CN103176013B - An Oscilloscope with Customizable Measurement Range and Its Realization Method - Google Patents
An Oscilloscope with Customizable Measurement Range and Its Realization Method Download PDFInfo
- Publication number
- CN103176013B CN103176013B CN201110434964.3A CN201110434964A CN103176013B CN 103176013 B CN103176013 B CN 103176013B CN 201110434964 A CN201110434964 A CN 201110434964A CN 103176013 B CN103176013 B CN 103176013B
- Authority
- CN
- China
- Prior art keywords
- cursor
- waveform data
- measurement range
- measurement
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本发明提供了一种可自定义测量范围的示波器及其实现方法,包括:测量范围设定模块、测量项目设定模块、波形数据获取模块、波形测量模块和显示模块;测量范围设定模块,用于分别设置两个竖直的光标线的位置,该两个的竖直光标线所限定的范围为自定义测量范围;波形测量模块,用于根据所设定测量项目对所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果。用户通过对光标线位置的设定来确定由用户自定义的测量范围,从而可以根据自身需要方便的测量局部波形的参数。
The invention provides an oscilloscope capable of customizing the measurement range and its implementation method, comprising: a measurement range setting module, a measurement item setting module, a waveform data acquisition module, a waveform measurement module and a display module; a measurement range setting module, It is used to set the positions of two vertical cursor lines respectively, and the range defined by the two vertical cursor lines is a custom measurement range; the waveform measurement module is used to adjust the obtained custom measurement items according to the set measurement items. The waveform data within the measurement range is analyzed and calculated to obtain the corresponding measurement results. The user determines the user-defined measurement range by setting the position of the cursor line, so that the parameters of the local waveform can be conveniently measured according to their own needs.
Description
技术领域technical field
本发明涉及精密仪器测量技术领域,特别是一种可自定义测量范围的示波器及其实现方法。The invention relates to the technical field of precision instrument measurement, in particular to an oscilloscope with a customizable measurement range and an implementation method thereof.
背景技术Background technique
现有示波器均具有测量功能,其一般是基于两种测量模式:自动设置测量和指定设置测量。Existing oscilloscopes all have measurement functions, which are generally based on two measurement modes: automatic setting measurement and specified setting measurement.
自动设置测量用于自动调整示波器垂直、水平设置,从而将输入信号按照周期、边沿等用户指定规则清晰的呈现给用户。自动设置的核心即通过对输入示波器的信号进行测量来确定示波器垂直、水平的设置参数。The automatic setting measurement is used to automatically adjust the vertical and horizontal settings of the oscilloscope, so as to clearly present the input signal to the user according to the user-specified rules such as period and edge. The core of automatic setting is to determine the vertical and horizontal setting parameters of the oscilloscope by measuring the signal input to the oscilloscope.
指定设置测量,首先由用户指定测量项目,然后,示波器根据测量项目对波形数据进行测量。To specify the measurement settings, the user first specifies the measurement items, and then the oscilloscope measures the waveform data according to the measurement items.
目前,示波器或者是使用获取到的全部数据进行测量,或者是仅使用用户可见的屏幕数据进行测量,而用户无法仅使用其感兴趣的部分数据进行测量。Currently, oscilloscopes either use all the acquired data to make measurements, or only use the screen data visible to the user to make measurements, and the user cannot use only the part of the data that is of interest to the user.
无论是上述自动设置测量还是指定设置测量,其测量范围均是由厂商预先定义好的,用户无法对其测量范围进行修改。当用户在使用中期望仅获取部分波形数据的测量结果时,则只能通过调整示波器设置来间接实现(即使用屏幕显示的部分波形数据),或者根本无法实现(即使用全部数据)。无论采用上述何种测量模式,均会给用户使用带来极大不便。Regardless of the above-mentioned automatic setting measurement or specified setting measurement, the measurement range is predefined by the manufacturer, and the user cannot modify the measurement range. When the user expects to obtain the measurement results of only part of the waveform data in use, it can only be achieved indirectly by adjusting the oscilloscope settings (that is, using part of the waveform data displayed on the screen), or it cannot be achieved at all (that is, using all the data). No matter which measurement mode is used above, it will bring great inconvenience to the user.
因此,我们有必要设计一种可自定义测量范围的示波器及其实现方法,为用户提供更为灵活的可自定义测量范围的示波测量方式。Therefore, it is necessary for us to design an oscilloscope with a customizable measurement range and its implementation method, so as to provide users with a more flexible oscilloscope measurement method with a customizable measurement range.
发明内容Contents of the invention
本发明的主要目的在于解决现有技术中存在的问题,提供一种可自定义测量范围的示波器及其实现方法。The main purpose of the present invention is to solve the problems existing in the prior art, and provide an oscilloscope with a customizable measurement range and its implementation method.
本发明的目的是通过下述技术方案予以实现的:The purpose of the present invention is achieved through the following technical solutions:
一种可自定义测量范围的示波器的实现方法,其特征在于,包括:A method for realizing an oscilloscope with a customizable measurement range, characterized in that it includes:
分别设置两个竖直的光标线的位置;所述竖直的光标线可沿水平轴移动;该两个竖直的光标线分别为第一光标线和第二光标线;所述第一光标线和第二光标线所限定的范围为自定义测量范围;The positions of the two vertical cursor lines are respectively set; the vertical cursor lines can move along the horizontal axis; the two vertical cursor lines are respectively the first cursor line and the second cursor line; the first cursor The range defined by the line and the second cursor line is the custom measurement range;
设定测量项目;Set measurement items;
从原始波形数据中获取该自定义测量范围内波形数据;Obtain the waveform data within the custom measurement range from the original waveform data;
根据所设定测量项目对所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果;Analyze and calculate the acquired waveform data within the custom measurement range according to the set measurement items to obtain the corresponding measurement results;
将所述测量结果进行显示。The measurement results are displayed.
