound
US11147532B2 (en) Three-dimensional needle localization with a two-dimensional imaging probe
Boctor et al. Rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer
WO2018214806A1 (en) Elastic registration method and apparatus for prostate operation
CN103505288B (en) Ultrasonic imaging method and supersonic imaging apparatus
CN100536792C (en) Navigation system and method backing up several modes
Poon et al. Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe
CN106108951B (en) A medical real-time three-dimensional positioning and tracking system and method
CN104161546A (en) Ultrasonic probe calibration system and method based on locatable puncture needle
Kim et al. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting
CN103295455A (en) Ultrasonic training system based on CT (Computed Tomography) image simulation and positioning
CN107072743A (en) It is arranged to the processing system cooperated with the intervening equipment that optic shape sensing is enabled
Wen et al. A novel ultrasound probe spatial calibration method using a combined phantom and stylus
Nakamoto et al. 3D ultrasound system using a magneto-optic hybrid tracker for augmented reality visualization in laparoscopic liver surgery
CN109907801B (en) Locatable ultrasonic guided puncture method
Khamene et al. A novel phantom-less spatial and temporal ultrasound calibration method
CN106725595B (en) Electromagnetic positioning and B-ultrasonic integrated probe calibration device and calibration method thereof
CN107106128A (en) Supersonic imaging device and method for splitting anatomical object
JP5836735B2 (en) Ultrasonic diagnostic apparatus and method for displaying slice image of object
CN111821026B (en) Single-point positioning surgical instrument, calibration tool and calibration method
CN112137720A (en) Positioning precision detection device and method of surgical operation navigation system
Dandekar et al. A phantom with reduced complexity for spatial 3-D ultrasound calibration
TW381008B (en) Guiding system for head surgical operation and the method thereof
CN207855724U (en) A kind of tracking system coordinate system calibrating installation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141105