CN103190887A - Scattered chaotic light tomography method - Google Patents
Scattered chaotic light tomography method Download PDFInfo
- Publication number
- CN103190887A CN103190887A CN2013101068628A CN201310106862A CN103190887A CN 103190887 A CN103190887 A CN 103190887A CN 2013101068628 A CN2013101068628 A CN 2013101068628A CN 201310106862 A CN201310106862 A CN 201310106862A CN 103190887 A CN103190887 A CN 103190887A
- Authority
- CN
- China
- Prior art keywords
- chaotic
- light
- optical
- ytterbium
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 76
- 238000003325 tomography Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 56
- 239000000835 fiber Substances 0.000 claims abstract description 43
- 238000003384 imaging method Methods 0.000 claims abstract description 33
- 230000005540 biological transmission Effects 0.000 claims abstract description 12
- 230000010287 polarization Effects 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims 2
- 238000001514 detection method Methods 0.000 abstract description 26
- 238000011160 research Methods 0.000 abstract description 12
- 238000013139 quantization Methods 0.000 abstract description 3
- 210000001519 tissue Anatomy 0.000 description 22
- 238000005259 measurement Methods 0.000 description 17
- 238000000149 argon plasma sintering Methods 0.000 description 11
- 238000009543 diffuse optical tomography Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 238000005314 correlation function Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000009022 nonlinear effect Effects 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 238000005311 autocorrelation function Methods 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- -1 optical isolator Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种散射混沌光层析成像方法,其所述方法是实现1μm掺镱混沌光纤激光器信号;实现混沌光信号的参考光的传输;实现混沌光信号的散射光的传输;实现两条路径混沌光信号的相关;实现点扩展函数的获取;实现组织体光学信息量的获取;实现组织体参数的重建及图形的重建。本发明将混沌光信号应用于散射光层析成像的装置,解决了伪随机信号低精度、低空间分辨率和量化性能等问题,实现了对生物组织的参数特征的检测,这将会促进混沌激光在生物医学成像及生物组织健康检测等相关学科在科学研究原创性上的研究工作。A scattering chaotic optical tomography method, the method is to realize the signal of 1 μm ytterbium-doped chaotic fiber laser; realize the transmission of the reference light of the chaotic optical signal; realize the transmission of the scattered light of the chaotic optical signal; realize the chaotic light of two paths Correlation of signals; acquisition of point spread function; acquisition of tissue optical information; reconstruction of tissue parameters and graphics. The invention applies the chaotic light signal to the device of scattered light tomography, solves the problems of low precision, low spatial resolution and quantization performance of the pseudo-random signal, and realizes the detection of the parameter characteristics of biological tissues, which will promote chaos Research work on the originality of scientific research of laser in biomedical imaging and biological tissue health detection and other related disciplines.
Description
技术领域 technical field
本发明涉及一种层析成像方法,特别是一种将混沌信号应用于光学层析成像系统中,以实现生物医学成像及生物组织健康检测。 The invention relates to a tomographic imaging method, in particular to a method of applying chaotic signals to an optical tomographic imaging system to realize biomedical imaging and biological tissue health detection.
背景技术 Background technique
现有散射光学层析成像技术利用散射光在组织中的相对穿透深度实现5-10cm器官级的临床诊断,使用近红外光以非侵入方式确定生物组织内光学参数的三维分布,提供基于组织体重要生化成分的无创功能检测模式。由于其具有无损、无辐射、可连续监测等优势,在临床医学诊断中发挥重要作用成为医学成像模态的研究焦点。 The existing scattered optical tomography technology utilizes the relative penetration depth of scattered light in tissues to achieve clinical diagnosis at the organ level of 5-10 cm, uses near-infrared light to determine the three-dimensional distribution of optical parameters in biological tissues in a non-invasive manner, and provides tissue-based Noninvasive functional assay modality for important biochemical components of body weight. Due to its advantages of non-destructive, non-radiation, and continuous monitoring, it plays an important role in clinical medical diagnosis and has become the research focus of medical imaging modalities.
对于散射光层析成像目前监测较为成熟的技术为利用超声引导的光散射成像系统且在国内外已经用于临床试验(徐振花,武晨,茅玲,柏进,黄选东。超声光散射成像系统筛查早期乳腺癌,中国肿瘤, 20(12):932-936,2011)。随着散射光层析成像技术的不断发展,新的应用于生物组织的散射成像技术也不断研究和出现。美国塔夫茨大学的Sergio Fantini课题组提出基于超光谱的光散射层析(Fridrik Larusson,Sergio Fantini and Eric L. Miller.Parametric level set reconstruction methods for hyperspectral diffuse optical tomography. Biomed Optics Express,3(5): 1006–1024. 2012.)。加拿大谢布鲁克大学的Yves Bérubé-Lauzière课题组提出荧光光散射层析(Yves Bérubé-Lauzière and Eric Lapointe . A time-domain non-contact fluorescence diffuse optical tomography scanner for small animal imaging. OSA Biomed. BTuD76 .2010.)。在天津大学的高峰课题组提出时间分辨的荧光光散射成像(Feng Gao, Limin Zhang, Huiyuan He et al. A self-normalized, full time-resolved scheme for fluorescence diffuse optical tomography .Proc. of SPIE Vol. 6850, 68500N, 1-12, 2008.)。但这些基于不同原理的光散射技术是利用超短脉冲作为探测光源。 Ultrasound-guided light-scattering imaging system is currently a relatively mature monitoring technology for scattered light tomography, which has been used in clinical trials at home and abroad (Xu Zhenhua, Wu Chen, Mao Ling, Bai Jin, Huang Xuandong. Screening of ultrasonic light-scattering imaging system Investigation of early breast cancer, Chinese Oncology, 20(12): 932-936, 2011). With the continuous development of scattered light tomography, new scattering imaging techniques applied to biological tissues are also continuously researched and presented. The Sergio Fantini research group of Tufts University in the United States proposed hyperspectral-based light scattering tomography (Fridrik Larusson, Sergio Fantini and Eric L. Miller. Parametric level set reconstruction methods for hyperspectral diffuse optical tomography. Biomed Optics Express, 3(5) : 1006–1024. 2012.). The Yves Bérubé-Lauzière research group of the University of Sherbrooke, Canada proposed fluorescence light scattering chromatography (Yves Bérubé-Lauzière and Eric Lapointe. A time-domain non-contact fluorescence diffuse optical tomography scanner for small animal imaging. OSA Biomed. BTuD76 .2010. ). A self-normalized, full time-resolved scheme for fluorescence diffuse optical tomography proposed by Feng Gao, Limin Zhang, Huiyuan He et al. A self-normalized, full time-resolved scheme for fluorescence diffuse optical tomography .Proc. of SPIE Vol. , 68500N, 1-12, 2008.). However, these light scattering techniques based on different principles use ultrashort pulses as the detection light source.
随着生物医学成像的发展,散射光层析成像也不断得到发展。但基于近红外超短脉冲的散射光层析,由于超短脉冲光源的存在,导致其在利用点扩散函数的测量和成像方面,结构复杂。由于超短脉冲的脉冲宽度通常在ps(10-12秒)量级,而目前的光电探测和示波器的带宽无法满足脉冲响应的需要,使得应用受到很大的限制。 With the development of biomedical imaging, scattered light tomography has also been continuously developed. However, due to the existence of ultrashort pulse light source, the scattered light tomography based on near-infrared ultrashort pulse has a complex structure in terms of measurement and imaging using point spread function. Since the pulse width of the ultrashort pulse is usually on the order of ps (10 -12 seconds), and the bandwidth of the current photoelectric detection and oscilloscope cannot meet the needs of the pulse response, the application is greatly limited.
近红外连续光作为光源实现散射光层析技术为解决散射光层析技术提供了解决问题的途径。1999年J. J. A. Marota采用32个不同波长的连续光源实现了光散射层析成像,并成功检测生物组织的血红蛋白和脱氧血红蛋白浓度(A. M. Siegel J. J. A. Marota and D. A. BoasDesign and evaluation of a continuous-wave diffuse optical tomography system .Optics Express.4(8): 287-298,1999.),自此基于连续光的散射光层析得到广泛的研究。2003年,Hamid Dehghani采用多波长光源用于光散射层析技术测量结果与通常的超声检测进行了比较(Hamid Dehghani, Brian W. Pogue, Steven P. Poplack, and Keith D. Paulsen. Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results。Applied Optics,42(1): 135-145,2003.),J. P. Culver利用连续光实现了三维光散射层析(J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, and A. Slemp V. Ntziachristos , B. Chance A. G. Yodh Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain continuous wave clinical system for breast imaging. Medical. Physics. 30 (2):235-246, 2003.)。但采用连续波长的光散射成像相对于基于超短脉冲的光散射层析成像信噪比低,成像质量差,检测精度受到限制。 The use of near-infrared continuous light as a light source to realize scattered light tomography provides a way to solve the problem of scattered light tomography. In 1999, J. J. A. Marota realized light scattering tomography using 32 continuous light sources of different wavelengths, and successfully detected the concentration of hemoglobin and deoxyhemoglobin in biological tissues (A. M. Siegel J. J. A. Marota and D. A. BoasDesign and evaluation of a continuous-wave diffuse optical tomography system. Optics Express.4 (8): 287-298, 1999.), since then the scattered light tomography based on continuous light has been widely studied. In 2003, Hamid Dehghani used a multi-wavelength light source for light-scattering tomography measurements compared with usual ultrasonic testing (Hamid Dehghani, Brian W. Pogue, Steven P. Poplack, and Keith D. Paulsen. Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results. Applied Optics, 42 (1): 135-145, 2003.), J. P. Culver realized three-dimensional light scattering tomography using continuous light (J . P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, and A. Slemp V. Ntziachristos, B. Chance A. G. Yodh Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain continuous wave clinical system for breast imaging. Medical. Physics. 30 (2): 235-246, 2003.). However, compared with light scattering tomography based on ultrashort pulses, light scattering imaging using continuous wavelengths has a lower signal-to-noise ratio, poor imaging quality, and limited detection accuracy.
生物组织成像在医疗健康检测中发挥越来越大的作用,通过近红外光探测组织体的血红蛋白氧化水平,用于人体在无损、无辐射、安全的情况下,迫切需要高清晰度的成像技术实现人体早期肿瘤等健康监测。 Biological tissue imaging is playing an increasingly important role in medical health detection. Near-infrared light is used to detect the oxidation level of hemoglobin in tissues, and it is used in the human body without damage, radiation, and safety. High-definition imaging technology is urgently needed Realize human health monitoring such as early tumors.
然而传统的测量方法存在测量精度与测量应用存在原理缺陷,其测量清晰度与采用光源的脉冲宽度存在矛盾:要提高测量精度,就需要采用超短脉冲。超短脉冲的脉冲越窄,检测精度越高,系统越复杂。若采用超短脉冲提高精度,则超短脉冲产生技术及微弱光信号的探测技术,将大大增加系统的复杂性,操作难度和成本,难于实用化和小型化。 However, the traditional measurement method has flaws in the measurement accuracy and measurement application principle, and there is a contradiction between the measurement clarity and the pulse width of the light source: to improve the measurement accuracy, it is necessary to use ultrashort pulses. The narrower the ultrashort pulse, the higher the detection accuracy and the more complex the system. If the ultrashort pulse is used to improve the accuracy, the ultrashort pulse generation technology and the weak optical signal detection technology will greatly increase the complexity of the system, the difficulty of operation and cost, and it is difficult to be practical and miniaturized.
伪随机码相关法可以解决连续光散射成像中测量精度与探测受限的问题。2003年Nan Guang Chen课题组通过采用伪随机码的声光调制半导体激光器输出伪随机的脉冲序列,并用于散射光层析研究,实现了点扩展函数为0.6ns的分辨率(9. Nan Guang Chen and Quing Zhu Time-resolved diffusive optical imaging using The pseudo-random code correlation method can solve the problem of limited measurement accuracy and detection in continuous light scattering imaging. In 2003, Nan Guang Chen's research group achieved a resolution of 0.6 ns for the point spread function by using pseudo-random code acousto-optic modulation semiconductor lasers to output pseudo-random pulse sequences and using them in scattered light tomography research (9. Nan Guang Chen and Quing Zhu Time-resolved diffusive optical imaging using
pseudo-random bit sequences. Optics Express. 11(25);3445-3544,2003.),通过课题组的努力,在2009年采用10GHz伪随机码调制实现了200ps的分辨率(10. Qiang Zhang and Nan Guang Chen.Pseudo-random single photon counting: the principle, simulation, and experimental results .Proc. of SPIE Vol. 7170 71700L-1,2009.)。2010年Weirong Mo在此基础上提出改进的基于伪随机码的散射光层析(11. Weirong Mo, and Nanguang Chen. Design of an Advanced Time-Domain Diffuse Optical Tomography System.IEEE Journal of Selected Topics In Quantum Electronics, 16(3):581-587, 2010.)。相应已经发表的专利有DIFFUSE OPTICAL TOMOGRAPHY(US20080528146), SCATTER ATTENUATION TOMOGRAPHY(WO2007US76497), IMAGE RECONSTRUCTION METHOD FOR DIFFUSE OPTICAL TOMOGRAPHY, DIFFUSE OPTICAL TOMOGRAPHY SYSTEM, AND COMPUTER PROGEAM(US20100755965), DIFFUSE OPTICAL TOMOGRAPHY SYSTEM AND METHOD FOR USE(US20080050733), DETECTION OF STROKE EVENTS USING DIFFUSE OPTICAL TOMOGRAPHY(US2000491595)。但是目前对基于伪随机信号的散射光层析成像的研究主要存在如下几个问题: pseudo-random bit sequences. Optics Express. 11(25); 3445-3544, 2003.), through the efforts of the research group, a resolution of 200ps was achieved in 2009 by using 10GHz pseudo-random code modulation (10. Qiang Zhang and Nan Guang Chen. Pseudo-random single photon counting: the principle, simulation, and experimental results .Proc. of SPIE Vol. 7170 71700L-1, 2009.). In 2010, Weirong Mo proposed an improved scattered light tomography based on pseudo-random codes (11. Weirong Mo, and Nanguang Chen. Design of an Advanced Time-Domain Diffuse Optical Tomography System. IEEE Journal of Selected Topics In Quantum Electronics , 16(3):581-587, 2010.).相应已经发表的专利有DIFFUSE OPTICAL TOMOGRAPHY(US20080528146), SCATTER ATTENUATION TOMOGRAPHY(WO2007US76497), IMAGE RECONSTRUCTION METHOD FOR DIFFUSE OPTICAL TOMOGRAPHY, DIFFUSE OPTICAL TOMOGRAPHY SYSTEM, AND COMPUTER PROGEAM(US20100755965), DIFFUSE OPTICAL TOMOGRAPHY SYSTEM AND METHOD FOR USE(US20080050733 ), DETECTION OF STROKE EVENTS USING DIFFUSE OPTICAL TOMOGRAPHY (US2000491595). However, the current research on scattered optical tomography based on pseudo-random signals mainly has the following problems:
(1)未能采用有效的验证标准对所构建的基于伪随机信号中辐射和传输方程的正向模型的准确性进行验证; (1) Failure to use effective verification standards to verify the accuracy of the constructed forward model based on radiation and transmission equations in pseudo-random signals;
(2)对二维辐射传输方程的中对光子散射的处理违背了光子传播的物理规律; (2) The treatment of photon scattering in the two-dimensional radiative transfer equation violates the physical law of photon propagation;
(3)未能解决求解辐射传输方程中所用到的理想边界条件与实际物理情况差异造成正向模型不准确的问题; (3) Failure to solve the problem of inaccurate forward models caused by the difference between the ideal boundary conditions used in solving the radiation transfer equation and the actual physical conditions;
(4)对逆问题的算法进行验证所采用的数据为本身正向模型所生成的数据, (4) The data used to verify the algorithm of the inverse problem is the data generated by its own forward model,
即对逆问题的求解为“诡问题”。 That is to say, the solution to the inverse problem is a "deceitful problem".
并且对于伪随机脉冲序列可通过增加码长提高测量系统的分辨率,但伪随机光脉冲序列的产生需要通过电随机码调制激光器。受电子器件带宽瓶颈的限制,使得基于伪随机信号的散射光层析系统的空间分辨率低及量化性能低现象未得到明显改善。 And for the pseudo-random pulse sequence, the resolution of the measurement system can be improved by increasing the code length, but the generation of the pseudo-random optical pulse sequence needs to modulate the laser with an electrical random code. Limited by the bandwidth bottleneck of electronic devices, the phenomenon of low spatial resolution and low quantification performance of the scattered light tomography system based on pseudo-random signals has not been significantly improved.
发明内容 Contents of the invention
本发明要解决的具体技术问题是基于伪随机信号的辐射及传输方程中存在的准确性问题,实现高精度、高空间分辨率的散射断层层析成像方法的研究。针对上述现有技术存在的不足,本发明提供一种散射混沌光层析成像方法,其具体技术方案如下: The specific technical problem to be solved by the present invention is based on the accuracy problem existing in the radiation and transmission equation of the pseudo-random signal, and realizes the research of the scattering tomography method with high precision and high spatial resolution. Aiming at the deficiencies in the above-mentioned prior art, the present invention provides a scattering chaotic optical tomography method, and its specific technical scheme is as follows:
实现1μm掺镱混沌光纤激光器信号; Realize 1μm ytterbium-doped chaotic fiber laser signal;
实现混沌光信号的参考光的传输; Realize the transmission of the reference light of the chaotic optical signal;
实现混沌光信号的散射光的传输; Realize the transmission of scattered light of chaotic optical signal;
实现两条路径混沌光信号的相关; Realize the correlation of chaotic optical signals in two paths;
实现点扩展函数的获取; Realize the acquisition of point extension function;
实现组织体光学信息量的获取; Realize the acquisition of tissue optical information;
实现组织体参数的重建及图形的重建。 Realize the reconstruction of tissue parameters and graphics.
在上述技术方案中,进一步地,附加技术特征在于: In the above technical solution, further, the additional technical features are:
所述参考光是将1μm掺镱混沌光纤激光器产生信号依次通过可变延迟器、光电探测器和相关器与散射光相关后,进入成像系统。 The reference light enters the imaging system after the signal generated by the 1 μm ytterbium-doped chaotic fiber laser passes through the variable retarder, the photodetector and the correlator to correlate with the scattered light in sequence.
所述散射光是1μm掺镱混沌光纤激光器产生信号穿透被测对象依次通过光电探测器、放大器和相关器与参考光相关后,进入成像系统。 The scattered light is a signal generated by a 1 μm ytterbium-doped chaotic fiber laser, which penetrates the measured object and then correlates with the reference light through a photodetector, an amplifier and a correlator, and then enters the imaging system.
所述1μm掺镱混沌光纤激光器是将980nm泵浦源依次通过波分复用器、掺镱光纤、高非线性光纤、光隔离器、光纤光栅、偏振控制器和输出耦合器输出混沌光信号。 The 1 μm ytterbium-doped chaotic fiber laser outputs a chaotic optical signal through a 980nm pump source sequentially through a wavelength division multiplexer, ytterbium-doped fiber, high nonlinear fiber, optical isolator, fiber grating, polarization controller and output coupler.
所述层析成像的装置是将1μm掺镱混沌光纤激光器产生的混沌光信号分为两路,一路作为参考光,其参考光是1μm掺镱混沌光纤激光器产生的混沌光信号通过可变延迟器、光电探测器和相关器与散射光相关后,输入数据采集器和成像系统;另一路作为散射光,其散射光是1μm掺镱混沌光纤激光器产生的混沌光信号通过强度调制器、样品模件、光电探测器、放大器和相关器与参考光相关后,输入数据采集器和成像系统。 The tomographic imaging device divides the chaotic optical signal generated by the 1 μm ytterbium-doped chaotic fiber laser into two paths, one of which is used as a reference light, and the reference light is the chaotic optical signal generated by the 1 μm ytterbium-doped chaotic fiber laser through a variable delay device , photodetector and correlator correlate with the scattered light, and input the data collector and imaging system; the other is used as scattered light, and the scattered light is the chaotic light signal generated by the 1μm ytterbium-doped chaotic fiber laser through the intensity modulator and the sample module , photodetectors, amplifiers and correlators are correlated with the reference light and then input into the data collector and imaging system.
本发明上述提出的一种掺镱混沌光纤激光器产生的1μm混沌光信号,并将该混沌光信号应用于散射光层析成像方案。该方案采用光纤光栅,利用光纤非线性效应,在掺铒光纤激光器中实现波长为1μm的近红外波长宽带混沌光纤激光源。利用光纤具有很好的光束质量,且可以根据需要分成不同的测量通道,将1μm混沌光信号作为探测光,输入到生物组织体中,实现对生物组织的参数特征的检测。 The 1 μm chaotic optical signal generated by the ytterbium-doped chaotic fiber laser proposed above in the present invention is applied to the scheme of scattered light tomography. This scheme adopts fiber grating and utilizes the nonlinear effect of fiber to realize a near-infrared wavelength broadband chaotic fiber laser source with a wavelength of 1 μm in an erbium-doped fiber laser. The optical fiber has a good beam quality and can be divided into different measurement channels according to the needs. The 1 μm chaotic optical signal is used as the probe light and input into the biological tissue to realize the detection of the parameter characteristics of the biological tissue.
对于散射光层析的检测,采用混沌信号的相关具有很好的δ型脉冲的特性。其特征与混沌的带宽有关,带宽越宽,δ型脉冲越窄,其形状与超短脉冲的形状类似,通过测量δ型相关函数透过组织体的点扩展函数曲线中每个位置光信息量,即可得出生物组织体的参数特性分布,实现对组织体的血红蛋白氧化水平的检测,从而判断生物组织的健康状态。本发明利用混沌δ型相关函数的特性,解决了时间上超短脉冲检测复杂与测量精度存在的矛盾,通过宽带混沌很好的相关性实现高测量精度的散射光层析。 For the detection of scattered light tomography, the correlation using chaotic signals has very good characteristics of delta-type pulses. Its characteristics are related to the bandwidth of chaos. The wider the bandwidth, the narrower the δ-type pulse, and its shape is similar to that of an ultrashort pulse. By measuring the amount of light information at each position in the point spread function curve of the δ-type correlation function through the tissue , the parameter characteristic distribution of the biological tissue can be obtained, and the detection of the hemoglobin oxidation level of the tissue can be realized, thereby judging the health status of the biological tissue. The invention utilizes the characteristics of the chaotic δ-type correlation function to solve the contradiction between ultrashort pulse detection complexity and measurement accuracy in time, and realizes scattered light tomography with high measurement accuracy through the good correlation of broadband chaos. the
本发明上述所提供的一种将混沌光信号应用于散射光层析成像的装置及其层析成像方法,与在先技术相比,所具有的优点与积极效果在于: Compared with the prior art, the present invention provides a device for applying chaotic light signals to scattered light tomography and its tomography method. Compared with the prior art, it has the following advantages and positive effects:
本发明提出了一种将混沌光信号应用于散射光层析成像的装置中,解决了伪随机信号低精度、低空间分辨率和量化性能等问题,实现了散射光层析的监测方案及检测方法。 The invention proposes a device that applies chaotic light signals to scattered light tomography, solves the problems of low precision, low spatial resolution and quantization performance of pseudo-random signals, and realizes the monitoring scheme and detection of scattered light tomography method.
本发明利用混沌光信号有很好的δ型脉冲相关特性,实现了小误差的点扩展函数的获取,尤其是点扩展函数半高全宽与理想点扩展函数半高全宽的小误差的获取,提高了测量精度。 The present invention utilizes the excellent δ-type pulse correlation characteristics of the chaotic optical signal to realize the acquisition of the point spread function with small errors, especially the acquisition of the small error of the full width at half maximum of the point spread function and the full width at half maximum of the ideal point spread function, and improves the measurement precision.
本发明利用混沌光信号重建时对边界条件的高灵敏性及混沌光信号的无序性,实现了不同位置低误码率的光信息量的采集,从而实现了高测量精度和量化性能的图像重建。 The present invention utilizes the high sensitivity to boundary conditions and the disorder of the chaotic optical signal when reconstructing the chaotic optical signal to realize the collection of optical information with low bit error rate at different positions, thereby realizing an image with high measurement accuracy and quantization performance reconstruction.
本发明将混沌光信号用于散射光层析成像装置的检测,采用混沌相关法,可以获取自相关函数中丰富的光学信息参数。本技术方案的实施,将会促进混沌激光在生物医学成像方面和生物组织健康检测等相关学科在科学研究上原创性的研究工作。 The invention uses the chaotic light signal for the detection of the scattered light tomography imaging device, adopts the chaotic correlation method, and can obtain abundant optical information parameters in the autocorrelation function. The implementation of this technical solution will promote the original research work of chaotic laser in biomedical imaging and biological tissue health detection and other related disciplines in scientific research.
附图说明 Description of drawings
图1是本发明的层析成像方法框图。 Fig. 1 is a block diagram of the tomographic imaging method of the present invention.
图2是本发明的混沌信号产生装置结构示意图。 Fig. 2 is a structural schematic diagram of the chaotic signal generating device of the present invention.
图3是本发明用于图1层析成像装置的结构示意图。 Fig. 3 is a schematic structural diagram of the present invention applied to the tomographic imaging device of Fig. 1 .
the
图中:1:1μm掺镱混沌光纤激光器;2:可变延迟器;3:光电探测器;4:放大器:5:相关器;6:成像系统。 In the figure: 1: 1μm ytterbium-doped chaotic fiber laser; 2: variable retarder; 3: photodetector; 4: amplifier; 5: correlator; 6: imaging system.
图中:7:980nm泵浦源;8:波分复用器;9:掺镱光纤;10:高非线性光纤;11:光隔离器;12:光纤光栅;13:偏振控制器;14:输出耦合器。 In the figure: 7: 980nm pump source; 8: wavelength division multiplexer; 9: ytterbium-doped fiber; 10: high nonlinear fiber; 11: optical isolator; 12: fiber grating; 13: polarization controller; 14: output coupler.
图中:1:1μm掺镱混沌光纤激光器;15:强度调制器;2:可变延迟器;5:相关器;3:光电探测器;16:样品模件;4:放大器;17:数据采集器;6:成像系统。 In the figure: 1: 1 μm ytterbium-doped chaotic fiber laser; 15: intensity modulator; 2: variable retarder; 5: correlator; 3: photodetector; 16: sample module; 4: amplifier; 17: data acquisition device; 6: imaging system.
具体实施方式 Detailed ways
下面对本发明的具体实施方式作出进一步的说明。 The specific implementation manners of the present invention will be further described below.
如图1所述,实施本发明所提供的一种散射混沌光层析成像装置,该装置是将混沌光信号应用于散射光层析成像中混沌光信号的产生装置包括980nm泵浦源7、波分复用器8、掺镱光纤9、高非线性光纤10、光隔离器11、光纤光栅12、偏振控制器13及输出耦合器14。 As shown in Figure 1, a scattering chaotic optical tomography device provided by the present invention is implemented. The device is to apply the chaotic optical signal to the generation device of the chaotic optical signal in the scattered optical tomography, including a 980nm pump source 7, wavelength division multiplexer 8 , ytterbium-doped fiber 9 , high nonlinear fiber 10 , optical isolator 11 , fiber grating 12 , polarization controller 13 and output coupler 14 .
the
本发明上述发生方法的技术方案所述的混沌光信号是利用光纤的非线性效应实现的。980nm激光作为掺镱光纤的泵浦源,高非线性光纤用来通过光纤的非线性效应实现宽带混沌的产生,光隔离器保证光纤环的单向运转,光纤光栅用于实现波长的调节和稳定。偏振控制器、光隔离器及传输光纤组成环形腔,采用980nm/1000nm波分复用器将980nm的抽运到掺镱光纤激光器内,通过偏振控制器和泵浦电流的调节,实现掺镱光纤的混沌激光输出。 The chaotic optical signal described in the technical solution of the above generating method of the present invention is realized by using the nonlinear effect of optical fiber. The 980nm laser is used as the pump source of the ytterbium-doped fiber, the high nonlinear fiber is used to realize the generation of broadband chaos through the nonlinear effect of the fiber, the optical isolator ensures the one-way operation of the fiber ring, and the fiber grating is used to realize the adjustment and stability of the wavelength . A polarization controller, an optical isolator and a transmission fiber form a ring cavity. A 980nm/1000nm wavelength division multiplexer is used to pump the 980nm laser into the ytterbium-doped fiber laser. By adjusting the polarization controller and the pumping current, the ytterbium-doped fiber laser is realized chaotic laser output.
本发明涉及将混沌光信号应用于散射光层析成像装置,包括1μm掺镱混沌光纤激光器、强度调制器、可变延迟器、相关器、光电探测器、组织模件、数据采集器及成像系统。 The invention relates to the application of chaotic optical signals to a scattered light tomography device, including a 1 μm ytterbium-doped chaotic fiber laser, an intensity modulator, a variable delay device, a correlator, a photodetector, a tissue module, a data collector and an imaging system .
本发明上述发生方法的技术方案所述的将混沌光信号应用于散射光层析成像装置的光纤激光混沌源是满足医学治疗窗口600nm-1300nm波段来实现深度穿透探测。所述的强度调制器将混沌信号调制成可控强度。所述的样品模件是以符合人体皮肤组织及肿瘤的各项参数模拟的,一般可以使用脂肪乳剂和塑料吸收器。所述的探测信号是通过样品模件的混沌光信号。所述的光电探测器实现光电信号的转换,用于肿瘤位置的测量。所述的相关器实现参考信号和探测信号的互相关,获取自相关函数与各个位置的光学信息,从而重建肿瘤位置。 The chaotic light signal applied to the optical fiber laser chaotic source of the scattered light tomography device described in the technical solution of the above-mentioned generation method of the present invention satisfies the medical treatment window of 600nm-1300nm wave band to realize deep penetration detection. The intensity modulator modulates the chaotic signal to a controllable intensity. The sample module is simulated according to various parameters of human skin tissue and tumor, and fat emulsion and plastic absorber can generally be used. The detection signal is a chaotic light signal passing through the sample module. The photodetector realizes the conversion of photoelectric signal and is used for the measurement of the tumor position. The correlator realizes the cross-correlation between the reference signal and the detection signal, and obtains the autocorrelation function and the optical information of each position, so as to reconstruct the tumor position.
应用混沌光信号于散射光层析成像检测装置及其方法,其构成在于1μm掺镱混沌光纤激光器1产生混沌光信号由强度调制器15调制可控,进入样品模件16实现光学探测,探测到的衰减后的光信号在光电探测器3进行光电转换并保存采集数据,采集到的探测信号通过放大器4放大之后与混沌光信号通过可变延迟器2实现延迟的参考信号在相关器5中进行互相关,相关信号由数据采集器17收集并叠加成点扩展函数曲线,采集点扩展函数曲线上每个位置数据输入成像系统6实现逆问题算法反演,实现组织体模件重建吸收系数分布的获取,从而模拟肿瘤位置图像。
The chaotic optical signal is applied to the scattered light tomography detection device and its method. Its composition is that the chaotic optical signal generated by the 1 μm ytterbium-doped
本实验测量原理:本实验建立一种模拟光在组织体内传播的数学模型,从而获得表面测量量的估计值,即正向模型;然后,根据正向模型和实际测量系统获得的测量量对组织体内部的光学参数进行拟合,从而获得内部光学参数的拓扑图像,即逆问题。本实验是以辐射传输理论中的扩散方程为基础,利用边界元方法建立相应的正向数学模型,并实现对散射光学层析成像的算法。1μm掺镱混沌光纤激光器1产生的混沌信号分为两路径传输,一路作为参考信号,通过可变延迟器2传输,假设其输出满足函数关系式h(t);另一路作为探测信号,通过样品模件16,利用光电探测器3转换成电信号传输,假设其输出满足函数关系式为f(t)。则其互相关函数 。基于此原理,通过数据采集器17采集到不同延迟时段互相关信号叠加成点扩展函数。Klose等采用离散纵标方法和有限差分方法对辐射传输方程进行求解,并在稳态模式下采用梯度方法对图像进行了重建,Jing Meng等在此基础上采用梯度树的方法对图像进行了重建,Kui Ren等在频率模式下对辐射传输方程采用了有限元方法求解,并采用Gauss-Newton方法进行了图像重建。O.Balima等采用最小方差有限元方法求解了频域辐射传输方程。Hyun Keol Kim发展了采用无需进行线性搜索的梯度方法在频域模式下进行图像重建的算法。Tanja Tarvainen等建立了联合辐射传输方程和扩散方程的正向模型。E.D.Aydin采用有限元-球谐波方法求解辐射传输方程。由此,基于扩散方程及边界条件情况下,利用MATLAB程序,可以实现女性乳腺肿瘤位置的检测。
The measurement principle of this experiment: This experiment establishes a mathematical model that simulates the propagation of light in the tissue body, so as to obtain the estimated value of the surface measurement, that is, the forward model; then, according to the forward model and the measurement obtained by the actual measurement system, the tissue The optical parameters inside the body are fitted to obtain the topological image of the internal optical parameters, that is, the inverse problem. This experiment is based on the diffusion equation in the radiation transfer theory, using the boundary element method to establish the corresponding forward mathematical model, and realize the algorithm for scattering optical tomography. The chaotic signal generated by the 1μm ytterbium-doped
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101068628A CN103190887A (en) | 2013-03-29 | 2013-03-29 | Scattered chaotic light tomography method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101068628A CN103190887A (en) | 2013-03-29 | 2013-03-29 | Scattered chaotic light tomography method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103190887A true CN103190887A (en) | 2013-07-10 |
Family
ID=48713838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101068628A Pending CN103190887A (en) | 2013-03-29 | 2013-03-29 | Scattered chaotic light tomography method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103190887A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061744A (en) * | 2018-07-13 | 2018-12-21 | 郭伟 | A kind of computed tomography scanning imager |
CN113258420A (en) * | 2021-05-06 | 2021-08-13 | 太原理工大学 | Chaotic laser device and method based on ytterbium-doped fiber laser |
CN113484281A (en) * | 2021-05-28 | 2021-10-08 | 太原理工大学 | Optical encryption device and method based on unique light scattering characteristics of biological tissues |
CN117672492A (en) * | 2023-11-28 | 2024-03-08 | 上海六颗蚕豆医疗科技有限公司 | Circulating tumor cell detection system and control method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040087862A1 (en) * | 1999-03-29 | 2004-05-06 | Geng Z. Jason | Diffuse optical tomography system and method of use |
CN101226100A (en) * | 2008-01-31 | 2008-07-23 | 太原理工大学 | Chaotic Optical Time Domain Reflectometer and Its Measurement Method |
US20090240138A1 (en) * | 2008-03-18 | 2009-09-24 | Steven Yi | Diffuse Optical Tomography System and Method of Use |
CN101588008A (en) * | 2009-06-23 | 2009-11-25 | 华南师范大学 | Dual-wavelength high-power self-similarity femtosecond pulse Yb-doping microstructure optical fiber laser |
CN101621959A (en) * | 2007-02-27 | 2010-01-06 | 皇家飞利浦电子股份有限公司 | Diffuse optical tomography |
TW201113718A (en) * | 2009-10-06 | 2011-04-16 | Univ Nat Chiao Tung | Image reconstruction method for diffuse optical tomography, diffuse optical tomography system, and computer program product |
CN102087411A (en) * | 2010-12-02 | 2011-06-08 | 上海电机学院 | Quantum imaging method and quantum imaging system |
CN102495467A (en) * | 2011-11-11 | 2012-06-13 | 上海电机学院 | Method utilizing time correlation property of chaotic laser for imaging and device adopting same |
-
2013
- 2013-03-29 CN CN2013101068628A patent/CN103190887A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040087862A1 (en) * | 1999-03-29 | 2004-05-06 | Geng Z. Jason | Diffuse optical tomography system and method of use |
CN101621959A (en) * | 2007-02-27 | 2010-01-06 | 皇家飞利浦电子股份有限公司 | Diffuse optical tomography |
CN101226100A (en) * | 2008-01-31 | 2008-07-23 | 太原理工大学 | Chaotic Optical Time Domain Reflectometer and Its Measurement Method |
US20090240138A1 (en) * | 2008-03-18 | 2009-09-24 | Steven Yi | Diffuse Optical Tomography System and Method of Use |
CN101588008A (en) * | 2009-06-23 | 2009-11-25 | 华南师范大学 | Dual-wavelength high-power self-similarity femtosecond pulse Yb-doping microstructure optical fiber laser |
TW201113718A (en) * | 2009-10-06 | 2011-04-16 | Univ Nat Chiao Tung | Image reconstruction method for diffuse optical tomography, diffuse optical tomography system, and computer program product |
CN102087411A (en) * | 2010-12-02 | 2011-06-08 | 上海电机学院 | Quantum imaging method and quantum imaging system |
CN102495467A (en) * | 2011-11-11 | 2012-06-13 | 上海电机学院 | Method utilizing time correlation property of chaotic laser for imaging and device adopting same |
Non-Patent Citations (3)
Title |
---|
NAN GUANG CHEN AND QUING ZHU: "Time-resolved diffusive optical imaging using pseudo-random bit sequences", 《OPTICS EXPRESS》 * |
曹玲等: "非线性光纤环形镜掺铒光纤激光器的实验研究", 《激光技术》 * |
杨玲珍等: "超短脉冲掺Yb3+光纤激光器实验研究", 《光子学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061744A (en) * | 2018-07-13 | 2018-12-21 | 郭伟 | A kind of computed tomography scanning imager |
CN109061744B (en) * | 2018-07-13 | 2020-01-17 | 郭伟 | Chromatographic scanning imager |
CN113258420A (en) * | 2021-05-06 | 2021-08-13 | 太原理工大学 | Chaotic laser device and method based on ytterbium-doped fiber laser |
CN113484281A (en) * | 2021-05-28 | 2021-10-08 | 太原理工大学 | Optical encryption device and method based on unique light scattering characteristics of biological tissues |
CN113484281B (en) * | 2021-05-28 | 2023-03-14 | 太原理工大学 | Optical encryption device and method based on unique light scattering characteristics of biological tissues |
CN117672492A (en) * | 2023-11-28 | 2024-03-08 | 上海六颗蚕豆医疗科技有限公司 | Circulating tumor cell detection system and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8364414B2 (en) | Apparatus and method for processing biological information | |
CN102822661B (en) | Opto-acoustic imaging devices and acousto-optic imaging method | |
Elson et al. | Ultrasound-mediated optical tomography: a review of current methods | |
US20150168126A1 (en) | System and method for optical coherence tomography | |
US9521952B2 (en) | Photoacoustic imaging apparatus, photoacoustic imaging method, and program | |
Ueda et al. | Time-resolved optical mammography and its preliminary clinical results | |
US6665557B1 (en) | Sprectroscopic and time-resolved optical methods and apparatus for imaging objects in turbed media | |
Johansson et al. | A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array | |
CN103190887A (en) | Scattered chaotic light tomography method | |
CN115211830B (en) | Near-infrared diffuse coherence spectroscopy local cerebral blood flow speckle imaging device and detection method | |
Mehta et al. | Spread spectrum time-resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity | |
Colombo et al. | Coherent fluctuations in time-domain diffuse optics | |
Kim et al. | Fast noniterative data analysis method for frequency-domain near-infrared spectroscopy with the microscopic Beer–Lambert law | |
Li et al. | Parallel-plate diffuse optical imaging in a tissue-like phantom through high signal-to-noise measurement | |
Tao et al. | Tutorial on methods for estimation of optical absorption and scattering properties of tissue | |
af Klinteberg et al. | Diffusely scattered femtosecond white-light examination of breast tissue in vitro and in vivo | |
Guerra et al. | An iterative method of light fluence distribution estimation for quantitative photoacoustic imaging | |
Alhemsi et al. | Time-resolved near-infrared spectroscopic imaging systems | |
Patil et al. | Fluorescence optical tomography for cancer detection | |
Wang et al. | Optical parameters detection with multi-frequency modulation based on NIR DPDW | |
Tyulmankov | Time-domain diffuse correlation spectroscopy: instrument prototype, preliminary measurements, and theoretical modeling | |
Pagliazzi et al. | In vivo, depth resolved measurement of blood flow with time domain diffuse correlation spectroscopy | |
Wu et al. | Three dimensional time reversal optical tomography | |
Wojtkiewicz et al. | Development of a Multidistance Continuous Wave Near-Infrared Spectroscopy Device with Frequency Coding | |
He et al. | An analytic reflection method for time-domain fluorescence diffuse optical tomography based on a generalized pulse spectrum technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130710 |