在设置所述第一光标线和第二光标线位置的同时,还分别设置两个水平的光标线的位置;所述水平的光标线可沿竖直轴移动;该两个水平的光标线分别为第三光标线和第四光标线;所述第一、第二、第三、第四光标线所限定的区域为自定义测量范围。While setting the positions of the first cursor line and the second cursor line, the positions of two horizontal cursor lines are also set respectively; the horizontal cursor lines can move along the vertical axis; the two horizontal cursor lines are respectively are the third cursor line and the fourth cursor line; the area defined by the first, second, third, and fourth cursor lines is a custom measurement range.
对所述各个光标线的设置方式可采用:旋钮键设定方式、触摸屏选定方式、鼠标选定方式或远程命令配置参数方式。The setting methods for each of the cursor lines can be: knob key setting method, touch screen selection method, mouse selection method or remote command configuration parameter method.
在所述获取波形数据的步骤中还设有对波形采集起始地址与用户定义起始地址的比较步骤,包括:In the step of acquiring waveform data, there is also a step of comparing the starting address of waveform acquisition with the user-defined starting address, including:
比较波形采集起始地址与用户定义起始地址的时间顺序;若波形采集起始地址早于用户定义起始地址,则以用户定义起始地址为起始获取波形数据;若用户定义起始地址早于波形采集起始地址,则以波形采集起始地址为起始获取波形数据。Compare the time sequence of the waveform acquisition start address and the user-defined start address; if the waveform acquisition start address is earlier than the user-defined start address, the waveform data will be acquired starting from the user-defined start address; if the user-defined start address If it is earlier than the waveform acquisition start address, the waveform data will be acquired starting from the waveform acquisition start address.
在所述从原始波形数据中获取自定义测量范围内的波形数据步骤中,还对所述原始波形数据进行轨迹预处理,从该轨迹预处理的波形包络中获取该自定义测量范围内波形数据;In the step of obtaining the waveform data within the custom measurement range from the original waveform data, track preprocessing is also performed on the original waveform data, and the waveform within the custom measurement range is obtained from the waveform envelope of the track preprocessing data;
所述轨迹预处理,包括:The trajectory preprocessing includes:
以时间为单位对所述原始波形数据进行分组;提取该原始波形数据各个分组中的最大值和最小值;以该提取各个分组的最大值和最小值形成波形包络。The original waveform data is grouped by time; the maximum and minimum values in each group of the original waveform data are extracted; and the waveform envelope is formed by the extracted maximum and minimum values of each group.
一种可自定义测量范围的示波器,其特征在于,至少包括:测量范围设定模块、测量项目设定模块、波形数据获取模块、波形测量模块和显示模块;An oscilloscope with a customizable measurement range, characterized in that it at least includes: a measurement range setting module, a measurement item setting module, a waveform data acquisition module, a waveform measurement module and a display module;
所述测量范围设定模块,用于分别设置两个竖直的光标线的位置;所述竖直的光标线可沿水平轴移动;该两个竖直的光标线分别为第一光标线和第二光标线;所述第一光标线和第二光标线所限定的范围为自定义测量范围;The measurement range setting module is used to respectively set the positions of two vertical cursor lines; the vertical cursor lines can move along the horizontal axis; the two vertical cursor lines are the first cursor line and the first cursor line respectively. The second cursor line; the range defined by the first cursor line and the second cursor line is a custom measurement range;
所述测量项目设定模块,用于设定测量项目;The measurement item setting module is used to set the measurement items;
所述波形数据获取模块,用于从原始波形数据中获取该自定义测量范围内波形数据;The waveform data obtaining module is used to obtain the waveform data in the custom measurement range from the original waveform data;
所述波形测量模块,用于根据所设定测量项目对所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果;The waveform measurement module is used to analyze and calculate the acquired waveform data within the custom measurement range according to the set measurement items, and obtain corresponding measurement results;
所述显示模块,用于将所述测量结果进行显示。The display module is used to display the measurement results.
在所述测量范围设定模块中还设置两个水平的光标线;所述水平的光标线可沿竖直轴移动;该两个水平的光标线分别为第三光标线和第四光标线;该测量范围设定模块,还用于分别设置该两个水平的光标线的位置;所述第一、第二、第三、第四光标线所限定的区域为自定义测量范围。Two horizontal cursor lines are also set in the measurement range setting module; the horizontal cursor lines can move along the vertical axis; the two horizontal cursor lines are respectively the third cursor line and the fourth cursor line ; The measurement range setting module is also used to respectively set the positions of the two horizontal cursor lines; the areas defined by the first, second, third and fourth cursor lines are self-defined measurement ranges.
所述测量范围设定模块对所述各个光标线的设置方式可采用:旋钮键设定方式、触摸屏选定方式、鼠标选定方式或远程命令配置参数方式。The measurement range setting module can set the respective cursor lines in the following ways: knob key setting, touch screen selection, mouse selection or remote command configuration parameters.
在所述波形数据获取模块中还设置有起始地址比较模块;A start address comparison module is also arranged in the waveform data acquisition module;
所述起始地址比较模块,用于对波形采集起始地址与用户定义起始地址的时间顺序进行比较;若波形采集起始地址早于用户定义起始地址,则以用户定义起始地址为起始获取波形数据;若用户定义起始地址早于波形采集起始地址,则以波形采集起始地址为起始获取波形数据。The start address comparison module is used to compare the time order of the waveform acquisition start address and the user-defined start address; if the waveform acquisition start address is earlier than the user-defined start address, then the user-defined start address is Start to acquire waveform data; if the user-defined start address is earlier than the waveform acquisition start address, start to acquire waveform data with the waveform acquisition start address.
在所述波形数据获取模块中还设置有轨迹预处理模块;A trajectory preprocessing module is also provided in the waveform data acquisition module;
所述轨迹预处理模块,用于以时间为单位对所述原始波形数据进行分组;提取该原始波形数据各个分组中的最大值和最小值;以该提取各个分组的最大值和最小值形成波形包络;The trajectory preprocessing module is used to group the original waveform data in units of time; extract the maximum value and minimum value in each group of the original waveform data; form a waveform by extracting the maximum value and minimum value of each group envelope;
所述波形数据获取模块从该轨迹预处理模块形成的波形包络中获取该自定义测量范围内波形数据。The waveform data obtaining module obtains the waveform data in the self-defined measurement range from the waveform envelope formed by the trajectory preprocessing module.
通过本发明实施例,用户可以对相应光标线位置的设定来确定由用户自定义的测量范围。由于,该自定义测量范围的确定更为灵活,用户可以根据自身需要方便的测量局部波形的参数。Through the embodiment of the present invention, the user can determine the measurement range defined by the user by setting the position of the corresponding cursor line. Because the determination of the custom measurement range is more flexible, users can conveniently measure the parameters of local waveforms according to their own needs.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:The drawings described here are used to provide further understanding of the present invention, constitute a part of the application, and do not limit the present invention. In the attached picture:
图1为可自定义测量范围的示波器的实现方法流程图;Fig. 1 is the flow chart of the realization method of the oscilloscope which can customize the measurement range;
图2为波形数据范围示意图;Figure 2 is a schematic diagram of the waveform data range;
图3为可自定义测量范围的示波器实施例图一;Figure 3 is Figure 1 of an oscilloscope embodiment with a customizable measurement range;
图4为可自定义测量范围的示波器实施例图二;Figure 4 is Figure 2 of an oscilloscope embodiment with a customizable measurement range;
图5为可自定义测量范围的示波器实施例图三;Fig. 5 is Fig. 3 of an oscilloscope embodiment with a customizable measurement range;
图6为可自定义测量范围的示波器模块结构示意图;Figure 6 is a schematic structural diagram of an oscilloscope module with a customizable measurement range;
图7为数据范围映射示意图。FIG. 7 is a schematic diagram of data range mapping.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the embodiments and accompanying drawings. Here, the exemplary embodiments and descriptions of the present invention are used to explain the present invention, but not to limit the present invention.
图1为本发明可自定义测量范围的示波器的实现方法流程图。如图所示,该可自定义测量范围的示波器的实现方法,包括:FIG. 1 is a flowchart of an implementation method of an oscilloscope with a customizable measurement range according to the present invention. As shown in the figure, the implementation method of the oscilloscope with a customizable measurement range includes:
1、分别设置两个竖直的光标线的位置;所述竖直的光标线可沿水平轴移动;该两个竖直的光标线分别为第一光标线和第二光标线;所述第一光标线和第二光标线所限定的范围为自定义测量范围;1. Set the positions of two vertical cursor lines respectively; the vertical cursor lines can move along the horizontal axis; the two vertical cursor lines are respectively the first cursor line and the second cursor line; The range defined by the first cursor line and the second cursor line is the custom measurement range;
2、设定测量项目。2. Set the measurement items.
目前,示波器为用户提供多种信号分析测量项目,如周期、频率、上升时间、下降时间、正脉宽、负脉宽、占空比等。这里,主要是由用户设定对该自定义测量范围内信号所要进行的测量项目。这些测量项目均为现有示波器所常用的测量项目。At present, oscilloscopes provide users with a variety of signal analysis measurement items, such as period, frequency, rise time, fall time, positive pulse width, negative pulse width, duty cycle, etc. Here, the measurement items to be performed on the signals within the custom measurement range are mainly set by the user. These measurement items are commonly used measurement items of existing oscilloscopes.
3、获取该自定义测量范围内波形数据。3. Obtain the waveform data within the custom measurement range.
波形数据获取过程是根据之前已设置的自定义测量范围从所采集的波形数据中获取该自定义测量范围内的波形数据。The waveform data acquisition process is to obtain the waveform data within the custom measurement range from the collected waveform data according to the previously set custom measurement range.
4、根据所设定测量项目对从原始波形数据中所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果。4. Analyze and calculate the waveform data in the custom measurement range obtained from the original waveform data according to the set measurement items, and obtain the corresponding measurement results.
这里所述的获取波形数据,是从待测量波形信号经过采样后得到的原始波形数据中,获取所述自定义测量范围内的相关波形数据。The acquisition of waveform data mentioned here is to obtain the relevant waveform data within the self-defined measurement range from the original waveform data obtained after the waveform signal to be measured is sampled.
5、将所述测量结果进行显示。5. Display the measurement result.
上述可自定义测量范围的示波器的实现方法的关键在于,在该示波器中设置有第一光标线、第二光标线两个可由用户设置的可沿水平轴移动的竖直的光标线,通过步骤1调整该两个光标线的位置,为用户提供了可自定义设置的测量范围,从而为用户提供了更为灵活的示波测量方式。图2为波形数据范围示意图。通过该图2我们可以更清楚的看到本发明所提供的自定义测量范围与现有技术中自动设置测量和指定设置测量的测量模式的区别。所谓自动设置测量是针对全部采集的波形数据进行分析计算的,其处理的范围与所采集的波形数据范围有关。所谓指定设置测量是针对示波器屏幕范围内的波形数据进行分析计算的,其处理的范围与所显示于示波器屏幕内的波形数据范围有关。该两种测量范围的确定都不便于用户的灵活设定。而本发明所提供的自定义测量范围是在示波器屏幕范围内,通过用户对两个光标线位置的设定而确定的。因此,其测量范围的确定更为灵活,用户可以根据自身需要方便的测量局部波形的参数。The key to the implementation method of the above-mentioned oscilloscope with a customizable measurement range is that two vertical cursor lines, the first cursor line and the second cursor line, which can be set by the user and can move along the horizontal axis, are set in the oscilloscope. Through the steps 1 Adjust the positions of the two cursor lines to provide users with a custom-settable measurement range, thereby providing users with a more flexible oscillometric measurement method. Figure 2 is a schematic diagram of the waveform data range. Through this figure 2, we can see more clearly the difference between the self-defined measurement range provided by the present invention and the measurement modes of automatic setting measurement and specified setting measurement in the prior art. The so-called automatic setting measurement is to analyze and calculate all the collected waveform data, and its processing range is related to the range of the collected waveform data. The so-called specified setting measurement is analyzed and calculated for the waveform data within the scope of the oscilloscope screen, and the processing range is related to the range of the waveform data displayed on the oscilloscope screen. The determination of the two measurement ranges is not convenient for users to set flexibly. However, the self-defined measurement range provided by the present invention is determined by the user's setting of the positions of the two cursor lines within the screen range of the oscilloscope. Therefore, the determination of its measurement range is more flexible, and users can conveniently measure the parameters of local waveforms according to their own needs.
应当指出的是,所述步骤1和步骤2的顺序并不一定要依据上述流程的先后顺序,也可先对所要测量的项目进行设定,再对限定自定义测量范围的第一、第二光标线位置进行设置。上述流程顺序亦应在本发明的保护范围之内。It should be pointed out that the order of steps 1 and 2 does not have to be based on the order of the above-mentioned processes, and the items to be measured can also be set first, and then the first and second steps that define the custom measurement range can be set. Set the position of the cursor line. The sequence of the above processes should also be within the protection scope of the present invention.
下面通过一个具体实施例对上述本发明的可自定义测量范围的示波器的实现方法作进一步说明。The implementation method of the above-mentioned oscilloscope with a customizable measurement range of the present invention will be further described below through a specific embodiment.
如图3所示,该示波器中设置有两个竖直的光标线,第一光标线A和第二光标线B。用户通过操作菜单选择要设置第一光标线A、第二光标线B或同时操作光标线AB。该光标线A、B的初始位置一般是由厂商随意指定的。例如,本实施例中是以屏幕中心左右3格为光标线A、B的起始地址。用户通过旋转旋钮键来改变当前选中的光标线位置。As shown in FIG. 3 , two vertical cursor lines, a first cursor line A and a second cursor line B, are set in the oscilloscope. The user chooses to set the first cursor line A, the second cursor line B or operate the cursor lines AB simultaneously through the operation menu. The initial positions of the cursor lines A and B are generally arbitrarily designated by the manufacturer. For example, in this embodiment, the starting addresses of cursor lines A and B are taken as three grids to the left and right of the center of the screen. The user can change the position of the currently selected cursor line by rotating the knob key.
应该指出,本实施例中所给出光标线调整方式是通过旋钮键来进行操作的。但除此之外,也可通过其它任何可以改变测量范围参数的操作来实现,例如,在触摸屏上选择矩形区域、使用鼠标选择矩形区域、使用远程命令配置参数等。It should be pointed out that the cursor line adjustment method given in this embodiment is operated through the knob key. But in addition, it can also be realized by any other operation that can change the parameters of the measurement range, for example, selecting a rectangular area on the touch screen, using a mouse to select a rectangular area, using remote commands to configure parameters, etc.
这里,使用远程命令配置参数中,远程命令是一种测试测量仪器一般均支持的远程控制仪器的方法。该配置方法遵循SCPI(Standard Commands for ProgrammableInstruments,程控仪器标准命令集)规范。Here, in configuring parameters using a remote command, the remote command is a method for remotely controlling an instrument generally supported by testing and measuring instruments. This configuration method follows the SCPI (Standard Commands for Programmable Instruments, standard command set for programmable instruments) specification.
如图4所示,通过按钮选择菜单中的测量项目。本示例中,具体选择的是“正脉宽”选项。设置完毕后,示波器即开始根据所设定的自定义测量范围就该测试项目进行测量。As shown in Figure 4, select the measurement items in the menu through the buttons. In this example, the "Positive Pulse Width" option is specifically selected. After the setting is completed, the oscilloscope starts to measure the test item according to the set custom measurement range.
具体测量的过程,首先根据之前已设置的自定义测量范围从所采集的波形数据中获取该自定义测量范围内的波形数据,然后根据所设定测量项目“正脉宽”对所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果。In the specific measurement process, firstly, according to the previously set custom measurement range, the waveform data within the custom measurement range is obtained from the collected waveform data, and then according to the set measurement item "positive pulse width", the acquired self-defined Define the waveform data within the measurement range for analysis and calculation, and obtain the corresponding measurement results.
本实施例中,如图4所示的自定义测量范围进行波形测量,则所测量的“正脉宽”应为测量范围内由左至右第一个合法脉宽的脉宽值“Width=4.480us”。而如图5所示的自定义测量范围来进行测量,则缩小测量范围后局部的脉宽值“Width=1.520us”。可见,用户通过改变自定义测量范围的区域,可以对不同局部的波形特性进行测量In this embodiment, the waveform measurement is performed in the custom measurement range as shown in Figure 4, then the measured "positive pulse width" should be the pulse width value of the first legal pulse width from left to right in the measurement range "Width= 4.480us". However, if the measurement is performed with a custom measurement range as shown in FIG. 5 , the local pulse width value "Width=1.520us" after the measurement range is reduced. It can be seen that the user can measure different local waveform characteristics by changing the area of the custom measurement range
上述可见,在自定义测量范围的示波器的实现方法中,采用的是两个竖直的光标线来限定用户自定义的测量范围。除此之外,我们还可以再设置两个水平的光标线,该两个水平的光标线分别为第三光标线和第四光标线。在设置该第一光标线和第二光标线位置的同时,还分别设置该两个水平的光标线,第三光标线和第四光标线的位置。由上述第一、第二、第三、第四光标线所限定的矩形区域即为所述自定义测量范围。这样,本发明所提供的技术方案不仅提供水平方向上的范围限定,同时还提供竖直方向上的范围限定,从而使对该自定义测量范围的设定更为全面。It can be seen from the above that, in the implementation method of the oscilloscope with a user-defined measurement range, two vertical cursor lines are used to define the user-defined measurement range. In addition, we can further set two horizontal cursor lines, which are respectively the third cursor line and the fourth cursor line. While setting the positions of the first cursor line and the second cursor line, the positions of the two horizontal cursor lines, the third cursor line and the fourth cursor line are also set respectively. The rectangular area defined by the first, second, third, and fourth cursor lines above is the custom measurement range. In this way, the technical solution provided by the present invention not only provides range limitation in the horizontal direction, but also provides range limitation in the vertical direction, so that the setting of the custom measurement range is more comprehensive.
由于在某些情况下,用户所自定义测量范围的起始地址早于示波器所采集波形数据的起始地址,这样会造成示波器在分析计算时的误差。因此,为了避免这一问题,本发明在所述步骤3获取波形数据的步骤中还设有对波形采集起始地址与用户定义起始地址的比较步骤,具体如下:In some cases, the start address of the user-defined measurement range is earlier than the start address of the waveform data collected by the oscilloscope, which will cause errors in the analysis and calculation of the oscilloscope. Therefore, in order to avoid this problem, the present invention is also provided with the comparison step of starting address of waveform acquisition and user-defined starting address in the step of obtaining waveform data in said step 3, specifically as follows:
比较波形采集起始地址与用户定义起始地址的时间顺序;若波形采集起始地址早于用户定义起始地址,则以用户定义起始地址为起始获取波形数据;若用户定义起始地址早于波形采集起始地址,则以波形采集起始地址为起始获取波形数据。Compare the time sequence of the waveform acquisition start address and the user-defined start address; if the waveform acquisition start address is earlier than the user-defined start address, the waveform data will be acquired starting from the user-defined start address; if the user-defined start address If it is earlier than the waveform acquisition start address, the waveform data will be acquired starting from the waveform acquisition start address.
通过上述步骤则可以保证经过步骤3所获取的波形数据为真正有效的波形数据。Through the above steps, it can be ensured that the waveform data acquired through step 3 is truly valid waveform data.
如图7所示,假设MemDepth标示已采集波形数据(存储深度),HScale标示水平档位,HOffset标示水平偏移,HSaRate标示采样率,xA标示光标A屏幕坐标,xB标示光标B屏幕坐标,Startscr标示屏幕波形在已采集波形数据中起始位置,Endscr标示屏幕波形在已采集波形数据中中止位置,HGrid标示水平网格个数(本例使用屏幕网格个数为14),Startcursor、Endcursor分别表示光标在已采集波形数据中起始和终止位置。As shown in Figure 7, assume that MemDepth indicates the collected waveform data (storage depth), HScale indicates the horizontal scale, HOffset indicates the horizontal offset, HSaRate indicates the sampling rate, x A indicates the screen coordinates of cursor A, and x B indicates the screen coordinates of cursor B , Start scr marks the starting position of the screen waveform in the collected waveform data, End scr marks the stop position of the screen waveform in the collected waveform data, HGrid marks the number of horizontal grids (the number of screen grids used in this example is 14), Start cursor and End cursor represent the start and end positions of the cursor in the collected waveform data respectively.
自定义的测量范围与波形数据间映射可以如下计算:The mapping between the custom measurement range and the waveform data can be calculated as follows:
1 计算屏幕波形数据与已采集波形数据间映射1 Calculate the mapping between the waveform data on the screen and the acquired waveform data
Endscr=Startscr+HScale×HGrid×HSaRateEnd scr = Start scr +HScale×HGrid×HSaRate
2 在屏幕波形映射基础上计算光标区域映射2 Calculate cursor area mapping based on screen waveform mapping
3 计算有效波形数据长度3 Calculate the effective waveform data length
Len=Endcursor-Startcursor Len=End cursor -Start cursor
注意,计算有效数据长度时需要考虑Startcursor<0或者Endcursor>MemDepth的情况。Note that the case of Start cursor <0 or End cursor >MemDepth needs to be considered when calculating the effective data length.
近年来随着技术的发展,示波器存储深度越来越深、采样率越来越高,采样上述计算方法在某些时基或存储深度一定时计算量较大,为了降低计算量同时提高计算效率,本发明在所述步骤4从原始波形数据中获取自定义测量范围内的波形数据步骤中,还对所述原始波形数据进行轨迹预处理,从该轨迹预处理的波形包络中获取该自定义测量范围内波形数据;In recent years, with the development of technology, the storage depth of oscilloscopes has become deeper and higher, and the sampling rate has become higher and higher. The above-mentioned calculation method of sampling has a large amount of calculation when certain time bases or storage depths are fixed. In order to reduce the calculation amount and improve the calculation efficiency , in the step 4 of the present invention, in the step of obtaining waveform data within a custom measurement range from the original waveform data, track preprocessing is also performed on the original waveform data, and the self-defined waveform is obtained from the waveform envelope of the track preprocessing. Define the waveform data within the measurement range;
所述轨迹预处理,包括:以时间为单位对所述原始波形数据进行分组;提取该原始波形数据各个分组中的最大值和最小值;以该提取各个分组的最大值和最小值形成波形包络。The trajectory preprocessing includes: grouping the original waveform data in units of time; extracting the maximum value and minimum value in each grouping of the original waveform data; forming a waveform packet by extracting the maximum value and minimum value of each grouping network.
通过上述对原始波形数据进行轨迹预处理,使得所述步骤4对波形数据进行分析计算的步骤只需对该波形包络进行分析计算即可,有效降低了对波形数据进行分析计算时的运算量。Through the above trajectory preprocessing of the original waveform data, the step of analyzing and calculating the waveform data in step 4 only needs to analyze and calculate the waveform envelope, which effectively reduces the amount of calculation when analyzing and calculating the waveform data. .
应当指出,设计人员还可以对该轨迹预处理的数据范围做进一步限定。参见图2,该轨迹预处理的数据范围可以为:全部数据范围、屏幕显示数据范围和自定义测量数据范围。通过对轨迹预处理的数据范围限定,可以进一步降低轨迹预处理的运算量。It should be pointed out that the designer can further limit the data range of the trajectory preprocessing. Referring to Fig. 2, the data ranges of the track preprocessing can be: all data ranges, screen display data ranges and custom measurement data ranges. By limiting the data range of trajectory preprocessing, the calculation amount of trajectory preprocessing can be further reduced.
在使用轨迹预处理时,还需要定义轨迹起始坐标Starttrace及结束坐标Endtrace,并且均为屏幕像素坐标即单位为分组。此时,Startcursor和Endcursor同样定义为分组坐标。When using trace preprocessing, it is also necessary to define the start trace of the trace and the end trace of the end trace , and both are screen pixel coordinates, that is, the unit is grouping. At this time, the Start cursor and End cursor are also defined as group coordinates.
轨迹预处理公式:Trajectory preprocessing formula:
Startcursor=xA×2Start cursor = x A × 2
Endcursor=xB×2End cursor = x B × 2
Len=Endcursor-Startcursor Len=End cursor -Start cursor
同样,有效波形数据长度需要考虑Startcursor<Starttrace及Endcursor>Endtrace的情况。Similarly, the effective waveform data length needs to consider the situation of Start cursor <Start trace and End cursor >End trace .
通过上述轨迹预处理法,可以将数据量庞大的原始波形数据压缩化简为数据量很小的波形轨迹包络形式,并以此进行相关分析计算,大大降低了运算量,提高了系统计算效率。Through the above-mentioned trajectory preprocessing method, the original waveform data with a large amount of data can be compressed and simplified into a waveform trajectory envelope form with a small amount of data, and correlation analysis and calculation can be performed on this basis, which greatly reduces the amount of calculation and improves the calculation efficiency of the system. .
图6为本发明可自定义测量范围的示波器模块结构示意图。如图所示,该示波器至少包括:测量范围设定模块、测量项目设定模块、波形数据获取模块、波形测量模块和显示模块。FIG. 6 is a schematic structural diagram of an oscilloscope module with a customizable measurement range in the present invention. As shown in the figure, the oscilloscope at least includes: a measurement range setting module, a measurement item setting module, a waveform data acquisition module, a waveform measurement module and a display module.
所述测量范围设定模块,用于分别设置两个竖直的光标线的位置;所述竖直的光标线可沿水平轴移动;该两个竖直的光标线分别为第一光标线和第二光标线;所述第一光标线和第二光标线所限定的范围为自定义测量范围;The measurement range setting module is used to respectively set the positions of two vertical cursor lines; the vertical cursor lines can move along the horizontal axis; the two vertical cursor lines are the first cursor line and the first cursor line respectively. The second cursor line; the range defined by the first cursor line and the second cursor line is a custom measurement range;
所述测量项目设定模块,用于设定测量项目。The measurement item setting module is used for setting measurement items.
目前,示波器为用户提供多种信号分析测量项目,如周期、频率、上升时间、下降时间、正脉宽、负脉宽、占空比等。这里,主要是由用户设定对该自定义测量范围内信号所要进行的测量项目。这些测量项目均为现有示波器所常用的测量项目。At present, oscilloscopes provide users with a variety of signal analysis measurement items, such as period, frequency, rise time, fall time, positive pulse width, negative pulse width, duty cycle, etc. Here, the measurement items to be performed on the signals within the custom measurement range are mainly set by the user. These measurement items are commonly used measurement items of existing oscilloscopes.
所述波形数据获取模块,用于从原始波形数据中获取该自定义测量范围内波形数据。该波形数据获取模块根据所述测量范围设定模块所设置的自定义测量范围从所采集的波形数据中获取该自定义测量范围内的波形数据。The waveform data obtaining module is used to obtain the waveform data within the custom measurement range from the original waveform data. The waveform data acquisition module acquires waveform data within the custom measurement range from the collected waveform data according to the custom measurement range set by the measurement range setting module.
所述波形测量模块,用于根据所设定测量项目对所获取的自定义测量范围内波形数据进行分析计算,获得相应测量结果。The waveform measurement module is used to analyze and calculate the acquired waveform data within the custom measurement range according to the set measurement items, and obtain corresponding measurement results.
所述显示模块,用于将所述测量结果进行显示。The display module is used to display the measurement results.
其中,在所述测量范围设定模块中,用户可采用的设定方式可以包括:旋钮键设定方式、触摸屏选定方式、鼠标选定方式或远程命令配置参数方式等进行所述光标线位置的调整操作。Wherein, in the measurement range setting module, the setting methods available to the user may include: knob key setting method, touch screen selection method, mouse selection method, or remote command configuration parameter method to set the position of the cursor line. adjustment operation.
除此之外,在所述测量范围设定模块中还设置两个水平的光标线;所述水平的光标线可沿竖直轴移动;该两个水平的光标线分别为第三光标线和第四光标线;该测量范围设定模块,还用于分别设置该两个水平的光标线的位置;所述第一、第二、第三、第四光标线所限定的区域为自定义测量范围。这样,本发明所提供的技术方案不仅提供水平方向上的范围限定,同时还提供竖直方向上的范围限定,从而使对该自定义测量范围的设定更为全面。In addition, two horizontal cursor lines are also set in the measurement range setting module; the horizontal cursor lines can move along the vertical axis; the two horizontal cursor lines are respectively the third cursor lines and the fourth cursor line; the measurement range setting module is also used to respectively set the positions of the two horizontal cursor lines; the regions defined by the first, second, third and fourth cursor lines are custom Measuring range. In this way, the technical solution provided by the present invention not only provides range limitation in the horizontal direction, but also provides range limitation in the vertical direction, so that the setting of the custom measurement range is more comprehensive.
由于在某些情况下,用户所自定义测量范围的起始地址早于示波器所采集波形数据的起始地址,这样会造成示波器在分析计算时的误差。因此,如前所述,在所述波形数据获取模块中还设置有起始地址比较模块。所述起始地址比较模块,用于对波形采集起始地址与用户定义起始地址的时间顺序进行比较;若波形采集起始地址早于用户定义起始地址,则以用户定义起始地址为起始获取波形数据;若用户定义起始地址早于波形采集起始地址,则以波形采集起始地址为起始获取波形数据。In some cases, the start address of the user-defined measurement range is earlier than the start address of the waveform data collected by the oscilloscope, which will cause errors in the analysis and calculation of the oscilloscope. Therefore, as mentioned above, a start address comparison module is also provided in the waveform data acquisition module. The start address comparison module is used to compare the time order of the waveform acquisition start address and the user-defined start address; if the waveform acquisition start address is earlier than the user-defined start address, then the user-defined start address is Start to acquire waveform data; if the user-defined start address is earlier than the waveform acquisition start address, start to acquire waveform data with the waveform acquisition start address.
同上所述为了降低计算量同时提高计算效率,本发明在所述波形数据获取模块中还设置有轨迹预处理模块。所述轨迹预处理模块,用于以时间为单位对所述原始波形数据进行分组;提取该原始波形数据各个分组中的最大值和最小值;以该提取各个分组的最大值和最小值形成波形包络。所述波形数据获取模块从该轨迹预处理模块形成的波形包络中获取该自定义测量范围内波形数据。As mentioned above, in order to reduce the calculation amount and improve the calculation efficiency, the present invention is also provided with a trajectory preprocessing module in the waveform data acquisition module. The trajectory preprocessing module is used to group the original waveform data in units of time; extract the maximum value and minimum value in each group of the original waveform data; form a waveform by extracting the maximum value and minimum value of each group envelope. The waveform data obtaining module obtains the waveform data in the self-defined measurement range from the waveform envelope formed by the trajectory preprocessing module.
综上所述,本发明提供了一种可自定义测量范围的示波器的实现方法及示波器,通过用户对相应光标线位置的设定来确定由用户自定义的测量范围。由于,该自定义测量范围的确定更为灵活,用户可以根据自身需要方便的测量局部波形的参数。本领域一般技术人员在此设计思想之下所做任何不具有创造性的改造,均应视为在本发明的保护范围之内。To sum up, the present invention provides a method for realizing an oscilloscope with a user-defined measurement range and the oscilloscope. The user-defined measurement range is determined by setting the position of the corresponding cursor line by the user. Because the determination of the custom measurement range is more flexible, users can conveniently measure the parameters of local waveforms according to their own needs. Any non-creative modification made by those skilled in the art under the design idea should be considered within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110434964.3A CN103176013B (en) | 2011-12-22 | 2011-12-22 | An Oscilloscope with Customizable Measurement Range and Its Realization Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110434964.3A CN103176013B (en) | 2011-12-22 | 2011-12-22 | An Oscilloscope with Customizable Measurement Range and Its Realization Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103176013A CN103176013A (en) | 2013-06-26 |
CN103176013B true CN103176013B (en) | 2017-12-22 |
Family
ID=48636006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110434964.3A Active CN103176013B (en) | 2011-12-22 | 2011-12-22 | An Oscilloscope with Customizable Measurement Range and Its Realization Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103176013B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104459233B (en) * | 2013-09-25 | 2019-01-29 | 苏州普源精电科技有限公司 | A kind of Waveform generating apparatus with any wave editting function |
CN103809808B (en) * | 2014-01-25 | 2016-10-05 | 深圳麦科信仪器有限公司 | A kind of method and device of the waveform translation based on touch-screen |
CN103902221B (en) * | 2014-03-26 | 2017-08-11 | 深圳麦科信仪器有限公司 | The operating method and device of a kind of touch-control oscillograph cursor |
CN111521853B (en) * | 2020-06-19 | 2023-03-21 | 深圳市鼎阳科技股份有限公司 | Oscilloscope signal display processing method and oscilloscope |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11230993A (en) * | 1998-02-09 | 1999-08-27 | Yokogawa Electric Corp | Waveform observation apparatus |
CN1273365A (en) * | 1999-04-20 | 2000-11-15 | 特克特朗尼克公司 | Continuous response and forcasting automatic installation function of digital oscilloscope |
TW200916793A (en) * | 2007-10-02 | 2009-04-16 | Inventec Corp | Method of controlling oscilloscope to automatically perform measuring |
CN101413967A (en) * | 2007-10-15 | 2009-04-22 | 英业达股份有限公司 | Method for controlling automatic measurement of oscilloscope |
CN101625376A (en) * | 2008-07-08 | 2010-01-13 | 华硕电脑股份有限公司 | Method for reducing characteristic value of search area |
CN101762732A (en) * | 2009-11-10 | 2010-06-30 | 北京普源精电科技有限公司 | Oscilloscope with automatic measurement function and measurement data storage method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939877A (en) * | 1997-05-27 | 1999-08-17 | Hewlett-Packard Company | Graphical system and method for automatically scaling waveforms in a signal measurement system |
-
2011
- 2011-12-22 CN CN201110434964.3A patent/CN103176013B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11230993A (en) * | 1998-02-09 | 1999-08-27 | Yokogawa Electric Corp | Waveform observation apparatus |
CN1273365A (en) * | 1999-04-20 | 2000-11-15 | 特克特朗尼克公司 | Continuous response and forcasting automatic installation function of digital oscilloscope |
TW200916793A (en) * | 2007-10-02 | 2009-04-16 | Inventec Corp | Method of controlling oscilloscope to automatically perform measuring |
CN101413967A (en) * | 2007-10-15 | 2009-04-22 | 英业达股份有限公司 | Method for controlling automatic measurement of oscilloscope |
CN101625376A (en) * | 2008-07-08 | 2010-01-13 | 华硕电脑股份有限公司 | Method for reducing characteristic value of search area |
CN101762732A (en) * | 2009-11-10 | 2010-06-30 | 北京普源精电科技有限公司 | Oscilloscope with automatic measurement function and measurement data storage method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103176013A (en) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101762732B (en) | Oscilloscope with automatic measurement function and measurement data storage method thereof | |
CN101701973B (en) | Measuring data acquisition device and method thereof | |
CN103176010B (en) | Method for oscilloscope remote touch method | |
CN103308738B (en) | Abnormal waveform recording method for oscilloscope with high capture rate | |
CN101131401B (en) | Digital oscillograph and its display method | |
CN103176013B (en) | An Oscilloscope with Customizable Measurement Range and Its Realization Method | |
CN106597048B (en) | A kind of fast automatic setting method of digital oscilloscope based on hardware concentrated setting | |
CN111221439B (en) | Touch operation method of touch screen oscilloscope, digital oscilloscope and signal measuring device | |
CN105510664B (en) | A kind of automatic setting method of digital oscilloscope | |
CN110208589A (en) | A kind of measuring method for waveform and measuring device, digital oscilloscope of time-domain signal | |
JP2007052011A (en) | Trigger function setting method | |
JP2009270896A (en) | Signal analyzer and frequency domain data display method | |
CN101261300B (en) | Method for measuring digital storage oscillographs storage depth | |
JP6151895B2 (en) | Test and measurement apparatus and method | |
CN103207295B (en) | A kind of detection method of convenient unusual waveforms | |
CN104102468B (en) | A kind of Network Analyzer formula editors and its datagraphic display methods and device | |
CN104613864B (en) | Rock mass structure surface relief amplitude measuring instrument and measuring method using measuring instrument | |
CN101706524B (en) | Data collection device and data collection method thereof | |
CN207198217U (en) | A kind of multifunctional virtual oscillograph based on expansible platform | |
CN103185820B (en) | A kind of oscillograph with automatic cursor tracking function | |
CN103487692A (en) | Quality detecting method of touch screen | |
CN103176017B (en) | A kind of oscillograph and configuration device thereof and collocation method | |
CN117075780A (en) | Signal analysis interactive method, device, electronic equipment and storage medium | |
WO2025044026A1 (en) | Signal analysis interaction method, apparatus, electronic device, and storage medium | |
CN108254604B (en) | A waveform display method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |