[go: up one dir, main page]

CN103217651B - A kind of evaluation method of storage battery charge state and system - Google Patents

A kind of evaluation method of storage battery charge state and system Download PDF

Info

Publication number
CN103217651B
CN103217651B CN201310136504.1A CN201310136504A CN103217651B CN 103217651 B CN103217651 B CN 103217651B CN 201310136504 A CN201310136504 A CN 201310136504A CN 103217651 B CN103217651 B CN 103217651B
Authority
CN
China
Prior art keywords
discharge current
discrete points
data value
terminal voltage
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310136504.1A
Other languages
Chinese (zh)
Other versions
CN103217651A (en
Inventor
崔琼
舒杰
吴志锋
姜桂秀
黄磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201310136504.1A priority Critical patent/CN103217651B/en
Publication of CN103217651A publication Critical patent/CN103217651A/en
Application granted granted Critical
Publication of CN103217651B publication Critical patent/CN103217651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及蓄电池参数估算相关技术领域,特别是涉及一种蓄电池荷电状态的估算方法和系统,方法包括:获取多个蓄电池在线状态特征量数据;采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数;根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值;根据所述测量放电容量估算值得到对应的荷电状态的估算值。本发明利用牛顿插值法进行蓄电池SOC值估算,能够准确推导出蓄电池的剩余容量变化趋势,从而可以更加直观地分析问题和更为快速地对现象进行预测,能实现在线测量且准确度高。

The present invention relates to the related technical field of storage battery parameter estimation, in particular to a method and system for estimating the state of charge of a storage battery. The first function of the variable discharge capacity, and a plurality of second functions of the discharge capacity with the discharge current as the independent variable; according to at least one first function and at least one second function to obtain the state of the measured terminal voltage and the measured discharge current Measuring an estimated value of the discharge capacity; obtaining a corresponding estimated value of the state of charge according to the estimated value of the measured discharge capacity. The invention uses the Newton interpolation method to estimate the SOC value of the storage battery, and can accurately deduce the change trend of the remaining capacity of the storage battery, so that problems can be analyzed more intuitively and phenomena can be predicted more quickly, and online measurement can be realized with high accuracy.

Description

一种蓄电池荷电状态的估算方法和系统Method and system for estimating battery state of charge

技术领域technical field

本发明涉及蓄电池参数估算相关技术领域,特别是涉及一种蓄电池荷电状态的估算方法和系统。The invention relates to the technical field related to battery parameter estimation, in particular to a method and system for estimating the state of charge of a battery.

背景技术Background technique

在太阳能光伏发电系统和光伏/风力混合发电系统中,蓄电池组作为能量源,起着储存和调节电能的作用。通常,系统中的蓄电池组由多个蓄电池串并联而成,且经常处于循环使用状态。运行时,由于电池的个体差异,蓄电池组中会不可避免存在落后电池过度放电且又充电不足的现象。如此反复,落后电池将会提前失效,从而严重影响蓄电池的使用寿命。In solar photovoltaic power generation systems and photovoltaic/wind hybrid power generation systems, battery packs are used as energy sources to store and regulate electric energy. Usually, the battery pack in the system is composed of multiple batteries connected in series and in parallel, and is often in a cycle state. During operation, due to the individual differences of the batteries, there will inevitably be the phenomenon that the lagging batteries are over-discharged and under-charged in the battery pack. Repeatedly, the backward battery will fail early, which will seriously affect the service life of the battery.

按照相关规范要求,每组电池的单体端电压不允许超出电池平均单体电压的±50mV。超出此范围的电池可能由于没有正常充电或电池故障。根据电池端电压的一致性,初步查找出电池组中的故障电池。在此基础上,对蓄电池剩余容量或荷电状态(State of Charge,SOC)进行实时准确地在线检测,避免蓄电池过充电和过放电,对保证系统稳定和延长蓄电池的使用寿命具有十分重要的意义。According to the requirements of relevant specifications, the single terminal voltage of each battery is not allowed to exceed ±50mV of the average single voltage of the battery. Batteries outside this range may be due to improper charging or battery failure. According to the consistency of the battery terminal voltage, initially find out the faulty battery in the battery pack. On this basis, it is of great significance to ensure the stability of the system and prolong the service life of the battery by real-time and accurate online detection of the remaining capacity or State of Charge (SOC) of the battery to avoid overcharging and overdischarging of the battery .

铅酸蓄电池的技术比较成熟,相关理论与经验比较丰富,是目前应用最多的蓄电池,广泛应用于太阳能发电、电动车等领域。铅酸蓄电池的充放电是一个复杂的电化学过程,其实际容量也受很多因素影响,因此精确测算蓄电池SOC难度比较大。目前通常的做法是根据电池的外特性参数对蓄电池SOC进行预测。常用的方法主要有内阻法、安时计量法、神经网络法和卡尔曼滤波法,其具体特点如下:The technology of lead-acid battery is relatively mature, and the relevant theory and experience are relatively rich. It is currently the most widely used battery, and is widely used in solar power generation, electric vehicles and other fields. The charging and discharging of lead-acid batteries is a complex electrochemical process, and its actual capacity is also affected by many factors, so it is difficult to accurately measure the battery SOC. The current common practice is to predict the SOC of the battery according to the external characteristic parameters of the battery. Commonly used methods mainly include internal resistance method, ampere-hour measurement method, neural network method and Kalman filter method, and their specific characteristics are as follows:

内阻法,主要适用于蓄电池SOC低于40%时的情况,因为当其SOC在40%以上时,其内阻基本没变化,只有SOC低于40%时,蓄电池的内阻才会很快升高。The internal resistance method is mainly applicable when the SOC of the battery is lower than 40%, because when the SOC is above 40%, the internal resistance basically does not change, and only when the SOC is below 40%, the internal resistance of the battery will be very fast. raised.

安时计量法,在应用中需要标定SOC的初始值和精确的充放电效率,以及准确地测量电流。电流测量不准,长期会存在电流积分的累积误差,同时充放电电流波动对电池剩余容量也有影响,都会导致SOC估算不准确。The ampere-hour measurement method needs to calibrate the initial value of SOC and accurate charge and discharge efficiency in the application, as well as accurately measure the current. The current measurement is not accurate, and there will be cumulative errors in the current integration for a long time. At the same time, the fluctuation of the charging and discharging current will also affect the remaining capacity of the battery, which will lead to inaccurate SOC estimation.

神经网络法,能够较好地反映蓄电池容量的非线性特性。但该方法的误差受训练数据和训练方法影响很大,满足精度要求通常需要占用较大的计算机资源。The neural network method can better reflect the nonlinear characteristics of battery capacity. However, the error of this method is greatly affected by the training data and training method, and meeting the accuracy requirements usually requires a large computer resource.

卡尔曼滤波法,在估算中能保持较好的精度。但该方法的估计精度严重依赖于蓄电池等效电路模型的准确性,并且运算数据量较大。The Kalman filter method can maintain good accuracy in estimation. However, the estimation accuracy of this method depends heavily on the accuracy of the battery equivalent circuit model, and the amount of calculation data is large.

由此可见,上述几种方法并不能够在满足准确估算蓄电池SOC值的同时,提高算法的灵活性和降低运算量。It can be seen that the above methods cannot improve the flexibility of the algorithm and reduce the amount of calculation while satisfying the requirement of accurately estimating the SOC value of the battery.

发明内容Contents of the invention

基于此,有必要针对现有技术并不能够在满足准确估算蓄电池SOC值的同时,提高算法的灵活性和降低运算量的技术问题,提供一种蓄电池荷电状态的估算方法和系统。Based on this, it is necessary to provide a method and system for estimating the state of charge of a battery to address the technical problems that the existing technology cannot meet the technical problems of accurately estimating the SOC value of the battery while improving the flexibility of the algorithm and reducing the amount of calculation.

一种蓄电池荷电状态的估算方法,包括:A method for estimating the state of charge of a storage battery, comprising:

获取多个蓄电池在线状态特征量数据,所述蓄电池在线状态特征量数据包括所述蓄电池的多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值;Acquiring a plurality of battery online state feature data, the battery online state feature data including multiple terminal voltage discrete point data values, discharge current discrete point data values, and discharge capacity discrete point data values of the battery;

根据所述多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值,采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数;According to the plurality of terminal voltage discrete point data values, discharge current discrete point data values and discharge capacity discrete point data values, a plurality of first functions of discharge capacity with terminal voltage as an independent variable are obtained by using Newton interpolation method, and a plurality of The second function of the discharge capacity with the discharge current as an independent variable;

测量得到所述蓄电池的端电压作为测量端电压,测量得到所述蓄电池的放电电流作为测量放电电流;Measure the terminal voltage of the storage battery as the measurement terminal voltage, and measure the discharge current of the storage battery as the measurement discharge current;

根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值;Obtaining an estimated value of the measured discharge capacity under the state of the measured terminal voltage and the measured discharge current according to at least one first function and at least one second function;

根据所述测量放电容量估算值得到对应的荷电状态的估算值。A corresponding estimated value of the state of charge is obtained according to the estimated value of the measured discharge capacity.

进一步的,所述获取多个蓄电池在线状态特征量数据的步骤,具体包括:Further, the step of acquiring a plurality of battery online status feature data specifically includes:

根据所述蓄电池的电池类型确定的充电要求充入所述蓄电池额定容量的电量;The charging requirement determined according to the battery type of the storage battery is to charge the electric quantity of the rated capacity of the storage battery;

将所述蓄电池以至少三种的放电倍率恒流放电,在每种放电倍率下,分阶段使所述蓄电池放电至多个的荷电状态;Discharging the storage battery at a constant current with at least three discharge rates, and discharging the storage battery to multiple states of charge in stages at each discharge rate;

测量并保存所述蓄电池在每个荷电状态下的至少三个放电电流离散点数据值和至少三个端电压离散点数据值,以及在所述放电电流离散点数据值和端电压离散点数据值组合状态下所对应的放电容量离散点数据值。measuring and saving at least three discharge current discrete point data values and at least three terminal voltage discrete point data values of the storage battery in each state of charge, and the discharge current discrete point data values and terminal voltage discrete point data values The data value of the discrete point of the discharge capacity corresponding to the value combination state.

再进一步的,所述根据所述多个端电压、放电电流和放电容量,采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数的步骤,具体包括:Still further, according to the multiple terminal voltages, discharge currents, and discharge capacities, the Newton interpolation method is used to obtain a plurality of first functions of the discharge capacity with the terminal voltage as the argument, and a plurality of discharge currents as the argument The steps of the second function of the discharge capacity specifically include:

采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,具体包括:Using the Newton interpolation method to obtain multiple first functions of the discharge capacity with the terminal voltage as the independent variable, specifically including:

对所有R个放电电流离散点数据值Ii(i=1,2,…,R),计算以端电压U为自变量的放电容量Q的R个第一函数Q1=f1(Ii,U):For all R discharge current discrete point data values I i (i=1,2,...,R), calculate R first functions Q 1 =f 1 (I i ,U):

f 1 ( I i , U ) = f 1 ( U 1 ) + f 1 [ U 1 , U 2 ] ( U - U 1 ) + f 1 [ U 1 , U 2 , U 3 ] ( U - U 1 ) ( U - U 2 ) + . . . + f 1 [ U 1 , U 2 , . . . , U t ] ( U - U 1 ) . . . ( U - U t - 1 ) + f 1 [ U , U 1 , . . . , U t ] ( U - U 1 ) . . . ( U - U t ) ,其中,t为插值节点个数,t≥3;Uj(j=1,2,…,t)为t个所述端电压离散点数据值;f1[U1,U2,...,Uj]为f1在U1,U2,...,Uj上的j-1阶均差;f1(Uj)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 1 ( I i , u ) = f 1 ( u 1 ) + f 1 [ u 1 , u 2 ] ( u - u 1 ) + f 1 [ u 1 , u 2 , u 3 ] ( u - u 1 ) ( u - u 2 ) + . . . + f 1 [ u 1 , u 2 , . . . , u t ] ( u - u 1 ) . . . ( u - u t - 1 ) + f 1 [ u , u 1 , . . . , u t ] ( u - u 1 ) . . . ( u - u t ) , where, t is the number of interpolation nodes, t≥3; U j (j=1,2,…,t) is the data value of t discrete points of the terminal voltage; f 1 [U 1 , U 2 ,.. .,U j ] is the j-1 order mean difference of f 1 on U 1 , U 2 ,...,U j ; f 1 (U j ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state;

采用牛顿插值法得到多个以放电电流为自变量的放电容量的第二函数,具体包括:Using the Newton interpolation method to obtain multiple second functions of the discharge capacity with the discharge current as the independent variable, specifically including:

对所有T个端电压离散点数据值Uj(j=1,2,…,T),计算以放电电流I为自变量的放电容量Q的T个第二函数Q2=f2(Uj,I):For all T discrete point data values of terminal voltage U j (j=1,2,…,T), calculate T second functions Q 2 =f 2 (U j , I):

f 2 ( U j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) ,其中,r为插值节点个数,r≥3;Ii(i=1,2,…,r)为r个所述放电电流离散点数据值;f2[I1,I2,...,Ii]为f2在I1,I2,...,Ii上的i-1阶均差;f2(Ii)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 2 ( u j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) , where r is the number of interpolation nodes, r≥3; I i (i=1,2,...,r) is the data value of r discrete points of the discharge current; f 2 [I 1 ,I 2 ,.. .,I i ] is the i-1 order average difference of f 2 on I 1 , I 2 ,...,I i ; f 2 (I i ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state.

更进一步的,所述根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值的步骤,具体包括:Furthermore, the step of obtaining the estimated value of the measured discharge capacity under the state of the measured terminal voltage and the measured discharge current according to at least one first function and at least one second function specifically includes:

如果所述测量端电压UM等于其中一个端电压离散点数据值Uj(j=1,2,…,T),则将测量放电电流IN代入相应的第二函数Q2=f2(Uj,I),得到蓄电池在端电压UM、放电电流IN状态下的测量放电容量估算值Q=f2(UM,IN);If the measured terminal voltage U M is equal to one of the terminal voltage discrete point data values U j (j=1,2,...,T), then the measured discharge current I N is substituted into the corresponding second function Q 2 =f 2 ( U j ,I), to obtain the estimated discharge capacity Q=f 2 (UM , IN ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量放电电流IN等于其中一个放电电流离散点数据值Ii(i=1,2,…,R),则将测量端电压UM代入相应的第一函数Q1=f1(Ii,U),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f1(IN,UM);If the measured discharge current I N is equal to one of the discharge current discrete point data values I i (i=1,2,...,R), then the measured terminal voltage U M is substituted into the corresponding first function Q 1 =f 1 ( I i , U), to obtain the estimated discharge capacity Q=f 1 ( IN , U M ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量端电压UM不等于任意一个的端电压离散点数据值Uj且测量放电电流IN不等于任意一个的放电电流离散点数据值Ii时,将UM代入R个所述的第一函数Q1=f1(Ii,U),求得一组R个离散数据,所述离散数据为放电电流离散点数据值Ii、测量端电压UM状态下的R个放电容量值估算值。If the measured terminal voltage U M is not equal to any one of the terminal voltage discrete point data values U j and the measured discharge current I N is not equal to any one of the discharge current discrete point data values I i , substitute U M into the R The first function Q 1 =f 1 (I i , U) to obtain a set of R discrete data, the discrete data is discharge current discrete point data value I i , R discharges under the state of measuring terminal voltage U M Estimated capacity value.

对所述R个离散数据进行牛顿插值,得出U=UM时,一个以放电电流I为自变量的放电容量的第二函数Q2=f2(UM,I)。Newton interpolation is performed on the R pieces of discrete data to obtain a second function Q 2 =f 2 ( UM ,I) of the discharge capacity with the discharge current I as an independent variable when U=UM.

将I=IN代入所述的第二函数Q2=f2(UM,I),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f2(UM,IN)。Substituting I = IN into the second function Q 2 =f 2 (U M ,I) to obtain the estimated discharge capacity Q = f 2 ( U M , I N ).

进一步的,还包括:采用蓄电池状态检测电路,检测电池的端电压压差,查找出所述蓄电池中的故障电池。Further, it also includes: using a storage battery state detection circuit to detect the terminal voltage difference of the battery, and find out the faulty battery in the storage battery.

一种蓄电池荷电状态的估算系统,包括:A system for estimating the state of charge of a storage battery, comprising:

特征量数据获取模块,用于获取多个蓄电池在线状态特征量数据,所述蓄电池在线状态特征量数据包括所述蓄电池的多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值;A feature data acquisition module, configured to acquire a plurality of battery online state feature data, the battery online state feature data including multiple terminal voltage discrete point data values, discharge current discrete point data values and discharge capacity discrete point data values of the battery point data value;

函数获取模块,用于根据所述多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值,采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数;The function acquisition module is used to obtain a plurality of terminal voltage discrete point data values, discharge current discrete point data values, and discharge capacity discrete point data values by using the Newton interpolation method to obtain a plurality of terminal voltage as independent variables. a function, and a plurality of second functions of the discharge capacity with the discharge current as an independent variable;

测量端电压和测量放电电流获取模块,用于测量得到所述蓄电池的端电压作为测量端电压,测量得到所述蓄电池的放电电流作为测量放电电流;The measurement terminal voltage and measurement discharge current acquisition module is used to measure the terminal voltage of the storage battery as the measurement terminal voltage, and measure the discharge current of the storage battery as the measurement discharge current;

测量放电容量估算值获取模块,用于根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值;An estimated value acquisition module of the measured discharge capacity, configured to obtain an estimated value of the measured discharge capacity under the state of the measured terminal voltage and the measured discharge current according to at least one first function and at least one second function;

荷电状态估算值获取模块,用于根据所述测量放电容量估算值得到对应的荷电状态的估算值。The estimated state of charge acquisition module is configured to obtain a corresponding estimated value of the state of charge according to the estimated value of the measured discharge capacity.

进一步的,所述特征量数据获取模块,具体用于:Further, the feature quantity data acquisition module is specifically used for:

根据所述蓄电池的电池类型确定的充电要求充入所述蓄电池额定容量的电量;The charging requirement determined according to the battery type of the storage battery is to charge the electric quantity of the rated capacity of the storage battery;

将所述蓄电池以至少三种的放电倍率恒流放电,在每种放电倍率下,分阶段使所述蓄电池放电至多个的荷电状态;Discharging the storage battery at a constant current with at least three discharge rates, and discharging the storage battery to multiple states of charge in stages at each discharge rate;

测量并保存所述蓄电池在每个荷电状态下的至少三个放电电流离散点数据值和至少三个端电压离散点数据值,以及在所述放电电流离散点数据值和端电压离散点数据值组合状态下所对应的放电容量离散点数据值。measuring and saving at least three discharge current discrete point data values and at least three terminal voltage discrete point data values of the storage battery in each state of charge, and the discharge current discrete point data values and terminal voltage discrete point data values The data value of the discrete point of the discharge capacity corresponding to the value combination state.

