[go: up one dir, main page]

CN103199320A - Method for recycling nickel-cobalt-manganese ternary anode material - Google Patents

Method for recycling nickel-cobalt-manganese ternary anode material Download PDF

Info

Publication number
CN103199320A
CN103199320A CN2013101040228A CN201310104022A CN103199320A CN 103199320 A CN103199320 A CN 103199320A CN 2013101040228 A CN2013101040228 A CN 2013101040228A CN 201310104022 A CN201310104022 A CN 201310104022A CN 103199320 A CN103199320 A CN 103199320A
Authority
CN
China
Prior art keywords
cobalt
nickel
manganese
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101040228A
Other languages
Chinese (zh)
Other versions
CN103199320B (en
Inventor
熊仁利
王平
黄春莲
严新星
王梓丞
何霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianqi lithium industry (Jiangsu) Co., Ltd.
Tianqi Lithium Industry (Shehong) Co., Ltd.
Tianqi Lithium Industry Co., Ltd.
Original Assignee
Sichuan Tianqi Lithium Industriesinc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Tianqi Lithium Industriesinc filed Critical Sichuan Tianqi Lithium Industriesinc
Priority to CN201310104022.8A priority Critical patent/CN103199320B/en
Publication of CN103199320A publication Critical patent/CN103199320A/en
Priority to PCT/CN2014/074157 priority patent/WO2014154152A1/en
Application granted granted Critical
Publication of CN103199320B publication Critical patent/CN103199320B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/80Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
    • C01G53/82Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及镍钴锰三元正极材料回收利用的方法,属于废旧电池回收技术领域。本发明所解决的技术问题是提供了一种镍钴锰三元正极材料回收利用的方法。包括从镍钴锰酸锂三元材料正极片热处理去除粘结剂步骤,其去除镍钴锰酸锂三元材料正极片中粘结剂方法为:将镍钴锰酸锂三元材料正极片于400~1000℃热处理0.5~5h。The invention relates to a method for recycling a nickel-cobalt-manganese ternary positive electrode material, and belongs to the technical field of waste battery recycling. The technical problem solved by the invention is to provide a method for recycling nickel-cobalt-manganese ternary positive electrode materials. It includes the step of removing the binder from the positive electrode sheet of the nickel-cobalt lithium manganese oxide ternary material through heat treatment, and the method for removing the binder in the positive electrode sheet of the nickel-cobalt lithium manganese oxide ternary material is: the positive electrode sheet of the nickel-cobalt lithium manganate ternary material is placed on the Heat treatment at 400~1000℃ for 0.5~5h.

Description

镍钴锰三元正极材料回收利用的方法Method for recycling nickel-cobalt-manganese ternary cathode material

技术领域technical field

本发明涉及镍钴锰三元正极材料回收利用的方法,属于废旧电池回收技术领域。The invention relates to a method for recycling a nickel-cobalt-manganese ternary positive electrode material, and belongs to the technical field of waste battery recycling.

背景技术Background technique

镍钴锰三元正极材料系由二元Ni-Mn基材料发展而来,2001年OhZuku和Makimura首次合成了nNi:nCo:nMn=1:1:1的三元复合材料LiNi1/3Co1/3Mn1/3O2,与此同时加拿大Dahn等研究了组分变化对正极材料晶体结构、容量、倍率放电及热稳定性的影响。虽然LiNi1/3Co1/3Mn1/3O2研究时间不长,但因其与LiCoO2具有相似结构,具备较好的研究基础,一经提出即被认为是最有可能代替LiCoO2,获得各国政府大力支持。Nickel-cobalt-manganese ternary cathode materials are developed from binary Ni-Mn-based materials. In 2001, OhZuku and Makimura synthesized the ternary composite material LiNi 1/3 Co 1 with nNi:nCo:nMn=1:1:1 for the first time. /3 Mn 1/3 O 2 . At the same time, Canadian Dahn et al. studied the influence of composition changes on the crystal structure, capacity, rate discharge and thermal stability of cathode materials. Although LiNi 1/3 Co 1/3 Mn 1/3 O 2 has not been studied for a long time, because it has a similar structure to LiCoO 2 and has a good research foundation, it is considered to be the most likely to replace LiCoO 2 once it is proposed. Received strong support from governments around the world.

三元正极材料可用于数码通讯类电池、笔记本电池、电动工具电池、动力自行车/汽车电池等。在通讯电池方面,最近3—5年内,钴酸锂的主导地位将会逐渐弱化,可能出现钴酸锂和镍钴锰三元正极材料共存的现象,5年后,可能是镍钴锰三元材料独霸的时代。在电动工具领域,镍钴锰三元材料具有高的能量密度、良好的大电流充放电性能、优秀的循环性能及安全性能,有可能成为主要的正极材料。Ternary cathode materials can be used in digital communication batteries, notebook batteries, electric tool batteries, power bicycle/car batteries, etc. In terms of communication batteries, in the last 3-5 years, the dominant position of lithium cobalt oxide will gradually weaken, and lithium cobalt oxide and nickel-cobalt-manganese ternary positive electrode materials may coexist. After 5 years, it may be nickel-cobalt-manganese ternary The era of material monopoly. In the field of power tools, nickel-cobalt-manganese ternary materials have high energy density, good high-current charge and discharge performance, excellent cycle performance and safety performance, and may become the main cathode material.

目前,已有关于镍钴锰三元正极材料回收利用的相关报道。如:CN200810198972的专利申请公开了一种以废旧锂离子电池为原料制备镍钴锰酸锂的方法。其主要特点是:选用电池正极材料为镍钴锰酸锂、镍钴酸锂等的废旧锂离子电池为原料,经拆解、分选、粉碎、筛分等预处理后,再采用高温除粘结剂、氢氧化钠除铝等工艺后,得含镍、钴、锰的失活正极材料;接着采用硫酸和双氧水体系浸出、P2O4萃取除杂,得纯净的镍、钴、锰溶液,配入适当的硫酸锰、硫酸镍或硫酸钴,使溶液中镍、钴、锰元素摩尔比为1:1:1;随后采用碳酸铵调节pH值,形成镍钴锰碳酸盐前驱体,接着配入适量碳酸锂,高温烧结合成具有活性的镍钴锰酸锂电池材料。又如:CN200710308154公开了一种从含有Co、Ni、Mn的电池渣中回收贵金属的方法,其为对包括含有大致等量的Co、Ni及Mn的锂酸金属盐的锂电池渣用250g/l以上的浓度的盐酸溶液进行搅拌浸出,或者用200g/l以上的浓度的硫酸溶液进行加热搅拌浸出处理,用酸性萃取剂对浸出液进行溶剂萃取,萃取出Mn及Co的大致100%,生成含有各自金属的溶液,从这些溶液中回收该金属。At present, there have been related reports on the recycling of nickel-cobalt-manganese ternary cathode materials. For example: CN200810198972 patent application discloses a method for preparing nickel-cobalt lithium manganese oxide from waste lithium-ion batteries. Its main features are: use waste lithium-ion batteries such as lithium nickel cobalt manganese oxide and lithium nickel cobalt oxide as the raw material for the positive electrode material of the battery, after dismantling, sorting, crushing, screening and other pretreatments, and then use high temperature debonding After processes such as binder and sodium hydroxide removal of aluminum, an inactivated positive electrode material containing nickel, cobalt, and manganese is obtained; then sulfuric acid and hydrogen peroxide system is used for leaching, and P2O4 extraction is used to remove impurities to obtain a pure nickel, cobalt, and manganese solution, which is mixed with Appropriate manganese sulfate, nickel sulfate or cobalt sulfate, so that the molar ratio of nickel, cobalt, and manganese in the solution is 1:1:1; then use ammonium carbonate to adjust the pH value to form a nickel-cobalt-manganese carbonate precursor, and then add An appropriate amount of lithium carbonate is sintered at high temperature to form an active nickel-cobalt-lithium manganese oxide battery material. Another example: CN200710308154 discloses a method for reclaiming precious metals from battery slag containing Co, Ni, Mn, which is to use 250g/ A hydrochloric acid solution with a concentration of 1 or more is used for stirring and leaching, or a sulfuric acid solution with a concentration of 200 g/l or more is used for heating and stirring leaching, and an acidic extractant is used for solvent extraction of the leaching solution, and approximately 100% of Mn and Co are extracted to generate solutions of the respective metals from which the metals are recovered.

上述方法实现了镍钴锰三元正极材料的回收利用,但是通过粉碎、筛分分离镍钴锰酸锂和铝箔,分离效果不好;采用碳酸盐沉淀法得到镍钴锰碳酸盐前驱体,制备过程中容易造成组分的偏析,不能保证氧化物各元素分布的均一性,影响了正极材料电化学性能;采用有机溶剂易造成二次污染。The above method realizes the recycling of nickel-cobalt-manganese ternary positive electrode materials, but the separation effect is not good by crushing and sieving to separate nickel-cobalt-manganese lithium manganate and aluminum foil; the nickel-cobalt-manganese carbonate precursor is obtained by carbonate precipitation method , It is easy to cause segregation of components during the preparation process, and the uniformity of the distribution of each element of the oxide cannot be guaranteed, which affects the electrochemical performance of the positive electrode material; the use of organic solvents is easy to cause secondary pollution.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种镍钴锰三元正极材料回收利用的方法。The technical problem to be solved by the present invention is to provide a method for recycling nickel-cobalt-manganese ternary positive electrode materials.

本发明镍钴锰三元正极材料回收利用的方法,包括从镍钴锰酸锂三元材料正极片热处理去除粘结剂步骤,其去除镍钴锰酸锂三元材料正极片中粘结剂方法为:将镍钴锰酸锂三元材料正极片于400~1000℃热处理0.5~5h。The method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention includes the step of removing the binder from the positive electrode sheet of the nickel-cobalt-manganese oxide ternary material by heat treatment, and the method for removing the binder in the positive electrode sheet of the nickel-cobalt-manganese oxide ternary material positive electrode sheet The method is: heat-treat the positive electrode sheet of nickel-cobalt-lithium-manganese-oxide ternary material at 400-1000°C for 0.5-5 hours.

其中,作为优选的技术方案,本发明镍钴锰三元正极材料回收利用的方法包括如下步骤:Wherein, as a preferred technical solution, the method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention comprises the following steps:

a、将废旧锂电池残余电量放完,然后拆解电池,取出镍钴锰酸锂三元材料正极片;a. Discharge the residual power of the used lithium battery, then disassemble the battery, and take out the positive electrode sheet of nickel-cobalt-lithium-manganese-oxide ternary material;

b、将镍钴锰酸锂三元材料正极片于400~1000℃真空焙烧0.5~5h,然后加酸浸出,浸出过程添加还原剂用于还原焙烧过程中氧化的少量镍、钴、锰,得到镍盐、钴盐、锰盐、铝盐和锂盐的混合溶液;其中,还原剂的用量为使氧化的少量镍、钴、锰还原即可,所采用的还原剂优选为硫代硫酸钠、双氧水中至少一种;b. Vacuum roast the nickel-cobalt-lithium-manganese-oxide ternary material positive plate at 400-1000°C for 0.5-5 hours, then add acid for leaching, add a reducing agent during the leaching process to reduce a small amount of nickel, cobalt, and manganese oxidized during the roasting process, and obtain The mixed solution of nickel salt, cobalt salt, manganese salt, aluminum salt and lithium salt; Wherein, the consumption of reducing agent is to make the small amount of nickel of oxidation, cobalt, manganese reduction get final product, and the reducing agent that adopts is preferably sodium thiosulfate, At least one kind of hydrogen peroxide;

c、调节混合溶液pH值3~9,优选调节混合溶液pH值至3~7,使溶液中铝沉淀,然后过滤去除铝;其中,可以采用氢氧化钠、氢氧化钾、氢氧化锂等常用碱液调节混合溶液pH值;c. Adjust the pH value of the mixed solution to 3-9, preferably adjust the pH value of the mixed solution to 3-7, so that the aluminum in the solution is precipitated, and then filtered to remove the aluminum; among them, sodium hydroxide, potassium hydroxide, lithium hydroxide and other commonly used The lye adjusts the pH value of the mixed solution;

d、根据c步骤所得溶液中镍钴锰含量,加入适量镍钴锰硫酸盐调节溶液中的镍、钴、锰摩尔比为0.8~1.2:0.8~1.2:0.8~1.2;d, according to the nickel-cobalt-manganese content in the solution obtained in step c, add an appropriate amount of nickel-cobalt-manganese sulfate to adjust the nickel, cobalt, and manganese mol ratio in the solution to be 0.8~1.2:0.8~1.2:0.8~1.2;

e、加入氢氧化钠作为沉淀剂,加入镍、钴、锰同等摩尔量的氨水作为配合剂,调节溶液pH值为10~12,沉淀得到镍钴锰三元材料前驱体,过滤,得到锂盐溶液,锂盐溶液经净化沉淀得到碳酸锂;e. Add sodium hydroxide as a precipitant, add nickel, cobalt, and manganese equivalent molar amounts of ammonia as a complexing agent, adjust the pH of the solution to 10-12, precipitate to obtain a nickel-cobalt-manganese ternary material precursor, filter to obtain lithium salt solution, the lithium salt solution obtains lithium carbonate through purification and precipitation;

f、将镍钴锰三元材料前驱体与碳酸锂按重量比2.4~2.6:1混匀,然后于750~950℃煅烧12~24h,冷却,得到镍钴锰酸锂。f. Mix the nickel-cobalt-manganese ternary material precursor and lithium carbonate at a weight ratio of 2.4-2.6:1, then calcinate at 750-950° C. for 12-24 hours, and cool to obtain nickel-cobalt-manganese lithium manganate.

上述方法采用酸+还原剂体系浸出,氢氧化钠为沉淀剂合成镍钴锰酸锂三元正极材料前驱体,避免生成Mn3+(MnOOH)或Mn4+(MnO2),影响回收产品性能,在制备过程中不会造成组分的偏析,保证了氧化物各元素分布的均一性,从而确保正极材料电化学性能稳定。The above method adopts acid + reducing agent system leaching, and sodium hydroxide is used as precipitant to synthesize nickel cobalt lithium manganese oxide ternary positive electrode material precursor, so as to avoid the generation of Mn 3+ (MnOOH) or Mn 4+ (MnO 2 ), which will affect the performance of recovered products , the segregation of components will not be caused during the preparation process, which ensures the uniformity of the distribution of each element of the oxide, thereby ensuring the stable electrochemical performance of the positive electrode material.

进一步的,本发明镍钴锰三元正极材料回收利用的方法,其b步骤中,如果酸浓度过高,则镍、钴、锰易氧化;如果酸浓度过低,则镍、钴、锰的浸出率偏低,综合考虑上述情况,优选采用浓度为10~15wt%的硫酸、盐酸或硝酸浸出。Further, in the method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention, in step b, if the acid concentration is too high, nickel, cobalt, and manganese are easily oxidized; if the acid concentration is too low, the nickel, cobalt, and manganese The leaching rate is relatively low. Taking the above into consideration, it is preferable to use sulfuric acid, hydrochloric acid or nitric acid with a concentration of 10-15wt% for leaching.

进一步的,为了提高正极材料电化学性能,上述镍钴锰三元正极材料回收利用的方法,其d步骤中,优选调节溶液中的镍、钴、锰摩尔比为1:1:1。Further, in order to improve the electrochemical performance of the positive electrode material, in the method for recycling the above-mentioned nickel-cobalt-manganese ternary positive electrode material, in step d, it is preferable to adjust the molar ratio of nickel, cobalt, and manganese in the solution to 1:1:1.

其中,上述镍钴锰三元正极材料回收利用的方法,为了使所得三元材料电性能最佳,其e步骤中,在沉淀镍钴锰三元材料前驱体时,优选还控制反应温度为40~90℃。Among them, in the method for recycling the above-mentioned nickel-cobalt-manganese ternary positive electrode material, in order to make the obtained ternary material have the best electrical properties, in step e, when precipitating the nickel-cobalt-manganese ternary material precursor, it is preferable to control the reaction temperature to be 40 ~90°C.

本发明具有如下有益效果:本发明方法实现了镍钴锰酸锂的回收利用,消除了现有回收方法存在的缺陷,长期来看既有利于行业的可持续发展,又间接降低镍钴锰三元材料的成本,有利于材料的推广普及。The present invention has the following beneficial effects: the method of the present invention realizes the recycling of nickel-cobalt-manganese lithium oxide, eliminates the defects existing in existing recycling methods, and in the long run is not only beneficial to the sustainable development of the industry, but also indirectly reduces nickel-cobalt-manganese The cost of metamaterials is conducive to the promotion and popularization of materials.

具体实施方式Detailed ways

本发明镍钴锰三元正极材料回收利用的方法,包括从镍钴锰酸锂三元材料正极片热处理去除粘结剂步骤,其去除镍钴锰酸锂三元材料正极片中粘结剂方法为:将镍钴锰酸锂三元材料正极片于400~1000℃热处理0.5~5h。The method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention includes the step of removing the binder from the positive electrode sheet of the nickel-cobalt-manganese oxide ternary material by heat treatment, and the method for removing the binder in the positive electrode sheet of the nickel-cobalt-manganese oxide ternary material positive electrode sheet The method is: heat-treat the positive electrode sheet of nickel-cobalt-lithium-manganese-oxide ternary material at 400-1000°C for 0.5-5 hours.

其中,作为优选的技术方案,本发明镍钴锰三元正极材料回收利用的方法包括如下步骤:Wherein, as a preferred technical solution, the method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention comprises the following steps:

a、将废旧锂电池残余电量放完,然后拆解电池,取出镍钴锰酸锂三元材料正极片;a. Discharge the residual power of the used lithium battery, then disassemble the battery, and take out the positive electrode sheet of nickel-cobalt-lithium-manganese-oxide ternary material;

b、将镍钴锰酸锂三元材料正极片于400~1000℃真空焙烧0.5~5h,然后加酸浸出,浸出过程添加还原剂用于还原焙烧过程中氧化的少量镍、钴、锰,得到镍盐、钴盐、锰盐、铝盐和锂盐的混合溶液;其中,还原剂的用量为使氧化的少量镍、钴、锰还原即可,所采用的还原剂优选为硫代硫酸钠、双氧水中至少一种;b. Vacuum roast the nickel-cobalt-lithium-manganese-oxide ternary material positive plate at 400-1000°C for 0.5-5 hours, then add acid for leaching, add a reducing agent during the leaching process to reduce a small amount of nickel, cobalt, and manganese oxidized during the roasting process, and obtain The mixed solution of nickel salt, cobalt salt, manganese salt, aluminum salt and lithium salt; Wherein, the consumption of reducing agent is to make the small amount of nickel of oxidation, cobalt, manganese reduction get final product, and the reducing agent that adopts is preferably sodium thiosulfate, At least one kind of hydrogen peroxide;

