CN103227639B - A kind of phase detecting circuit for time-to-digit converter - Google Patents
A kind of phase detecting circuit for time-to-digit converter Download PDFInfo
- Publication number
- CN103227639B CN103227639B CN201310142744.2A CN201310142744A CN103227639B CN 103227639 B CN103227639 B CN 103227639B CN 201310142744 A CN201310142744 A CN 201310142744A CN 103227639 B CN103227639 B CN 103227639B
- Authority
- CN
- China
- Prior art keywords
- detection circuit
- flip
- time
- signal
- rising edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims abstract description 38
- 230000000630 rising effect Effects 0.000 claims abstract description 35
- 238000003708 edge detection Methods 0.000 claims abstract description 20
- 238000013461 design Methods 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000005070 sampling Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Manipulation Of Pulses (AREA)
- Analogue/Digital Conversion (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
本发明提供了一种用于时间数字转换器的相位检测电路。所述相位检测电路在传统的相位检测电路中加入上升沿检测电路,上升沿检测电路将持续的高电平经过连续两次采样,得到一个单位时钟宽度的脉冲,使得后续的译码电路的32个输入端口在任何时刻都只有其中一个端口为高电平,从而降低译码电路的设计难度,减小了电路的面积,提高了电路的性能和时数转换的精准度。本发明相位检测电路非常简单而易于实现,具有很好的应用前景。
The invention provides a phase detection circuit for a time-to-digital converter. The phase detection circuit adds a rising edge detection circuit to the traditional phase detection circuit, and the rising edge detection circuit samples the continuous high level twice in a row to obtain a pulse with a unit clock width, so that the subsequent decoding circuit 32 Only one of the input ports is at a high level at any time, thereby reducing the design difficulty of the decoding circuit, reducing the area of the circuit, and improving the performance of the circuit and the accuracy of the time-to-digital conversion. The phase detection circuit of the invention is very simple and easy to implement, and has good application prospects.
Description
技术领域 technical field
本发明属于集成电路设计领域,特别涉及一种用于时间数字转换器的相位检测电路。 The invention belongs to the field of integrated circuit design, in particular to a phase detection circuit for a time-to-digital converter.
背景技术 Background technique
时间数字转换器(TimeDigitalConverter,TDC),是一种时间测量的常用电路,主要计算参考信号到事件发生的时间及两个脉冲间的时间间隔,将时间的间隔直接转化为高精度的数字值,并实现数字输出。目前已被广泛应用于电子领域,如用于全数字锁相环ADPLL中,提高其测试器件和信号的时间特性。近几年,最受关注的TDC是使用高速CMOS数字电路的结构,主要原因是被测试信号能实现较高的时间精度。对TDC精确度进行研究,将有利于TDC的应用和质量保证。 Time Digital Converter (TimeDigitalConverter, TDC) is a commonly used circuit for time measurement. It mainly calculates the time from the reference signal to the occurrence of the event and the time interval between two pulses, and directly converts the time interval into a high-precision digital value. And realize the digital output. At present, it has been widely used in the electronic field, such as in the all-digital phase-locked loop ADPLL, to improve the time characteristics of its test devices and signals. In recent years, the most concerned TDC is the structure using high-speed CMOS digital circuits, the main reason is that the signal to be tested can achieve high time accuracy. Research on the accuracy of TDC will benefit the application and quality assurance of TDC.
图1为一种传统的用于ADPLL中的时间数字转换器的结构,主要包括以下几个部分组成:32个D触发器,32个相位检测模块,两个5位译码器,一个5位加法器,一个6位计数器和一些或门。下列简要介绍TDC的工作原理: Figure 1 is a traditional time-to-digital converter structure used in ADPLL, which mainly includes the following parts: 32 D flip-flops, 32 phase detection modules, two 5-bit decoders, and a 5-bit Adders, a 6-bit counter and some OR gates. The following briefly introduces the working principle of TDC:
(1)脉宽的测量原理 (1) Measuring principle of pulse width
32个D触发器对相位差脉冲信号PUL进行采样,而控制32个D触发器采样的时钟由外部电路环形振荡器(Free-RunningRingOscillator,FRO)提供,FRO提供32个具有恒等相位差的采样时钟信号,连续的两个采样时钟的时间间隔为△,如果相位差PUL信号在采样时钟的上升沿处为高电平,则相应D触发器采到的值为“1”。每隔△的时间间隔就会有一个D触发器对PUL进行采样,就可以用采到的“1”的个数代表PUL信号的脉宽。如果相位检测模块的输入QN-1QNQN+1=011,就代表PUL的上升沿到来,相对应的相位检测模块就会用一个信号记录此时的采样时钟数“n”。当QM-1QMQM+1=100,代表PUL的下降沿到来,那么相对应的相位检测模块就也用一个信号记录此时的“m”。里面的逻辑模块将会分两个部分记录两个沿之间“1”的个数,第一部分记录PUL上升沿处采样时钟信号采到“1”的次数r;第二部分是记录PUL上升沿位置到下降沿位置采样时钟的差值,即为(m-n)。“1”的总个数为两部分之和,即PUL高电平的宽度为(r+m-n)△。 32 D flip-flops sample the phase difference pulse signal PUL, and the clock controlling the sampling of the 32 D flip-flops is provided by an external circuit ring oscillator (Free-RunningRingOscillator, FRO), and FRO provides 32 samples with a constant phase difference Clock signal, the time interval between two consecutive sampling clocks is △, if the phase difference PUL signal is at a high level at the rising edge of the sampling clock, the value collected by the corresponding D flip-flop is "1". There will be a D flip-flop to sample the PUL every time interval of △, and the number of "1" collected can be used to represent the pulse width of the PUL signal. If the input Q N-1 Q N Q N+1 of the phase detection module = 011, it means that the rising edge of PUL arrives, and the corresponding phase detection module will use a signal to record the sampling clock number "n" at this time. When Q M-1 Q M Q M+1 =100, it means that the falling edge of PUL arrives, then the corresponding phase detection module also uses a signal to record the "m" at this time. The logic module inside will be divided into two parts to record the number of "1"s between the two edges. The first part records the number r of "1" sampling clock signals at the rising edge of the PUL; the second part records the rising edge of the PUL. The difference between the sampling clock position and the falling edge position is (mn). The total number of "1" is the sum of the two parts, that is, the width of the PUL high level is (r+mn)△.
(2)时间到数字的转化原理: (2) Time-to-digital conversion principle:
先对相位检测模块模块产生的起始位置记录信号s和结束位置记录信号e进行编码,再用一个加法器计算其差值,完成上面提到的第二部分计算。而当前记录信号c用来触发一个计数器,得到第一部分计算。但是要注意此时的c触发的计数器的一个“1”代表32,所以作为最后二进制数的高5位。最后两部分组合就得到所需要的由时间到数字转换的二进制数。 First encode the start position recording signal s and the end position recording signal e generated by the phase detection module, and then use an adder to calculate the difference to complete the second part of the calculation mentioned above. And the current recording signal c is used to trigger a counter to obtain the first part of the calculation. But it should be noted that a "1" of the counter triggered by c at this time represents 32, so it is used as the upper 5 bits of the last binary number. The last two parts are combined to obtain the required binary number converted from time to number.
图2为传统的TDC内部相位检测电路结构,当TDC工作时,相位脉冲信号PUL的上升沿到来时,则相位检测模块的输入信号ABC=011,T触发器2在相应的时钟控制信号下会产生一个持续的高电平信号s,记录相应的相位脉冲信号的上升沿;同样,当相位脉冲信号PUL的下降沿到来时,则相位检测模块的输入信号ABC=100,T触发器3在相应的时钟控制信号下会产生一个持续高电平信号e,记录相应的相位脉冲下降沿。相应的高电平会一直持续,直到下一个相位脉冲信号PUL到来,被这个相位检测模块再次检测到,高电平才会变为低电平。这种情况对于后面的译码电路的输入(s[31:0]或e[31:0])来说,会有同时出现多个高电平的时候,带来更复杂的输入情况,这样将给数字译码电路带来设计编程上的困难,同时也会增加电路的面积,并影响时间数字转换的精度。 Figure 2 shows the structure of the traditional TDC internal phase detection circuit. When the TDC is working, when the rising edge of the phase pulse signal PUL arrives, the input signal ABC=011 of the phase detection module, and the T flip-flop 2 will be activated under the corresponding clock control signal. Generate a continuous high-level signal s, and record the rising edge of the corresponding phase pulse signal; similarly, when the falling edge of the phase pulse signal PUL arrives, the input signal ABC=100 of the phase detection module, T flip-flop 3 in the corresponding A continuous high-level signal e will be generated under the clock control signal, and the falling edge of the corresponding phase pulse will be recorded. The corresponding high level will continue until the next phase pulse signal PUL arrives and is detected again by the phase detection module, and the high level will change to low level. In this case, for the input of the subsequent decoding circuit (s[31:0] or e[31:0]), there will be multiple high levels at the same time, which will bring more complicated input situations, so It will bring design and programming difficulties to the digital decoding circuit, increase the area of the circuit, and affect the accuracy of time-to-digital conversion.
发明内容 Contents of the invention
本发明针对现有技术的不足,特别针对现有时间数字转换器相位检测电路的输出信号持续高电平的问题,提出一种用于时间数字转换器的相位检测电路。所述电路的输出信号是一个单位时钟宽度的脉冲,从而降低了后续译码电路的设计难度。 The invention aims at the deficiencies of the prior art, especially the problem that the output signal of the phase detection circuit of the existing time-to-digital converter continues to be at a high level, and proposes a phase detection circuit for the time-to-digital converter. The output signal of the circuit is a pulse with a unit clock width, thereby reducing the design difficulty of subsequent decoding circuits.
本发明为解决上述技术问题,采用如下技术方案:一种用于时间数字转换器的相位检测电路,所述相位检测电路在现有时间数字转换器相位检测电路的输出端加入上升沿检测电路,所述上升沿检测电路,对一个持续的高电平进行上升沿采样,进而产生一个单位时钟宽度的脉冲信号,使得后续的译码电路的设计变得更简单,进而减小电路的面积,实现时间数字转化的功能。 In order to solve the above technical problems, the present invention adopts the following technical solution: a phase detection circuit for a time-to-digital converter, the phase detection circuit is added with a rising edge detection circuit at the output end of the existing time-to-digital converter phase detection circuit, The rising edge detection circuit performs rising edge sampling on a continuous high level, and then generates a pulse signal with a unit clock width, so that the design of the subsequent decoding circuit becomes simpler, thereby reducing the area of the circuit, and realizing A function for time-to-number conversion.
所述上升沿检测电路包含三个D触发器、一个非门和一个与门;在时钟信号的控制下,第一D触发器对输入的上升沿信号采样,第二D触发器对第一D触发器输出信号采样,第三D触发器对第二D触发器输出信号进行采样,第三D触发器输出信号经过非门取反后和第二D触发器输出信号一起输入与门,与门的输出信号即为一个单位时钟宽度的脉冲。 The rising edge detection circuit includes three D flip-flops, a NOT gate and an AND gate; under the control of the clock signal, the first D flip-flop samples the input rising edge signal, and the second D flip-flop samples the first D flip-flop. The output signal of the flip-flop is sampled, the third D flip-flop samples the output signal of the second D flip-flop, the output signal of the third D flip-flop is input to the AND gate together with the output signal of the second D flip-flop after being inverted by the NOT gate, and the AND gate The output signal is a pulse with a unit clock width.
本发明的有益效果是:本发明提供了一种用于时间数字转换器的相位检测电路。所述相位检测电路在传统的相位检测电路中加入上升沿检测电路,上升沿检测电路将持续的高电平经过连续两次采样,得到一个单位时钟宽度的脉冲,使得后续的译码电路的32个输入端口在任何时刻都只有其中一个端口为高电平,从而降低译码电路的设计难度,减小了电路的面积,提高了电路的性能和时数转换的精准度。本发明相位检测电路非常简单而易于实现,具有很好的应用前景。 The beneficial effects of the invention are: the invention provides a phase detection circuit for a time-to-digital converter. The phase detection circuit adds a rising edge detection circuit to the traditional phase detection circuit, and the rising edge detection circuit samples the continuous high level twice in a row to obtain a pulse with a unit clock width, so that the subsequent decoding circuit 32 Only one of the input ports is at a high level at any time, thereby reducing the design difficulty of the decoding circuit, reducing the area of the circuit, and improving the performance of the circuit and the accuracy of the time-to-digital conversion. The phase detection circuit of the invention is very simple and easy to implement, and has good application prospects.
附图说明 Description of drawings
图1是传统TDC的结构。 Figure 1 is the structure of a traditional TDC.
图2是传统TDC结构中的相位检测电路。 Figure 2 is a phase detection circuit in a traditional TDC structure.
图3是传统相位检测电路加入上升沿检测模块的电路结构。 Figure 3 is a circuit structure in which a rising edge detection module is added to a traditional phase detection circuit.
图4是上升沿检测模块的结构。 Figure 4 is the structure of the rising edge detection module.
图5是上升沿检测模块的仿真波形图。 Figure 5 is a simulation waveform diagram of the rising edge detection module.
图6是加入了改进相位检测电路的时间数字转换器的仿真波形。 Fig. 6 is the simulation waveform of the time-to-digital converter with improved phase detection circuit.
图7是整个时间数字转换器的结果仿真波形。 Fig. 7 is the simulation waveform of the result of the whole time digital converter.
具体实施方式 detailed description
下面结合附图,进一步具体说明本发明一种用于时间数字转换器的相位检测电路。 A phase detection circuit for a time-to-digital converter of the present invention will be further specifically described below in conjunction with the accompanying drawings.
如图3所示,本发明一种时间数字转换器用相位检测电路,在传统相位检测电路中加入上升沿检测电路:输入信号A,B,C为三个连续相位采样信号,经过传统相位检测电路生成相应的脉冲当前记录信号c、脉冲起始位置记录信号S、脉冲结束位置记录信号E,但此时的S记录信号和E记录信号为持续的上升沿信号,将它们送入两个相同结构的上升沿检测模块生成相应的单位时钟宽度的脉冲起始位置记录信号s和结束位置记录信号e。 As shown in Figure 3, a phase detection circuit for a time-to-digital converter of the present invention adds a rising edge detection circuit to the traditional phase detection circuit: the input signals A, B, and C are three continuous phase sampling signals, which are passed through the traditional phase detection circuit Generate the corresponding pulse current record signal c, pulse start position record signal S, and pulse end position record signal E, but at this time the S record signal and E record signal are continuous rising edge signals, and they are sent to two identical structures The rising edge detection module of the corresponding pulse start position recording signal s and end position recording signal e of the unit clock width.
图4为上升沿检测电路结构图,它的工作原理为:由D触发器1在时钟的控制下对上升沿UP信号进行采样,输出为UP_1信号,D触发器2对UP_1信号进行采样,输出为UP_2,D触发器3对UP_2信号进行采样,输出为UP_3;UP_3取反后再与UP_2相与,接一个与门,与门的输出为Reg_UP信号,即为一个单位时钟宽度的脉冲宽度。波形仿真图如图5所示。 Figure 4 is the structure diagram of the rising edge detection circuit. Its working principle is: the D flip-flop 1 samples the rising edge UP signal under the control of the clock, and outputs the UP_1 signal, and the D flip-flop 2 samples the UP_1 signal, and outputs For UP_2, D flip-flop 3 samples the UP_2 signal, and the output is UP_3; UP_3 is inverted and then ANDed with UP_2, connected to an AND gate, and the output of the AND gate is Reg_UP signal, which is a pulse width of a unit clock width. Waveform simulation diagram shown in Figure 5 .
整个新相位检测模块的工作过程为:当相位脉冲上升沿到来时,即输入信号ABC=011,与门1输出高电平“1”,在时钟信号下降沿到来时送至T触发器1和T触发器2,使得在下一时钟信号下降沿处这两个T触发器的输出变为“1”。这种情况意味着,从低电平跳变到高电平,S信号变为高电平逻辑“1”,持续的高电平S经过上升沿检测模块后,将产生一个单位时钟宽度的脉冲信号s,代表检测到相位脉冲起始位置;当相位脉冲下降沿到来时,ABC=100,T触发器3的输出在下一个时钟信号上升沿到来时将跳变为高电平,E信号也将变为高电平,持续的高电平E经过上升沿检测模块后,也将产生一个单位时钟宽度的脉冲信号e,代表检测到相位结束位置。 The working process of the whole new phase detection module is: when the rising edge of the phase pulse arrives, that is, the input signal ABC=011, the AND gate 1 outputs a high level "1", which is sent to T flip-flop 1 and T flip-flop 2, so that the outputs of these two T flip-flops become "1" at the next falling edge of the clock signal. This situation means that, when jumping from low level to high level, the S signal becomes a high level logic "1", and after the continuous high level S passes through the rising edge detection module, a pulse with a unit clock width will be generated The signal s represents the detection of the starting position of the phase pulse; when the falling edge of the phase pulse arrives, ABC=100, the output of the T flip-flop 3 will jump to a high level when the rising edge of the next clock signal arrives, and the E signal will also Change to high level, after the continuous high level E passes through the rising edge detection module, a pulse signal e with a unit clock width will also be generated, which means that the phase end position is detected.
图6为新的相位检测模块在时间数字转换器中的运用的波形仿真图,如图所示:相位脉冲信号PUL到来后,它的上升沿被第26个D触发器(图1中的D触发器25)检测到,则S会产生一个由低到高的持续高电平,送入上升沿检测模块中,从而被连续的3个D触发器采样,进而得到单位时钟宽度的脉冲信号s,代表PUL的起始位置被记录。 Figure 6 is a waveform simulation diagram of the application of the new phase detection module in the time-to-digital converter, as shown in the figure: after the arrival of the phase pulse signal PUL, its rising edge is detected by the 26th D flip-flop (D in Figure 1 Flip-flop 25) is detected, then S will generate a continuous high level from low to high, which is sent to the rising edge detection module, so that it is sampled by three consecutive D flip-flops, and then a pulse signal s with a unit clock width is obtained , representing the starting position of the PUL to be recorded.
图7为整个时间数字转换器的仿真结果图,PUL为相位差脉冲信号,Out[10:0]为整个TDC的输出大小,即为相位脉冲信号宽度的二进制数表示法。仿真波形图中,连续采样时钟间隔△=62.5ns,第一个PUL的实际宽度PULs=3750ns,而测试得到的宽度PULc=60×62.5ns=3750ns,即PULc=PULs。 Figure 7 is the simulation result diagram of the whole time digital converter, PUL is the phase difference pulse signal, Out[10:0] is the output size of the whole TDC, which is the binary number representation of the phase pulse signal width. In the simulation waveform diagram, the continuous sampling clock interval △=62.5ns, the actual width of the first PUL PULs=3750ns, and the tested width PULc=60×62.5ns=3750ns, that is, PULc=PULs.
综上所述,本发明提供的一种时间数字转换器用相位检测电路,通过在传统相位检测电路后面加入上升沿检测电路,将持续的高电平转化为一个单位时钟宽度的脉冲信号,更方便地记录相位脉冲信号的起始位置和结束位置,从而降低了后续的译码电路的设计,减小了电路的面积,进而提高了时数转化的准确性。 In summary, the phase detection circuit for a time-to-digital converter provided by the present invention can convert the continuous high level into a pulse signal with a unit clock width by adding a rising edge detection circuit behind the traditional phase detection circuit, which is more convenient The start position and end position of the phase pulse signal can be accurately recorded, thereby reducing the design of the subsequent decoding circuit, reducing the area of the circuit, and improving the accuracy of the time-to-digital conversion.
对该技术领域的普通技术人员而言,根据以上实施类可以很容易联想其他的优点和变形。因此,本发明并不局限于上述具体实例,其仅仅作为例子对本发明的一种形态进行详细、示范性的说明。在不背离本发明宗旨的范围内,本领域普通技术人员根据上述具体实例通过各种等同替换所得到的技术方案,均应包含在本发明的权利要求范围及其等同范围之内。 For those skilled in the art, other advantages and variants can be easily ascertained based on the above implementations. Therefore, the present invention is not limited to the above-mentioned specific examples, which are merely used as examples to describe in detail and exemplary one form of the present invention. Within the scope of not departing from the gist of the present invention, technical solutions obtained by those skilled in the art through various equivalent replacements based on the above specific examples shall be included in the scope of the claims of the present invention and their equivalent scope.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142744.2A CN103227639B (en) | 2013-04-23 | 2013-04-23 | A kind of phase detecting circuit for time-to-digit converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310142744.2A CN103227639B (en) | 2013-04-23 | 2013-04-23 | A kind of phase detecting circuit for time-to-digit converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103227639A CN103227639A (en) | 2013-07-31 |
CN103227639B true CN103227639B (en) | 2016-01-20 |
Family
ID=48837931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310142744.2A Active CN103227639B (en) | 2013-04-23 | 2013-04-23 | A kind of phase detecting circuit for time-to-digit converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103227639B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106338908B (en) * | 2016-08-31 | 2019-07-09 | 中国科学院上海高等研究院 | Edge detection circuit and time-to-digit converter |
CN116539956A (en) * | 2022-01-26 | 2023-08-04 | 深圳市紫光同创电子有限公司 | Phase detection method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1126395A (en) * | 1994-09-23 | 1996-07-10 | 美国电报电话公司 | Digital controlled oscillator |
CN101882930A (en) * | 2010-06-22 | 2010-11-10 | 清华大学 | A time-to-digital conversion device and method for an all-digital phase-locked loop |
CN102346236A (en) * | 2011-06-21 | 2012-02-08 | 电子科技大学 | Time parameter measurement system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105651A (en) * | 2007-10-23 | 2009-05-14 | Panasonic Corp | PLL circuit and wireless communication system |
JP5254144B2 (en) * | 2009-07-15 | 2013-08-07 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit device |