再进一步的,所述函数获取模块,具体用于:Still further, the function acquisition module is specifically used for:

采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,具体包括:Using the Newton interpolation method to obtain multiple first functions of the discharge capacity with the terminal voltage as the independent variable, specifically including:

对所有R个放电电流离散点数据值Ii(i=1,2,…,R),计算以端电压U为自变量的放电容量Q的R个第一函数Q1=f1(Ii,U):For all R discharge current discrete point data values I i (i=1,2,...,R), calculate R first functions Q 1 =f 1 (I i ,U):

f 1 ( I i , U ) = f 1 ( U 1 ) + f 1 [ U 1 , U 2 ] ( U - U 1 ) + f 1 [ U 1 , U 2 , U 3 ] ( U - U 1 ) ( U - U 2 ) + . . . + f 1 [ U 1 , U 2 , . . . , U t ] ( U - U 1 ) . . . ( U - U t - 1 ) + f 1 [ U , U 1 , . . . , U t ] ( U - U 1 ) . . . ( U - U t ) ,其中,t为插值节点个数,t≥3;Uj(j=1,2,…,t)为t个所述端电压离散点数据值;f1[U1,U2,...,Uj]为f1在U1,U2,...,Uj上的j-1阶均差;f1(Uj)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 1 ( I i , u ) = f 1 ( u 1 ) + f 1 [ u 1 , u 2 ] ( u - u 1 ) + f 1 [ u 1 , u 2 , u 3 ] ( u - u 1 ) ( u - u 2 ) + . . . + f 1 [ u 1 , u 2 , . . . , u t ] ( u - u 1 ) . . . ( u - u t - 1 ) + f 1 [ u , u 1 , . . . , u t ] ( u - u 1 ) . . . ( u - u t ) , where, t is the number of interpolation nodes, t≥3; U j (j=1,2,…,t) is the data value of t discrete points of the terminal voltage; f 1 [U 1 , U 2 ,.. .,U j ] is the j-1 order mean difference of f 1 on U 1 , U 2 ,...,U j ; f 1 (U j ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state;

采用牛顿插值法得到多个以放电电流为自变量的放电容量的第二函数,具体包括:Using the Newton interpolation method to obtain multiple second functions of the discharge capacity with the discharge current as the independent variable, specifically including:

对所有T个端电压离散点数据值Uj(j=1,2,…,T),计算以放电电流I为自变量的放电容量Q的T个第二函数Q2=f2(Uj,I):For all T discrete point data values of terminal voltage U j (j=1,2,…,T), calculate T second functions Q 2 =f 2 (U j , I):

f 2 ( U j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) ,其中,r为插值节点个数,r≥3;Ii(i=1,2,…,r)为r个所述放电电流离散点数据值;f2[I1,I2,...,Ii]为f2在I1,I2,...,Ii上的i-1阶均差;f2(Ii)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 2 ( u j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) , where r is the number of interpolation nodes, r≥3; I i (i=1,2,...,r) is the data value of r discrete points of the discharge current; f 2 [I 1 ,I 2 ,.. .,I i ] is the i-1 order average difference of f 2 on I 1 , I 2 ,...,I i ; f 2 (I i ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state.

更进一步的,所述测量放电容量估算值获取模块,具体用于:Furthermore, the module for obtaining an estimated value of the measured discharge capacity is specifically used for:

如果所述测量端电压UM等于其中一个端电压离散点数据值Uj(j=1,2,…,T),则将测量放电电流IN代入相应的第二函数Q2=f2(Uj,I),得到蓄电池在端电压UM、放电电流IN状态下的测量放电容量估算值Q=f2(UM,IN);If the measured terminal voltage U M is equal to one of the terminal voltage discrete point data values U j (j=1,2,...,T), then the measured discharge current I N is substituted into the corresponding second function Q 2 =f 2 ( U j ,I), to obtain the estimated discharge capacity Q=f 2 (UM , IN ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量放电电流IN等于其中一个放电电流离散点数据值Ii(i=1,2,…,R),则将测量端电压UM代入相应的第一函数Q1=f1(Ii,U),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f1(IN,UM);If the measured discharge current I N is equal to one of the discharge current discrete point data values I i (i=1,2,...,R), then the measured terminal voltage U M is substituted into the corresponding first function Q 1 =f 1 ( I i , U), to obtain the estimated discharge capacity Q=f 1 ( IN , U M ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量端电压UM不等于任意一个的端电压离散点数据值Uj且测量放电电流IN不等于任意一个的放电电流离散点数据值Ii时,将UM代入R个所述的第一函数Q1=f1(Ii,U),求得一组R个离散数据,所述离散数据为放电电流离散点数据值Ii、测量端电压UM状态下的R个放电容量值估算值。If the measured terminal voltage U M is not equal to any one of the terminal voltage discrete point data values U j and the measured discharge current I N is not equal to any one of the discharge current discrete point data values I i , substitute U M into the R The first function Q 1 =f 1 (I i , U) to obtain a set of R discrete data, the discrete data is discharge current discrete point data value I i , R discharges under the state of measuring terminal voltage U M Estimated capacity value.

对所述R个离散数据进行牛顿插值,得出U=UM时,一个以放电电流I为自变量的放电容量的第二函数Q2=f2(UM,I)。Newton interpolation is performed on the R pieces of discrete data to obtain a second function Q 2 =f 2 ( UM ,I) of the discharge capacity with the discharge current I as an independent variable when U=UM.

将I=IN代入所述的第二函数Q2=f2(UM,I),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f2(UM,IN)。Substituting I = IN into the second function Q 2 =f 2 (U M ,I) to obtain the estimated discharge capacity Q = f 2 ( U M , I N ).

进一步的,还包括:故障电池查找模块,用于采用蓄电池状态检测电路,检测电池的端电压压差,查找出所述蓄电池中的故障电池。Further, it also includes: a faulty battery finding module, which is used to detect the terminal voltage difference of the battery by using the battery state detection circuit, and find out the faulty battery in the battery.

本发明利用牛顿插值法进行蓄电池SOC值估算,能够准确推导出蓄电池的剩余容量变化趋势,从而可以更加直观地分析问题和更为快速地对现象进行预测,能实现在线测量且准确度高。该方法能够根据工程精度要求选择不同的插值节点个数,具有很强的递推性,其函数组成有规律,因而具有较小的计算量和较好的灵活性,易于计算机编程实现。The invention uses the Newton interpolation method to estimate the SOC value of the storage battery, and can accurately deduce the change trend of the remaining capacity of the storage battery, so that problems can be analyzed more intuitively and phenomena can be predicted more quickly, and online measurement can be realized with high accuracy. This method can select different numbers of interpolation nodes according to engineering precision requirements, has strong recursion, and its function composition is regular, so it has small calculation amount and good flexibility, and is easy to realize by computer programming.

同时,在不影响蓄电池供电系统正常运行状态下,通过准确测得蓄电池组和单体电池的端电压值,对整组电池端电压的均一性进行检测。初步查找出电池组中的故障电池,维护整组电池的安全性,提高整组电池的循环使用效率和寿命。At the same time, without affecting the normal operation of the battery power supply system, by accurately measuring the terminal voltage values of the battery pack and the single battery, the uniformity of the terminal voltage of the entire battery pack is tested. Initially find out the faulty batteries in the battery pack, maintain the safety of the entire battery pack, and improve the cycle efficiency and life of the entire battery pack.

附图说明Description of drawings

图1为本发明一种蓄电池荷电状态的估算方法的工作流程图;Fig. 1 is the working flow chart of the estimation method of a kind of storage battery state of charge of the present invention;

图2为本发明一种蓄电池荷电状态的估算系统的结构模块图;Fig. 2 is a structural block diagram of an estimation system of a storage battery state of charge according to the present invention;

图3为本发明一个例子的蓄电池状态检测电路图;Fig. 3 is a battery state detection circuit diagram of an example of the present invention;

图4为本发明一个例子的SOC估算方法流程图。FIG. 4 is a flowchart of an SOC estimation method in an example of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明做进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

如图1所述为本发明一种蓄电池荷电状态的估算方法的工作流程图。As shown in FIG. 1 , it is a working flow chart of a method for estimating the battery state of charge of the present invention.

一种蓄电池荷电状态的估算方法,用于对所述蓄电池在预设的测量端电压和测量放电电流状态下的荷电状态进行估算,包括:A method for estimating the state of charge of a storage battery, used for estimating the state of charge of the storage battery under a preset measurement terminal voltage and measurement discharge current state, comprising:

步骤S101,获取多个蓄电池在线状态特征量数据,所述蓄电池在线状态特征量数据包括所述蓄电池的多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值;Step S101, acquiring a plurality of battery online state feature data, the battery online state feature data including multiple terminal voltage discrete point data values, discharge current discrete point data values and discharge capacity discrete point data values of the battery;

步骤S102,根据所述多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值,采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数;Step S102, according to the plurality of terminal voltage discrete point data values, discharge current discrete point data values, and discharge capacity discrete point data values, using the Newton interpolation method to obtain a plurality of first functions of discharge capacity with terminal voltage as an argument, and a plurality of second functions of the discharge capacity with the discharge current as an independent variable;

步骤S103,测量得到所述蓄电池的端电压作为测量端电压,测量得到所述蓄电池的放电电流作为测量放电电流;Step S103, measuring the terminal voltage of the storage battery as the measurement terminal voltage, and measuring the discharge current of the storage battery as the measurement discharge current;

步骤S104,根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值;Step S104, according to at least one first function and at least one second function, obtain the estimated value of the measured discharge capacity under the state of the measured terminal voltage and the measured discharge current;

步骤S105,根据所述测量放电容量估算值得到对应的荷电状态的估算值。Step S105, obtaining a corresponding estimated value of the state of charge according to the estimated value of the measured discharge capacity.

在其中一个实施例中,所述步骤S101,具体包括:In one of the embodiments, the step S101 specifically includes:

根据所述蓄电池的电池类型确定的充电要求充入所述蓄电池额定容量的电量;The charging requirement determined according to the battery type of the storage battery is to charge the electric quantity of the rated capacity of the storage battery;

将所述蓄电池以至少三种的放电倍率恒流放电,在每种放电倍率下,分阶段使所述蓄电池放电至多个的荷电状态;Discharging the storage battery at a constant current with at least three discharge rates, and discharging the storage battery to multiple states of charge in stages at each discharge rate;

测量并保存所述蓄电池在每个荷电状态下的至少三个放电电流离散点数据值和至少三个端电压离散点数据值,以及在所述放电电流离散点数据值和端电压离散点数据值组合状态下所对应的放电容量离散点数据值。measuring and saving at least three discharge current discrete point data values and at least three terminal voltage discrete point data values of the storage battery in each state of charge, and the discharge current discrete point data values and terminal voltage discrete point data values The data value of the discrete point of the discharge capacity corresponding to the value combination state.

在其中一个实施例中,所述步骤S102,具体包括:In one of the embodiments, the step S102 specifically includes:

采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,具体包括:Using the Newton interpolation method to obtain multiple first functions of the discharge capacity with the terminal voltage as the independent variable, specifically including:

对所有R个放电电流离散点数据值Ii(i=1,2,…,R),计算以端电压U为自变量的放电容量Q的R个第一函数Q1=f1(Ii,U):For all R discharge current discrete point data values I i (i=1,2,...,R), calculate R first functions Q 1 =f 1 (I i ,U):

f 1 ( I i , U ) = f 1 ( U 1 ) + f 1 [ U 1 , U 2 ] ( U - U 1 ) + f 1 [ U 1 , U 2 , U 3 ] ( U - U 1 ) ( U - U 2 ) + . . . + f 1 [ U 1 , U 2 , . . . , U t ] ( U - U 1 ) . . . ( U - U t - 1 ) + f 1 [ U , U 1 , . . . , U t ] ( U - U 1 ) . . . ( U - U t ) ,其中,t为插值节点个数,t≥3;Uj(j=1,2,…,t)为t个所述端电压离散点数据值;f1[U1,U2,...,Uj]为f1在U1,U2,...,Uj上的j-1阶均差;f1(Uj)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 1 ( I i , u ) = f 1 ( u 1 ) + f 1 [ u 1 , u 2 ] ( u - u 1 ) + f 1 [ u 1 , u 2 , u 3 ] ( u - u 1 ) ( u - u 2 ) + . . . + f 1 [ u 1 , u 2 , . . . , u t ] ( u - u 1 ) . . . ( u - u t - 1 ) + f 1 [ u , u 1 , . . . , u t ] ( u - u 1 ) . . . ( u - u t ) , where, t is the number of interpolation nodes, t≥3; U j (j=1,2,…,t) is the data value of t discrete points of the terminal voltage; f 1 [U 1 , U 2 ,.. .,U j ] is the j-1 order mean difference of f 1 on U 1 , U 2 ,...,U j ; f 1 (U j ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state;

采用牛顿插值法得到多个以放电电流为自变量的放电容量的第二函数,具体包括:Using the Newton interpolation method to obtain multiple second functions of the discharge capacity with the discharge current as the independent variable, specifically including:

对所有T个端电压离散点数据值Uj(j=1,2,…,T),计算以放电电流I为自变量的放电容量Q的T个第二函数Q2=f2(Uj,I):For all T discrete point data values of terminal voltage U j (j=1,2,…,T), calculate T second functions Q 2 =f 2 (U j , I):

f 2 ( U j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) ,其中,r为插值节点个数,r≥3;Ii(i=1,2,…,r)为r个所述放电电流离散点数据值;f2[I1,I2,...,Ii]为f2在I1,I2,...,Ii上的i-1阶均差;f2(Ii)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 2 ( u j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) , where r is the number of interpolation nodes, r≥3; I i (i=1,2,...,r) is the data value of r discrete points of the discharge current; f 2 [I 1 ,I 2 ,.. .,I i ] is the i-1 order average difference of f 2 on I 1 , I 2 ,...,I i ; f 2 (I i ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state.

在其中一个实施例中,所述步骤S104,具体包括:In one of the embodiments, the step S104 specifically includes:

如果所述测量端电压UM等于其中一个端电压离散点数据值Uj(j=1,2,…,T),则将测量放电电流IN代入相应的第二函数Q2=f2(Uj,I),得到蓄电池在端电压UM、放电电流IN状态下的测量放电容量估算值Q=f2(UM,IN);If the measured terminal voltage U M is equal to one of the terminal voltage discrete point data values U j (j=1,2,...,T), then the measured discharge current I N is substituted into the corresponding second function Q 2 =f 2 ( U j ,I), to obtain the estimated discharge capacity Q=f 2 (UM , IN ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量放电电流IN等于其中一个放电电流离散点数据值Ii(i=1,2,…,R),则将测量端电压UM代入相应的第一函数Q1=f1(Ii,U),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f1(IN,UM);If the measured discharge current I N is equal to one of the discharge current discrete point data values I i (i=1,2,...,R), then the measured terminal voltage U M is substituted into the corresponding first function Q 1 =f 1 ( I i , U), to obtain the estimated discharge capacity Q=f 1 ( IN , U M ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量端电压UM不等于任意一个的端电压离散点数据值Uj且测量放电电流IN不等于任意一个的放电电流离散点数据值Ii时,将UM代入R个所述的第一函数Q1=f1(Ii,U),求得一组R个离散数据,所述离散数据为放电电流离散点数据值Ii、测量端电压UM状态下的R个放电容量值估算值。If the measured terminal voltage U M is not equal to any one of the terminal voltage discrete point data values U j and the measured discharge current I N is not equal to any one of the discharge current discrete point data values I i , substitute U M into the R The first function Q 1 =f 1 (I i , U) to obtain a set of R discrete data, the discrete data is discharge current discrete point data value I i , R discharges under the state of measuring terminal voltage U M Estimated capacity value.

对所述R个离散数据进行牛顿插值,得出U=UM时,一个以放电电流I为自变量的放电容量的第二函数Q2=f2(UM,I)。Newton interpolation is performed on the R pieces of discrete data to obtain a second function Q 2 =f 2 ( UM ,I) of the discharge capacity with the discharge current I as an independent variable when U=UM.

将I=IN代入所述的第二函数Q2=f2(UM,I),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f2(UM,IN)。Substituting I = IN into the second function Q 2 =f 2 (U M ,I) to obtain the estimated discharge capacity Q = f 2 ( U M , I N ).

在其中一个实施例中,本发明还可以包括:采用蓄电池状态检测电路,检测电池的端电压压差,查找出所述蓄电池中的故障电池。本实施例采用蓄电池状态检测电路,能够在不影响蓄电池供电系统正常运行状态下,通过准确测得蓄电池组和单体电池的端电压值,对整组电池端电压的均一性进行检测。初步查找出电池组中的故障电池,维护整组电池的安全性,提高整组电池的循环使用效率和寿命。In one of the embodiments, the present invention may further include: using a storage battery state detection circuit to detect the terminal voltage difference of the battery, and find out the faulty battery in the storage battery. This embodiment adopts the battery state detection circuit, which can detect the uniformity of the battery terminal voltage by accurately measuring the terminal voltage values of the battery pack and the single battery without affecting the normal operation of the battery power supply system. Initially find out the faulty batteries in the battery pack, maintain the safety of the entire battery pack, and improve the cycle efficiency and life of the entire battery pack.

如图2所述为本发明一种蓄电池荷电状态的估算系统的结构模块图。As shown in FIG. 2 , it is a structural block diagram of a battery state-of-charge estimation system of the present invention.

一种蓄电池荷电状态的估算系统,用于对所述蓄电池在预设的测量端电压和测量放电电流状态下的荷电状态进行估算,包括:A system for estimating the state of charge of a storage battery, used to estimate the state of charge of the storage battery under the preset measurement terminal voltage and measurement discharge current state, including:

特征量数据获取模块210,用于获取多个蓄电池在线状态特征量数据,所述蓄电池在线状态特征量数据包括所述蓄电池的多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值;A feature data acquisition module 210, configured to acquire a plurality of battery online state feature data, the battery online state feature data including multiple terminal voltage discrete point data values, discharge current discrete point data values and discharge capacity of the battery Discrete point data values;

函数获取模块220,用于根据所述多个端电压离散点数据值、放电电流离散点数据值和放电容量离散点数据值,采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,以及多个以放电电流为自变量的放电容量的第二函数;The function acquisition module 220 is used to obtain a plurality of discharge capacity values with the terminal voltage as an argument according to the multiple terminal voltage discrete point data values, discharge current discrete point data values, and discharge capacity discrete point data values by using Newton interpolation method a first function, and a plurality of second functions of discharge capacity with discharge current as an independent variable;

测量端电压和测量放电电流获取模块230,用于测量得到所述蓄电池的端电压作为测量端电压,测量得到所述蓄电池的放电电流作为测量放电电流;The measurement terminal voltage and measurement discharge current acquisition module 230 is used to measure the terminal voltage of the storage battery as the measurement terminal voltage, and measure the discharge current of the storage battery as the measurement discharge current;

测量放电容量估算值获取模块240,用于根据至少一个第一函数和至少一个第二函数获得在测量端电压和测量放电电流状态下的测量放电容量估算值;A measured discharge capacity estimation value acquisition module 240, configured to obtain a measured discharge capacity estimated value under the state of the measured terminal voltage and the measured discharge current according to at least one first function and at least one second function;

荷电状态估算值获取模块250,用于根据所述测量放电容量估算值得到对应的荷电状态的估算值。The state of charge estimated value obtaining module 250 is configured to obtain a corresponding state of charge estimated value according to the measured discharge capacity estimated value.

在其中一个实施例中,所述特征量数据获取模块210,具体用于:In one of the embodiments, the feature quantity data acquisition module 210 is specifically used for:

根据所述蓄电池的电池类型确定的充电要求充入所述蓄电池额定容量的电量;The charging requirement determined according to the battery type of the storage battery is to charge the electric quantity of the rated capacity of the storage battery;

将所述蓄电池以至少三种的放电倍率恒流放电,在每种放电倍率下,分阶段使所述蓄电池放电至多个的荷电状态;Discharging the storage battery at a constant current with at least three discharge rates, and discharging the storage battery to multiple states of charge in stages at each discharge rate;

测量并保存所述蓄电池在每个荷电状态下的至少三个放电电流离散点数据值和至少三个端电压离散点数据值,以及在所述放电电流离散点数据值和端电压离散点数据值组合状态下所对应的放电容量离散点数据值。measuring and saving at least three discharge current discrete point data values and at least three terminal voltage discrete point data values of the storage battery in each state of charge, and the discharge current discrete point data values and terminal voltage discrete point data values The data value of the discrete point of the discharge capacity corresponding to the value combination state.

在其中一个实施例中,所述函数获取模块220,具体用于:In one of the embodiments, the function obtaining module 220 is specifically used for:

采用牛顿插值法得到多个以端电压为自变量的放电容量的第一函数,具体包括:Using the Newton interpolation method to obtain multiple first functions of the discharge capacity with the terminal voltage as the independent variable, specifically including:

对所有R个放电电流离散点数据值Ii(i=1,2,…,R),计算以端电压U为自变量的放电容量Q的R个第一函数Q1=f1(Ii,U):For all R discharge current discrete point data values I i (i=1,2,...,R), calculate R first functions Q 1 =f 1 (I i ,U):

f 1 ( I i , U ) = f 1 ( U 1 ) + f 1 [ U 1 , U 2 ] ( U - U 1 ) + f 1 [ U 1 , U 2 , U 3 ] ( U - U 1 ) ( U - U 2 ) + . . . + f 1 [ U 1 , U 2 , . . . , U t ] ( U - U 1 ) . . . ( U - U t - 1 ) + f 1 [ U , U 1 , . . . , U t ] ( U - U 1 ) . . . ( U - U t ) ,其中,t为插值节点个数,t≥3;Uj(j=1,2,…,t)为t个所述端电压离散点数据值;f1[U1,U2,...,Uj]为f1在U1,U2,...,Uj上的j-1阶均差;f1(Uj)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 1 ( I i , u ) = f 1 ( u 1 ) + f 1 [ u 1 , u 2 ] ( u - u 1 ) + f 1 [ u 1 , u 2 , u 3 ] ( u - u 1 ) ( u - u 2 ) + . . . + f 1 [ u 1 , u 2 , . . . , u t ] ( u - u 1 ) . . . ( u - u t - 1 ) + f 1 [ u , u 1 , . . . , u t ] ( u - u 1 ) . . . ( u - u t ) , where, t is the number of interpolation nodes, t≥3; U j (j=1,2,…,t) is the data value of t discrete points of the terminal voltage; f 1 [U 1 , U 2 ,.. .,U j ] is the j-1 order mean difference of f 1 on U 1 , U 2 ,...,U j ; f 1 (U j ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state;

采用牛顿插值法得到多个以放电电流为自变量的放电容量的第二函数,具体包括:Using the Newton interpolation method to obtain multiple second functions of the discharge capacity with the discharge current as the independent variable, specifically including:

对所有T个端电压离散点数据值Uj(j=1,2,…,T),计算以放电电流I为自变量的放电容量Q的T个第二函数Q2=f2(Uj,I):For all T discrete point data values of terminal voltage U j (j=1,2,…,T), calculate T second functions Q 2 =f 2 (U j , I):

f 2 ( U j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) ,其中,r为插值节点个数,r≥3;Ii(i=1,2,…,r)为r个所述放电电流离散点数据值;f2[I1,I2,...,Ii]为f2在I1,I2,...,Ii上的i-1阶均差;f2(Ii)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 2 ( u j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r - 1 ) + f 2 [ I 1 , I 2 , . . . , I r ] ( I - I 1 ) . . . ( I - I r ) , where r is the number of interpolation nodes, r≥3; I i (i=1,2,...,r) is the data value of r discrete points of the discharge current; f 2 [I 1 ,I 2 ,.. .,I i ] is the i-1 order average difference of f 2 on I 1 , I 2 ,...,I i ; f 2 (I i ) is the data value I i and terminal voltage discrete Discrete point data value Q ij of discharge capacity corresponding to point data value U j combination state.

在其中一个实施例中,所述测量放电容量估算值获取模块240,具体用于:In one of the embodiments, the measured discharge capacity estimation value acquisition module 240 is specifically used for:

如果所述测量端电压UM等于其中一个端电压离散点数据值Uj(j=1,2,…,T),则将测量放电电流IN代入相应的第二函数Q2=f2(Uj,I),得到蓄电池在端电压UM、放电电流IN状态下的测量放电容量估算值Q=f2(UM,IN);If the measured terminal voltage U M is equal to one of the terminal voltage discrete point data values U j (j=1,2,...,T), then the measured discharge current I N is substituted into the corresponding second function Q 2 =f 2 ( U j ,I), to obtain the estimated discharge capacity Q=f 2 (UM , IN ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量放电电流IN等于其中一个放电电流离散点数据值Ii(i=1,2,…,R),则将测量端电压UM代入相应的第一函数Q1=f1(Ii,U),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f1(IN,UM);If the measured discharge current I N is equal to one of the discharge current discrete point data values I i (i=1,2,...,R), then the measured terminal voltage U M is substituted into the corresponding first function Q 1 =f 1 ( I i , U), to obtain the estimated discharge capacity Q=f 1 ( IN , U M ) of the battery under the state of terminal voltage U M and discharge current I N ;

如果所述测量端电压UM不等于任意一个的端电压离散点数据值Uj且测量放电电流IN不等于任意一个的放电电流离散点数据值Ii时,将UM代入R个所述的第一函数Q1=f1(Ii,U),求得一组R个离散数据,所述离散数据为放电电流离散点数据值Ii、测量端电压UM状态下的R个放电容量值估算值。If the measured terminal voltage U M is not equal to any one of the terminal voltage discrete point data values U j and the measured discharge current I N is not equal to any one of the discharge current discrete point data values I i , substitute U M into the R The first function Q 1 =f 1 (I i , U) to obtain a set of R discrete data, the discrete data is discharge current discrete point data value I i , R discharges under the state of measuring terminal voltage U M Estimated capacity value.

对所述R个离散数据进行牛顿插值,得出U=UM时,一个以放电电流I为自变量的放电容量的第二函数Q2=f2(UM,I)。Newton interpolation is performed on the R pieces of discrete data to obtain a second function Q 2 =f 2 ( UM ,I) of the discharge capacity with the discharge current I as an independent variable when U=UM.

将I=IN代入所述的第二函数Q2=f2(UM,I),得到蓄电池在端电压UM、放电电流IN状态下的放电容量估算值Q=f2(UM,IN)。Substituting I = IN into the second function Q 2 =f 2 (U M ,I) to obtain the estimated discharge capacity Q = f 2 ( U M , I N ).

在其中一个实施例中,还包括:故障电池查找模块,用于采用蓄电池状态检测电路,检测电池的端电压压差,查找出所述蓄电池中的故障电池。In one of the embodiments, it further includes: a faulty battery finding module, configured to use a storage battery state detection circuit to detect the voltage difference between the terminals of the battery, and find out the faulty battery in the storage battery.

作为一个例子,蓄电池状态检测电路图,如图3所示,主要用于获得蓄电池在线状态特征量数据的蓄电池状态检测电路,所述电路能够准确地测得单体及整组蓄电池端电压,检测电池端电压差,从而初步查找出是否存在故障电池。其中R1是根据系统负载的特点所选取的直流负载箱,具有恒流放电功能,可在线检测放电时间、容量;S1、S2、S3为断路器。As an example, the battery state detection circuit diagram, as shown in Figure 3, is mainly used to obtain the battery state detection circuit of the online state characteristic data of the battery. Terminal voltage difference, so as to preliminarily find out whether there is a faulty battery. Among them, R 1 is a DC load box selected according to the characteristics of the system load, which has a constant current discharge function and can detect discharge time and capacity online; S 1 , S 2 , and S 3 are circuit breakers.

正常运行时,S2合上,S1、S3均断开,蓄电池1处于正常在线运行状态。检测端电压时,先合上S1,再断开S2。当充电机2浮充电压略高于蓄电池1的端电压时,二极管3不会反向击穿,此时等同于蓄电池1在离线状态测得的数据。测得的结果能真实反映单体蓄电池1及整组电池端电压的本身特性。During normal operation, S 2 is closed, S 1 and S 3 are both disconnected, and battery 1 is in a normal online operation state. When detecting terminal voltage, first close S 1 and then disconnect S 2 . When the floating charging voltage of the charger 2 is slightly higher than the terminal voltage of the battery 1, the diode 3 will not reverse breakdown, which is equivalent to the data measured by the battery 1 in an offline state. The measured results can truly reflect the characteristics of the terminal voltage of the single battery 1 and the whole battery pack.

检测时,先合上S1,断开S2,短时合上S3,则蓄电池1开始恒流放电,利用直流负载箱R1测得的容量作为离散点函数值。蓄电池端电压U和放电电流I及其所对应的放电容量Q的特征量数据表,选取放电电流离散点数据值6个:Ii(i=1,2,…,6),端电压离散点数据值6个:Uj(j=1,2,…,6)。记录每组放电电流离散点数据值、端电压值离散点数据值状态下所测得的放电容量离散点数据值Qij,如表1所示的特征量数据表:When testing, first close S 1 , disconnect S 2 , and close S 3 for a short time, then the battery 1 starts to discharge at a constant current, and use the capacity measured by the DC load box R 1 as the value of the discrete point function. The data table of battery terminal voltage U and discharge current I and its corresponding discharge capacity Q feature data, select 6 data values of discharge current discrete points: I i (i=1,2,...,6), terminal voltage discrete points There are 6 data values: U j (j=1,2,…,6). Record the data value Q ij of discrete points of discharge capacity measured under the state of discrete point data values of discharge current and terminal voltage values for each group, as shown in the characteristic quantity data table shown in Table 1:

这里需要强调的是:检测过程中,当发生停电事故或者充电机2故障导致无法输出直流电压时,直流母线电压将下降。当直流母线电压低于蓄电池1端电压时,蓄电池1将通过S1和二极管3向直流母线供电,保证了系统的供电连续性。此时,应合上S2,断开S1、S3,恢复蓄电池的正常接线运行。What needs to be emphasized here is: during the detection process, when a power failure occurs or the charger 2 fails to output the DC voltage, the DC bus voltage will drop. When the DC bus voltage is lower than the battery 1 terminal voltage, the battery 1 will supply power to the DC bus through S 1 and diode 3, ensuring the continuity of the power supply of the system. At this time, close S 2 , disconnect S 1 and S 3 , and restore the normal wiring operation of the battery.

该例子的SOC值估算方法流程图如图4所示:The flow chart of the SOC value estimation method in this example is shown in Figure 4:

步骤S401,获取端电压离散点数据值Uj、放电电流离散点数据值Ii、放电容量离散点数据值Qij,具体数据取自表1所示的特征量数据表。In step S401, the terminal voltage discrete point data value U j , the discharge current discrete point data value I i , and the discharge capacity discrete point data value Q ij are obtained. The specific data are obtained from the feature quantity data table shown in Table 1.

步骤S402,当I=Ii(i=1,2,…,6)时,利用牛顿插值法构建6个以端电压U为自变量的函数Q′=N(Ii,U),使其无限逼近对应的原函数Q1=f1(Ii,U)。当I=Ii时,如表1所示,自变量U=Uj(j=1,2,…,6)时,其所对应的函数值f1(U1),…,f1(U6)分别为Qi1,…,Qi6。构建一个5次的插值多项式N(Ii,U),使其无限逼近原函数Q1=f1(Ii,U)。Step S402, when I=I i (i=1,2,...,6), use the Newton interpolation method to construct 6 functions Q′=N(I i ,U) with the terminal voltage U as the independent variable, so that Infinitely approximates the corresponding original function Q 1 =f 1 (I i ,U). When I=I i , as shown in Table 1, when the independent variable U=U j (j=1,2,…,6), the corresponding function value f 1 (U 1 ),…, f 1 ( U 6 ) are Q i1 , . . . , Q i6 , respectively. Construct a 5th degree interpolation polynomial N(I i ,U) to infinitely approximate the original function Q 1 =f 1 (I i ,U).

f 1 ( I i , U ) = f 1 ( U 1 ) + f 1 [ U 1 , U 2 ] ( U - U 1 ) + f 1 [ U 1 , U 2 , U 3 ] ( U - U 1 ) ( U - U 2 ) + . . . + f 1 [ U 1 , U 2 , . . . , U 6 ] ( U - U 1 ) . . . ( U - U 5 ) + f 1 [ U , U 1 , . . . , U 6 ] ( U - U 1 ) . . . ( U - U 6 ) ,令多项式的前6项记为N(Ii,U),最后一项记为R(Ii,U)。其中,f1[U1,U2,...,Uj]为f1在U1,U2,...,Uj上的j-1阶均差,f1(Uj)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 1 ( I i , u ) = f 1 ( u 1 ) + f 1 [ u 1 , u 2 ] ( u - u 1 ) + f 1 [ u 1 , u 2 , u 3 ] ( u - u 1 ) ( u - u 2 ) + . . . + f 1 [ u 1 , u 2 , . . . , u 6 ] ( u - u 1 ) . . . ( u - u 5 ) + f 1 [ u , u 1 , . . . , u 6 ] ( u - u 1 ) . . . ( u - u 6 ) , let the first 6 terms of the polynomial be recorded as N(I i ,U), and the last term be recorded as R(I i ,U). Among them, f 1 [U 1 , U 2 ,...,U j ] is the j-1 order mean difference of f 1 on U 1 , U 2 ,...,U j , and f 1 (U j ) is The corresponding discharge capacity discrete point data value Q ij under the combined state of discharge current discrete point data value I i and terminal voltage discrete point data value U j ;

R(Ii,U)为余项。余项值越小,说明Q′=N(Ii,U)越逼近原函数Q1=f(Ii,U)。余项值的大小与牛顿插值法的插值节点选取有关。选择距离与欲插入的U值越近的节点作为插值区间,余项值越小。另外,选取的节点数越多,余项值通常也越小,但由差分误差传播的分析—稳定性问题的分析表明,应根据工程精度不同选择不同的节点个数,对实际问题盲目追求高阶差商并不可取。R(I i ,U) is the remainder. The smaller the value of the remainder, the closer Q′=N(I i ,U) is to the original function Q 1 =f(I i ,U). The size of the residual value is related to the selection of the interpolation node of the Newton interpolation method. Select the node whose distance is closer to the U value to be inserted as the interpolation interval, and the value of the remainder is smaller. In addition, the more nodes are selected, the smaller the residual value is usually. However, the analysis of the differential error propagation-the analysis of the stability problem shows that different numbers of nodes should be selected according to the engineering accuracy, and blindly pursue high The step quotient is not desirable.

步骤S403,当U=Uj(j=1,2,…,6)时,同理可构建6个以放电电流I为自变量的函数Q′′=N(Uj,I),使其无限逼近对应的原函数Q2=f2(Uj,I),即:Step S403, when U=U j (j=1,2,...,6), in the same way, 6 functions Q′′=N(U j ,I) with the discharge current I as the independent variable can be constructed, so that Infinite approximation corresponds to the original function Q 2 =f 2 (U j ,I), that is:

f 2 ( U j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I 6 ] ( I - I 1 ) . . . ( I - I 5 ) + f 2 [ I 1 , I 2 , . . . , I 6 ] ( I - I 1 ) . . . ( I - I 6 ) ,其中,f2[I1,I2,...,Ii]为f2在I1,I2,...,Ii上的i-1阶均差,f2(Ii)为在放电电流离散点数据值Ii和端电压离散点数据值Uj组合状态下所对应的放电容量离散点数据值Qij f 2 ( u j , I ) = f 2 ( I 1 ) + f 2 [ I 1 , I 2 ] ( I - I 1 ) + f 2 [ I 1 , I 2 , I 3 ] ( I - I 1 ) ( I - I 2 ) + . . . + f 2 [ I 1 , I 2 , . . . , I 6 ] ( I - I 1 ) . . . ( I - I 5 ) + f 2 [ I 1 , I 2 , . . . , I 6 ] ( I - I 1 ) . . . ( I - I 6 ) , where, f 2 [I 1 ,I 2 ,...,I i ] is the i-1 order mean difference of f 2 on I 1 ,I 2 ,...,I i , f 2 (I i ) is the corresponding discharge capacity discrete point data value Q ij in the combined state of the discharge current discrete point data value I i and the terminal voltage discrete point data value U j .

步骤S404中,检测到蓄电池端电压为UM,放电电流为INIn step S404, it is detected that the battery terminal voltage is U M and the discharge current is I N .

步骤S405,判断UM是否等于Uj,或者IN是否等于Ii。如果判断结果为真,则进入步骤S406,否则,进入步骤S407。Step S405, judging whether U M is equal to U j , or whether IN is equal to I i . If the judgment result is true, go to step S406; otherwise, go to step S407.

步骤S406,如果UM等于Uj,则将I=IN代入Q2=f2(Uj,I),计算得到相应的放电容量估算值Q=f2(UM,IN);如果IN等于Ii,则将U=UM代入Q1=f1(Ii,U),计算得到相应的放电容量估算值Q=f1(IN,UM),执行步骤S412。Step S406, if U M is equal to U j , then substitute I = IN into Q 2 =f 2 (U j ,I), and calculate the corresponding estimated value of discharge capacity Q=f 2 (U M ,I N ); if If I N is equal to I i , then U=U M is substituted into Q 1 =f 1 (I i , U), and the corresponding estimated value of discharge capacity Q=f 1 (I N , U M ) is calculated, and step S412 is executed.

步骤S407中,输入U=UM,执行步骤S408。In step S407, input U= UM , and execute step S408.

步骤S408,代入函数表达式Q1=f1(Ii,U),求得I=Ii(i=1,2,…,6)时,对应的放电容量Q1M,…,Q6MStep S408, substituting the function expression Q 1 =f 1 (I i , U) to obtain the corresponding discharge capacity Q 1M , . . . , Q 6M when I=I i (i=1,2,...,6).

步骤S409,对步骤S408所得的离散数据进行插值,然后执行步骤S410。Step S409, perform interpolation on the discrete data obtained in step S408, and then execute step S410.

步骤S410,得出U=UM时,以放电电流I为自变量的放电容量的函数Q2=f2(UM,I),接着进入步骤S411。In step S410 , when U=UM, the discharge capacity function Q 2 =f 2 ( UM , I) with the discharge current I as an argument is obtained, and then enters step S411.

步骤S411,将I=IN代入Q2=f2(UM,I),计算得到相应的放电容量估算值Q=f2(UM,IN),执行步骤S412;Step S411, substituting I = IN into Q 2 =f 2 (U M , I), and calculating the corresponding estimated value of discharge capacity Q=f 2 (U M , I N ), and performing step S412;

步骤S412,输出放电容量估算值Q,最后进入步骤S413;Step S412, outputting the discharge capacity estimated value Q, and finally entering step S413;

步骤S413,输出计算得到的SOC值,蓄电池的放电深度(Depth of Discharge,DOD),为电池放电容量占其额定容量的百分比,荷电状态SOC=1-DOD,得到所述的蓄电池在测量端电压UM、测量放电电流IN状态下的SOC值。Step S413, output the calculated SOC value, the depth of discharge (Depth of Discharge, DOD) of the battery, which is the percentage of the battery discharge capacity to its rated capacity, and the state of charge SOC=1-DOD, to obtain the battery at the measuring end Voltage U M , measure the SOC value under the discharge current IN state.

电信电源维护规程规定:蓄电池每年应以实际负荷做一次核对性放电试验,每3年进行一次容量实验,到使用6年后每年做一次。根据蓄电池维护时所测量的数据,按照本发明所述的蓄电池SOC估算方法,能够对前次曲线函数进行修正,以克服因蓄电池老化等因素造成的SOC估算函数误差变大的问题。The telecommunications power supply maintenance regulations stipulate that: the battery should be subjected to a check discharge test with the actual load every year, a capacity test every 3 years, and a year after 6 years of use. According to the data measured during battery maintenance, according to the battery SOC estimation method of the present invention, the previous curve function can be corrected to overcome the problem that the error of the SOC estimation function becomes larger due to factors such as battery aging.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (10)

1. an evaluation method for storage battery charge state, is characterized in that, comprising:
Obtain multiple presence characteristic quantity data of accumulator, multiple presence characteristic quantity data of described accumulator comprise multiple terminal voltage discrete points data values of described accumulator, discharge current discrete points data value and discharge capacity discrete points data value;
According to described multiple terminal voltage discrete points data value, discharge current discrete points data value and discharge capacity discrete points data value, Newton interpolating method is adopted to obtain multiple with first function of the terminal voltage U discharge capacity Q that is independent variable, and multiple with second function of the discharge current I discharge capacity Q that is independent variable;
Measurement obtains the terminal voltage U of described accumulator as measuring junction voltage U m, measurement obtains the discharge current I of described accumulator as measurement discharge current I n;
Obtain in measuring junction voltage U according at least one first function and at least one the second function mwith measurement discharge current I nmeasurement discharge capacity estimated value under state;
The estimated value of corresponding state-of-charge is obtained according to described measurement discharge capacity estimated value.
2. the evaluation method of storage battery charge state according to claim 1, is characterized in that, the step of multiple presence characteristic quantity data of described acquisition accumulator, specifically comprises:
The charging requirement determined according to the battery types of described accumulator is filled with the electricity of described battery rating;
By described accumulator with the discharge-rate constant-current discharge of at least three kinds, under often kind of discharge-rate, make described battery discharging to multiple state-of-charges stage by stage;
Measure and preserve at least three the discharge current discrete points data values of described accumulator under each state-of-charge and at least three terminal voltage discrete points data values, and discharge capacity discrete points data value corresponding under described discharge current discrete points data value and terminal voltage discrete points data value assembled state.
3. the evaluation method of storage battery charge state according to claim 1, it is characterized in that, according to described multiple terminal voltage discrete points data value, discharge current discrete points data value and discharge capacity discrete points data value, Newton interpolating method is adopted to obtain multiple with first function of the terminal voltage U discharge capacity Q that is independent variable, and multiple with the step of second function of the discharge current I discharge capacity Q that is independent variable, specifically comprise:
Adopt Newton interpolating method to obtain multiple with first function of the terminal voltage U discharge capacity Q that is independent variable, specifically comprise:
To all R discharge current discrete points data value I i(i=1,2 ..., R), calculate with R the first function Q of the terminal voltage U discharge capacity Q that is independent variable 1=f 1(I i, U):
wherein, t is interpolation knot number, t>=3; U j(j=1,2 ..., t) be t described terminal voltage discrete points data value; f 1[U 1, U 2..., U j] be f 1at U 1, U 2..., U jon j-1 rank inequality; f 1(U j) be at discharge current discrete points data value I iwith terminal voltage discrete points data value U jdischarge capacity discrete points data value Q corresponding under assembled state ij;
Adopt Newton interpolating method to obtain multiple with second function of the discharge current I discharge capacity Q that is independent variable, specifically comprise:
To all T terminal voltage discrete points data value U j(j=1,2 ..., T), calculate with T the second function Q of the discharge current I discharge capacity Q that is independent variable 2=f 2(U j, I):
wherein, r is interpolation knot number, r>=3; I i(i=1,2 ..., r) be r described discharge current discrete points data value; f 2[I 1, I 2..., I i] be f 2at I 1, I 2..., I ion i-1 rank inequality; f 2(I i) be at discharge current discrete points data value I iwith terminal voltage discrete points data value U jdischarge capacity discrete points data value Q corresponding under assembled state ij.
4. the evaluation method of storage battery charge state according to claim 3, is characterized in that, described according at least one first function and at least one second function obtain in measuring junction voltage U mwith measurement discharge current I nthe step of the measurement discharge capacity estimated value under state, specifically comprises:
If described measuring junction voltage U mequal one of them terminal voltage discrete points data value U j(j=1,2 ..., T), then will measure discharge current I nsubstitute into corresponding second function Q 2=f 2(U j, I), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 2(U m, I n);
If described measurement discharge current I nequal one of them discharge current discrete points data value I i(i=1,2 ..., R), then by measuring junction voltage U msubstitute into corresponding first function Q 1=f 1(I i, U), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 1(I n, U m);
If described measuring junction voltage U mbe not equal to the terminal voltage discrete points data value U of any one jand measure discharge current I nbe not equal to the discharge current discrete points data value I of any one itime, by measuring junction voltage U msubstitute into the first function Q described in R 1=f 1(I i, U), try to achieve one group of R discrete data, described discrete data is discharge current discrete points data value I i, measuring junction voltage U mr discharge capacity value estimated value under state, carries out Newton interpolation to a described R discrete data, draws U=U mtime, the second function Q of the discharge capacity that is independent variable with discharge current I 2=f 2(U m, I), by I=I nthe second function Q described in substitution 2=f 2(U m, I), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 2(U m, I n).
5. the evaluation method of storage battery charge state according to claim 1, is characterized in that, also comprises: adopt battery condition testing circuit, detects the terminal voltage pressure reduction of battery, finds out the fail battery in described accumulator.
6. an estimating system for storage battery charge state, is characterized in that, comprising:
Characteristic quantity data acquisition module, for obtaining multiple presence characteristic quantity data of accumulator, multiple presence characteristic quantity data of described accumulator comprise multiple terminal voltage discrete points data values of described accumulator, discharge current discrete points data value and discharge capacity discrete points data value;
Function acquisition module, for according to described multiple terminal voltage discrete points data value, discharge current discrete points data value and discharge capacity discrete points data value, Newton interpolating method is adopted to obtain multiple with first function of the terminal voltage U discharge capacity Q that is independent variable, and multiple with second function of the discharge current I discharge capacity Q that is independent variable;
Measuring junction voltage and measure discharge current acquisition module, for measure obtain described accumulator terminal voltage U as measuring junction voltage U m, measurement obtains the discharge current I of described accumulator as measurement discharge current I n;
Measure discharge capacity estimated value acquisition module, for obtaining in measuring junction voltage U according at least one first function and at least one the second function mwith measurement discharge current I nmeasurement discharge capacity estimated value under state;
State-of-charge estimated value acquisition module, for obtaining the estimated value of corresponding state-of-charge according to described measurement discharge capacity estimated value.
7. the estimating system of storage battery charge state according to claim 6, is characterized in that, described characteristic quantity data acquisition module, specifically for:
The charging requirement determined according to the battery types of described accumulator is filled with the electricity of described battery rating;
By described accumulator with the discharge-rate constant-current discharge of at least three kinds, under often kind of discharge-rate, make described battery discharging to multiple state-of-charges stage by stage;
Measure and preserve at least three the discharge current discrete points data values of described accumulator under each state-of-charge and at least three terminal voltage discrete points data values, and discharge capacity discrete points data value corresponding under described discharge current discrete points data value and terminal voltage discrete points data value assembled state.
8. the estimating system of storage battery charge state according to claim 6, is characterized in that, described function acquisition module, specifically for:
Adopt Newton interpolating method to obtain multiple with first function of the terminal voltage U discharge capacity Q that is independent variable, specifically comprise:
To all R discharge current discrete points data value I i(i=1,2 ..., R), calculate with R the first function Q of the terminal voltage U discharge capacity Q that is independent variable 1=f 1(I i, U):
wherein, t is interpolation knot number, t>=3; U j(j=1,2 ..., t) be t described terminal voltage discrete points data value; f 1[U 1, U 2..., U j] be f 1at U 1, U 2..., U jon j-1 rank inequality; f 1(U j) be at discharge current discrete points data value I iwith terminal voltage discrete points data value U jdischarge capacity discrete points data value Q corresponding under assembled state ij;
Adopting Newton interpolating method to obtain multiple take discharge current as the second function of the discharge capacity of independent variable, specifically comprises:
To all T terminal voltage discrete points data value U j(j=1,2 ..., T), calculate with T the second function Q of the discharge current I discharge capacity Q that is independent variable 2=f 2(U j, I):
wherein, r is interpolation knot number, r>=3; I i(i=1,2 ..., r) be r described discharge current discrete points data value; f 2[I 1, I 2..., I i] be f 2at I 1, I 2..., I ion i-1 rank inequality; f 2(I i) be at discharge current discrete points data value I iwith terminal voltage discrete points data value U jdischarge capacity discrete points data value Q corresponding under assembled state ij.
9. the estimating system of storage battery charge state according to claim 6, is characterized in that, described measurement discharge capacity estimated value acquisition module, specifically for:
If described measuring junction voltage U mequal one of them terminal voltage discrete points data value U j(j=1,2 ..., T), then will measure discharge current I nsubstitute into corresponding second function Q 2=f 2(U j, I), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 2(U m, I n);
If described measurement discharge current I nequal one of them discharge current discrete points data value I i(i=1,2 ..., R), then by measuring junction voltage U msubstitute into corresponding first function Q 1=f 1(I i, U), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 1(I n, U m);
If described measuring junction voltage U mbe not equal to the terminal voltage discrete points data value U of any one jand measure discharge current I nbe not equal to the discharge current discrete points data value I of any one itime, by measuring junction voltage U msubstitute into the first function Q described in R 1=f 1(I i, U), try to achieve one group of R discrete data, described discrete data is discharge current discrete points data value I i, measuring junction voltage U mr discharge capacity value estimated value under state, carries out Newton interpolation to a described R discrete data, draws U=U mtime, the second function Q of the discharge capacity that is independent variable with discharge current I 2=f 2(U m, I), by I=I nthe second function Q described in substitution 2=f 2(U m, I), obtain accumulator in measuring junction voltage U m, measure discharge current I nmeasurement discharge capacity estimated value Q=f under state 2(U m, I n).
10. the estimating system of storage battery charge state according to claim 6, it is characterized in that, also comprise: fail battery searches module, for adopting battery condition testing circuit, detect the terminal voltage pressure reduction of battery, find out the fail battery in described accumulator.
CN201310136504.1A 2013-04-18 2013-04-18 A kind of evaluation method of storage battery charge state and system Active CN103217651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310136504.1A CN103217651B (en) 2013-04-18 2013-04-18 A kind of evaluation method of storage battery charge state and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310136504.1A CN103217651B (en) 2013-04-18 2013-04-18 A kind of evaluation method of storage battery charge state and system

Publications (2)

Publication Number Publication Date
CN103217651A CN103217651A (en) 2013-07-24
CN103217651B true CN103217651B (en) 2015-09-23

Family

ID=48815610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310136504.1A Active CN103217651B (en) 2013-04-18 2013-04-18 A kind of evaluation method of storage battery charge state and system

Country Status (1)

Country Link
CN (1) CN103217651B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375085B (en) * 2013-08-13 2019-03-26 中兴通讯股份有限公司 A kind of method, apparatus and terminal detecting battery capacity
CN104569844B (en) * 2014-12-31 2017-06-16 浙江大学宁波理工学院 Valve-regulated sealed lead-acid batteries health status monitoring method
CN106680724A (en) * 2016-12-13 2017-05-17 中国电力科学研究院 Intelligent ammeter clock battery electric quantity rapid detection method and system
CN107192957A (en) * 2017-05-19 2017-09-22 燕山大学 Twin-well model charge state estimation method based on rate capability and recovery characteristics
CN107831442A (en) * 2017-10-18 2018-03-23 苏州协鑫集成储能科技有限公司 Long-range estimation SOC method, apparatus, storage medium and computer equipment
CN107843852B (en) * 2017-12-13 2019-10-11 中国船舶重工集团公司第七一九研究所 A method of off-line data is obtained to estimate battery united state
CN111044924B (en) * 2019-12-31 2022-01-04 中国科学院电工研究所 A method and system for determining the remaining capacity of a battery under full operating conditions
CN111736084B (en) * 2020-06-29 2022-05-20 三峡大学 Valve-regulated lead-acid storage battery health state prediction method based on improved LSTM neural network
CN112834935A (en) * 2020-12-31 2021-05-25 东软睿驰汽车技术(沈阳)有限公司 Method and device for obtaining open circuit voltage of battery cell
CN116613864B (en) * 2023-07-17 2023-10-20 安徽博诺思信息科技有限公司 Online nuclear capacity inspection method and device for storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246385A (en) * 2008-10-10 2011-11-16 迪亚能源股份有限公司 Method and apparatus for determining state of charge of a battery
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576545B2 (en) * 2006-10-18 2009-08-18 Honeywell International Inc. Lithium-ion battery prognostic testing and process
JP5493657B2 (en) * 2009-09-30 2014-05-14 新神戸電機株式会社 Storage battery device and battery state evaluation device and method for storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246385A (en) * 2008-10-10 2011-11-16 迪亚能源股份有限公司 Method and apparatus for determining state of charge of a battery
CN102854470A (en) * 2012-08-31 2013-01-02 哈尔滨工业大学 Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Estimation of the state-of-charge of lead–acid batteries used in electric scooters;Chyuan-Yow Tseng 等;《Journal of Power Sources》;20050412;第282–287页 *
电动汽车动力电池变流放电特性与荷电状态实时估计;裴锋 等;《中国电机工程学报》;20050531;第25卷(第9期);第164-168页 *

Also Published As

Publication number Publication date
CN103217651A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103217651B (en) A kind of evaluation method of storage battery charge state and system
CN108717164B (en) SOC calibration method and system for battery
CN104392080B (en) A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method
KR101248623B1 (en) Accumulator device, and soc evaluation device and method thereof
CN111239629B (en) A state interval division method for echelon utilization of retired lithium batteries
KR102550371B1 (en) Method of Online Detection of Soft Internal Short Circuit in Lithium-Ion Batteries at Various Standard Charging Ranges and Apparatus thereof
CN110376536B (en) SOH detection method and device for battery system, computer equipment and storage medium
CN105891730B (en) A kind of computational methods of automobile power cell capacity
CN113777501B (en) SOH estimation method of battery module
US20150226811A1 (en) Apparatus and method for estimating internal resistance of battery pack
CN104950263B (en) Automobile power cell SOC evaluation method
CN107748336A (en) The state-of-charge On-line Estimation method and system of lithium ion battery
CN105015360A (en) SOF monitoring method of vehicle power battery
CN112305426A (en) A Power State Estimation System for Li-ion Battery under Multiple Constraints
CN105866700A (en) Lithium ion battery quick screening method
CN116930794A (en) Battery capacity updating method and device, electronic equipment and storage medium
CN108090244B (en) A Modeling Method for Parallel Lithium-ion Battery System
CN114695990A (en) Capacity balance judgment method, device, equipment and medium of battery system
CN106004481A (en) SOH value estimation method for battery pack of hybrid electric vehicle
Ananto et al. The state of health of Li-Po batteries based on the battery's parameters and a fuzzy logic system
Li et al. A high-fidelity hybrid lithium-ion battery model for SOE and runtime prediction
Wu et al. State-of-charge and state-of-health estimating method for lithium-ion batteries
Chen et al. Performance of inconsistency in lithium-ion battery packs for battery energy storage systems
Dai et al. An overview of peak power benchmark methods for lithium-ion battery
Raman et al. Computationally efficient and accurate modeling of Li-ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant