[go: up one dir, main page]

CN103208604B - Electrospinning composite diaphragm with thermal hole sealing function - Google Patents

Electrospinning composite diaphragm with thermal hole sealing function Download PDF

Info

Publication number
CN103208604B
CN103208604B CN201310085349.5A CN201310085349A CN103208604B CN 103208604 B CN103208604 B CN 103208604B CN 201310085349 A CN201310085349 A CN 201310085349A CN 103208604 B CN103208604 B CN 103208604B
Authority
CN
China
Prior art keywords
low
melting
nanofibers
point polymer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310085349.5A
Other languages
Chinese (zh)
Other versions
CN103208604A (en
Inventor
孙道恒
邱小椿
吴德志
黄少华
占瞻
何广奇
何杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201310085349.5A priority Critical patent/CN103208604B/en
Publication of CN103208604A publication Critical patent/CN103208604A/en
Application granted granted Critical
Publication of CN103208604B publication Critical patent/CN103208604B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

一种具有热闭孔功能的电纺复合隔膜,涉及锂离子电池。提供可实现二次热闭孔功能,避免因热惯性的作用导致锂离子电池正负电极的直接接触,显著提高锂离子电池安全性的一种具有热闭孔功能的电纺复合隔膜。所述具有热闭孔功能的电纺复合隔膜为无纺布结构,包括聚酰亚胺纳米纤维和低熔点聚合物纳米纤维;所述低熔点聚合物纳米纤维为含双马来酰亚胺和偶氮二异丁腈的低熔点聚合物纳米纤维,聚酰亚胺纳米纤维与低熔点聚合物纳米纤维杂序交错。所述具有热闭孔功能的电纺复合隔膜的厚度可为10~50μm。所述低熔点聚合物纳米纤维的熔点可为90~110℃。所述低熔点聚合物纳米纤维的成分可为乙烯-醋酸乙烯酯共聚物、聚丁二酸乙二醇酯等。

An electrospun composite separator with a heat-closing function relates to a lithium-ion battery. It provides an electrospun composite separator with thermal closing function that can realize secondary thermal closing function, avoid direct contact of positive and negative electrodes of lithium ion battery due to thermal inertia, and significantly improve the safety of lithium ion battery. The electrospun composite diaphragm with heat-closing function is a non-woven fabric structure, including polyimide nanofibers and low-melting polymer nanofibers; the low-melting polymer nanofibers contain bismaleimide and Azobisisobutyronitrile low-melting-point polymer nanofibers, polyimide nanofibers and low-melting-point polymer nanofibers are interlaced in disorder. The thickness of the electrospun composite membrane with heat-closing function may be 10-50 μm. The melting point of the low-melting point polymer nanofiber may be 90-110°C. The composition of the low-melting point polymer nanofibers can be ethylene-vinyl acetate copolymer, polyethylene succinate and the like.

Description

一种具有热闭孔功能的电纺复合隔膜An Electrospun Composite Separator with Thermal Closure Function

技术领域technical field

本发明涉及锂离子电池,尤其是涉及采用电纺法制备的一种具有热闭孔功能的电纺复合隔膜。The invention relates to a lithium-ion battery, in particular to an electrospun composite separator with a heat-closing function prepared by an electrospinning method.

背景技术Background technique

锂离子电池因具有能量密度高、功率密度高、使用寿命长以及对环境友好等特点被广泛应用于消费类电子产品中,然而锂离子电池所存在的安全隐患严重阻碍了锂离子电池应用范围的扩展,如混合动力汽车、电动汽车等。热失控是造成电池安全隐患的主要原因,而热失控主要是由于过充、内部或外部短路或者是高热冲击等造成的。Lithium-ion batteries are widely used in consumer electronics products due to their high energy density, high power density, long service life, and environmental friendliness. However, the potential safety hazards of lithium-ion batteries have seriously hindered the application of lithium-ion batteries. Extensions, such as hybrid vehicles, electric vehicles, etc. Thermal runaway is the main cause of battery safety hazards, and thermal runaway is mainly caused by overcharging, internal or external short circuit or high thermal shock.

目前解决锂离子电池安全性的手段主要从电池电极材料、电解液、电解液添加剂以及隔膜方面进行,其中通过隔膜实现电池的高安全性是当前研究的重点,而具有热闭孔功能的隔膜是确保电池安全性的最重要的手段。中国专利CN101794870A和CN102544414A均公开了利用无机颗粒(如氧化铝)的耐高温、化学性能稳定等特性来提高隔膜耐热稳定性,它在一定程度上提高了电池的安全性,但不涉及热闭孔问题。目前商业隔膜主要有PP、PE以及PP/PE/PP隔膜,其热闭孔温度分别约为165℃、135℃、135℃。为了提高隔膜的安全性,专利JP7304110A、JP8250097A、GB2298817A以及US5691007A分别公开了不同制作热闭孔隔膜的工艺并实现了热闭孔功能,热闭孔温度分别为135~140℃、124℃、135℃和132℃。文献A review on the keyissues for lithium-ion battery management in electric vehicles指出大部分电池充放电时的工作温度范围分别为-20~55℃和0~45℃,当电池温度上升至90~120℃时,固体电解质界面膜(SEI)开始放热分解;当温度超过120℃时,SEI膜完全瓦解,电极和电解液直接接触并产生副反应,随着温度的升高,电解液、电极分解,最终导致热失控,所以隔膜热闭孔温度应设计在90~120℃范围以内;专利US6080507A公开了一种热闭孔温度为115℃的三层隔膜制作工艺,指出隔膜的热闭孔温度应低于120℃,最好控制在95~115℃范围内。At present, the means to solve the safety of lithium-ion batteries are mainly carried out from the aspects of battery electrode materials, electrolytes, electrolyte additives and diaphragms. Among them, achieving high safety of batteries through diaphragms is the focus of current research, and diaphragms with thermal closure function are The most important means of ensuring battery safety. Chinese patents CN101794870A and CN102544414A both disclose the use of high temperature resistance and stable chemical properties of inorganic particles (such as alumina) to improve the thermal stability of the separator, which improves the safety of the battery to a certain extent, but does not involve thermal closure. hole problem. At present, commercial separators mainly include PP, PE and PP/PE/PP separators, and their thermal closing temperatures are about 165°C, 135°C, and 135°C, respectively. In order to improve the safety of the diaphragm, patents JP7304110A, JP8250097A, GB2298817A and US5691007A respectively disclose different processes for making thermally closed cell diaphragms and realize the thermally closed cell function. The thermally closed cell temperatures are 135-140°C, 124°C, and 135°C respectively. and 132°C. Literature A review on the key issues for lithium-ion battery management in electric vehicles pointed out that the operating temperature ranges of most batteries during charging and discharging are -20~55℃ and 0~45℃ respectively. When the battery temperature rises to 90~120℃, The solid electrolyte interface film (SEI) begins to decompose exothermicly; when the temperature exceeds 120°C, the SEI film completely disintegrates, and the electrodes and the electrolyte are in direct contact with side reactions, and as the temperature rises, the electrolyte and electrodes decompose, eventually leading to Thermal runaway, so the thermal closure temperature of the diaphragm should be designed within the range of 90-120°C; patent US6080507A discloses a three-layer diaphragm manufacturing process with a thermal closure temperature of 115°C, pointing out that the thermal closure temperature of the diaphragm should be lower than 120 °C, preferably controlled within the range of 95-115 °C.

上述专利均在一定程度上提高了隔膜的安全性,但由于热惯性的作用,电池内部的温度在热闭孔后仍然有可能继续上升并超过隔膜成分的熔点,使得隔膜熔化导致锂离子电池正负电极的直接接触,使得电池内部迅速升温产生热失控,并最终有可能引发爆炸。The above-mentioned patents have improved the safety of the diaphragm to a certain extent, but due to the effect of thermal inertia, the temperature inside the battery may continue to rise after thermal closure and exceed the melting point of the diaphragm components, causing the diaphragm to melt and cause the lithium-ion battery to malfunction. The direct contact of the negative electrode makes the internal temperature of the battery rise rapidly to cause thermal runaway, and may eventually cause an explosion.

发明内容Contents of the invention

本发明的目的在于提供可实现二次热闭孔功能,避免因热惯性的作用导致锂离子电池正负电极的直接接触,显著提高锂离子电池安全性的一种具有热闭孔功能的电纺复合隔膜。The purpose of the present invention is to provide an electrospun electrospun cell with a thermal closed cell function that can realize the secondary thermal closed cell function, avoid direct contact between the positive and negative electrodes of the lithium ion battery due to the effect of thermal inertia, and significantly improve the safety of the lithium ion battery. Composite diaphragm.

所述具有热闭孔功能的电纺复合隔膜为无纺布结构,包括聚酰亚胺(PI)纳米纤维和低熔点聚合物纳米纤维;所述低熔点聚合物纳米纤维为含双马来酰亚胺(BMI)和偶氮二异丁腈(AIBN)的低熔点聚合物纳米纤维,聚酰亚胺(PI)纳米纤维与低熔点聚合物纳米纤维杂序交错。The electrospun composite membrane with heat-closing function is a non-woven structure, including polyimide (PI) nanofibers and low-melting polymer nanofibers; the low-melting polymer nanofibers contain bismaleyl Low-melting point polymer nanofibers of imide (BMI) and azobisisobutyronitrile (AIBN), polyimide (PI) nanofibers interleaved with low-melting point polymer nanofibers.

所述具有热闭孔功能的电纺复合隔膜的厚度可为10~50μm。The thickness of the electrospun composite membrane with heat-closing function may be 10-50 μm.

所述低熔点聚合物纳米纤维的熔点可为90~110℃。所述低熔点聚合物纳米纤维的成分可为乙烯-醋酸乙烯酯共聚物、聚丁二酸乙二醇酯等。The melting point of the low-melting point polymer nanofiber may be 90-110°C. The composition of the low-melting point polymer nanofibers can be ethylene-vinyl acetate copolymer, polyethylene succinate and the like.

按质量比,所述聚酰亚胺(PI)纳米纤维含量与低熔点聚合物纳米纤维含量的比例可为(3~1)∶1;按质量比,所述双马来酰亚胺(BMI)与偶氮二异丁腈(AIBN)含量之和与所述低熔点聚合物纳米纤维含量的比例可为15%~25%,其中双马来酰亚胺(BMI)含量与偶氮二异丁腈(AIBN)含量的比例可为(60~40):1。According to the mass ratio, the ratio of the polyimide (PI) nanofiber content to the low melting point polymer nanofiber content can be (3-1): 1; according to the mass ratio, the bismaleimide (BMI ) and azobisisobutyronitrile (AIBN) content and the ratio of the low melting point polymer nanofiber content can be 15% to 25%, wherein bismaleimide (BMI) content and azobisisobutyronitrile The ratio of butyronitrile (AIBN) content can be (60-40):1.

与现有技术比较,本发明的工作原理及有益效果如下:Compared with prior art, working principle of the present invention and beneficial effect are as follows:

本发明制备时,将各成分按比例配成电纺溶液,采用现有电纺装置,通过静电纺丝法制备即可得到。电纺复合隔膜的所需厚度可通过热压处理获得。本发明作为锂离子电池隔膜,是利用低熔点聚合物纳米纤维的熔化实现隔膜的第一次热闭孔功能,第一次热闭孔后形成聚合物绝缘层,温度继续升高后,该聚合物绝缘层熔化,BMI与AIBN则完全释放于锂离子电池电解液中,形成新匀相电解液体系,低熔点聚合物绝缘层熔化后所剩的PI纤维和BMI在AIBN的诱导下可原位聚合,形成固态绝缘体,从而实现隔膜的第二次热闭孔功能。此外,PI纳米纤维和BMI单体原位聚合后所得到的PI高聚物均为高温稳定性物质,是实现电池安全性的重要保证。由于电池内部温度上升将会使得BMI单体原位聚合后所得到的PI高聚物更加稳定,因此即使存在热惯性也不会破坏由新匀相电解液体系固化后形成的固态绝缘体。During the preparation of the present invention, each component is prepared in proportion to an electrospinning solution, which can be obtained by using an existing electrospinning device and preparing by an electrospinning method. The desired thickness of the electrospun composite separator can be obtained by hot-pressing treatment. The present invention, as a lithium-ion battery diaphragm, utilizes the melting of low-melting-point polymer nanofibers to realize the first heat-closing function of the diaphragm. After the first heat-closed cells, a polymer insulating layer is formed. After the temperature continues to rise, the polymerization The insulating layer of the material melts, and the BMI and AIBN are completely released in the lithium-ion battery electrolyte to form a new homogeneous electrolyte system. The remaining PI fibers and BMI after the melting of the low-melting polymer insulating layer can be in situ Polymerize to form a solid insulator, thereby realizing the second thermal closing function of the diaphragm. In addition, the PI polymers obtained after in-situ polymerization of PI nanofibers and BMI monomers are all high-temperature stable substances, which are an important guarantee for battery safety. Since the temperature rise inside the battery will make the PI polymer obtained after the in-situ polymerization of the BMI monomer more stable, even if there is thermal inertia, it will not destroy the solid insulator formed by the solidification of the new homogeneous electrolyte system.

附图说明Description of drawings

图1为本发明所述电纺复合隔膜的纤维组织示意图。Fig. 1 is a schematic diagram of the fiber structure of the electrospun composite membrane of the present invention.

图2为本发明所述电纺复合隔膜使用时的二次热闭孔过程示意图。Fig. 2 is a schematic diagram of the secondary thermal cell closure process when the electrospun composite membrane of the present invention is used.

图3为本发明所述BMI单体聚合原理示意图。Fig. 3 is a schematic diagram of the polymerization principle of the BMI monomer of the present invention.

具体实施方式Detailed ways

参见图1,所述电纺复合隔膜为无纺布结构,电纺复合隔膜包括聚酰亚胺(PI)纳米纤维15和低熔点聚合物纳米纤维16;所述低熔点聚合物纳米纤维16为含双马来酰亚胺(BMI)和偶氮二异丁腈(AIBN)的低熔点聚合物纳米纤维,聚酰亚胺(PI)纳米纤维15与低熔点聚合物纳米纤维16杂序交错。Referring to Fig. 1, the electrospun composite diaphragm is a non-woven fabric structure, and the electrospun composite diaphragm includes polyimide (PI) nanofibers 15 and low melting point polymer nanofibers 16; the low melting point polymer nanofibers 16 are Low-melting-point polymer nanofibers containing bismaleimide (BMI) and azobisisobutyronitrile (AIBN), polyimide (PI) nanofibers 15 and low-melting-point polymer nanofibers 16 are interlaced in a heterogeneous order.

所述电纺复合隔膜经电纺装置制备后再经后续热压处理,使膜厚度为10~50um。所述低熔点聚合物纳米纤维16的熔点为90~110℃。The electrospun composite membrane is prepared by an electrospinning device and then subjected to subsequent hot-pressing treatment, so that the thickness of the membrane is 10-50um. The melting point of the low-melting point polymer nanofibers 16 is 90-110°C.

按质量比,所述聚酰亚胺(PI)纳米纤维含量与低熔点聚合物纳米纤维含量的比例为(3~1)∶1;按质量百分比,所述双马来酰亚胺(BMI)与偶氮二异丁腈(AIBN)含量之和与所述低熔点聚合物纳米纤维含量的比例为15%~25%,其中双马来酰亚胺(BMI)含量与偶氮二异丁腈(AIBN)含量的质量比,为(60~40)∶1。According to the mass ratio, the ratio of the polyimide (PI) nanofiber content to the low melting point polymer nanofiber content is (3-1): 1; according to the mass percentage, the bismaleimide (BMI) The ratio of the sum of the content of azobisisobutyronitrile (AIBN) and the content of the low-melting point polymer nanofiber is 15% to 25%, wherein the content of bismaleimide (BMI) is the same as that of azobisisobutyronitrile The mass ratio of (AIBN) content is (60-40):1.

参见图2,锂离子电池主要由正极、隔膜/电解液以及负极组成。在图2中,标记21为电解液体系;标记22为电纺复合隔膜;标记23为第一次热闭孔后形成的聚合物绝缘层;标记24为聚合物绝缘层熔化后BMI与AIBN完全释放于电解液后形成的新匀相电解液体系;标记25为低熔点聚合物绝缘层熔化后所剩的PI纤维层;标记26为BMI在AIBN的诱导下原位聚合后形成的固态绝缘体。Referring to Figure 2, a lithium-ion battery is mainly composed of a positive electrode, a separator/electrolyte, and a negative electrode. In Fig. 2, mark 21 is the electrolyte system; mark 22 is the electrospun composite separator; mark 23 is the polymer insulation layer formed after the first thermal closure; mark 24 is the complete BMI and AIBN after the polymer insulation layer is melted. The new homogeneous electrolyte system formed after being released in the electrolyte; 25 is the PI fiber layer left after the melting of the low-melting polymer insulation layer; 26 is the solid insulator formed after the in-situ polymerization of BMI induced by AIBN.

复合电纺隔膜22工作时的二次热闭孔过程如下所述:The secondary thermal closure process of the composite electrospun diaphragm 22 is as follows:

1)当锂离子电池在正常工作环境下充放电时,电池内部温度远低于90℃,锂离子内部电解液体系21正常(参见图2(a),标记22为电纺复合隔膜)。1) When the lithium-ion battery is charged and discharged under normal working conditions, the internal temperature of the battery is much lower than 90°C, and the internal electrolyte system 21 of the lithium-ion is normal (see Figure 2(a), marked 22 is the electrospun composite separator).

2)当温度上升到90℃~110℃时,低熔点聚合物纳米纤维软化并熔化,释放部分BMI和AIBN,同时在熔化过程中吸热,初步减缓电池内部温度上升;低熔点聚合物纳米纤维熔化后堵塞未熔化的PI纳米纤维之间的空隙,形成聚合物绝缘层23,隔绝离子传输(即第一次热闭孔)(参见图2(b),标记21为电解液体系)。2) When the temperature rises to 90 ℃ ~ 110 ℃, the low melting point polymer nanofibers soften and melt, release part of BMI and AIBN, and absorb heat during the melting process, initially slowing down the internal temperature rise of the battery; low melting point polymer nanofibers After melting, the gaps between the unmelted PI nanofibers are blocked to form a polymer insulating layer 23, which isolates ion transmission (that is, the first thermal closure) (see Figure 2(b), marked 21 is the electrolyte system).

3)当温度由于热惯性等原因继续上升但不超过120℃时,由低熔点聚合物形成的绝缘层被破坏,BMI和AIBN得到完全释放,形成新匀相电解液体系24(参图2(c),标记25为低熔点聚合物绝缘层熔化后所剩的PI纤维层)。3) When the temperature continues to rise due to thermal inertia and other reasons but does not exceed 120 °C, the insulating layer formed by the low melting point polymer is destroyed, BMI and AIBN are completely released, and a new homogeneous electrolyte system 24 is formed (see Figure 2 ( c), mark 25 is the PI fiber layer left after the low-melting point polymer insulating layer is melted).

4)当温度继续上升超过120℃后,BMI单体在AIBN引发剂的作用下原位聚合,使新匀相电解液体系24由液态转化为固态,实现第二次隔绝离子传输(即第二次热闭孔)(参见图2(d)),标记26为BMI在AIBN的诱导下原位聚合后形成的固态绝缘体;BMI单体聚合原理如图3所示。4) When the temperature continues to rise above 120°C, the BMI monomer is polymerized in situ under the action of the AIBN initiator, so that the new homogeneous electrolyte system 24 is transformed from a liquid state to a solid state, realizing the second isolation of ion transport (that is, the second Subthermal closed cell) (see Figure 2(d)), marked 26 is a solid insulator formed after in situ polymerization of BMI induced by AIBN; the principle of BMI monomer polymerization is shown in Figure 3.

下面给出制备电纺复合隔膜的1个具体实施例:A specific example of preparing an electrospun composite diaphragm is given below:

将聚酰亚胺粉末溶于二甲基乙酰胺溶剂中,并控制溶液浓度为20wt%。选择熔点在90~100℃的聚氧化乙烯粉末(PEO)作为低熔点聚合物,将12wt%PEO粉末、3wt%BMI以及0.05wt%AIBN一起溶于去离子水和无水乙醇的混合溶剂(去离子水与无水乙醇的质量比为3∶1)中,搅拌均匀制得待电纺溶液。然后利用现有电纺装置可制备出所述电纺复合隔膜,在制备过程中二甲基乙酰胺溶剂完全挥发。通过控制电纺装置的步进电机可实现收集装置在Y方向的往复运动以及X方向的间歇性直线运动,从而可获得均匀大面积的电纺复合隔膜(复合纤维膜)。通过控制电纺装置的供液泵的供液速率可实现对电纺复合隔膜(复合纤维膜)中PI纳米纤维与PEO复合纳米纤维的质量比为3:1的精确控制。将制得的电纺复合隔膜通过5MPa的压力热压后最终获得25μm厚的复合电纺隔膜。The polyimide powder was dissolved in dimethylacetamide solvent, and the concentration of the solution was controlled to be 20wt%. Polyethylene oxide powder (PEO) with a melting point of 90-100°C was selected as a low-melting point polymer, and 12wt% PEO powder, 3wt% BMI and 0.05wt% AIBN were dissolved in a mixed solvent of deionized water and absolute ethanol (to The mass ratio of ionized water to absolute ethanol is 3:1), and stirred evenly to prepare the electrospinning solution. Then, the electrospun composite membrane can be prepared by using the existing electrospinning device, and the dimethylacetamide solvent is completely volatilized during the preparation process. By controlling the stepping motor of the electrospinning device, the reciprocating motion of the collection device in the Y direction and the intermittent linear motion in the X direction can be realized, so that a uniform and large-area electrospun composite membrane (composite fiber membrane) can be obtained. By controlling the liquid supply rate of the liquid supply pump of the electrospinning device, the mass ratio of PI nanofibers to PEO composite nanofibers in the electrospun composite membrane (composite fiber membrane) can be precisely controlled to be 3:1. After the prepared electrospun composite separator was hot-pressed at a pressure of 5 MPa, a composite electrospun separator with a thickness of 25 μm was finally obtained.

Claims (3)

1.一种具有热闭孔功能的电纺复合隔膜,其特征在于所述电纺复合隔膜为无纺布结构,电纺复合隔膜包括聚酰亚胺纳米纤维和低熔点聚合物纳米纤维;所述低熔点聚合物纳米纤维为含双马来酰亚胺和偶氮二异丁腈的低熔点聚合物纳米纤维,聚酰亚胺纳米纤维与低熔点聚合物纳米纤维杂序交错;1. An electrospun composite diaphragm with heat-closing function is characterized in that said electrospun composite diaphragm is a non-woven fabric structure, and the electrospun composite diaphragm comprises polyimide nanofibers and low-melting polymer nanofibers; The low-melting-point polymer nanofibers are low-melting-point polymer nanofibers containing bismaleimide and azobisisobutyronitrile, and polyimide nanofibers and low-melting-point polymer nanofibers are interlaced in disorder; 所述低熔点聚合物纳米纤维的熔点为90~110℃;The melting point of the low-melting point polymer nanofiber is 90-110°C; 按质量比,所述聚酰亚胺纳米纤维含量与低熔点聚合物纳米纤维含量的比例为3~1∶1;按质量比,所述双马来酰亚胺与偶氮二异丁腈含量之和与所述低熔点聚合物纳米纤维含量的比例为15%~25%,其中双马来酰亚胺含量与偶氮二异丁腈含量的比例为60~40∶1。According to the mass ratio, the ratio of the polyimide nanofiber content to the low melting point polymer nanofiber content is 3 to 1:1; according to the mass ratio, the bismaleimide and azobisisobutyronitrile content The ratio of the sum to the content of the low melting point polymer nanofiber is 15%-25%, wherein the ratio of the content of bismaleimide to the content of azobisisobutyronitrile is 60-40:1. 2.如权利要求1所述的一种具有热闭孔功能的电纺复合隔膜,其特征在于所述电纺复合隔膜的厚度为10~50μm。2 . The electrospun composite membrane with thermal closure function according to claim 1 , characterized in that the thickness of the electrospun composite membrane is 10-50 μm. 3 . 3.如权利要求1所述的一种具有热闭孔功能的电纺复合隔膜,其特征在于所述低熔点聚合物纳米纤维的成分为乙烯-醋酸乙烯酯共聚物或聚丁二酸乙二醇酯。3. A kind of electrospun composite diaphragm with thermal closure function as claimed in claim 1, it is characterized in that the composition of described low melting point polymer nanofiber is ethylene-vinyl acetate copolymer or polyethylene succinate alcohol esters.
CN201310085349.5A 2013-03-18 2013-03-18 Electrospinning composite diaphragm with thermal hole sealing function Expired - Fee Related CN103208604B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310085349.5A CN103208604B (en) 2013-03-18 2013-03-18 Electrospinning composite diaphragm with thermal hole sealing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310085349.5A CN103208604B (en) 2013-03-18 2013-03-18 Electrospinning composite diaphragm with thermal hole sealing function

Publications (2)

Publication Number Publication Date
CN103208604A CN103208604A (en) 2013-07-17
CN103208604B true CN103208604B (en) 2015-06-03

Family

ID=48755750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310085349.5A Expired - Fee Related CN103208604B (en) 2013-03-18 2013-03-18 Electrospinning composite diaphragm with thermal hole sealing function

Country Status (1)

Country Link
CN (1) CN103208604B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469488A (en) * 2013-09-29 2013-12-25 天津工业大学 Preparation method of reinforced electrostatic spinning nano-fiber lithium-ion battery separator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103541149B (en) * 2013-08-29 2017-04-05 天津工业大学 A kind of method for strengthening electrostatic spinning nano fiber film
CN103824988B (en) * 2014-02-24 2016-05-04 东华大学 A kind of composite nano fiber lithium battery diaphragm and preparation method thereof
CN108666506A (en) * 2018-05-07 2018-10-16 苏州睿烁环境科技有限公司 A kind of lithium battery diaphragm and preparation method thereof with compound resin
CN112751136A (en) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 Lithium ion battery diaphragm with staggered fiber heterosequence and preparation method thereof
CN111933879A (en) * 2020-07-21 2020-11-13 清华大学 Lithium ion battery
CN114079076B (en) * 2020-08-11 2024-07-30 北京小米移动软件有限公司 Battery module manufacturing process, battery module and electronic equipment
CN114566760A (en) * 2020-11-27 2022-05-31 中国石油化工股份有限公司 Lithium ion battery diaphragm containing polymer electrospun fibers and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584077A (en) * 2007-01-16 2009-11-18 株式会社Lg化学 Electrolyte comprising eutectic mixture and secondary battery comprising the same
CN102544413A (en) * 2010-12-22 2012-07-04 财团法人工业技术研究院 Battery separator, method for manufacturing same, and secondary battery using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176975C (en) * 2002-12-27 2004-11-24 中国科学院长春应用化学研究所 Preparation method of castable polyimide
KR101091228B1 (en) * 2008-12-30 2011-12-07 주식회사 엘지화학 Separator having a porous coating layer and an electrochemical device having the same
WO2011162528A2 (en) * 2010-06-21 2011-12-29 Kolon Industries, Inc. Porous nanoweb and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101584077A (en) * 2007-01-16 2009-11-18 株式会社Lg化学 Electrolyte comprising eutectic mixture and secondary battery comprising the same
CN102544413A (en) * 2010-12-22 2012-07-04 财团法人工业技术研究院 Battery separator, method for manufacturing same, and secondary battery using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469488A (en) * 2013-09-29 2013-12-25 天津工业大学 Preparation method of reinforced electrostatic spinning nano-fiber lithium-ion battery separator

Also Published As

Publication number Publication date
CN103208604A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN103208604B (en) Electrospinning composite diaphragm with thermal hole sealing function
EP2689484B1 (en) Battery separator and method for preparing the same
US9431643B2 (en) Separator of lithium-ion-battery preparation and method thereof
CN103824988B (en) A kind of composite nano fiber lithium battery diaphragm and preparation method thereof
CN102969471B (en) A kind of high-temperature resistant aromatic polysulfonamide base lithium ion battery diaphragm
CN102623658B (en) Diaphragm and preparation method thereof, and lithium ion battery
WO2020181681A1 (en) Hybrid solid-liquid electrolyte lithium storage battery
CN104140502B (en) A kind of lithium ion battery separator binding agent, preparation method and use the barrier film of this binding agent
Gong et al. Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries
CN103147224A (en) Polyvinylidene-fluoride-based composite fibrous membrane, preparation method and application thereof
CN104362289A (en) Lithium ion battery pole piece provided with inorganic isolating layers, battery comprising the pole piece and preparation method for pole piece
CN102522516A (en) Asymmetric composite diaphragm for lithium ion secondary cell and preparation method thereof
CN105070870A (en) Preparation method and application of polymer-lignin composite material fibre membrane
CN103102717A (en) Water-based ceramic coating for lithium ion battery and application thereof
CN106328865A (en) Separator and lithium ion secondary battery
JP2015506060A (en) Method for manufacturing separator for lithium secondary battery, separator manufactured by the method, and lithium secondary battery including the same
CN105304848A (en) Lithium secondary battery
CN104538577A (en) Composite diaphragm and preparation method thereof
TWI590512B (en) Separator and electrode assembly of lithium secondary battery
JP2012059405A (en) Nonaqueous electrolyte battery
CN109841785A (en) A kind of battery diaphragm and preparation method thereof and the lithium ion battery comprising the diaphragm
CN102780032A (en) Polymer solid electrolyte, method of production thereof, and lithium ion secondary battery
CN103113607B (en) Preparation method of microporous polymer diaphragm with high-temperature self-enhancing mechanism
CN106848162A (en) Secondary battery
CN104577013A (en) Water-based ceramic diaphragm slurry and application thereof in lithium ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 363000 the southern tip of Xiamen University Zhangzhou campus, Zhangzhou, Fujian

Patentee after: XIAMEN University

Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422

Patentee before: XIAMEN University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150603