c、调节混合溶液pH值3~9,优选调节混合溶液pH值至3~7,使溶液中铝沉淀,然后过滤去除铝;其中,可以采用氢氧化钠、氢氧化钾、氢氧化锂等常用碱液调节混合溶液pH值;c. Adjust the pH value of the mixed solution to 3-9, preferably adjust the pH value of the mixed solution to 3-7, so that the aluminum in the solution is precipitated, and then filtered to remove the aluminum; among them, sodium hydroxide, potassium hydroxide, lithium hydroxide and other commonly used The lye adjusts the pH value of the mixed solution;

d、根据c步骤所得溶液中镍钴锰含量,加入适量镍钴锰硫酸盐调节溶液中的镍、钴、锰摩尔比为0.8~1.2:0.8~1.2:0.8~1.2;d, according to the nickel-cobalt-manganese content in the solution obtained in step c, add an appropriate amount of nickel-cobalt-manganese sulfate to adjust the nickel, cobalt, and manganese mol ratio in the solution to be 0.8~1.2:0.8~1.2:0.8~1.2;

e、加入氢氧化钠作为沉淀剂,加入镍、钴、锰同等摩尔量的氨水作为配合剂,调节溶液pH值为10~12,沉淀得到镍钴锰三元材料前驱体,过滤,得到锂盐溶液,锂盐溶液经净化沉淀得到碳酸锂;e. Add sodium hydroxide as a precipitant, add nickel, cobalt, and manganese equivalent molar amounts of ammonia as a complexing agent, adjust the pH of the solution to 10-12, precipitate to obtain a nickel-cobalt-manganese ternary material precursor, filter to obtain lithium salt solution, the lithium salt solution obtains lithium carbonate through purification and precipitation;

f、将镍钴锰三元材料前驱体与碳酸锂按重量比2.4~2.6:1混匀,然后于750~950℃煅烧12~24h,冷却,得到镍钴锰酸锂。f. Mix the nickel-cobalt-manganese ternary material precursor and lithium carbonate at a weight ratio of 2.4-2.6:1, then calcinate at 750-950° C. for 12-24 hours, and cool to obtain nickel-cobalt-manganese lithium manganate.

上述方法采用酸+还原剂体系浸出,氢氧化钠为沉淀剂合成镍钴锰酸锂三元正极材料前驱体,避免生成Mn3+(MnOOH)或Mn4+(MnO2),影响回收产品性能,在制备过程中不会造成组分的偏析,保证了氧化物各元素分布的均一性,从而确保正极材料电化学性能稳定。The above method adopts acid + reducing agent system leaching, and sodium hydroxide is used as precipitant to synthesize nickel cobalt lithium manganese oxide ternary positive electrode material precursor, so as to avoid the generation of Mn 3+ (MnOOH) or Mn 4+ (MnO 2 ), which will affect the performance of recovered products , the segregation of components will not be caused during the preparation process, which ensures the uniformity of the distribution of each element of the oxide, thereby ensuring the stable electrochemical performance of the positive electrode material.

进一步的,本发明镍钴锰三元正极材料回收利用的方法,其b步骤中,如果酸浓度过高,则镍、钴、锰易氧化;如果酸浓度过低,则镍、钴、锰的浸出率偏低,综合考虑上述情况,优选采用浓度为10~15wt%的硫酸、盐酸或硝酸浸出。Further, in the method for recycling the nickel-cobalt-manganese ternary positive electrode material of the present invention, in step b, if the acid concentration is too high, nickel, cobalt, and manganese are easily oxidized; if the acid concentration is too low, the nickel, cobalt, and manganese The leaching rate is relatively low. Taking the above into consideration, it is preferable to use sulfuric acid, hydrochloric acid or nitric acid with a concentration of 10-15wt% for leaching.

进一步的,为了提高正极材料电化学性能,上述镍钴锰三元正极材料回收利用的方法,其d步骤中,优选调节溶液中的镍、钴、锰摩尔比为1:1:1。Further, in order to improve the electrochemical performance of the positive electrode material, in the method for recycling the above-mentioned nickel-cobalt-manganese ternary positive electrode material, in step d, it is preferable to adjust the molar ratio of nickel, cobalt, and manganese in the solution to 1:1:1.

其中,上述镍钴锰三元正极材料回收利用的方法,为了使所得三元材料电性能最佳,其e步骤中,在沉淀镍钴锰三元材料前驱体时,优选还控制反应温度为40~90℃。Among them, in the method for recycling the above-mentioned nickel-cobalt-manganese ternary positive electrode material, in order to make the obtained ternary material have the best electrical properties, in step e, when precipitating the nickel-cobalt-manganese ternary material precursor, it is preferable to control the reaction temperature to be 40 ~90°C.

下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。The specific implementation of the present invention will be further described below in conjunction with the examples, and the present invention is not limited to the scope of the examples.

实施例1采用本发明方法回收利用镍钴锰三元正极材料Embodiment 1 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过1000℃煅烧0.5h。Discharge the residual power of the waste nickel-cobalt-lithium-manganese-oxide battery, disassemble the battery, take out the positive electrode sheet, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; calcinate the nickel-cobalt lithium-manganese oxide positive electrode sheet at 1000°C for 0.5h.

取煅烧后的镍钴锰酸锂正极片100kg,采用10wt%的硫酸搅拌浸出,浸出过程添加硫代硫酸钠1kg,浸出后经过滤得到硫酸镍、硫酸钴、硫酸锰、硫酸铝及硫酸锂混合溶液。调节混合溶液pH值4.5,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到硫酸镍、硫酸钴、硫酸锰、及硫酸锂混合溶液。在溶液中加入镍钴锰硫酸盐将镍钴锰摩尔比调节为1:1:1,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度40℃,pH值12,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到硫酸锂溶液。Take 100 kg of the calcined nickel-cobalt lithium manganese oxide positive plate, stir and leaching with 10wt% sulfuric acid, add 1 kg of sodium thiosulfate during the leaching process, and filter to obtain a mixture of nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate and lithium sulfate. solution. The pH value of the mixed solution was adjusted to 4.5 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel sulfate, cobalt sulfate, manganese sulfate, and lithium sulfate. Add nickel-cobalt-manganese sulfate to the solution to adjust the molar ratio of nickel-cobalt-manganese to 1:1:1, then add sodium hydroxide as a precipitant, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature to 40°C, pH value 12, and precipitate The nickel-cobalt-manganese ternary material precursor is obtained, and separated by filtration to obtain a lithium sulfate solution.

镍钴锰三元材料前驱体与34.7kg碳酸锂球磨混合,混合物置于煅烧炉中,于750℃煅烧,恒温12小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表1所示:The nickel-cobalt-manganese ternary material precursor was mixed with 34.7kg lithium carbonate ball mill, and the mixture was placed in a calciner, calcined at 750°C, kept at a constant temperature for 12 hours, and naturally cooled in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are shown in Table 1:

表1Table 1

实施例2采用本发明方法回收利用镍钴锰三元正极材料Embodiment 2 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过700℃焙烧3h。Discharge the residual power of the waste nickel-cobalt-lithium manganese oxide battery, disassemble the battery, take out the positive plate, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; bake the nickel-cobalt lithium manganese oxide positive plate at 700°C for 3 hours.

取煅烧后的镍钴锰酸锂正极片100kg,采用15wt%的硫酸搅拌浸出,浸出过程添加硫代硫酸钠0.8kg,浸出后经过滤得到硫酸镍、硫酸钴、硫酸锰、硫酸铝及硫酸锂混合溶液。调节混合溶液pH值5,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到硫酸镍、硫酸钴、硫酸锰、及硫酸锂混合溶液。在溶液中加入镍钴锰硫酸盐将镍钴锰摩尔比调节为0.9:1:0.9,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度60℃,pH值10,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到硫酸锂溶液。Take 100 kg of the calcined nickel-cobalt lithium manganese oxide positive electrode sheet, use 15wt% sulfuric acid to stir and leach, add 0.8 kg of sodium thiosulfate during the leaching process, and obtain nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate and lithium sulfate by filtering after leaching mixture. The pH value of the mixed solution was adjusted to 5 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel sulfate, cobalt sulfate, manganese sulfate, and lithium sulfate. Add nickel-cobalt-manganese sulfate to the solution to adjust the molar ratio of nickel-cobalt-manganese to 0.9:1:0.9, then add sodium hydroxide as a precipitating agent, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature at 60°C, pH value 10, and precipitate The nickel-cobalt-manganese ternary material precursor is obtained, and separated by filtration to obtain a lithium sulfate solution.

镍钴锰三元材料前驱体与34kg碳酸锂球磨混合,混合物置于煅烧炉中,于950℃煅烧,恒温24小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表2所示:The nickel-cobalt-manganese ternary material precursor was mixed with 34kg lithium carbonate ball mill, the mixture was placed in a calciner, calcined at 950°C, kept at a constant temperature for 24 hours, and cooled naturally in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are as shown in table 2:

表2Table 2

Figure BDA00002979471400042
Figure BDA00002979471400042

实施例3采用本发明方法回收利用镍钴锰三元正极材料Embodiment 3 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过400℃焙烧5h。Discharge the residual power of the waste nickel-cobalt-lithium-manganese-oxide battery, disassemble the battery, take out the positive electrode sheet, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; roast the nickel-cobalt lithium-manganese oxide positive electrode sheet at 400°C for 5 hours.

取煅烧后的镍钴锰酸锂正极片100kg,采用12wt%的硫酸搅拌浸出,浸出过程添加硫代硫酸钠1.2kg,浸出后经过滤得到硫酸镍、硫酸钴、硫酸锰、硫酸铝及硫酸锂混合溶液。调节混合溶液pH值6,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到硫酸镍、硫酸钴、硫酸锰、及硫酸锂混合溶液。在溶液中加入镍钴锰硫酸盐将镍钴锰摩尔比调节为1:0.9:1,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度45℃,pH值11,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到硫酸锂溶液。Take 100kg of the calcined nickel-cobalt lithium manganese oxide positive electrode sheet, and use 12wt% sulfuric acid to stir and leach, add 1.2kg of sodium thiosulfate during the leaching process, and filter to obtain nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate and lithium sulfate after leaching. mixture. The pH value of the mixed solution was adjusted to 6 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel sulfate, cobalt sulfate, manganese sulfate, and lithium sulfate. Add nickel-cobalt-manganese sulfate to the solution to adjust the molar ratio of nickel-cobalt-manganese to 1:0.9:1, then add sodium hydroxide as a precipitant, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature to 45°C, pH value 11, and precipitate The nickel-cobalt-manganese ternary material precursor is obtained, and separated by filtration to obtain a lithium sulfate solution.

镍钴锰三元材料前驱体与35kg碳酸锂球磨混合,混合物置于煅烧炉中,于850℃煅烧,恒温15小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表3所示:The nickel-cobalt-manganese ternary material precursor was mixed with 35kg of lithium carbonate ball mill, the mixture was placed in a calciner, calcined at 850°C, kept at a constant temperature for 15 hours, and naturally cooled in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are as shown in table 3:

表3table 3

实施例4采用本发明方法回收利用镍钴锰三元正极材料Embodiment 4 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过600℃焙烧4h。Discharge the residual power of the waste nickel-cobalt-lithium manganese oxide battery, disassemble the battery, take out the positive plate, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; bake the nickel-cobalt lithium manganese oxide positive plate at 600°C for 4 hours.

取煅烧后的镍钴锰酸锂正极片100kg,采用12wt%的盐酸搅拌浸出,浸出过程添加双氧水2.5kg,浸出后经过滤得到氯化镍、氯化钴、氯化锰、氯化铝及氯化锂混合溶液。调节混合溶液pH值6,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到氯化镍、氯化钴、氯化锰、及氯化锂混合溶液。在溶液中加入镍钴锰盐将镍钴锰摩尔比调节为1:0.9:1,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度45℃,pH值11,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到氯化锂溶液。Take 100kg of the calcined nickel-cobalt-lithium-manganese-oxide positive plate, stir and leach with 12wt% hydrochloric acid, add 2.5kg of hydrogen peroxide during the leaching process, and obtain nickel chloride, cobalt chloride, manganese chloride, aluminum chloride and chlorine chloride by filtering after leaching. lithium mixed solution. The pH value of the mixed solution was adjusted to 6 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel chloride, cobalt chloride, manganese chloride, and lithium chloride. Add nickel-cobalt-manganese salt to the solution to adjust the molar ratio of nickel-cobalt-manganese to 1:0.9:1, then add sodium hydroxide as a precipitating agent, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature at 45°C, pH value 11, and precipitate to obtain The nickel-cobalt-manganese ternary material precursor is separated by filtration to obtain a lithium chloride solution.

镍钴锰三元材料前驱体与35kg碳酸锂球磨混合,混合物置于煅烧炉中,于850℃煅烧,恒温15小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表3所示:The nickel-cobalt-manganese ternary material precursor was mixed with 35kg of lithium carbonate ball mill, the mixture was placed in a calciner, calcined at 850°C, kept at a constant temperature for 15 hours, and naturally cooled in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are as shown in table 3:

表3table 3

实施例5采用本发明方法回收利用镍钴锰三元正极材料Embodiment 5 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过900℃焙烧1h。Discharge the residual power of the waste nickel-cobalt-lithium-manganese-oxide battery, disassemble the battery, take out the positive electrode piece, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; bake the nickel-cobalt lithium-manganese oxide positive plate at 900°C for 1 hour.

取煅烧后的镍钴锰酸锂正极片100kg,采用12wt%的硝酸搅拌浸出,浸出过程添加双氧水2.5kg,浸出后经过滤得到硝酸镍、硝酸钴、硝酸锰、硝酸铝及硝酸锂混合溶液。调节混合溶液pH值6,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到硝酸镍、硝酸钴、硝酸锰及硝酸锂混合溶液。在溶液中加入镍钴锰盐将镍钴锰摩尔比调节为1:0.9:1,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度45℃,pH值11,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到硝酸锂溶液。Take 100 kg of the calcined nickel-cobalt-lithium-manganese-oxide positive plate, stir and leach with 12wt% nitric acid, add 2.5 kg of hydrogen peroxide during the leaching process, and filter to obtain a mixed solution of nickel nitrate, cobalt nitrate, manganese nitrate, aluminum nitrate and lithium nitrate. The pH value of the mixed solution was adjusted to 6 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel nitrate, cobalt nitrate, manganese nitrate and lithium nitrate. Add nickel-cobalt-manganese salt to the solution to adjust the molar ratio of nickel-cobalt-manganese to 1:0.9:1, then add sodium hydroxide as a precipitating agent, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature at 45°C, pH value 11, and precipitate to obtain The nickel-cobalt-manganese ternary material precursor is separated by filtration to obtain a lithium nitrate solution.

镍钴锰三元材料前驱体与35kg碳酸锂球磨混合,混合物置于煅烧炉中,于850℃煅烧,恒温15小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表3所示:The nickel-cobalt-manganese ternary material precursor was mixed with 35kg of lithium carbonate ball mill, the mixture was placed in a calciner, calcined at 850°C, kept at a constant temperature for 15 hours, and naturally cooled in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are as shown in table 3:

表3table 3

实施例6采用本发明方法回收利用镍钴锰三元正极材料Embodiment 6 adopts the method of the present invention to recycle nickel-cobalt-manganese ternary positive electrode material

将废旧镍钴锰酸锂电池残余电量放完,拆解电池,取出正极片,电池外壳按铝壳、钢壳、塑料等分类回收;将镍钴锰酸锂正极片经过800℃焙烧1.5h。Discharge the residual power of the waste nickel-cobalt-lithium-manganese-oxide battery, disassemble the battery, take out the positive electrode sheet, and recycle the battery case according to aluminum shell, steel shell, plastic, etc.; bake the nickel-cobalt lithium-manganese oxide positive electrode sheet at 800°C for 1.5 hours.

取煅烧后的镍钴锰酸锂正极片100kg,采用12wt%的硫酸搅拌浸出,浸出过程添加双氧水2.5kg,浸出后经过滤得到硫酸镍、硫酸钴、硫酸锰、硫酸铝及硫酸锂混合溶液。调节混合溶液pH值6,生成氢氧化铝沉淀,过滤去除氢氧化铝,得到硫酸镍、硫酸钴、硫酸锰、及硫酸锂混合溶液。在溶液中加入镍钴锰硫酸盐将镍钴锰摩尔比调节为1:0.9:1,然后加入氢氧化钠作为沉淀剂,加入适量氨水作为配合剂,控制反应温度45℃,pH值11,沉淀得到镍钴锰三元材料前驱体,经过滤分离,得到硫酸锂溶液。Take 100 kg of the calcined nickel-cobalt-lithium manganese oxide positive electrode sheet, stir and leaching with 12wt% sulfuric acid, add 2.5 kg of hydrogen peroxide during the leaching process, and filter to obtain a mixed solution of nickel sulfate, cobalt sulfate, manganese sulfate, aluminum sulfate and lithium sulfate after leaching. The pH value of the mixed solution was adjusted to 6 to form aluminum hydroxide precipitate, and the aluminum hydroxide was removed by filtration to obtain a mixed solution of nickel sulfate, cobalt sulfate, manganese sulfate, and lithium sulfate. Add nickel-cobalt-manganese sulfate to the solution to adjust the molar ratio of nickel-cobalt-manganese to 1:0.9:1, then add sodium hydroxide as a precipitant, add an appropriate amount of ammonia as a complexing agent, control the reaction temperature to 45°C, pH value 11, and precipitate The nickel-cobalt-manganese ternary material precursor is obtained, and separated by filtration to obtain a lithium sulfate solution.

镍钴锰三元材料前驱体与35kg碳酸锂球磨混合,混合物置于煅烧炉中,于850℃煅烧,恒温15小时,炉内自然冷却,得到镍钴锰酸锂三元正极材料。硫酸锂溶液经浓缩后加入碳酸钠沉淀得到碳酸锂。回收制得镍钴锰酸锂三元正极材料电化学性能如表3所示:The nickel-cobalt-manganese ternary material precursor was mixed with 35kg of lithium carbonate ball mill, the mixture was placed in a calciner, calcined at 850°C, kept at a constant temperature for 15 hours, and naturally cooled in the furnace to obtain a nickel-cobalt lithium manganate ternary positive electrode material. The lithium sulfate solution was concentrated and then added with sodium carbonate to precipitate to obtain lithium carbonate. The electrochemical properties of nickel-cobalt lithium manganese oxide ternary positive electrode material recovered are as shown in table 3:

表3table 3

Figure BDA00002979471400071
Figure BDA00002979471400071

Claims (6)

1. the method recycled of nickel-cobalt-manganese ternary positive electrode, comprise from the heat treatment of nickle cobalt lithium manganate ternary material positive plate and remove the binding agent step, it is characterized in that: remove that the binding agent method is in the nickle cobalt lithium manganate ternary material positive plate: with nickle cobalt lithium manganate ternary material positive plate in 400~1000 ℃ of heat treatment 0.5~5h.
2. the method for nickel-cobalt-manganese ternary positive electrode recycling according to claim 1 is characterized in that comprising the steps:
A, the waste lithium cell remaining capacity has been put, disassembled battery then, taken out nickle cobalt lithium manganate ternary material positive plate;
B, with nickle cobalt lithium manganate ternary material positive plate in 400~1000 ℃ of vacuum baking 0.5~5h, adding acidleach then goes out, leaching process adds minor amount of nickel, cobalt, the manganese that reducing agent is used for the reducing roasting process oxidation, obtains the mixed solution of nickel salt, cobalt salt, manganese salt, aluminium salt and lithium salts;
PH value to 3~9 of c, adjusting mixed solution make aluminum precipitation in the solution, filter then and remove aluminium;
D, according to nickel cobalt manganese content in the mixed solution, the nickel, cobalt, the manganese mol ratio that add in an amount of nickel cobalt-manganese salt regulator solution are 0.8~1.2:0.8~1.2:0.8~1.2;
E, add NaOH as precipitation reagent, add nickel, cobalt, manganese with the ammoniacal liquor of equimolar amounts as compounding ingredient, regulator solution pH value is 10~12, precipitation obtains nickel-cobalt-manganese ternary material presoma, filter, obtain lithium salt solution, lithium salt solution obtains lithium carbonate through purifying precipitation;
F, with nickel-cobalt-manganese ternary material presoma and lithium carbonate by weight 2.4~2.6:1 mixing, in 750~950 ℃ of calcining 12~24h, cooling obtains nickle cobalt lithium manganate then.
3. the method for nickel-cobalt-manganese ternary positive electrode recycling according to claim 2 is characterized in that in the b step, and adopting concentration is sulfuric acid, hydrochloric acid or the nitric acid leaching of 10~15wt%; Described reducing agent is at least a in sodium thiosulfate, the hydrogen peroxide.
4. according to the method for claim 2 or 3 described nickel-cobalt-manganese ternary positive electrodes recyclings, it is characterized in that: in the c step, regulate pH value to 3~7 of mixed solution.
5. according to the method for each described nickel-cobalt-manganese ternary positive electrode recycling of claim 2~4, it is characterized in that: in the d step, the nickel in the regulator solution, cobalt, manganese mol ratio are 1:1:1.
6. according to the method for each described nickel-cobalt-manganese ternary positive electrode recycling of claim 2~5, it is characterized in that: in the e step, when coprecipitated nickel hydroxide cobalt-manganese ternary material presoma, also controlling reaction temperature is 40~90 ℃.
CN201310104022.8A 2013-03-28 2013-03-28 Method for recycling nickel-cobalt-manganese ternary anode material Active CN103199320B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310104022.8A CN103199320B (en) 2013-03-28 2013-03-28 Method for recycling nickel-cobalt-manganese ternary anode material
PCT/CN2014/074157 WO2014154152A1 (en) 2013-03-28 2014-03-27 Method for recycling nickel-cobalt-manganese ternary anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310104022.8A CN103199320B (en) 2013-03-28 2013-03-28 Method for recycling nickel-cobalt-manganese ternary anode material

Publications (2)

Publication Number Publication Date
CN103199320A true CN103199320A (en) 2013-07-10
CN103199320B CN103199320B (en) 2015-05-27

Family

ID=48721742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310104022.8A Active CN103199320B (en) 2013-03-28 2013-03-28 Method for recycling nickel-cobalt-manganese ternary anode material

Country Status (2)

Country Link
CN (1) CN103199320B (en)
WO (1) WO2014154152A1 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606651A (en) * 2013-12-02 2014-02-26 河南师范大学 Method for preparing lithium nickelate cobaltate manganate cathode material by taking waste lithium ion batteries as raw material
WO2014154152A1 (en) * 2013-03-28 2014-10-02 四川天齐锂业股份有限公司 Method for recycling nickel-cobalt-manganese ternary anode material
CN104600284A (en) * 2015-01-15 2015-05-06 兰州理工大学 Method for regenerating positive active material in spent lithium manganate lithium ion battery
CN104659438A (en) * 2015-02-11 2015-05-27 江门市芳源环境科技开发有限公司 Method for preparing ternary positive electrode material precursor by virtue of waste batteries
CN104868190A (en) * 2015-05-13 2015-08-26 中国科学院过程工程研究所 Leaching and recycling method for metals in anode waste materials of lithium-ion batteries
CN105375078A (en) * 2015-10-23 2016-03-02 赣州市芯隆新能源材料有限公司 Method for circularly preparing spherical lithium nickel cobalt manganese oxide by lithium-ion battery positive plate
CN105633500A (en) * 2016-02-22 2016-06-01 四川天齐锂业股份有限公司 Method for preparing ternary cathode material precursor by recycling lithium-ion battery material
CN105789726A (en) * 2016-04-21 2016-07-20 苏州聚智同创环保科技有限公司 Method for preparing nickel-cobalt-manganese ternary material precursor from waste lithium ion battery
CN106299526A (en) * 2016-09-19 2017-01-04 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN106328927A (en) * 2016-11-03 2017-01-11 王坚 Resource recycling method of waste battery cathode materials
CN106450548A (en) * 2016-10-26 2017-02-22 荆门市格林美新材料有限公司 Method for preparing ternary cathode materials by waste lithium manganate cathode materials
CN106450552A (en) * 2016-10-26 2017-02-22 荆门市格林美新材料有限公司 Method for preparing ternary cathode material from waste lithium cobalt oxide cathode material
CN106785167A (en) * 2016-12-20 2017-05-31 天齐锂业股份有限公司 The recovery method of lithium in waste lithium cell positive electrode
CN106784793A (en) * 2016-12-31 2017-05-31 深圳市沃特玛电池有限公司 The preparation method of ternary cathode material of lithium ion battery
CN107117661A (en) * 2017-05-26 2017-09-01 金川集团股份有限公司 The method that nickel cobalt manganese prepares ternary hydroxide in the waste and old lithium ion battery reclaimed using liquid phase method
CN107196004A (en) * 2017-05-13 2017-09-22 合肥国轩高科动力能源有限公司 Method for recovering valuable metals from waste lithium ion power batteries
CN107275704A (en) * 2017-06-13 2017-10-20 安化县泰森循环科技有限公司 A kind of recovery method of ternary battery anode slice
CN107394199A (en) * 2017-07-20 2017-11-24 北京理工大学 The restoration methods of chemical property after a kind of nickelic tertiary cathode material storage
CN107419096A (en) * 2017-06-27 2017-12-01 常州市沃兰特电子有限公司 A kind of preparation method of waste lithium cell reclaiming tertiary cathode material
CN107768763A (en) * 2017-10-19 2018-03-06 湖北碧拓新材料科技有限公司 A kind of method that waste and old lithium ion battery recovery makes NCM salt
CN107946688A (en) * 2017-12-16 2018-04-20 淄博国利新电源科技有限公司 The method that lithium is recycled from discarded ternary lithium ion battery
CN107986335A (en) * 2017-12-14 2018-05-04 上海第二工业大学 A kind of method that manganese dioxide particle is prepared using waste and old ternary dynamic lithium battery positive electrode
CN108103323A (en) * 2017-12-14 2018-06-01 中南大学 A kind of recovery method of the positive electrode of nickel cobalt manganese old and useless battery
CN108172925A (en) * 2017-12-27 2018-06-15 浙江中金格派锂电产业股份有限公司 A kind of nickle cobalt lithium manganate ter-polymers cell anode waste recovery method
CN108400401A (en) * 2018-02-27 2018-08-14 四川省有色冶金研究院有限公司 A method of using the active material of waste and old lithium dynamical battery separation as Material synthesis nickle cobalt lithium manganate
CN108598396A (en) * 2018-03-30 2018-09-28 华南师范大学 A kind of preparation method of regenerative lithium ion anode material
CN108649291A (en) * 2018-05-24 2018-10-12 北京化工大学 It is a kind of using waste and old lithium ion battery as the technique of raw materials recovery nickel-cobalt lithium manganate cathode material
CN108682915A (en) * 2018-05-29 2018-10-19 江苏理工学院 A kind of waste and old nickel-cobalt-manganese ternary lithium battery and silver-nickel are jointly processed by method
CN108879008A (en) * 2018-06-21 2018-11-23 南充中芯新能源科技有限公司 A kind of recovery and treatment method and nickle cobalt lithium manganate battery material of waste lithium cell positive electrode
CN108878836A (en) * 2018-06-28 2018-11-23 山东理工大学 The method for directly preparing the modified tertiary cathode material of zincic acid lithium using waste lithium cell positive electrode
CN108899604A (en) * 2018-06-28 2018-11-27 郑州中科新兴产业技术研究院 Utilize the method for waste lithium cell anode pole piece preparation ternary anode material precursor
CN108933308A (en) * 2018-07-13 2018-12-04 江西环锂新能源科技有限公司 A kind of comprehensive reutilization method for scrapping lithium battery positive and negative anodes
CN109234524A (en) * 2018-09-19 2019-01-18 中国科学院青海盐湖研究所 A kind of method and system of the comprehensively recovering valuable metal from waste and old ternary lithium battery
CN109256599A (en) * 2018-11-07 2019-01-22 深圳佳彬科技有限公司 A kind of processing method for nickel-cobalt-manganese ternary waste lithium cell
CN109256596A (en) * 2018-09-19 2019-01-22 中国科学院青海盐湖研究所 A kind of method and system inversely preparing aluminium doping ternary precursor
CN109449434A (en) * 2018-09-20 2019-03-08 广东佳纳能源科技有限公司 A method of ternary anode material of lithium battery presoma is prepared using waste and old lithium ion battery
CN109735709A (en) * 2018-12-13 2019-05-10 江西赣锋循环科技有限公司 A kind of method removing calcium and magnesium slag recycling lithium and prepare ternary precursor material
CN109755539A (en) * 2019-02-21 2019-05-14 湖南邦普循环科技有限公司 Utilize the method for lithium ion cell anode waste production aluminium doping ternary precursor
CN109904548A (en) * 2019-03-22 2019-06-18 郑州中科新兴产业技术研究院 A method for synthesizing lithium-rich materials from spent lithium-ion batteries
CN109921014A (en) * 2017-12-13 2019-06-21 荆门市格林美新材料有限公司 Ni-based anode material for lithium-ion batteries and preparation method thereof with subgrain structure
CN110034350A (en) * 2019-04-23 2019-07-19 南昌大学 The method of hypoxemia cracking synthetical recovery waste lithium cell
CN110040786A (en) * 2019-04-18 2019-07-23 甘肃睿思科新材料有限公司 A kind of method of anode material of lithium battery recycling and reusing
CN110157915A (en) * 2019-06-24 2019-08-23 甘肃睿思科新材料有限公司 The efficient reuse method of anode material of lithium battery
CN110233306A (en) * 2019-07-09 2019-09-13 郑州中科新兴产业技术研究院 A kind of method of waste and old lithium ion battery recycling ternary anode material precursor
CN110277552A (en) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 The reparative regeneration method of nickel-cobalt-manganternary ternary anode material in old and useless battery
CN110422891A (en) * 2019-08-08 2019-11-08 中国科学院青海盐湖研究所 A kind of method preparing nickel-cobalt-manganese ternary presoma, system and application
CN110498434A (en) * 2019-07-26 2019-11-26 长沙佳纳锂业科技有限公司 A kind of recovery method of anode active material of lithium ion battery and its application
CN111115662A (en) * 2019-12-31 2020-05-08 清华四川能源互联网研究院 A kind of lithium battery material recovery method
CN111807423A (en) * 2020-07-22 2020-10-23 成都理工大学 Method for preparing battery cathode material by leaching waste lithium battery with sulfur dioxide gas
CN111960480A (en) * 2020-08-28 2020-11-20 四川省有色冶金研究院有限公司 Method for preparing nickel-cobalt-manganese ternary material by using waste lithium ion battery
CN111987381A (en) * 2020-08-25 2020-11-24 长沙矿冶研究院有限责任公司 Method for synchronously defluorinating valuable metals leached from waste lithium ion batteries
CN112786988A (en) * 2020-11-26 2021-05-11 清华四川能源互联网研究院 Impurity removal and treatment method in lithium battery scrapped positive electrode material recovery process
KR20210095685A (en) * 2018-12-27 2021-08-02 제이엑스금속주식회사 How to recover valuable metals
CN113943020A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Regenerated lithium cobaltate and activation method and application thereof
CN113943021A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Regenerated lithium cobaltate and repairing method and application thereof
CN114196829A (en) * 2021-11-17 2022-03-18 华中科技大学 A kind of recovery method of nickel-cobalt-manganese cathode material of retired lithium ion battery
CN115611321A (en) * 2021-05-31 2023-01-17 福建师范大学 Method for preparing sodium ion battery positive electrode material by recycling waste battery positive electrode (nickel cobalt lithium manganate) and application
CN115810742A (en) * 2022-01-05 2023-03-17 宁德时代新能源科技股份有限公司 Preparation method of positive electrode active material
EP4140956A4 (en) * 2020-04-23 2024-05-01 JX Nippon Mining & Metals Corporation Method for producing mixed metal salt
WO2024108876A1 (en) * 2022-11-21 2024-05-30 北京工业大学 Method for preferentially recovering manganese from waste lithium-rich manganese-based positive electrode material

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746818B (en) * 2017-04-07 2021-11-21 比利時商烏明克公司 Process for the recovery of lithium
CN113039295A (en) * 2018-10-30 2021-06-25 雅宝公司 Method for extracting metals from lithium ion batteries
CN110980817B (en) * 2019-10-10 2022-06-14 格林美(无锡)能源材料有限公司 High-power and long-cycle lithium battery positive electrode material and preparation method thereof
CN111403842B (en) * 2020-04-03 2022-02-18 万华化学集团股份有限公司 Recovery method of waste lithium battery anode material, spherical nickel oxide material and application
CN111458379A (en) * 2020-04-08 2020-07-28 宁波容百新能源科技股份有限公司 Method for judging mixing degree of ternary precursor reaction kettle of lithium ion battery
CN111477985B (en) * 2020-04-15 2023-08-15 中南大学 Method for recycling waste lithium ion batteries
CN111786008B (en) * 2020-07-10 2022-04-05 中国矿业大学 A multi-process, efficient and synergistic method for recycling cathode materials of decommissioned lithium-ion batteries
CN114180646B (en) * 2020-09-15 2024-01-26 中国石油化工股份有限公司 Positive electrode material precursor, preparation method thereof, positive electrode material and application thereof
CN112725621B (en) * 2020-09-17 2022-10-14 湖北金泉新材料有限公司 Method for separating nickel, cobalt and manganese from waste lithium battery based on carbonate solid-phase conversion method
CN112374548A (en) * 2020-09-30 2021-02-19 宜宾光原锂电材料有限公司 Method for treating high-iron material containing nickel-cobalt-manganese hydroxide
CN112374511B (en) * 2020-10-17 2022-02-11 北京科技大学 A method for recycling waste ternary lithium battery to prepare lithium carbonate and ternary precursor
CN112239232A (en) * 2020-10-20 2021-01-19 西安富阎时代新能源有限公司 A process for recycling waste ternary lithium ion battery cathode material
CN112442597A (en) * 2020-10-21 2021-03-05 荆门市格林美新材料有限公司 Method for comprehensively treating materials in nickel-cobalt-manganese ternary precursor washing wastewater
CN112813270B (en) * 2020-12-30 2024-07-02 江苏海普功能材料有限公司 Method for recycling waste nickel-cobalt-manganese ternary lithium battery anode material
CN112830526B (en) * 2021-01-04 2023-10-13 赣州有色冶金研究所有限公司 Method for regenerating ternary precursor by using nickel-cobalt-manganese slag
CN112875767B (en) * 2021-01-28 2023-01-17 山东宏匀纳米科技有限公司 Method for preparing ternary cathode material by using lignin as fuel through solution combustion method
CN113151680B (en) * 2021-02-08 2023-06-16 中国科学院宁波材料技术与工程研究所 Method for recycling waste lithium batteries
CN113086996A (en) * 2021-03-25 2021-07-09 宁夏百川新材料有限公司 Recycling method of waste ternary fluorine-doped battery positive electrode material
CN113186410A (en) * 2021-04-27 2021-07-30 中国恩菲工程技术有限公司 Method for recovering valuable metal lithium from waste lithium ion battery anode material
CN113998742A (en) * 2021-09-27 2022-02-01 中天新兴材料有限公司 Recycling method of nickel-cobalt-manganese ternary lithium battery
CN114069083B (en) * 2021-10-12 2024-07-09 广东邦普循环科技有限公司 Method for recycling and synthesizing high-safety anode material from anode scraps and application of high-safety anode material
CN114085995A (en) * 2021-11-09 2022-02-25 湖北亿纬动力有限公司 Method and application for recycling and preparing metal element and its compound from waste lithium ion battery
CN116199263A (en) * 2021-12-01 2023-06-02 中国科学院福建物质结构研究所 Method for preparing functional adsorption material beta-MnO 2 from waste battery
CN113921932B (en) * 2021-12-14 2022-04-01 矿冶科技集团有限公司 Precursor solution, preparation method thereof, positive electrode material and lithium ion battery
CN114314617B (en) * 2021-12-23 2023-06-30 北京化工大学 Method for recycling metal from waste ternary lithium ion battery anode material
CN114291854A (en) * 2021-12-30 2022-04-08 中南大学 A kind of treatment method of waste battery cathode material recycling
CN114477314A (en) * 2022-01-28 2022-05-13 齐鲁工业大学 A kind of preparation method and application of nickel-cobalt-manganese ternary positive electrode material
CN114684872B (en) * 2022-03-09 2023-08-11 江门市长优实业有限公司 Carbon reduction roasting recovery method for ternary positive electrode waste
CN114644366A (en) * 2022-03-16 2022-06-21 贵州大学 Lithium cobaltate closed-loop recovery method of waste lithium ion battery based on eutectic solvent
CN114597534A (en) * 2022-03-29 2022-06-07 西安交通大学 A method for in-situ repair of waste ternary lithium battery cathode materials with supercritical water
CN115784324B (en) * 2022-11-29 2024-04-12 四川蜀矿环锂科技有限公司 Method for recycling and preparing ternary positive electrode material precursor by using waste ternary lithium battery
CN115739108B (en) * 2022-12-05 2023-06-06 广东省科学院生态环境与土壤研究所 Resource utilization method of waste lithium ion battery
CN115849462B (en) * 2022-12-07 2024-04-09 合肥国轩高科动力能源有限公司 Nickel-cobalt-manganese ternary positive electrode material and preparation method and application thereof
CN116177620B (en) * 2023-01-17 2024-12-10 四川蜀矿环锂科技有限公司 A method for regenerating and synthesizing positive electrode material precursors using waste ternary lithium batteries
CN115961141A (en) * 2023-02-01 2023-04-14 中国地质科学院郑州矿产综合利用研究所 Eutectic solvent and preparation method and application thereof
CN115852152B (en) * 2023-02-28 2023-05-16 矿冶科技集团有限公司 Method for cooperatively treating battery black powder and nickel cobalt hydroxide
CN116354402B (en) * 2023-03-02 2024-08-09 福州大学 Treatment method of waste lithium manganate ion battery anode material
CN116495791A (en) * 2023-03-31 2023-07-28 南通金通储能动力新材料有限公司 Method for efficiently utilizing ternary precursor wastewater
CN116854114A (en) * 2023-07-19 2023-10-10 中国科学院青海盐湖研究所 Methods for efficiently and preferentially separating lithium from used lithium batteries and recovering lithium
CN116947113A (en) * 2023-07-31 2023-10-27 甘肃睿思科新材料有限公司 A method for processing lithium cobalt oxide and lithium manganate mixed waste
CN118248979B (en) * 2024-04-12 2024-12-17 江苏天能新材料有限公司 Method for separating positive electrode material from waste lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555030A (en) * 2009-05-04 2009-10-14 佛山市邦普镍钴技术有限公司 Method for recovering and recycling waste lithium ion battery cathode material
CN101969148A (en) * 2010-10-15 2011-02-09 中南大学 Pretreatment method for recovering valuable metal from anode material of waste lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324758C (en) * 2005-04-25 2007-07-04 武汉理工大学 Method for separating and recovering cobalt from waste lithium ion cell
CN101376510B (en) * 2008-09-25 2010-07-14 中南大学 Method for preparing nano-scale magnesium hydroxide by extracting magnesium from hydrochloric acid leaching solution of low-grade laterite nickel ore
CN101450815A (en) * 2008-10-07 2009-06-10 佛山市邦普镍钴技术有限公司 Method for preparing nickel and cobalt doped lithium manganate by using waste and old lithium ionic cell as raw material
CN103199320B (en) * 2013-03-28 2015-05-27 四川天齐锂业股份有限公司 Method for recycling nickel-cobalt-manganese ternary anode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555030A (en) * 2009-05-04 2009-10-14 佛山市邦普镍钴技术有限公司 Method for recovering and recycling waste lithium ion battery cathode material
CN101969148A (en) * 2010-10-15 2011-02-09 中南大学 Pretreatment method for recovering valuable metal from anode material of waste lithium ion battery

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154152A1 (en) * 2013-03-28 2014-10-02 四川天齐锂业股份有限公司 Method for recycling nickel-cobalt-manganese ternary anode material
CN103606651A (en) * 2013-12-02 2014-02-26 河南师范大学 Method for preparing lithium nickelate cobaltate manganate cathode material by taking waste lithium ion batteries as raw material
CN104600284B (en) * 2015-01-15 2017-01-11 兰州理工大学 Method for regenerating positive active material in spent lithium manganate lithium ion battery
CN104600284A (en) * 2015-01-15 2015-05-06 兰州理工大学 Method for regenerating positive active material in spent lithium manganate lithium ion battery
CN104659438A (en) * 2015-02-11 2015-05-27 江门市芳源环境科技开发有限公司 Method for preparing ternary positive electrode material precursor by virtue of waste batteries
CN104659438B (en) * 2015-02-11 2017-03-01 江门市芳源环境科技开发有限公司 A kind of method that utilization refuse battery prepares ternary anode material precursor
CN104868190A (en) * 2015-05-13 2015-08-26 中国科学院过程工程研究所 Leaching and recycling method for metals in anode waste materials of lithium-ion batteries
CN105375078A (en) * 2015-10-23 2016-03-02 赣州市芯隆新能源材料有限公司 Method for circularly preparing spherical lithium nickel cobalt manganese oxide by lithium-ion battery positive plate
CN105633500A (en) * 2016-02-22 2016-06-01 四川天齐锂业股份有限公司 Method for preparing ternary cathode material precursor by recycling lithium-ion battery material
CN105789726A (en) * 2016-04-21 2016-07-20 苏州聚智同创环保科技有限公司 Method for preparing nickel-cobalt-manganese ternary material precursor from waste lithium ion battery
CN106299526A (en) * 2016-09-19 2017-01-04 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN106299526B (en) * 2016-09-19 2018-11-06 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN106450548A (en) * 2016-10-26 2017-02-22 荆门市格林美新材料有限公司 Method for preparing ternary cathode materials by waste lithium manganate cathode materials
CN106450552A (en) * 2016-10-26 2017-02-22 荆门市格林美新材料有限公司 Method for preparing ternary cathode material from waste lithium cobalt oxide cathode material
CN106328927A (en) * 2016-11-03 2017-01-11 王坚 Resource recycling method of waste battery cathode materials
CN106785167B (en) * 2016-12-20 2018-12-28 天齐锂业股份有限公司 The recovery method of lithium in waste lithium cell positive electrode
CN106785167A (en) * 2016-12-20 2017-05-31 天齐锂业股份有限公司 The recovery method of lithium in waste lithium cell positive electrode
CN106784793A (en) * 2016-12-31 2017-05-31 深圳市沃特玛电池有限公司 The preparation method of ternary cathode material of lithium ion battery
CN107196004A (en) * 2017-05-13 2017-09-22 合肥国轩高科动力能源有限公司 Method for recovering valuable metals from waste lithium ion power batteries
CN107196004B (en) * 2017-05-13 2019-07-19 合肥国轩高科动力能源有限公司 A method for recovering valuable metals from waste lithium-ion power batteries
CN107117661A (en) * 2017-05-26 2017-09-01 金川集团股份有限公司 The method that nickel cobalt manganese prepares ternary hydroxide in the waste and old lithium ion battery reclaimed using liquid phase method
CN107117661B (en) * 2017-05-26 2019-01-25 金川集团股份有限公司 The method for preparing ternary hydroxide using nickel cobalt manganese in the waste and old lithium ion battery of liquid phase method recycling
CN107275704A (en) * 2017-06-13 2017-10-20 安化县泰森循环科技有限公司 A kind of recovery method of ternary battery anode slice
CN107419096A (en) * 2017-06-27 2017-12-01 常州市沃兰特电子有限公司 A kind of preparation method of waste lithium cell reclaiming tertiary cathode material
CN107419096B (en) * 2017-06-27 2019-07-16 安徽巡鹰新能源科技有限公司 A kind of preparation method of waste lithium cell reclaiming tertiary cathode material
CN107394199A (en) * 2017-07-20 2017-11-24 北京理工大学 The restoration methods of chemical property after a kind of nickelic tertiary cathode material storage
CN107768763B (en) * 2017-10-19 2019-06-21 陈明海 A kind of method of waste and old lithium ion battery recycling production NCM salt
CN107768763A (en) * 2017-10-19 2018-03-06 湖北碧拓新材料科技有限公司 A kind of method that waste and old lithium ion battery recovery makes NCM salt
CN109921014A (en) * 2017-12-13 2019-06-21 荆门市格林美新材料有限公司 Ni-based anode material for lithium-ion batteries and preparation method thereof with subgrain structure
CN108103323A (en) * 2017-12-14 2018-06-01 中南大学 A kind of recovery method of the positive electrode of nickel cobalt manganese old and useless battery
CN107986335A (en) * 2017-12-14 2018-05-04 上海第二工业大学 A kind of method that manganese dioxide particle is prepared using waste and old ternary dynamic lithium battery positive electrode
CN107946688A (en) * 2017-12-16 2018-04-20 淄博国利新电源科技有限公司 The method that lithium is recycled from discarded ternary lithium ion battery
CN108172925A (en) * 2017-12-27 2018-06-15 浙江中金格派锂电产业股份有限公司 A kind of nickle cobalt lithium manganate ter-polymers cell anode waste recovery method
CN108400401A (en) * 2018-02-27 2018-08-14 四川省有色冶金研究院有限公司 A method of using the active material of waste and old lithium dynamical battery separation as Material synthesis nickle cobalt lithium manganate
CN110277552A (en) * 2018-03-16 2019-09-24 荆门市格林美新材料有限公司 The reparative regeneration method of nickel-cobalt-manganternary ternary anode material in old and useless battery
CN108598396A (en) * 2018-03-30 2018-09-28 华南师范大学 A kind of preparation method of regenerative lithium ion anode material
CN108649291A (en) * 2018-05-24 2018-10-12 北京化工大学 It is a kind of using waste and old lithium ion battery as the technique of raw materials recovery nickel-cobalt lithium manganate cathode material
CN108682915A (en) * 2018-05-29 2018-10-19 江苏理工学院 A kind of waste and old nickel-cobalt-manganese ternary lithium battery and silver-nickel are jointly processed by method
CN108879008A (en) * 2018-06-21 2018-11-23 南充中芯新能源科技有限公司 A kind of recovery and treatment method and nickle cobalt lithium manganate battery material of waste lithium cell positive electrode
CN108899604A (en) * 2018-06-28 2018-11-27 郑州中科新兴产业技术研究院 Utilize the method for waste lithium cell anode pole piece preparation ternary anode material precursor
CN108878836A (en) * 2018-06-28 2018-11-23 山东理工大学 The method for directly preparing the modified tertiary cathode material of zincic acid lithium using waste lithium cell positive electrode
CN108933308A (en) * 2018-07-13 2018-12-04 江西环锂新能源科技有限公司 A kind of comprehensive reutilization method for scrapping lithium battery positive and negative anodes
CN109234524A (en) * 2018-09-19 2019-01-18 中国科学院青海盐湖研究所 A kind of method and system of the comprehensively recovering valuable metal from waste and old ternary lithium battery
CN109256596A (en) * 2018-09-19 2019-01-22 中国科学院青海盐湖研究所 A kind of method and system inversely preparing aluminium doping ternary precursor
CN109449434A (en) * 2018-09-20 2019-03-08 广东佳纳能源科技有限公司 A method of ternary anode material of lithium battery presoma is prepared using waste and old lithium ion battery
CN109449434B (en) * 2018-09-20 2021-08-20 广东佳纳能源科技有限公司 Method for preparing ternary lithium battery positive electrode material precursor by using waste lithium ion battery
CN109256599A (en) * 2018-11-07 2019-01-22 深圳佳彬科技有限公司 A kind of processing method for nickel-cobalt-manganese ternary waste lithium cell
CN109735709B (en) * 2018-12-13 2021-01-08 江西赣锋循环科技有限公司 Method for recycling lithium from calcium and magnesium removing slag and preparing ternary precursor material
CN109735709A (en) * 2018-12-13 2019-05-10 江西赣锋循环科技有限公司 A kind of method removing calcium and magnesium slag recycling lithium and prepare ternary precursor material
KR102577927B1 (en) * 2018-12-27 2023-09-14 제이엑스금속주식회사 Methods for recovering valuable metals
KR20210095685A (en) * 2018-12-27 2021-08-02 제이엑스금속주식회사 How to recover valuable metals
CN113227419A (en) * 2018-12-27 2021-08-06 捷客斯金属株式会社 Method for recovering valuable metals
CN109755539A (en) * 2019-02-21 2019-05-14 湖南邦普循环科技有限公司 Utilize the method for lithium ion cell anode waste production aluminium doping ternary precursor
CN109904548A (en) * 2019-03-22 2019-06-18 郑州中科新兴产业技术研究院 A method for synthesizing lithium-rich materials from spent lithium-ion batteries
CN110040786A (en) * 2019-04-18 2019-07-23 甘肃睿思科新材料有限公司 A kind of method of anode material of lithium battery recycling and reusing
CN110034350B (en) * 2019-04-23 2022-07-12 南昌大学 Method for comprehensive recovery of waste lithium batteries by hypoxic pyrolysis
CN110034350A (en) * 2019-04-23 2019-07-19 南昌大学 The method of hypoxemia cracking synthetical recovery waste lithium cell
CN110157915A (en) * 2019-06-24 2019-08-23 甘肃睿思科新材料有限公司 The efficient reuse method of anode material of lithium battery
CN110233306A (en) * 2019-07-09 2019-09-13 郑州中科新兴产业技术研究院 A kind of method of waste and old lithium ion battery recycling ternary anode material precursor
CN110498434A (en) * 2019-07-26 2019-11-26 长沙佳纳锂业科技有限公司 A kind of recovery method of anode active material of lithium ion battery and its application
CN110422891A (en) * 2019-08-08 2019-11-08 中国科学院青海盐湖研究所 A kind of method preparing nickel-cobalt-manganese ternary presoma, system and application
CN111115662A (en) * 2019-12-31 2020-05-08 清华四川能源互联网研究院 A kind of lithium battery material recovery method
EP4140956A4 (en) * 2020-04-23 2024-05-01 JX Nippon Mining & Metals Corporation Method for producing mixed metal salt
CN111807423A (en) * 2020-07-22 2020-10-23 成都理工大学 Method for preparing battery cathode material by leaching waste lithium battery with sulfur dioxide gas
CN111987381A (en) * 2020-08-25 2020-11-24 长沙矿冶研究院有限责任公司 Method for synchronously defluorinating valuable metals leached from waste lithium ion batteries
CN111960480A (en) * 2020-08-28 2020-11-20 四川省有色冶金研究院有限公司 Method for preparing nickel-cobalt-manganese ternary material by using waste lithium ion battery
CN112786988A (en) * 2020-11-26 2021-05-11 清华四川能源互联网研究院 Impurity removal and treatment method in lithium battery scrapped positive electrode material recovery process
CN115611321A (en) * 2021-05-31 2023-01-17 福建师范大学 Method for preparing sodium ion battery positive electrode material by recycling waste battery positive electrode (nickel cobalt lithium manganate) and application
CN113943021A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Regenerated lithium cobaltate and repairing method and application thereof
CN113943020A (en) * 2021-10-15 2022-01-18 广东瑞科美电源技术有限公司 Regenerated lithium cobaltate and activation method and application thereof
CN114196829A (en) * 2021-11-17 2022-03-18 华中科技大学 A kind of recovery method of nickel-cobalt-manganese cathode material of retired lithium ion battery
CN115810742A (en) * 2022-01-05 2023-03-17 宁德时代新能源科技股份有限公司 Preparation method of positive electrode active material
CN115810742B (en) * 2022-01-05 2025-02-18 宁德时代新能源科技股份有限公司 Preparation method of positive electrode active material
WO2024108876A1 (en) * 2022-11-21 2024-05-30 北京工业大学 Method for preferentially recovering manganese from waste lithium-rich manganese-based positive electrode material

Also Published As

Publication number Publication date
WO2014154152A1 (en) 2014-10-02
CN103199320B (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CN103199320B (en) Method for recycling nickel-cobalt-manganese ternary anode material
CN108878866B (en) Method for preparing ternary material precursor and recovering lithium by using ternary cathode material of waste lithium ion battery
Zhao et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries
CN111129632B (en) Method for recycling positive and negative electrode mixed materials of waste ternary lithium ion battery
CN105958148B (en) A method of recycling valuable metal from waste and old nickle cobalt lithium manganate battery material
CN108649291A (en) It is a kind of using waste and old lithium ion battery as the technique of raw materials recovery nickel-cobalt lithium manganate cathode material
CN104868190B (en) The leaching of metal and recovery method in a kind of lithium ion cell anode waste
CN108550939B (en) A method for selectively reclaiming lithium and preparing lithium carbonate from waste lithium batteries
CN103066275B (en) Preparation method of spherical high-voltage lithium nickel manganate anode material
CN109052492B (en) Method for preparing ternary cathode material from laterite nickel ore nitric acid leaching solution
CN108767354A (en) A method of recycling valuable metal from waste lithium ion cell anode material
CN111254294B (en) Method for selectively extracting lithium from waste lithium-ion battery powder and electrolytically separating and recovering manganese dioxide
CN107267759A (en) Comprehensive recovery method of lithium ion battery anode material
CN101264876B (en) Method for preparing ferric lithium phosphate precursor by comprehensive utilization of ilmenite
CN110092398B (en) Resource utilization method for waste lithium ion battery roasting tail gas
CN108878837B (en) Method for preparing lithium aluminate modified ternary cathode material based on waste lithium battery cathode material
CN107579218B (en) Method for directly preparing nickel-cobalt-aluminum ternary positive electrode material precursor from acid leaching solution of laterite-nickel ore
CN108878836B (en) Method for directly preparing lithium zincate modified ternary cathode material from waste lithium battery cathode material
CN112267024B (en) A kind of comprehensive recycling method of waste lithium-ion battery
CN116632395A (en) A recovery method for valuable metals in waste batteries
CN112357972A (en) Low-nickel cobalt-free precursor, cathode material and preparation method thereof
CN113904016B (en) Method for reconstructing single crystal electrode material from waste lithium ion battery
CN114959272A (en) Method for selectively recovering lithium from waste lithium ion battery
CN114744165A (en) A kind of preparation method of polyanionic positive electrode material
CN106395784B (en) The method that cobalt lithium prepares cobalt phosphate is detached in a kind of cobalt acid lithium from waste lithium cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 629200 Shehong County, Suining City, Taihe Town, north of the city of Qi Qi lithium Limited by Share Ltd

Patentee after: Tianqi Lithium Co., Ltd.

Address before: 629200, Sichuan County, Suining City, Shehong Province Taihe Town North Village space, Sichuan Tianqi lithium industry Limited by Share Ltd

Patentee before: Sichuan Tianqi Lithium Industries.Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191016

Address after: 629200, Suining County, Sichuan City, Shehong Province Taihe Town, North Qi Li lithium Limited by Share Ltd

Co-patentee after: Tianqi lithium industry (Jiangsu) Co., Ltd.

Patentee after: Tianqi Lithium Industry Co., Ltd.

Co-patentee after: Tianqi Lithium Industry (Shehong) Co., Ltd.

Address before: 629200, Suining County, Sichuan City, Shehong Province Taihe Town, North Qi Li lithium Limited by Share Ltd

Patentee before: Tianqi Lithium Industry Co., Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215634, 5, Dongxin Road, Yangzi International Chemical Industry Park, Suzhou, Jiangsu, Zhangjiagang

Co-patentee after: Tianqi Lithium Industry Co., Ltd.

Patentee after: Tianqi lithium industry (Jiangsu) Co., Ltd.

Co-patentee after: Tianqi Lithium Industry (Shehong) Co., Ltd.

Address before: 629200, Suining County, Sichuan City, Shehong Province Taihe Town, North Qi Li lithium Limited by Share Ltd

Co-patentee before: Tianqi lithium industry (Jiangsu) Co., Ltd.

Patentee before: Tianqi Lithium Industry Co., Ltd.

Co-patentee before: Tianqi Lithium Industry (Shehong) Co., Ltd.