CN102141772B (en) * | 2010-12-23 | 2012-09-05 | 中国科学院西安光学精密机械研究所 | Continuous measurement device and method for arrival time of photon sequence |
-
2013
- 2013-04-23 CN CN201310142744.2A patent/CN103227639B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1126395A (en) * | 1994-09-23 | 1996-07-10 | 美国电报电话公司 | Digital controlled oscillator |
CN101882930A (en) * | 2010-06-22 | 2010-11-10 | 清华大学 | A time-to-digital conversion device and method for an all-digital phase-locked loop |
CN102346236A (en) * | 2011-06-21 | 2012-02-08 | 电子科技大学 | Time parameter measurement system |
Non-Patent Citations (1)
Title |
---|
《一种时域全数字锁相环的设计》;李应飞;《中国优秀说是学位论文全文数据库信息科技辑》;20101015(第10期);论文正文第28-29页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103227639A (en) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103257569B (en) | Time measuring circuit, method and system | |
CN113917830B (en) | Cyclic vernier delay chain circuit, time-to-digital converter and signal selection method | |
CN104502684A (en) | Method for identifying full-digital peak value arrival time | |
KR20150056458A (en) | A circuit delay monitoring apparatus and method | |
CN107346976B (en) | Digital-analog mixed time-to-digital conversion circuit | |
CN104121956B (en) | Time difference measuring method of time difference type ultrasonic flow meter | |
CN202166844U (en) | High precision time measurement circuit | |
CN108736885B (en) | Phase-locked loop clock edge triggered clock phase-splitting method | |
CN104639159B (en) | A kind of super low-power consumption and without metastable frequency digital quantizer | |
CN103227639B (en) | A kind of phase detecting circuit for time-to-digit converter | |
CN109143833B (en) | A kind of fractional part measuring circuit applied to high resolution time digital quantizer | |
JP2017200162A (en) | Temporal digital converter of high resolution | |
CN103105534B (en) | Phase difference measurement circuit and measurement method based on field programmable gata array (FPGA) identical periodic signals | |
CN105187053B (en) | A kind of metastable state and eliminate circuit for TDC | |
CN102035538B (en) | High-speed programmable frequency divider | |
CN102230826B (en) | Signal processing method for heterodyne interferometer | |
CN102914699B (en) | Modulation domain measurement system and method thereof | |
CN109104168B (en) | A circuit for fine time measurement | |
CN116360235A (en) | A SerDes-based TDC Realization Device | |
CN203352562U (en) | A high-precision digital phase discriminator for a satellite time-offering frequency-calibrating system | |
CN201887746U (en) | High-speed programmable frequency divider | |
CN104917517A (en) | Energy-saving circuit for realizing low-power-consumption wide-measuring-range time-to-digital converter | |
CN101515156B (en) | Precise time measuring method | |
Bai et al. | The measurement of transient stability with high resolution | |
CN106405238B (en) | A wideband modulation domain measurement system and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130731 Assignee: Jiangsu Nanyou IOT Technology Park Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: 2016320000212 Denomination of invention: Phase detection circuit for time digital converter Granted publication date: 20160120 License type: Common License Record date: 20161118 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
EC01 | Cancellation of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Jiangsu Nanyou IOT Technology Park Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: 2016320000212 Date of cancellation: 20180116 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130731 Assignee: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2019980001260 Denomination of invention: Phase detection circuit for time digital converter Granted publication date: 20160120 License type: Common License Record date: 20191224 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130731 Assignee: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2021980011617 Denomination of invention: A phase detection circuit for time to digital converter Granted publication date: 20160120 License type: Common License Record date: 20211029 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2019980001260 Date of cancellation: 20220304 |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS NANTONG INSTITUTE Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2021980011617 Date of cancellation: 20230904 |
|
EC01 | Cancellation of recordation of patent licensing contract |