[go: up one dir, main page]

CN103196613B - A kind of high-temperature CMUT pressure sensor and preparation method thereof - Google Patents

A kind of high-temperature CMUT pressure sensor and preparation method thereof Download PDF

Info

Publication number
CN103196613B
CN103196613B CN201310084858.6A CN201310084858A CN103196613B CN 103196613 B CN103196613 B CN 103196613B CN 201310084858 A CN201310084858 A CN 201310084858A CN 103196613 B CN103196613 B CN 103196613B
Authority
CN
China
Prior art keywords
layer
silicon
silicon carbide
silicon nitride
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310084858.6A
Other languages
Chinese (zh)
Other versions
CN103196613A (en
Inventor
赵立波
李支康
蒋庄德
叶志英
王久洪
王苑
赵玉龙
苑国英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201310084858.6A priority Critical patent/CN103196613B/en
Publication of CN103196613A publication Critical patent/CN103196613A/en
Application granted granted Critical
Publication of CN103196613B publication Critical patent/CN103196613B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种高温CMUT压力传感器及其制备方法,其整体结构从上至下依次为:第一碳化硅层、第一氮化硅层、第二碳化硅层、第二氮化硅层、和第三碳化硅层;第一氮化硅层、第二碳化硅层和第二氮化硅层周围部分和中间部分均被空腔在横向方向上隔开;通孔贯穿第三碳化硅层;所述第二氮化硅层中间部分覆盖在第三碳化硅层上侧和通孔的内表面;在通孔中的氮化硅层内表面上覆盖有电连接金属层与下电极形成电连接;有效减小了充电现象对传感器工作性能的影响;有效减小了高温环境中寄生电容及其对传感器检测灵敏度的影响;采用碳化硅层和氮化硅层交替的对称式结构设计能有效减小高温环境中温度应力对传感器测量精确度的影响。

The invention discloses a high-temperature CMUT pressure sensor and a preparation method thereof, the overall structure of which is as follows from top to bottom: a first silicon carbide layer, a first silicon nitride layer, a second silicon carbide layer, and a second silicon nitride layer , and the third silicon carbide layer; the first silicon nitride layer, the second silicon carbide layer and the second silicon nitride layer peripheral and middle parts are separated in the lateral direction by the cavity; the through hole penetrates the third silicon carbide layer; the middle part of the second silicon nitride layer covers the upper side of the third silicon carbide layer and the inner surface of the through hole; the inner surface of the silicon nitride layer in the through hole is covered with an electrical connection metal layer and the lower electrode is formed Electrical connection; effectively reduce the impact of charging phenomenon on sensor performance; effectively reduce parasitic capacitance in high temperature environment and its impact on sensor detection sensitivity; adopt symmetrical structure design with alternating silicon carbide layers and silicon nitride layers. Effectively reduce the influence of temperature stress on sensor measurement accuracy in high temperature environment.

Description

一种高温CMUT压力传感器及其制备方法A kind of high temperature CMUT pressure sensor and preparation method thereof

技术领域technical field

本发明属于MEMS技术领域,涉及一种压力检测装置,特别是一种涉及一种高温CMUT压力传感器及其制备方法。The invention belongs to the technical field of MEMS, and relates to a pressure detection device, in particular to a high-temperature CMUT pressure sensor and a preparation method thereof.

背景技术Background technique

低压力检测在工业控制、太空探索、医疗卫生以及半导体加工等领域都有广泛的应用需求,是压力检测技术的一个极限挑战。目前,基于MEMS技术的硅微压力传感器研究较多,主要可分为压阻式、电容以及谐振式微压力传感器。相对于电容式和压阻式微压力传感器,谐振式更具有优势;如测量精度、稳定性和分辨力都优于其他两种;另外谐振式传感器输出为数字信号,抗干扰能力强,便于传输。谐振式硅微压力传感器又可分为常见的悬臂梁式和近年来出现的基于CMUT结构的微压力传感器。CMUT微压力传感器除了具有谐振式压力传感器的共同优点外,相对于悬臂梁式微压力传感器有更坚固、可靠的结构,更适合用于恶劣环境中压力检测。由于高温恶劣环境是目前硅微压力传感器传感器的研究难点之一,常见的微压力传感器多在常规温环境(如小于120℃)下实现低压力检测。Low-pressure detection has a wide range of application requirements in the fields of industrial control, space exploration, medical and health care, and semiconductor processing, and is an extreme challenge for pressure detection technology. At present, there are many researches on silicon micro pressure sensors based on MEMS technology, which can be mainly divided into piezoresistive, capacitive and resonant micro pressure sensors. Compared with capacitive and piezoresistive micro pressure sensors, the resonant type has more advantages; for example, the measurement accuracy, stability and resolution are better than the other two; in addition, the output of the resonant type sensor is a digital signal, which has strong anti-interference ability and is convenient for transmission. The resonant silicon micro pressure sensor can be divided into the common cantilever beam type and the micro pressure sensor based on the CMUT structure that has appeared in recent years. In addition to the common advantages of resonant pressure sensors, CMUT micro pressure sensors have a stronger and more reliable structure than cantilever beam micro pressure sensors, and are more suitable for pressure detection in harsh environments. Since the high temperature and harsh environment is one of the difficulties in the research of silicon micro pressure sensors, common micro pressure sensors mostly realize low pressure detection in conventional temperature environments (such as less than 120°C).

由于CMUT是以硅及硅基化合物作为基本材料,以静电驱动作为基本驱动方式,以压力引起的频率变化来实现微小压力检测的传感器,其在高温环境中的应用必须要考虑到以下因素的影响:第一,常见单晶硅、多晶硅材料的电性能和机械性能分别在250℃和600℃以上变差;第二,随着温度的升高,绝缘层、空腔支柱的杂质离子迁移率变大,CMUT寄生电容变大,因而会降低检测灵敏度;第三,随着温度升高,电绝缘层充电现象增强,击穿电压会变小,电绝缘层击穿可能性增大;第四,由于CMUT结构组成部分的热膨胀系数不同,因而会引起较大的温度应力,从而会导致压力检测的误差增大,因而需要合理的材料选择和结构设计尽量减小温度应力的对传感器测量性能的影响。Since CMUT uses silicon and silicon-based compounds as the basic material, electrostatic drive as the basic driving method, and pressure-induced frequency changes to realize micro-pressure detection sensors, its application in high-temperature environments must take into account the influence of the following factors : First, the electrical and mechanical properties of common single crystal silicon and polycrystalline silicon materials deteriorate above 250°C and 600°C respectively; second, as the temperature increases, the mobility of impurity ions in the insulating layer and cavity pillars changes Larger, the parasitic capacitance of CMUT becomes larger, which will reduce the detection sensitivity; third, as the temperature rises, the charging phenomenon of the electrical insulating layer will increase, the breakdown voltage will become smaller, and the possibility of breakdown of the electrical insulating layer will increase; fourth, Due to the different thermal expansion coefficients of the structural components of the CMUT, it will cause a large temperature stress, which will lead to an increase in the error of pressure detection. Therefore, reasonable material selection and structural design are required to minimize the impact of temperature stress on sensor measurement performance. .

发明内容Contents of the invention

本发明的目的在于提出一种高温CMUT压力传感器及其制备方法,能有效减少高温环境中温度应力,寄生电容以及电绝缘层充电现象对传感器工作性能的影响,实现高温环境下的低压(<10kPa)检测。The purpose of the present invention is to propose a high-temperature CMUT pressure sensor and a preparation method thereof, which can effectively reduce the temperature stress in a high-temperature environment, the influence of parasitic capacitance and the charging phenomenon of an electrical insulating layer on the performance of the sensor, and realize low pressure (<10kPa) pressure in a high-temperature environment. ) detection.

为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:

一种高温CMUT压力传感器,其整体结构从上至下依次为:第一碳化硅层、第一氮化硅层、第二碳化硅层、第二氮化硅层、和第三碳化硅层;第一氮化硅层、第二碳化硅层和第二氮化硅层均分为中间部分和周围部分,且周围部分和中间部分均被空腔在横向方向上隔开;第一氮化硅层、第二碳化硅层、第二氮化硅层的周围部分形成空腔的侧壁,第一碳化硅层和第三碳化硅层分别为空腔的顶部和底部,空腔侧壁与空腔底部、顶部一道将空腔密封;第一碳化硅层经离子掺杂形成上电极,第二碳化硅层的中间部分经离子掺杂形成下电极;所述第一氮化硅层中间部分的横向尺寸小于第二碳化硅层中间部分的横向尺寸,第三碳化硅层中间设置有通孔,通孔贯穿第三碳化硅层,通孔横向尺寸小于下电极的横向尺寸;所述第二氮化硅层中间部分覆盖在第三碳化硅层上侧和通孔的内表面;在通孔中的氮化硅层内表面上覆盖有电连接金属层,电连接金属层顶部与下电极形成电连接;所述第一碳化硅层、第二碳化硅层和第三碳化硅层的材料可换为金刚石,第一氮化硅层和第二氮化硅层的材料可换为二氧化硅。A high-temperature CMUT pressure sensor whose overall structure from top to bottom is: a first silicon carbide layer, a first silicon nitride layer, a second silicon carbide layer, a second silicon nitride layer, and a third silicon carbide layer; The first silicon nitride layer, the second silicon carbide layer and the second silicon nitride layer are equally divided into a middle part and a surrounding part, and the surrounding part and the middle part are separated in the lateral direction by a cavity; the first silicon nitride layer, the second silicon carbide layer, and the surrounding parts of the second silicon nitride layer form the sidewall of the cavity, the first silicon carbide layer and the third silicon carbide layer are the top and bottom of the cavity respectively, and the cavity sidewall and the cavity The bottom and top of the cavity are sealed together; the first silicon carbide layer is ion-doped to form an upper electrode, and the middle part of the second silicon carbide layer is ion-doped to form a lower electrode; the middle part of the first silicon nitride layer is The lateral size is smaller than the lateral size of the middle part of the second silicon carbide layer, a through hole is arranged in the middle of the third silicon carbide layer, the through hole penetrates the third silicon carbide layer, and the lateral size of the through hole is smaller than the lateral size of the lower electrode; the second nitrogen The middle part of the silicon carbide layer covers the upper side of the third silicon carbide layer and the inner surface of the through hole; the inner surface of the silicon nitride layer in the through hole is covered with an electrically connected metal layer, which is electrically connected to the top of the metal layer and the lower electrode to form an electrical connection. Connection; the material of the first silicon carbide layer, the second silicon carbide layer and the third silicon carbide layer can be changed to diamond, and the material of the first silicon nitride layer and the second silicon nitride layer can be changed to silicon dioxide.

所述第一氮化硅层中间部分厚度小于第一氮化硅层的周围部分的厚度。The thickness of the middle part of the first silicon nitride layer is smaller than the thickness of the surrounding part of the first silicon nitride layer.

所述第一氮化硅层中间部分的中心点对应第一碳化硅层的中心点。The central point of the middle part of the first silicon nitride layer corresponds to the central point of the first silicon carbide layer.

所述第二氮化硅层周围部分的横向尺寸与第一氮化硅层周围部分的横向尺寸相同,且对称分布在第二碳化硅层的两侧。The lateral dimension of the surrounding part of the second silicon nitride layer is the same as that of the surrounding part of the first silicon nitride layer, and is symmetrically distributed on both sides of the second silicon carbide layer.

所述第二氮化硅层中间部分为环状,其外部横向尺寸小于下电极的横向尺寸。The middle part of the second silicon nitride layer is ring-shaped, and its outer lateral dimension is smaller than that of the lower electrode.

所述第一氮化硅层中间部分、第二碳化硅层中间部分、第二氮化硅层中间部分、通孔、金属电连接层关于同一中心轴对称。The middle part of the first silicon nitride layer, the middle part of the second silicon carbide layer, the middle part of the second silicon nitride layer, the through hole and the metal electrical connection layer are symmetrical about the same central axis.

所述第一、第二碳化硅层可换为相应的金刚石层或其他类似材料,所述氮化硅层可换为相应的二氧化硅层或其他类似材料。The first and second silicon carbide layers can be replaced with corresponding diamond layers or other similar materials, and the silicon nitride layer can be replaced with corresponding silicon dioxide layers or other similar materials.

一种高温CMUT压力传感器的制备方法,包括以下步骤:A preparation method for a high-temperature CMUT pressure sensor, comprising the following steps:

(1)取一P或N型碳化硅片,采用深反应离子刻蚀技术在该碳化硅中部刻蚀通孔,该通孔贯穿该碳化硅片,此时形成第三碳化硅层;(1) Take a P or N-type silicon carbide wafer, and use deep reactive ion etching technology to etch a through hole in the middle of the silicon carbide, the through hole runs through the silicon carbide wafer, and at this time, a third silicon carbide layer is formed;

(2)在第三碳化硅层上表面及其中部通孔内表面沉积氮化硅层;同时取一单晶硅或多晶硅片作为第一衬底硅,在其上表面沉积碳化硅层;(2) Deposit a silicon nitride layer on the upper surface of the third silicon carbide layer and the inner surface of the through hole in the middle; at the same time, take a single crystal silicon or polycrystalline silicon wafer as the first substrate silicon, and deposit a silicon carbide layer on its upper surface;

(3)光刻、刻蚀第三碳化硅层上表面的氮化硅层形成第二氮化硅层,它分为周围部分和中间部分,中间部分为覆盖在第三氮化硅层上表面中部和整个通孔内表面部分;采用局部掺杂技术金属化第一衬底硅上表面的碳化硅层中部区域;采用化学机械抛光技术抛光第二氮化硅层及第一衬底硅上的碳化硅层上表面;(3) Photolithography and etching the silicon nitride layer on the upper surface of the third silicon carbide layer to form a second silicon nitride layer, which is divided into a surrounding part and a middle part, and the middle part is to cover the upper surface of the third silicon nitride layer The middle part and the entire inner surface of the through hole; the middle area of the silicon carbide layer on the upper surface of the first substrate silicon is metallized by local doping technology; the second silicon nitride layer and the silicon carbide layer on the first substrate silicon are polished by chemical mechanical polishing technology The upper surface of the silicon carbide layer;

(4)将第三碳化硅层上表面的第二氮化硅层与第一衬底硅上的碳化硅层键合,其中第一衬底硅上的碳化硅层在上,第二氮化硅层在下;(4) Bond the second silicon nitride layer on the upper surface of the third silicon carbide layer with the silicon carbide layer on the first substrate silicon, wherein the silicon carbide layer on the first substrate silicon is on top, and the second silicon nitride layer is The silicon layer is underneath;

(5)刻蚀掉第一衬底硅,释放第一衬底硅上的碳化硅层,并采用化学机械抛光技术抛光其表面;(5) Etching away the first substrate silicon, releasing the silicon carbide layer on the first substrate silicon, and polishing its surface by chemical mechanical polishing technology;

(6)在源于第一衬底硅的碳化硅层上沉积氮化硅层;(6) depositing a silicon nitride layer on the silicon carbide layer derived from the first substrate silicon;

(7)二次光刻、刻蚀源于第一衬底硅的碳化硅层上的氮化硅层,使其形成第一氮化硅层,其中间部分为较小区域,且厚度小于周围部分氮化硅层的厚度,周围部分氮化硅层的横向尺寸与第二氮化硅周围部分的横向尺寸相同;同时取另一单晶硅或多晶硅片作为第二衬底硅,在其上表面沉积碳化硅层;(7) Second photolithography and etching of the silicon nitride layer on the silicon carbide layer derived from the first substrate silicon to form the first silicon nitride layer, the middle part of which is a smaller area, and the thickness is smaller than that of the surrounding The thickness of part of the silicon nitride layer, the lateral dimension of the surrounding part of the silicon nitride layer is the same as the lateral dimension of the surrounding part of the second silicon nitride; at the same time, another single crystal silicon or polycrystalline silicon wafer is taken as the second substrate silicon, on which A silicon carbide layer is deposited on the surface;

(8)光刻、刻蚀源于第一衬底硅的碳化硅层,使其形成第二碳化硅层,其中部区域为电极,周围部分为未掺杂碳化硅;采用离子掺杂技术掺杂第二衬底硅上的碳化硅层,使其形成第一碳化硅层;(8) Photolithography and etching of the silicon carbide layer derived from the first substrate silicon to form a second silicon carbide layer, in which the central region is an electrode, and the surrounding part is undoped silicon carbide; ion doping technology is used to dope Doping the silicon carbide layer on the second substrate silicon to form the first silicon carbide layer;

(9)采用化学机械抛光技术抛光第一碳化硅层及第一氮化硅层上表面,并将二者真空键合,其中第一碳化硅层在上,第一氮化硅层在下,此时第一氮化硅层、第二碳化硅层及第二氮化硅层的周围部分组成空腔侧壁,第一碳化硅层和第三碳化硅层分别为空腔顶部和底部,侧壁与顶部、底部一道将空腔密封;(9) Using chemical mechanical polishing technology to polish the upper surfaces of the first silicon carbide layer and the first silicon nitride layer, and vacuum bonding the two, wherein the first silicon carbide layer is on the top and the first silicon nitride layer is on the bottom. When the first silicon nitride layer, the second silicon carbide layer and the surrounding part of the second silicon nitride layer form the side wall of the cavity, the first silicon carbide layer and the third silicon carbide layer are respectively the top and bottom of the cavity, and the side wall Seal the cavity together with the top and bottom;

(10)刻蚀掉用于沉积第一碳化硅层的第二衬底硅,释放第一碳化硅层,同时在通孔中的氮化硅层内表面溅射耐高温金属层,金属层顶部与第二碳化硅层的中部区域形成电连接,金属层侧壁覆盖在通孔内氮化硅层的内壁上。(10) Etch away the second substrate silicon used to deposit the first silicon carbide layer, release the first silicon carbide layer, and at the same time sputter a high-temperature resistant metal layer on the inner surface of the silicon nitride layer in the through hole, the top of the metal layer An electrical connection is formed with the middle region of the second silicon carbide layer, and the side wall of the metal layer covers the inner wall of the silicon nitride layer in the through hole.

步骤(10)中通孔内溅射的耐高温金属层为镍层或锰层。The high temperature resistant metal layer sputtered in the through hole in step (10) is a nickel layer or a manganese layer.

本发明的高温CMUT压力传感器及其制备方法至少有以下优点:The high-temperature CMUT pressure sensor of the present invention and its preparation method have at least the following advantages:

(1)常规CMUT结构中,因电绝缘层覆盖整个下电极上表面,当上、电极形成强电场时在电绝缘层表面或其与下电极的交界面或电绝缘层内部出现电荷层,也即电绝缘层充电现象,它会影响CMUT的直流偏置电压工作点及工作性能;而本发明中电绝缘层横向尺寸远小于下电极横向尺寸,有效减小了充电现象对传感器工作性能的影响。(1) In the conventional CMUT structure, because the electrical insulating layer covers the entire upper surface of the lower electrode, when the upper and the electrodes form a strong electric field, a charge layer appears on the surface of the electrical insulating layer or its interface with the lower electrode or inside the electrical insulating layer. That is, the charging phenomenon of the electrical insulating layer, which will affect the DC bias voltage operating point and working performance of the CMUT; and the lateral dimension of the electrical insulating layer in the present invention is much smaller than the lateral dimension of the lower electrode, effectively reducing the impact of the charging phenomenon on the working performance of the sensor .

(2)常规CMUT结构中,因用整个单晶硅基底作为下电极或金属电极层覆盖整个基底作为下电极,下电极与上电极之间的空腔侧壁部分则形成寄生电容,且高温时因单晶硅或多晶硅材料导电能力增强,寄生电容变大。而本发明中,下电极位于空腔内部,且与侧壁、第三碳化硅层之间完全电隔绝,有效减小了高温环境中寄生电容及其对传感器检测灵敏度的影响。(2) In the conventional CMUT structure, since the entire single crystal silicon substrate is used as the lower electrode or the metal electrode layer covers the entire substrate as the lower electrode, the side wall of the cavity between the lower electrode and the upper electrode forms a parasitic capacitance, and at high temperature Due to the enhanced conductivity of single crystal silicon or polycrystalline silicon material, the parasitic capacitance becomes larger. In the present invention, however, the lower electrode is located inside the cavity, and is completely electrically isolated from the sidewall and the third silicon carbide layer, effectively reducing the parasitic capacitance in a high-temperature environment and its influence on the detection sensitivity of the sensor.

(3)本发明采用碳化硅层和氮化硅层交替的对称式结构设计能有效减小高温环境中温度应力对传感器测量精确度的影响。(3) The present invention adopts a symmetrical structure design in which silicon carbide layers and silicon nitride layers alternate, which can effectively reduce the influence of temperature stress on sensor measurement accuracy in a high temperature environment.

附图说明Description of drawings

图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;

图2为本发明的制备方法流程图;Fig. 2 is a flow chart of the preparation method of the present invention;

图中标号具体表示如下:The symbols in the figure are specifically indicated as follows:

具体实施方式detailed description

下面结合附图对本发明进行详细描述:The present invention is described in detail below in conjunction with accompanying drawing:

如图1所示,本发明的总体结构自上而下依次为:第一碳化硅层1、第一氮化硅层4、第二碳化硅层2、第二氮化硅层5,第三碳化硅层3。其中第一氮化硅层4、第二碳化硅层2、第二氮化硅层5均分为周围部分和中间部分,且周围部分和中间部分均被空腔14在横向方向上隔开。第一氮化硅层4、第二碳化硅层2、第二氮化硅层5的周围部分组成空腔14的侧壁,第一碳化硅层1和第三碳化硅层3分别为空腔的顶部和底部,空腔14的侧壁与第一碳化硅层1和第三碳化硅层3一道将空腔密封。所述第一、第二、第三碳化硅层1、2、3的材料可换为金刚石或其他类似材料,第一、第二氮化硅层4、5可换为二氧化硅或其他类似材料。As shown in Figure 1, the overall structure of the present invention is as follows from top to bottom: the first silicon carbide layer 1, the first silicon nitride layer 4, the second silicon carbide layer 2, the second silicon nitride layer 5, the third Silicon carbide layer 3. The first silicon nitride layer 4 , the second silicon carbide layer 2 , and the second silicon nitride layer 5 are equally divided into a peripheral portion and a middle portion, and the peripheral portion and the middle portion are separated by a cavity 14 in the lateral direction. The surrounding parts of the first silicon nitride layer 4, the second silicon carbide layer 2, and the second silicon nitride layer 5 form the side walls of the cavity 14, and the first silicon carbide layer 1 and the third silicon carbide layer 3 are respectively cavities. The top and bottom of the cavity 14 seal the cavity together with the first silicon carbide layer 1 and the third silicon carbide layer 3 . The material of the first, second, and third silicon carbide layers 1, 2, and 3 can be replaced by diamond or other similar materials, and the first and second silicon nitride layers 4, 5 can be replaced by silicon dioxide or other similar materials. Material.

第一碳化硅层1为压力敏感元件,经离子掺杂或局部离子掺杂后用作上电极,上电极横向尺寸以应以减小塌陷电压、增大机电耦合效率为原则。第一碳化硅层1的尺寸应该综合考虑电极导电性能、CMUT工作频率、压力检测灵敏度等因素。The first silicon carbide layer 1 is a pressure sensitive element, which is used as an upper electrode after ion doping or partial ion doping. The lateral dimension of the upper electrode should be based on the principle of reducing the collapse voltage and increasing the electromechanical coupling efficiency. The size of the first silicon carbide layer 1 should comprehensively consider factors such as electrode conductivity, CMUT operating frequency, and pressure detection sensitivity.

所述第二碳化硅层2可分为中间部分7和周围部分6,其中间部分7经过离子掺杂后用作下电极,其周围部分6为未掺杂碳化硅层,中间部分7和周围部分6在横向方向上被空腔14隔开,实现中间部分7与周围部分6之间的电隔绝,避免在高温环境中因周围部分6引起的寄生电容。第二碳化硅层2的中间部分7尺寸应以良好的导电性能和较大机电耦合性能为设计原则。第二碳化硅层2的厚度应以保持良好的应力匹配和结构形状稳定为设计原则。The second silicon carbide layer 2 can be divided into a middle part 7 and a surrounding part 6, the middle part 7 is used as a lower electrode after ion doping, the surrounding part 6 is an undoped silicon carbide layer, the middle part 7 and the surrounding Parts 6 are separated by cavities 14 in the lateral direction, realizing electrical isolation between middle part 7 and surrounding parts 6, avoiding parasitic capacitance caused by surrounding parts 6 in high temperature environment. The size of the middle part 7 of the second silicon carbide layer 2 should be designed based on good electrical conductivity and greater electromechanical coupling performance. The thickness of the second silicon carbide layer 2 should be designed on the principle of maintaining good stress matching and structural shape stability.

所述第一氮化硅层4分为中间部分11和周围部分10,所述中间部分11和周围部分10被空腔14隔开,中间部分11的厚度小于周围部分10的厚度,周围部分10的厚度决定着第一碳化硅层1中的上电极与下电极7之间的有效电极距离,中间部分11的厚度决定着第一碳化硅层1中心点的最大位移。所述第一氮化硅层中间部分11的中心点对应第一碳化硅层1的中心点,用于防止第一碳化硅层1中的上电极与下电极7的电接触;所述第一氮化硅层4中间部分11的横向尺寸远小于第二碳化硅层中间部分7的横向尺寸,理想情况下为一绝缘点,以尽量减小中间部分11充电现象对传感器工作性能的影响。The first silicon nitride layer 4 is divided into a middle part 11 and a surrounding part 10, the middle part 11 and the surrounding part 10 are separated by a cavity 14, the thickness of the middle part 11 is smaller than the thickness of the surrounding part 10, and the surrounding part 10 The thickness of the first silicon carbide layer 1 determines the effective electrode distance between the upper electrode and the lower electrode 7, and the thickness of the middle part 11 determines the maximum displacement of the center point of the first silicon carbide layer 1. The center point of the middle part 11 of the first silicon nitride layer corresponds to the center point of the first silicon carbide layer 1, which is used to prevent the electrical contact between the upper electrode and the lower electrode 7 in the first silicon carbide layer 1; the first The lateral size of the middle part 11 of the silicon nitride layer 4 is much smaller than the lateral size of the middle part 7 of the second silicon carbide layer, ideally an insulating point, so as to minimize the influence of the charging phenomenon of the middle part 11 on the working performance of the sensor.

所述第三碳化硅层3分为中间通孔9和碳化硅底板8两部分,其中通孔9为了实现下电极7的电连接,在厚度方向上贯穿第三碳化硅层3,通孔9横向尺寸应小于下电极7的横向尺寸,碳化硅底板8的厚度应保证结构在温度变化中的稳定性。The third silicon carbide layer 3 is divided into two parts, the middle through hole 9 and the silicon carbide bottom plate 8, wherein the through hole 9 runs through the third silicon carbide layer 3 in the thickness direction in order to realize the electrical connection of the lower electrode 7, and the through hole 9 The lateral dimension should be smaller than that of the lower electrode 7, and the thickness of the silicon carbide base plate 8 should ensure the stability of the structure in temperature changes.

所述第二氮化硅层5的分为中间部分12和周围部分13,中间部分12覆盖在碳化硅底板8中间部分和通孔9的内表面,用于实现底板8与下电极7及电连接金属层15之间的电绝缘。第二氮化硅层周围部分13的横向尺寸与第一氮化硅层周围部分10的横向尺寸相同,且对称分布于第二氮化硅层6的两侧,以实现热应力的对称性,尽量减小CMUT在温度环境中的结构变形。第二氮化硅层5厚度尺寸应保证良好的绝缘性能同时尽量小。第二氮化硅层中间部分12的位于底板8上侧部分为环状,其内部横向尺寸为通孔9尺寸减去通孔9内表面氮化硅层厚度尺寸,外部横向尺寸应尽量小于下电极7的横向尺寸,以减小下电极7与第二氮化硅层中间部分12之间的热应力失配对下电极7形状的影响,同时应保证下电极7与碳化硅底板8良好的连接强度。The second silicon nitride layer 5 is divided into a middle part 12 and a surrounding part 13. The middle part 12 covers the middle part of the silicon carbide bottom plate 8 and the inner surface of the through hole 9, and is used to realize the bottom plate 8 and the lower electrode 7 and the electric circuit. Electrical insulation between the metal layers 15 is connected. The lateral dimension of the surrounding portion 13 of the second silicon nitride layer is the same as that of the surrounding portion 10 of the first silicon nitride layer, and is symmetrically distributed on both sides of the second silicon nitride layer 6, so as to realize the symmetry of thermal stress, Minimize the structural deformation of the CMUT in the temperature environment. The thickness dimension of the second silicon nitride layer 5 should ensure good insulation performance and be as small as possible. The middle part 12 of the second silicon nitride layer located on the upper side of the bottom plate 8 is ring-shaped, and its internal lateral dimension is the size of the through hole 9 minus the thickness of the silicon nitride layer on the inner surface of the through hole 9, and the external lateral dimension should be as small as possible. The lateral dimension of the electrode 7 is to reduce the influence of the thermal stress mismatch between the lower electrode 7 and the middle part 12 of the second silicon nitride layer on the shape of the lower electrode 7, and at the same time ensure a good connection between the lower electrode 7 and the silicon carbide base plate 8 strength.

所述电连接金属层15覆盖在通孔9上氮化硅层的内表面,其顶部与下电极7形成电连接,金属层15的厚度综合考虑电连接性能、电阻和热应力三个因素。The electrical connection metal layer 15 covers the inner surface of the silicon nitride layer on the through hole 9, and its top forms an electrical connection with the lower electrode 7. The thickness of the metal layer 15 comprehensively considers three factors of electrical connection performance, resistance and thermal stress.

所述第一氮化硅层4、第二碳化硅层2以及第二氮化硅层5的周围部分10、6、13共同组成空腔14的侧壁,第一碳化硅层1和第三碳化硅层3作为空腔的顶部和底部,侧壁与顶部、底部一道将空腔14密封。The surrounding parts 10, 6, 13 of the first silicon nitride layer 4, the second silicon carbide layer 2 and the second silicon nitride layer 5 together form the sidewall of the cavity 14, the first silicon carbide layer 1 and the third silicon carbide layer 1 The silicon carbide layer 3 serves as the top and bottom of the cavity, and the side walls together with the top and bottom seal the cavity 14 .

所述空腔14不仅包括第一碳化硅层1和下电极7之间的空间部分,还包括下电极7和第二碳化硅层周围部分6之间、第三碳化硅层13和第二氮化硅层中间部分12之间的空间部分。The cavity 14 not only includes the space between the first silicon carbide layer 1 and the lower electrode 7, but also includes between the lower electrode 7 and the surrounding part 6 of the second silicon carbide layer, the third silicon carbide layer 13 and the second nitrogen The space portion between the middle portion 12 of the SiO layer.

所述第一氮化硅层中间部分11、第二碳化硅层中间部分7、第二氮化硅层中间部分12、通孔9、金属电连接层15关于同一中心轴对称。The middle part 11 of the first silicon nitride layer, the middle part 7 of the second silicon carbide layer, the middle part 12 of the second silicon nitride layer, the through hole 9 and the metal electrical connection layer 15 are symmetrical about the same central axis.

如图2所示,对本发明的制备方法进行说明:As shown in Figure 2, the preparation method of the present invention is described:

(1)取一P或N型碳化硅片,采用深反应离子刻蚀技术在该碳化硅中部刻蚀通孔9,该通孔9在厚度方向上贯穿该碳化硅片,此时形成第三碳化硅层3;(1) Take a P or N-type silicon carbide wafer, and use deep reactive ion etching technology to etch a through hole 9 in the middle of the silicon carbide, and the through hole 9 runs through the silicon carbide wafer in the thickness direction. At this time, a third silicon carbide wafer is formed. Silicon carbide layer 3;

(2)在第三碳化硅层3上表面及其中部通孔9内表面沉积氮化硅层16;同时取一单晶硅或多晶硅片作为第一衬底硅17,在其上表面沉积碳化硅层18;(2) Deposit a silicon nitride layer 16 on the upper surface of the third silicon carbide layer 3 and the inner surface of the through hole 9 in the middle; at the same time, take a single crystal silicon or polycrystalline silicon wafer as the first substrate silicon 17, and deposit carbonized silicon on its upper surface. Silicon layer 18;

(3)光刻、刻蚀氮化硅层16形成第二氮化硅层5,它分为周围部分13和中间部分12,中间部分为覆盖在第三氮化硅层3上表面中部和整个通孔9内表面部分;采用局部掺杂技术金属化第一衬底硅17上表面的碳化硅层18中部区域,此区域将来用作第二碳化硅层中间部分7,也即下电极;采用化学机械抛光技术抛光第二氮化硅层5及第一衬底硅17上的碳化硅层19上表面;(3) photolithography, etching silicon nitride layer 16 forms the second silicon nitride layer 5, and it is divided into peripheral part 13 and middle part 12, and middle part is to cover the middle part of the upper surface of the third silicon nitride layer 3 and the whole The inner surface part of the through hole 9; the middle area of the silicon carbide layer 18 on the upper surface of the first substrate silicon 17 is metallized by local doping technology, and this area will be used as the middle part 7 of the second silicon carbide layer in the future, that is, the lower electrode; Polishing the upper surface of the second silicon nitride layer 5 and the upper surface of the silicon carbide layer 19 on the first substrate silicon 17 by chemical mechanical polishing technology;

(4)将第二氮化硅层5与碳化硅层19键合,其中碳化硅层19在上,第二氮化硅层5在下;(4) bonding the second silicon nitride layer 5 to the silicon carbide layer 19, wherein the silicon carbide layer 19 is on top and the second silicon nitride layer 5 is on the bottom;

(5)刻蚀掉第一衬底硅17,释放第一衬底硅上的碳化硅层19,并采用化学机械抛光技术抛光其表面;(5) Etching away the first substrate silicon 17, releasing the silicon carbide layer 19 on the first substrate silicon, and polishing its surface by chemical mechanical polishing technology;

(6)在碳化硅层19上沉积氮化硅层20;(6) depositing a silicon nitride layer 20 on the silicon carbide layer 19;

(7)二次光刻、刻蚀氮化硅层20使其形成第一氮化硅层4,其中间部分11为较小区域,且厚度小于周围部分氮化硅层10,周围部分氮化硅层10的横向尺寸与第二氮化硅周围部分13的横向尺寸相同;同时取另一单晶硅或多晶硅片作为第二衬底硅21,在其上表面沉积碳化硅层22;(7) Second photolithography, etching silicon nitride layer 20 to form the first silicon nitride layer 4, the middle part 11 is a small area, and the thickness is smaller than the silicon nitride layer 10 of the surrounding part, and the surrounding part is nitrided The lateral dimension of the silicon layer 10 is the same as the lateral dimension of the second silicon nitride peripheral part 13; at the same time, another single crystal silicon or polycrystalline silicon wafer is taken as the second substrate silicon 21, and a silicon carbide layer 22 is deposited on its upper surface;

(8)光刻、刻蚀碳化硅层19,使其形成第二碳化硅层2,其中部区域7为电极,周围部分6为未掺杂碳化硅;采用离子掺杂技术掺杂第二衬底21上的碳化硅层22,使其形成第一碳化硅层1;(8) Photolithography and etching the silicon carbide layer 19 to form the second silicon carbide layer 2, the middle region 7 is an electrode, and the surrounding part 6 is undoped silicon carbide; the second lining is doped by ion doping technology A silicon carbide layer 22 on the bottom 21 to form a first silicon carbide layer 1;

(9)采用化学机械抛光技术抛光第一碳化硅层1及第一氮化硅层4上表面,并将二者真空键合,其中第一碳化硅层1在上,第一氮化硅层4在下,此时第一氮化硅层4、第二碳化硅层2及第二氮化硅层5的周围部分10、6、13组成空腔侧壁,第一碳化硅层1和第三碳化硅层3分别为空腔14的顶部和底部,侧壁与顶部、底部一道将空腔14密封;(9) The upper surfaces of the first silicon carbide layer 1 and the first silicon nitride layer 4 are polished by chemical mechanical polishing technology, and the two are vacuum bonded, wherein the first silicon carbide layer 1 is on top, and the first silicon nitride layer 4 on the bottom, at this time the first silicon nitride layer 4, the second silicon carbide layer 2 and the surrounding parts 10, 6, 13 of the second silicon nitride layer 5 form the side walls of the cavity, the first silicon carbide layer 1 and the third silicon carbide layer The silicon carbide layer 3 is the top and the bottom of the cavity 14 respectively, and the side walls together with the top and the bottom seal the cavity 14;

(10)刻蚀掉第二衬底硅21,释放第一碳化硅层1;在通孔9中的氮化硅层内表面溅射镍或耐锰层15,金属层顶部与第二碳化硅层2的中部区域7形成电连接,金属层侧壁覆盖在通孔9内氮化硅层的内壁。(10) Etch away the second substrate silicon 21 to release the first silicon carbide layer 1; sputter nickel or manganese-resistant layer 15 on the inner surface of the silicon nitride layer in the through hole 9, and the top of the metal layer and the second silicon carbide layer The middle region 7 of the layer 2 forms an electrical connection, and the sidewall of the metal layer covers the inner wall of the silicon nitride layer in the through hole 9 .

结合上述实施方式,本发明高温CMUT压力传感器的参考结构参数为:In combination with the above embodiments, the reference structural parameters of the high temperature CMUT pressure sensor of the present invention are:

第一碳化硅层有效横向尺寸(可振动碳化硅层部分):16~200μmThe effective lateral size of the first silicon carbide layer (the part of the silicon carbide layer that can vibrate): 16-200 μm

空腔高度:0.4~10μmCavity height: 0.4~10μm

空腔最大横向尺寸:16~200μmThe maximum lateral size of the cavity: 16 ~ 200μm

下电极有效横向尺寸:16~200μmEffective lateral dimension of the lower electrode: 16-200μm

本发明的高温CMUT压力传感器的参考性能指标为:The reference performance index of the high temperature CMUT pressure sensor of the present invention is:

测量灵敏度:量级(10Hz/Pa~100Hz/Pa)。Measurement sensitivity: magnitude (10Hz/Pa~100Hz/Pa).

适用温度范围:200~400℃。Applicable temperature range: 200~400℃.

本发明并不限于所述实施方式,所述CMUT结构的薄膜形状、尺寸,电极形状、尺寸,空腔尺寸、所用高温材料等可根据具体性能需求进行确定,以提高CMUT压力传感器的工作可靠性、灵敏度,同时减小温度应力、寄生电容和电极间电绝缘层充电现象对工作性能的影响为设计和优化目标。The present invention is not limited to the above-described embodiments. The shape and size of the film of the CMUT structure, the shape and size of the electrode, the size of the cavity, and the high-temperature materials used can be determined according to specific performance requirements to improve the reliability of the CMUT pressure sensor. , sensitivity, and at the same time reduce the influence of temperature stress, parasitic capacitance and the charging phenomenon of the electrical insulation layer between electrodes on the performance of the design and optimization.

Claims (9)

1.一种高温CMUT压力传感器,其特征在于:其整体结构从上至下依次为:第一碳化硅层(1)、第一氮化硅层(4)、第二碳化硅层(2)、第二氮化硅层(5)、和第三碳化硅层(3);第一氮化硅层(4)、第二碳化硅层(2)和第二氮化硅层(5)均分为中间部分和周围部分,且周围部分和中间部分均被空腔(14)在横向方向上隔开;第一氮化硅层(4)、第二碳化硅层(2)、第二氮化硅层(5)的周围部分形成空腔(14)的侧壁,第一碳化硅层(1)和第三碳化硅层(3)分别为空腔的顶部和底部,空腔侧壁与空腔底部、顶部一道将空腔(14)密封;第一碳化硅层(1)经离子掺杂形成上电极,第二碳化硅层中间部分(7)经离子掺杂形成下电极;第一氮化硅层中间部分(11)的横向尺寸远小于第二碳化硅层中间部分(7)的横向尺寸,第三碳化硅层(3)中间设置有通孔(9),通孔(9)贯穿第三碳化硅层(3),通孔(9)横向尺寸小于下电极的横向尺寸;第二氮化硅层中间部分(12)覆盖在第三碳化硅层(3)上侧和通孔(9)的内表面;在通孔(9)中的氮化硅层内表面上覆盖有下电极电连接金属层(15),下电极电连接金属层(15)顶部与下电极形成电连接。1. A high-temperature CMUT pressure sensor, characterized in that: its overall structure from top to bottom is: the first silicon carbide layer (1), the first silicon nitride layer (4), the second silicon carbide layer (2) , the second silicon nitride layer (5), and the third silicon carbide layer (3); the first silicon nitride layer (4), the second silicon carbide layer (2) and the second silicon nitride layer (5) are all Divided into a middle part and a surrounding part, and the surrounding part and the middle part are separated in the lateral direction by a cavity (14); the first silicon nitride layer (4), the second silicon carbide layer (2), the second nitrogen The surrounding part of the silicon carbide layer (5) forms the sidewall of the cavity (14), the first silicon carbide layer (1) and the third silicon carbide layer (3) are respectively the top and the bottom of the cavity, and the cavity sidewall and The bottom and top of the cavity seal the cavity (14); the first silicon carbide layer (1) is ion-doped to form an upper electrode, and the middle part (7) of the second silicon carbide layer is ion-doped to form a lower electrode; the first The lateral size of the middle part (11) of the silicon nitride layer is much smaller than the lateral size of the middle part (7) of the second silicon carbide layer, and a through hole (9) is arranged in the middle of the third silicon carbide layer (3), and the through hole (9) Through the third silicon carbide layer (3), the lateral dimension of the through hole (9) is smaller than the lateral dimension of the lower electrode; the middle part (12) of the second silicon nitride layer covers the upper side of the third silicon carbide layer (3) and the through hole The inner surface of (9); the inner surface of the silicon nitride layer in the through hole (9) is covered with a lower electrode electrically connected to the metal layer (15), and the lower electrode is electrically connected to the top of the metal layer (15) to form an electrical connection with the lower electrode . 2.根据权利要求1所述的高温CMUT压力传感器,其特征在于:所述第一碳化硅层(1)、第二碳化硅层(2)和第三碳化硅层(3)的材料换为金刚石,第一氮化硅层(4)和第二氮化硅层(5)的材料换为二氧化硅。2. The high-temperature CMUT pressure sensor according to claim 1, characterized in that: the materials of the first silicon carbide layer (1), the second silicon carbide layer (2) and the third silicon carbide layer (3) are replaced by For diamond, the materials of the first silicon nitride layer (4) and the second silicon nitride layer (5) are replaced by silicon dioxide. 3.根据权利要求1或2所述的高温CMUT压力传感器,其特征在于:第一氮化硅层中间部分(11)厚度小于第一氮化硅层周围部分(10)的厚度。3. The high temperature CMUT pressure sensor according to claim 1 or 2, characterized in that the thickness of the middle part (11) of the first silicon nitride layer is smaller than the thickness of the surrounding part (10) of the first silicon nitride layer. 4.根据权利要求1或2所述的高温CMUT压力传感器,其特征在于:第一氮化硅层中间部分(11)的中心点对应第一碳化硅层(1)的中心点。4. The high-temperature CMUT pressure sensor according to claim 1 or 2, characterized in that: the center point of the middle part (11) of the first silicon nitride layer corresponds to the center point of the first silicon carbide layer (1). 5.根据权利要求1或2所述的高温CMUT压力传感器,其特征在于:第二氮化硅层周围部分(13)的横向尺寸与第一氮化硅层周围部分(10)的横向尺寸相同,且对称分布在第二碳化硅层(2)的两侧。5. The high-temperature CMUT pressure sensor according to claim 1 or 2, characterized in that: the lateral dimension of the surrounding portion (13) of the second silicon nitride layer is the same as the lateral dimension of the surrounding portion (10) of the first silicon nitride layer , and symmetrically distributed on both sides of the second silicon carbide layer (2). 6.根据权利要求1或2所述的高温CMUT压力传感器,其特征在于:第二氮化硅层中间部分(12)为环状,其外部横向尺寸小于下电极的横向尺寸。6. The high-temperature CMUT pressure sensor according to claim 1 or 2, characterized in that: the middle part (12) of the second silicon nitride layer is ring-shaped, and its outer lateral dimension is smaller than that of the lower electrode. 7.根据权利要求1或2所述的高温CMUT压力传感器,其特征在于:第一氮化硅层中间部分(11)、第二碳化硅层中间部分(7)、第二氮化硅层中间部分(12)、通孔(9)、下电极金属电连接层(15)关于同一中心轴对称。7. The high-temperature CMUT pressure sensor according to claim 1 or 2, characterized in that: the middle part (11) of the first silicon nitride layer, the middle part (7) of the second silicon carbide layer, the middle part of the second silicon nitride layer The part (12), the through hole (9), and the lower electrode metal electrical connection layer (15) are symmetrical about the same central axis. 8.一种高温CMUT压力传感器的制备方法,其特征在于,包括以下步骤:8. A method for preparing a high-temperature CMUT pressure sensor, comprising the following steps: (1)取一P或N型碳化硅片,采用深反应离子刻蚀技术在该碳化硅中部刻蚀通孔(9),该通孔(9)贯穿该碳化硅片,此时形成第三碳化硅层(3);(1) Take a P-type or N-type silicon carbide wafer, use deep reactive ion etching technology to etch a through hole (9) in the middle of the silicon carbide, and the through hole (9) runs through the silicon carbide wafer, forming a third Silicon carbide layer (3); (2)在第三碳化硅层(3)上表面及其中部通孔(9)内表面沉积氮化硅层(16);同时取一单晶硅或多晶硅片作为第一衬底硅(17),在其上表面沉积碳化硅层(18);(2) Deposit a silicon nitride layer (16) on the upper surface of the third silicon carbide layer (3) and the inner surface of the through hole (9) in the middle; get a single crystal silicon or polycrystalline silicon wafer as the first substrate silicon (17) simultaneously ), depositing a silicon carbide layer (18) on its upper surface; (3)光刻、刻蚀第三碳化硅层(3)上表面的氮化硅层形成第二氮化硅层(5),它分为第二氮化硅层周围部分(13)和第二氮化硅层中间部分(12),第二氮化硅层中间部分(12)为覆盖在第三碳化硅层(3)上表面中部和整个通孔(9)内表面部分;采用局部掺杂技术金属化第一衬底硅(17)上表面的碳化硅层(18)中部区域;采用化学机械抛光技术抛光第二氮化硅层(5)及第一衬底硅(17)上的碳化硅层(19)上表面;(3) Photoetching, etching the silicon nitride layer on the upper surface of the third silicon carbide layer (3) forms the second silicon nitride layer (5), which is divided into the second silicon nitride layer surrounding part (13) and the second silicon nitride layer The middle part (12) of the silicon nitride layer, the middle part (12) of the second silicon nitride layer is to cover the middle part of the upper surface of the third silicon carbide layer (3) and the inner surface part of the whole through hole (9); Metallize the middle region of the silicon carbide layer (18) on the upper surface of the first substrate silicon (17) by miscellaneous technology; use chemical mechanical polishing technology to polish the second silicon nitride layer (5) and the silicon nitride layer on the first substrate silicon (17) The upper surface of the silicon carbide layer (19); (4)将第三碳化硅层(3)上表面的第二氮化硅层(5)与第一衬底硅(17)上的碳化硅层(19)键合,其中第一衬底硅上的碳化硅层(19)在上,第二氮化硅层(5)在下;(4) Bond the second silicon nitride layer (5) on the upper surface of the third silicon carbide layer (3) with the silicon carbide layer (19) on the first substrate silicon (17), wherein the first substrate silicon The upper silicon carbide layer (19) is on top, and the second silicon nitride layer (5) is on the bottom; (5)刻蚀掉第一衬底硅(17),释放第一衬底硅上的碳化硅层(19),并采用化学机械抛光技术抛光其表面;(5) Etching away the first substrate silicon (17), releasing the silicon carbide layer (19) on the first substrate silicon, and polishing its surface by chemical mechanical polishing technology; (6)在源于第一衬底硅的碳化硅层(18)上沉积氮化硅层(20);(6) depositing a silicon nitride layer (20) on the silicon carbide layer (18) derived from the first substrate silicon; (7)二次光刻、刻蚀源于第一衬底硅的碳化硅层上的氮化硅层(20),使其形成第一氮化硅层(4),第一氮化硅层中间部分(11)为较小区域,且厚度小于第一氮化硅层周围部分(10)的氮化硅层厚度,第一氮化硅层周围部分(10)的氮化硅层横向尺寸与第二氮化硅层周围部分(13)的横向尺寸相同;同时取另一单晶硅或多晶硅片作为第二衬底硅(21),在其上表面沉积碳化硅层(22);(7) secondary photolithography, etch the silicon nitride layer (20) on the silicon carbide layer derived from the first substrate silicon, so that it forms the first silicon nitride layer (4), the first silicon nitride layer The middle part (11) is a smaller area, and the thickness is smaller than the silicon nitride layer thickness of the first silicon nitride layer surrounding part (10), and the silicon nitride layer lateral dimension of the first silicon nitride layer surrounding part (10) is the same as The lateral dimensions of the surrounding part (13) of the second silicon nitride layer are the same; at the same time, another monocrystalline silicon or polycrystalline silicon wafer is taken as the second substrate silicon (21), and a silicon carbide layer (22) is deposited on its upper surface; (8)光刻、刻蚀源于第一衬底硅的碳化硅层(19),使其形成第二碳化硅层(2),其中部区域(7)为电极,第二碳化硅层周围部分(6)为未掺杂碳化硅;采用离子掺杂技术掺杂第二衬底硅(21)上的碳化硅层(22),使其形成第一碳化硅层(1);(8) Photolithography and etching are derived from the silicon carbide layer (19) of the first substrate silicon to form a second silicon carbide layer (2), wherein the central region (7) is an electrode, and the surrounding area of the second silicon carbide layer is The part (6) is undoped silicon carbide; the silicon carbide layer (22) on the second substrate silicon (21) is doped by ion doping technology, so that it forms the first silicon carbide layer (1); (9)采用化学机械抛光技术抛光第一碳化硅层(1)及第一氮化硅层(4)上表面,并将二者真空键合,其中第一碳化硅层(1)在上,第一氮化硅层(4)在下,此时第一氮化硅层(4)、第二碳化硅层(2)及第二氮化硅层(5)的周围部分组成空腔(14)侧壁,第一碳化硅层(1)和第三碳化硅层(3)分别为空腔(14)顶部和底部,侧壁与顶部、底部一道将空腔(14)密封;(9) Using chemical mechanical polishing technology to polish the upper surfaces of the first silicon carbide layer (1) and the first silicon nitride layer (4), and vacuum bonding the two, wherein the first silicon carbide layer (1) is on top, The first silicon nitride layer (4) is below, and at this time the first silicon nitride layer (4), the second silicon carbide layer (2) and the surrounding parts of the second silicon nitride layer (5) form a cavity (14) The side walls, the first silicon carbide layer (1) and the third silicon carbide layer (3) are respectively the top and bottom of the cavity (14), and the side walls together with the top and the bottom seal the cavity (14); (10)刻蚀掉用于沉积第一碳化硅层(1)的第二衬底硅(21),释放第一碳化硅层(1),同时在通孔(9)中的氮化硅层内表面溅射耐高温金属层形成下电极电连接金属层(15),下电极电连接金属层(15)顶部与第二碳化硅层(2)的中部区域形成电连接,金属层侧壁覆盖在通孔(9)内氮化硅层的内壁上。(10) etch away the second substrate silicon (21) used to deposit the first silicon carbide layer (1), release the first silicon carbide layer (1), and the silicon nitride layer in the through hole (9) The inner surface is sputtered with a high-temperature-resistant metal layer to form a lower electrode electrically connected to the metal layer (15), and the lower electrode is electrically connected to the top of the metal layer (15) to form an electrical connection with the middle region of the second silicon carbide layer (2), and the side wall of the metal layer covers On the inner wall of the silicon nitride layer in the through hole (9). 9.根据权利要求8所述的高温CMUT压力传感器的制备方法,其特征在于:步骤(10)中通孔(9)内溅射的耐高温金属层为镍层或锰层。9. The method for preparing a high temperature CMUT pressure sensor according to claim 8, characterized in that: the high temperature resistant metal layer sputtered in the through hole (9) in the step (10) is a nickel layer or a manganese layer.
CN201310084858.6A 2013-03-15 2013-03-15 A kind of high-temperature CMUT pressure sensor and preparation method thereof Active CN103196613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310084858.6A CN103196613B (en) 2013-03-15 2013-03-15 A kind of high-temperature CMUT pressure sensor and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310084858.6A CN103196613B (en) 2013-03-15 2013-03-15 A kind of high-temperature CMUT pressure sensor and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103196613A CN103196613A (en) 2013-07-10
CN103196613B true CN103196613B (en) 2016-02-24

Family

ID=48719308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310084858.6A Active CN103196613B (en) 2013-03-15 2013-03-15 A kind of high-temperature CMUT pressure sensor and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103196613B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783411B1 (en) 2016-11-11 2017-10-10 Rosemount Aerospace Inc. All silicon capacitive pressure sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043643B (en) * 2015-04-23 2018-06-08 昆山泰莱宏成传感技术有限公司 High-temp pressure sensor and preparation method thereof
JP2022509066A (en) * 2018-11-16 2022-01-20 ヴァーモン エス.エー. Capacitive microfabrication ultrasonic transducer and its manufacturing method
CN111707404B (en) * 2020-05-28 2021-04-20 西安交通大学 A kind of high temperature resistant silicon carbide pressure sensor and preparation method thereof
CN117185818A (en) * 2023-07-11 2023-12-08 西北工业大学 Near-zero expansion carbon fiber reinforced multi-element multi-layer matrix composite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750609A (en) * 2008-12-02 2010-06-23 黄勇力 Capacitance type micromachined ultrasonic transducer capable of performing wireless telemetric sensing operation
CN102353610A (en) * 2011-06-10 2012-02-15 西安交通大学 Capacitance micro-machining ultrasonic sensor for measuring density and production method thereof
CN102620878A (en) * 2012-03-15 2012-08-01 西安交通大学 Capacitive micromachining ultrasonic sensor and preparation and application methods thereof
CN102620864A (en) * 2012-03-15 2012-08-01 西安交通大学 Capactive micro-machined ultrasonic transducer (CMUT)-based super-low range pressure sensor and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767514B2 (en) * 2007-12-03 2014-07-01 Kolo Technologies, Inc. Telemetric sensing using micromachined ultrasonic transducer
JP5506244B2 (en) * 2009-05-27 2014-05-28 キヤノン株式会社 Capacitive electromechanical transducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750609A (en) * 2008-12-02 2010-06-23 黄勇力 Capacitance type micromachined ultrasonic transducer capable of performing wireless telemetric sensing operation
CN102353610A (en) * 2011-06-10 2012-02-15 西安交通大学 Capacitance micro-machining ultrasonic sensor for measuring density and production method thereof
CN102620878A (en) * 2012-03-15 2012-08-01 西安交通大学 Capacitive micromachining ultrasonic sensor and preparation and application methods thereof
CN102620864A (en) * 2012-03-15 2012-08-01 西安交通大学 Capactive micro-machined ultrasonic transducer (CMUT)-based super-low range pressure sensor and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种微加工超声传感器的设计;张慧等;《天津大学学报》;20080115;第41卷(第01期);17-20 *
电容式微加工超声传感器(cMUT)的结构设计及仿真;宋光德等;《纳米技术与精密工程》;20050630;第03卷(第02期);156-159 *
电容式微加工超声传感器结构参数对性能的影响分析;张慧等;《传感技术学报》;20080615;第21卷(第06期);951-953 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783411B1 (en) 2016-11-11 2017-10-10 Rosemount Aerospace Inc. All silicon capacitive pressure sensor

Also Published As

Publication number Publication date
CN103196613A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US11226251B2 (en) Method of making a dual-cavity pressure sensor die
CN104422548B (en) Capacitance pressure transducer and forming method thereof
CN105241600B (en) A kind of MEMS pressure gauges chip and its manufacturing process
CN103373698B (en) Make method and the MEMS inertial sensor of MEMS inertial sensor
CN103257005B (en) Capacitance pressure transducer, and manufacture method thereof
CN103196613B (en) A kind of high-temperature CMUT pressure sensor and preparation method thereof
US11255740B2 (en) Pressure gauge chip and manufacturing process thereof
ATE483958T1 (en) MICROMECHANICALLY MADE ABSOLUTE PRESSURE SENSOR
CN104931163A (en) Dual-SOI-structured MEMS pressure sensor chip and manufacturing method thereof
CN102967409A (en) Wireless inactive capacitive gas pressure sensor
CN112357877B (en) A kind of MEMS SOI pressure sensor and preparation method thereof
CN109141691A (en) A kind of linkage membrane capacitance formula presser sensor chip and its manufacturing method
CN103557970B (en) Electrostatic excitation/piezoresistance detection miniature silicon resonant pressure sensor and manufacturing method thereof
CN103926026A (en) Built-in high-temperature wireless pressure sensor
CN207689049U (en) MEMS device
CN109626318B (en) Cover plate structure and manufacturing method thereof, and capacitive sensor
CN102122935B (en) Micro-mechanical resonator having submicron clearances and manufacturing method thereof
CN104422549A (en) Capacitive pressure sensor and forming method thereof
TW201719130A (en) Micro feedback-chamber sensor and method of manufacturing such sensor
US9464950B2 (en) Capacitive pressure sensors for high temperature applications
CN105203251A (en) Pressure sensing chip and processing method thereof
CN209131869U (en) A Linked Membrane Capacitive Pressure Sensing Chip
CN105084296B (en) Manufacturing method for MEMS(Micro Electro Mechanical Systems) capacitive pressure transducer
CN111879447A (en) Differential SiC capacitance pressure sensor with concentric ring structure and preparation method thereof
Du et al. Poly-SiC capacitive pressure sensors made by wafer bonding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant