CN103175884A - High-sensitivity glucose biosensor and preparation method thereof - Google Patents
High-sensitivity glucose biosensor and preparation method thereof Download PDFInfo
- Publication number
- CN103175884A CN103175884A CN2013100871775A CN201310087177A CN103175884A CN 103175884 A CN103175884 A CN 103175884A CN 2013100871775 A CN2013100871775 A CN 2013100871775A CN 201310087177 A CN201310087177 A CN 201310087177A CN 103175884 A CN103175884 A CN 103175884A
- Authority
- CN
- China
- Prior art keywords
- glucose
- solution
- preparation
- concentration
- platinum electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008103 glucose Substances 0.000 title claims abstract description 56
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000000243 solution Substances 0.000 claims abstract description 39
- 108090000790 Enzymes Proteins 0.000 claims abstract description 30
- 102000004190 Enzymes Human genes 0.000 claims abstract description 30
- 229940088598 enzyme Drugs 0.000 claims abstract description 30
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 20
- 230000035945 sensitivity Effects 0.000 claims abstract description 18
- 239000004366 Glucose oxidase Substances 0.000 claims abstract description 16
- 108010015776 Glucose oxidase Proteins 0.000 claims abstract description 16
- 229940116332 glucose oxidase Drugs 0.000 claims abstract description 16
- 235000019420 glucose oxidase Nutrition 0.000 claims abstract description 16
- 239000002105 nanoparticle Substances 0.000 claims abstract description 15
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 14
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 10
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011259 mixed solution Substances 0.000 claims abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 238000004070 electrodeposition Methods 0.000 claims description 12
- 239000002041 carbon nanotube Substances 0.000 claims description 10
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 7
- 229940098773 bovine serum albumin Drugs 0.000 claims description 7
- JRTYPQGPARWINR-UHFFFAOYSA-N palladium platinum Chemical compound [Pd].[Pt] JRTYPQGPARWINR-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 238000010992 reflux Methods 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims 3
- 238000010306 acid treatment Methods 0.000 claims 3
- 239000008366 buffered solution Substances 0.000 claims 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 3
- 239000010452 phosphate Substances 0.000 claims 3
- 238000007747 plating Methods 0.000 claims 2
- 238000004821 distillation Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 31
- 239000002253 acid Substances 0.000 abstract description 7
- 239000008055 phosphate buffer solution Substances 0.000 abstract description 6
- 101150003085 Pdcl gene Proteins 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000002715 modification method Methods 0.000 abstract description 3
- 102000009027 Albumins Human genes 0.000 abstract 1
- 108010088751 Albumins Proteins 0.000 abstract 1
- 239000012888 bovine serum Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000000835 electrochemical detection Methods 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000005251 capillar electrophoresis Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 229940116269 uric acid Drugs 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- MPDGHEJMBKOTSU-YKLVYJNSSA-N 18beta-glycyrrhetic acid Chemical compound C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(C(O)=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](O)C1(C)C MPDGHEJMBKOTSU-YKLVYJNSSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 229910002093 potassium tetrachloropalladate(II) Inorganic materials 0.000 description 2
- 229960003351 prussian blue Drugs 0.000 description 2
- 239000013225 prussian blue Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000002570 interstitial cell Anatomy 0.000 description 1
- JGLNNORWOWUYFX-UHFFFAOYSA-N lead platinum Chemical compound [Pt].[Pb] JGLNNORWOWUYFX-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种高灵敏度葡萄糖生物传感器及其制备方法,将打磨好的铂电极置于K2PdCl4与硫酸的混合溶液中电沉积得钯纳米颗粒修饰的铂电极,将葡萄糖氧化酶和牛血清白蛋白溶于磷酸盐缓冲溶液中,然后再加入戊二醛溶液和酸处理过的单壁碳纳米管溶液混合得酶溶液,将钯纳米颗粒修饰的铂电极在酶溶液中蘸取,得到葡萄糖生物传感器。本发明具有电极制作、修饰方法简单,灵敏度高,稳定性好,比其它电化学检测葡萄糖方法的检测限低的特点。
The invention relates to a high-sensitivity glucose biosensor and a preparation method thereof. The polished platinum electrode is placed in a mixed solution of K 2 PdCl 4 and sulfuric acid to obtain a platinum electrode modified by palladium nanoparticles, and glucose oxidase and bovine serum Dissolve albumin in phosphate buffer solution, then add glutaraldehyde solution and acid-treated single-walled carbon nanotube solution to mix to obtain an enzyme solution, dip the platinum electrode modified by palladium nanoparticles in the enzyme solution to obtain glucose biological sensor. The invention has the advantages of simple electrode fabrication and modification methods, high sensitivity, good stability and lower detection limit than other electrochemical glucose detection methods.
Description
技术领域technical field
本发明主要涉及一种生物传感器及其制备方法,属于电分析化学检测技术领域。The invention mainly relates to a biosensor and a preparation method thereof, belonging to the technical field of electroanalysis and chemical detection.
背景技术Background technique
葡萄糖是有机体内极为重要的一种物质,近年来检测葡萄糖含量的文献已经很多,但是他们很多检测对象都是血清,组织液和细胞液等。广泛应用于检测葡萄糖的方法很多,如分光光度法,荧光检测,化学发光法,电化学分析法等,而且这些方法都已被成功用于毛细管电泳检测葡萄糖。Glucose is an extremely important substance in the organism. In recent years, there have been many literatures on the detection of glucose content, but many of their detection objects are serum, interstitial fluid and cell fluid. There are many methods widely used to detect glucose, such as spectrophotometry, fluorescence detection, chemiluminescence, electrochemical analysis, etc., and these methods have been successfully used in capillary electrophoresis to detect glucose.
电化学分析方法灵敏度高,样品用量少,仪器简单,价格相对便宜,因此得到了广泛的应用。近年来用电化学方法检测葡萄糖的很多,电化学方法检测葡萄糖通常是利用葡萄糖脱氢酶或者是葡萄糖氧化酶,制成酶生物传感器。酶生物传感器是将酶作为生物敏感基元,通过各种物理、化学信号转换器捕捉目标物与敏感基元之间的反应所产生的与目标物浓度成比例关系的可测信号,实现对目标物定量测定的分析仪器。与其它分析方法相比,电化学生物传感器具有便携、成本低、灵敏度高、稳定性良好等优点,再加上CNTs本身的催化和增敏效应,使得基于CNTs的酶生物传感器具有广阔的应用前景。The electrochemical analysis method has high sensitivity, less sample amount, simple instrument and relatively cheap price, so it has been widely used. In recent years, many electrochemical methods have been used to detect glucose. Electrochemical detection of glucose usually uses glucose dehydrogenase or glucose oxidase to make an enzyme biosensor. Enzyme biosensors use enzymes as biological sensitive elements, and capture the measurable signals that are proportional to the concentration of the target substance generated by the reaction between the target substance and the sensitive element through various physical and chemical signal converters. Analytical instruments for the quantitative determination of substances. Compared with other analytical methods, electrochemical biosensors have the advantages of portability, low cost, high sensitivity, and good stability. Coupled with the catalytic and sensitizing effects of CNTs themselves, enzyme biosensors based on CNTs have broad application prospects. .
化学修饰电极是目前最活跃的电化学和电分析化学的研究领域之一,赋予电极某种特定的性质,可以高选择性的进行所期望的反应,克服了未修饰电极测定时出现的过电位偏高,反应速度慢等缺点,甚至可以用来检测没有电活性的物质,在分析化学领域尤其是在生物传感器的制备方面得到了广泛的应用。常用的化学修饰电极有Hg修饰微电极,化学修饰碳糊微电极,微金属颗粒修饰微电极,表面分子膜修饰微电极,粉末微电极,酶电极等。Chemically modified electrodes are currently one of the most active research fields in electrochemistry and electroanalytical chemistry, endowing electrodes with certain properties, which can perform the desired reaction with high selectivity, and overcome the overpotential that occurs when unmodified electrodes are measured It can even be used to detect substances without electrical activity, and has been widely used in the field of analytical chemistry, especially in the preparation of biosensors. Commonly used chemically modified electrodes include Hg modified microelectrodes, chemically modified carbon paste microelectrodes, micro metal particles modified microelectrodes, surface molecular film modified microelectrodes, powder microelectrodes, enzyme electrodes, etc.
现有技术中有将TiO2-MWNTs-CS的混合物修饰在玻碳电极上,然后再将普鲁士蓝电沉积在修饰电极的表面,最后将葡萄糖氧化酶和金纳米颗粒吸附在普鲁士蓝上制成的葡萄糖生物传感器检测葡萄糖的含量的(Zhang M.H.,Yuan R.,Chai Y.Q.,Li W.J.,Zhong H.A.,Wang C.Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite andfunctionalized gold nanoparticles[J].Bioprocess Biosyst.Eng.,2011,34:1143-1150.)。有将Pt和Pd纳米颗粒通过电沉积的方法固定在MWCNTs制成葡萄糖生物传感器检测葡萄糖的,(Cui H.F,Ye J.S,Zhang W.D,Li C.M,Luong J.H.T.,Sheu F.S.Selective and sensitive electrochemicaldetection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotubenanocomposites[J].Analytica Chimica Acta2007,594:175-183.)。文献(Reitz E,Jia W,Gentile M,Wang Y,Lei Y.CuO Nanospheres Based Nonenzymatic Glucose Sensor[J].Electroanalysis,2008,20:2482.)中把CuO纳米球固定在玻碳电极上,固定上Nafion膜制备成一个无酶生物传感器。这些生物传感器要么制备方法复杂,要么灵敏度、稳定性不够好。In the prior art, the mixture of TiO2-MWNTs-CS is modified on the glassy carbon electrode, then Prussian blue is electrodeposited on the surface of the modified electrode, and finally glucose oxidase and gold nanoparticles are adsorbed on the Prussian blue. Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and sysfunctionalized gold nanoparticles[J].Bioprocess . Eng., 2011, 34:1143-1150.). There are Pt and Pd nanoparticles fixed on MWCNTs by electrodeposition to make glucose biosensors to detect glucose, (Cui H.F, Ye J.S, Zhang W.D, Li C.M, Luong J.H.T., Sheu F.S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotubenanocomposites[J]. Analytica Chimica Acta2007,594:175-183.). In the literature (Reitz E, Jia W, Gentile M, Wang Y, Lei Y. CuO Nanospheres Based Nonenzymatic Glucose Sensor[J]. Electroanalysis, 2008, 20:2482.), the CuO nanospheres were immobilized on the glassy carbon electrode, and the Nafion membrane was prepared as an enzyme-free biosensor. These biosensors are either complicated to prepare, or have insufficient sensitivity and stability.
发明内容Contents of the invention
本发明的目的是克服现有技术不足而提供一种高灵敏度葡萄糖生物传感器及其制备方法,该方法简单易作,制得的传感器灵敏度高,检测限低,抗干扰能力强。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a high-sensitivity glucose biosensor and its preparation method. The method is simple and easy to make, and the prepared sensor has high sensitivity, low detection limit and strong anti-interference ability.
本发明采取的技术方案为:The technical scheme that the present invention takes is:
一种高灵敏度葡萄糖生物传感器,包括镀钯铂电极、分布在镀钯铂电极表面并交成网状结构的碳纳米管、及电极与碳纳米管所负载的葡萄糖氧化酶。A high-sensitivity glucose biosensor comprises a palladium-platinum electrode, carbon nanotubes distributed on the surface of the palladium-platinum electrode and interwoven into a network structure, and glucose oxidase loaded on the electrode and the carbon nanotube.
一种高灵敏度葡萄糖生物传感器的制备方法,包括步骤如下:A method for preparing a high-sensitivity glucose biosensor, comprising the following steps:
(1)将打磨好的铂电极置于K2PdCl4与硫酸的混合溶液中,电沉积电位设为-0.1到-0.5V(vs.SCE),电沉积10-15s,冲洗、晾干得钯纳米颗粒修饰的铂电极;(1) Put the polished platinum electrode in the mixed solution of K 2 PdCl 4 and sulfuric acid, set the electrodeposition potential to -0.1 to -0.5V (vs. SCE), electrodeposit for 10-15s, rinse and dry to obtain Platinum electrodes decorated with palladium nanoparticles;
(2)配制酶溶液:将葡萄糖氧化酶和牛血清白蛋白溶于磷酸盐缓冲溶液中,然后再加入戊二醛溶液和酸处理过的单壁碳纳米管溶液,将此酶溶液混合均匀待用;葡萄糖氧化酶在酶溶液中的浓度908U/mL(根据葡萄糖氧化酶的活性为109U/mg,相当于8.3mg/mL),葡萄糖氧化酶和牛血清白蛋白的质量比为1:1-10,戊二醛在酶溶液中的浓度为8-10mg/mL,磷酸盐缓冲溶液pH6.0~8.0,酸处理过的单壁碳纳米管溶液在酶溶液中的浓度为0.2-1.0mg/mL;(2) Prepare enzyme solution: dissolve glucose oxidase and bovine serum albumin in phosphate buffer solution, then add glutaraldehyde solution and acid-treated single-wall carbon nanotube solution, mix the enzyme solution evenly and set aside The concentration of glucose oxidase in the enzyme solution is 908U/mL (according to the activity of glucose oxidase is 109U/mg, equivalent to 8.3mg/mL), the mass ratio of glucose oxidase and bovine serum albumin is 1:1-10, The concentration of glutaraldehyde in the enzyme solution is 8-10 mg/mL, the pH of the phosphate buffer solution is 6.0-8.0, and the concentration of the acid-treated single-wall carbon nanotube solution in the enzyme solution is 0.2-1.0 mg/mL;
(3)将钯纳米颗粒修饰的铂电极在酶溶液中蘸取3-5次,每次蘸取时间为10~15s。(3) Dip the platinum electrode modified with palladium nanoparticles in the enzyme solution for 3-5 times, each dipping time is 10-15s.
步骤(1)所述的K2PdCl4与硫酸的混合溶液中,K2PdCl4浓度为1×10-3mol/L,H2SO4浓度为0.5mol/L。所述的电沉积优选电位设为-0.2V(vs.SCE),电沉积15s。In the mixed solution of K2PdCl4 and sulfuric acid described in step (1), the concentration of K2PdCl4 is 1×10 -3 mol/L, and the concentration of H 2 SO 4 is 0.5 mol/L. The preferred potential of the electrodeposition is set to -0.2V (vs. SCE), and the electrodeposition is 15s.
步骤(2)所述的酸处理过的单壁碳纳米管溶液的制备方法将每克单壁碳纳米管加入400mL6mol/L硝酸中加热回流6-6.5h,冷却后过滤,用二次蒸馏水洗至中性,放入烘箱中干燥,然后用二次蒸馏水将其配制成浓度为10mg/mL的水溶液.。The preparation method of the acid-treated single-walled carbon nanotube solution described in step (2): Add each gram of single-walled carbon nanotubes into 400mL6mol/L nitric acid, heat and reflux for 6-6.5h, filter after cooling, and wash with double distilled water To neutrality, put it in an oven to dry, and then use double distilled water to make it into an aqueous solution with a concentration of 10mg/mL.
磷酸盐缓冲溶液是0.2754~2.1202g Na2HPO4·12H2O与0.0517~0.8553g NaH2PO4·2H2O配制在250mL的容量瓶中配成。The phosphate buffer solution is prepared by preparing 0.2754~2.1202g Na 2 HPO 4 ·12H 2 O and 0.0517~0.8553g NaH 2 PO 4 ·2H 2 O in a 250mL volumetric flask.
本发明通过电化学沉积在铂电极表面形成很规则有序的排列的钯颗粒,镀钯的铂电极表面有许多多孔结构,这种多孔的结构增大了电极的比表面积,增加了酶在电极表面的负载量,从而使催化活性点大量增加,促进了电子的转移速率,提高了电流响应的灵敏度。电极的表面较为平整,传感器表面的碳纳米管交联在一起,形成了一个巨大的网状结构,这种结构有利于电子的传导,碳纳米管大的比表面积也增大了酶在电极表面的负载量,对提高电流响应灵敏度有一定的贡献。The present invention forms very regular and orderly arranged palladium particles on the surface of the platinum electrode by electrochemical deposition, and the surface of the palladium-plated platinum electrode has many porous structures. The loading on the surface greatly increases the catalytic active sites, promotes the electron transfer rate, and improves the sensitivity of the current response. The surface of the electrode is relatively flat, and the carbon nanotubes on the surface of the sensor are cross-linked together to form a huge network structure, which is conducive to the conduction of electrons. The load has a certain contribution to the improvement of the current response sensitivity.
传感器表面的钯纳米颗粒和碳纳米管有促进电子转移的作用,增大电极的比表面积,增强催化活性,提高了检测灵敏度。利用此生物传感器中酶的高选择性而避免了其它物质的干扰实现了人体血液中葡萄糖的快速和准确的检测。同时本发明传感器葡萄糖的检测限为5×10-7mol/L,检测限低。本发明具有电极制作、修饰方法简单,灵敏度高,稳定性好,比其它电化学检测葡萄糖方法的检测限低的特点。The palladium nanoparticles and carbon nanotubes on the surface of the sensor can promote electron transfer, increase the specific surface area of the electrode, enhance the catalytic activity, and improve the detection sensitivity. Utilizing the high selectivity of the enzyme in the biosensor and avoiding the interference of other substances, the rapid and accurate detection of glucose in human blood is realized. Meanwhile, the detection limit of the glucose sensor of the present invention is 5×10 -7 mol/L, which is low. The invention has the advantages of simple electrode fabrication and modification methods, high sensitivity, good stability and lower detection limit than other electrochemical glucose detection methods.
附图说明Description of drawings
图1为本发明镀钯铂电极的扫描电化学显微镜图。Fig. 1 is the scanning electrochemical microscope picture of the palladium-platinum electrode of the present invention.
图2为本发明葡萄糖生物传感器的扫描电化学显微镜图。Fig. 2 is a scanning electrochemical microscope image of the glucose biosensor of the present invention.
图3为本发明毛细管电化学检测葡萄糖的装置图。Fig. 3 is a diagram of a device for capillary electrochemical detection of glucose in the present invention.
图4为本发明毛细管电化学检测葡萄糖的检测池。Fig. 4 is a detection cell for capillary electrochemical detection of glucose in the present invention.
图5为本发明干扰物质混合样的电泳谱图,a-DA(0.2mM),b-葡萄糖(0.6mM),c-半胱氨酸(0.5mM),d-AA(0.5mM),e-UA(0.8mM)。Fig. 5 is the electrophoresis spectrogram of interfering substance mixed sample of the present invention, a-DA (0.2mM), b-glucose (0.6mM), c-cysteine (0.5mM), d-AA (0.5mM), e - UA (0.8 mM).
图6为本发明标准加入法测定人血清中葡萄糖的电泳谱图,a.0,b.0.6mmol/L葡萄糖,c.1.0mmol/L葡萄糖。Fig. 6 is the electrophoretic spectrogram of glucose in human serum measured by the standard addition method of the present invention, a.0, b.0.6mmol/L glucose, c.1.0mmol/L glucose.
其中,1、工作电极,2、参比电极,3、对电极,4、石英玻璃毛细管,5、参比池,6、检测池,7连接管,8、高压电源,9、进样系统,10、收集系统,11、检测池,12、毛细管,13、负极,14、正极。Among them, 1. Working electrode, 2. Reference electrode, 3. Counter electrode, 4. Quartz glass capillary, 5. Reference cell, 6. Detection cell, 7. Connecting tube, 8. High voltage power supply, 9. Sampling system, 10. Collection system, 11. Detection pool, 12. Capillary, 13. Negative pole, 14. Positive pole.
具体实施方式Detailed ways
下面结合实施例进一步说明。Below in conjunction with embodiment further illustrate.
实施例1为最佳实施例Embodiment 1 is the best embodiment
(1)钯纳米颗粒修饰的铂电极的制备:将一直径为200μm,长度大约为5cm的铂丝穿入一段约为3cm长的石英毛细管(250μm I.D.,375μmO.D.)中,使石英毛细管两端同时露出铂丝,将其一端涂满环氧树脂胶,从另外一端缓慢抽回,使铂丝刚好露至毛细管端口,并使之充满环氧树脂胶,24h后,待胶固化。截取一段5cm的铜丝,在金相砂纸上打磨平滑,将露在外面的铂丝缠绕到铜丝上,在缠绕处涂满导电银胶,放在烘箱中70℃下烘30min,最后再用一个约5cm长的玻璃管(400μm I.D.,700μm O.D.)放在铂丝和铜丝接口处,用环氧树脂胶粘住玻璃管的两端,晾24小时后即可使用。用细金相砂纸将电极打磨平滑,使得铂丝截面与毛细管截面平齐,将打磨好的铂电极分别在二次水、无水乙醇、二次水中各超声5min,清洗好的铂电极置于含1×10-3mol/L K2PdCl4的0.5mol/L H2SO4的混合液中,电沉积电位设为-0.2V(vs.SCE),电沉积15s。电沉积完成后,用二次水将工作电极冲洗干净,得到钯纳米颗粒修饰的微电极,室温环境下自然晾干。(1) Preparation of platinum electrode modified by palladium nanoparticles: A platinum wire with a diameter of 200 μm and a length of about 5 cm was inserted into a section of quartz capillary (250 μm ID, 375 μm O.D.) about 3 cm long, so that the quartz capillary Both ends of the platinum wire are exposed at the same time, one end is covered with epoxy resin glue, and slowly withdraw from the other end, so that the platinum wire is just exposed to the end of the capillary, and filled with epoxy resin glue. After 24 hours, the glue is cured. Cut a section of 5cm copper wire, smooth it on metallographic sandpaper, wind the exposed platinum wire on the copper wire, coat the winding place with conductive silver glue, put it in an oven at 70°C for 30 minutes, and finally use A glass tube (400 μm ID, 700 μm OD) about 5 cm long is placed at the interface between the platinum wire and the copper wire, and the two ends of the glass tube are glued with epoxy resin, and it can be used after 24 hours of drying. Polish the electrode smooth with fine metallographic sandpaper, so that the cross section of the platinum wire is flush with the cross section of the capillary tube. Ultrasonic the polished platinum electrode in secondary water, absolute ethanol, and secondary water for 5 minutes respectively, and place the cleaned platinum electrode in In the mixed solution of 1×10 -3 mol/L K 2 PdCl 4 and 0.5 mol/L H 2 SO 4 , the electrodeposition potential was set to -0.2V (vs. SCE), and the electrodeposition was 15s. After the electrodeposition is completed, the working electrode is rinsed with secondary water to obtain a palladium nanoparticle-modified microelectrode, which is then dried naturally at room temperature.
(2)配制酶溶液:配制酶溶液:将葡萄糖氧化酶和牛血清白蛋白溶于磷酸盐缓冲溶液中,然后再加入戊二醛溶液和酸处理过的单壁碳纳米管溶液,将此酶溶液混合均匀待用;葡萄糖氧化酶和牛血清白蛋白的质量比为1:5,葡萄糖氧化酶在酶溶液中的浓度为8.3mg/mL,戊二醛在酶溶液中的浓度为9mg/mL,磷酸盐缓冲溶液的浓度0.025mol/L,pH为7.4,磷酸盐缓冲溶液的是1.8131g Na2HPO4·12H2O与0.1853g NaH2PO4·2H2O配制在250mL的容量瓶中,酸处理过的单壁碳纳米管溶液在酶溶液中的浓度为0.5mg/mL;(2) Prepare enzyme solution: prepare enzyme solution: dissolve glucose oxidase and bovine serum albumin in phosphate buffer solution, then add glutaraldehyde solution and acid-treated single-walled carbon nanotube solution, and dissolve the enzyme solution Mix well and set aside; the mass ratio of glucose oxidase and bovine serum albumin is 1:5, the concentration of glucose oxidase in the enzyme solution is 8.3mg/mL, the concentration of glutaraldehyde in the enzyme solution is 9mg/mL, phosphoric acid The concentration of the salt buffer solution is 0.025mol/L, the pH is 7.4, the phosphate buffer solution is 1.8131g Na 2 HPO 4 12H 2 O and 0.1853g NaH 2 PO 4 2H 2 O in a 250mL volumetric flask, acid The concentration of the treated single-walled carbon nanotube solution in the enzyme solution is 0.5mg/mL;
(3)将钯纳米颗粒修饰的铂电极在酶溶液中蘸取3次,每次蘸取时间为10~15s。(3) Dip the platinum electrode modified with palladium nanoparticles in the enzyme solution for 3 times, each dipping time is 10-15s.
图1和图2分别为镀钯铂电极和葡萄糖生物传感器的扫描电镜图。从图1中可以看出,电化学沉积在铂电极表面的钯纳米颗粒很有序的排列在铂电极表面,促进了电子的转移速率,提高了电流响应的灵敏度。从图2中可以看出,电极的表面较为平整,传感器表面的碳纳米管交联在一起,形成了一个巨大的网状结构,这种结构有利于电子的传导,碳纳米管大的比表面积也增大了酶在电极表面的负载量,对提高电流响应灵敏度有一定的贡献。Figure 1 and Figure 2 are scanning electron micrographs of the palladium-plated platinum electrode and the glucose biosensor, respectively. It can be seen from Figure 1 that the palladium nanoparticles electrochemically deposited on the surface of the platinum electrode are arranged in an orderly manner on the surface of the platinum electrode, which promotes the electron transfer rate and improves the sensitivity of the current response. It can be seen from Figure 2 that the surface of the electrode is relatively flat, and the carbon nanotubes on the surface of the sensor are cross-linked together to form a huge network structure, which is conducive to the conduction of electrons, and the large specific surface area of carbon nanotubes It also increases the load of the enzyme on the surface of the electrode, which contributes to the improvement of the sensitivity of the current response.
实施例2Example 2
改变步骤(2)中葡萄糖氧化酶和牛血清白蛋白的质量比分别为1:1,1:3,1:8,1:10,其他步骤同实施例1。Change the mass ratios of glucose oxidase and bovine serum albumin in step (2) to 1:1, 1:3, 1:8, and 1:10 respectively, and the other steps are the same as in Example 1.
实施例3Example 3
改变步骤(2)中酸处理过的单壁碳纳米管溶液在酶溶液中的浓度分别为0.2mg/mL,0.8mg/mL,1.0mg/mL,其他步骤同实施例1。Change the concentration of the acid-treated single-walled carbon nanotube solution in the enzyme solution in step (2) to 0.2 mg/mL, 0.8 mg/mL, and 1.0 mg/mL, and other steps are the same as in Example 1.
实施例4Example 4
改变步骤(2)中戊二醛在酶溶液中的浓度为4mg/mL,13mg/mL,17mg/mL,其他步骤同实施例1。Change the concentration of glutaraldehyde in the enzyme solution in step (2) to 4 mg/mL, 13 mg/mL, and 17 mg/mL, and other steps are the same as in Example 1.
毛细管电泳安培检测葡萄糖Capillary Electrophoresis Amperometric Detection of Glucose
(1)仪器(1) Instrument
自组装毛细管电泳系统,0-30kV高压电源(山东师范大学仪器厂,济南);分离毛细管(25μm I.D,375μm O.D,长度60cm,永年锐沣色谱器件有限公司);CHI832b电化学工作站(上海辰华仪器有限公司);过滤器(0.20μm,颇尔公司);三电极体系:饱和甘汞电极(参比电极)、铂电极(对电极)、钯纳米颗粒修饰微电极(工作电极)金相砂纸(砂纸WAW5(06),上海砂轮厂,上海);超声波清洗器(昆山市超声仪器有限公司,江苏);石英亚沸高纯水蒸馏器(金坛市晶玻实验仪器厂,江苏);高速离心机(金坛市医疗仪器厂,江苏)。Self-assembled capillary electrophoresis system, 0-30kV high-voltage power supply (Shandong Normal University Instrument Factory, Jinan); separation capillary (25μm I.D, 375μm O.D, length 60cm, Yongnian Ruifeng Chromatography Device Co., Ltd.); CHI832b electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.); filter (0.20 μm, Pall Corporation); three-electrode system: saturated calomel electrode (reference electrode), platinum electrode (counter electrode), palladium nanoparticle modified microelectrode (working electrode), metallographic sandpaper (Sandpaper WAW5 (06), Shanghai Grinding Wheel Factory, Shanghai); Ultrasonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd., Jiangsu); Quartz sub-boiling high-purity water distiller (Jintan Jingbo Experimental Instrument Factory, Jiangsu); High-speed centrifuge (Jintan City Medical Instrument Factory, Jiangsu).
(2)检测的方法步骤及最佳条件(2) Detection method steps and optimal conditions
检测方法步骤:使用实施例1的葡萄糖传感器,用毛细管之前,分别用氢氧化钠溶液、二次水、缓冲溶液清洗,然后利用三维操纵仪将处理好的毛细管与工作电极对齐,将高压调到18kV,进行实验,看基线电流是否平稳,如果基线电流平稳后,再将高压调到5kV,把配置好的葡萄糖标准溶液进样10s,调电压为18kV,开始进行实验,得到电泳图进行分析。Detection method steps: use the glucose sensor of Example 1, wash the capillary with sodium hydroxide solution, secondary water, and buffer solution before using the capillary, then use the three-dimensional manipulator to align the processed capillary with the working electrode, and adjust the high voltage to 18kV, conduct an experiment to see if the baseline current is stable, if the baseline current is stable, then adjust the high voltage to 5kV, inject the prepared glucose standard solution for 10s, adjust the voltage to 18kV, start the experiment, and get the electropherogram for analysis.
最佳检测条件:分离电压为18kV、检测电压-0.8V、缓冲溶液的浓度为0.025mol/L,pH为7.4。Optimum detection conditions: separation voltage is 18kV, detection voltage is -0.8V, concentration of buffer solution is 0.025mol/L, and pH is 7.4.
重现性和检测限Reproducibility and detection limit
在上述检测方法和最佳检测条件下,对1×10-3mol/L葡萄糖标准溶液连续进行10次平行测定,葡萄糖峰电流和迁移时间的相对标准偏差分别是3.8%和1.4%。在此实验条件下,当信噪比S/N=3时,葡萄糖的检测限为5×10-7mol/L。本发明实验操作,电极制作,修饰方法简单,灵敏度高,稳定性好,比其它电化学检测葡萄糖方法的检测限低。Under the above-mentioned detection method and optimal detection conditions, the relative standard deviations of the glucose peak current and migration time were 3.8% and 1.4%, respectively, when the 1×10 -3 mol/L glucose standard solution was measured in parallel 10 times. Under this experimental condition, when the signal-to-noise ratio S/N=3, the detection limit of glucose is 5×10 -7 mol/L. The invention has the advantages of simple experimental operation, electrode production and modification method, high sensitivity and good stability, and the detection limit is lower than other electrochemical detection glucose methods.
表1毛细管电泳电化学检测葡萄糖所用工作电极、线性范围、检测限对比Table 1 Comparison of working electrode, linear range and detection limit for electrochemical detection of glucose by capillary electrophoresis
[4]Mattos I L,Areias M C C.Automated determination of glucose in soluble coffee using PrussianBlue-glucosemodified electrode[J].Talanta,2005,66:1281-1286.[4] Mattos I L, Areias M C C. Automated determination of glucose in soluble coffee using PrussianBlue-glucose modified electrode[J].Talanta,2005,66:1281-1286.
[5]Tan X,Tian Y X,Cai P X,Zou X Y.Glucose biosensor based on glucose oxidase immobilized insol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode[J].Analytical and Bioanalytical Chemistry,2005,381(2):500-507.[5] Tan X, Tian Y X, Cai P X, Zou X Y. Glucose biosensor based on glucose oxidase immobilized insol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode[J]. Analytical, Chemical and Bioanalytical 2005,381(2):500-507.
[6]Cui H F,Ye J S,Zhang W D,Li C M,Luong J H T,Sheu F S.Selective and sensitiveelectrochemical detection of glucose in neutral solution using platinum–leadalloynanoparticle/carbon nanotube nanocomposites[J].Analytica Chimica Acta,2007,594(2):175-183.[6]Cui H F, Ye J S, Zhang W D, Li C M, Luong J H T, Sheu F S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–leadalloy nanoparticle/carbon nanotube nanocomposites[J]. Chimica Acta,2007,594(2):175-183.
[7]Pang X Y,He D M,Luo S L,Cai Q Y.An amperometric glucose biosensor fabricatd with Ptnanoparticle decorated carbon nanotubes/TiO2nanotubes arrays composite[J].Sensors andActuators B,2009,137:134–138.[7]Pang X Y,He D M,Luo S L,Cai Q Y.An amperometric glucose biosensor fabricatd with Ptnanoparticle decorated carbon nanotubes/TiO 2 nanotubes arrays composite[J].Sensors and Actuators B,2009,137:134–138.
[8]Wang X,Zhang Y,Cheng C,Dong R,Hao J.Glucose in human serum determined by capillaryelectrophoresis with glucose micro-biosensor[J].Analyst,2011,136,1753-1759.[8]Wang X, Zhang Y, Cheng C, Dong R, Hao J.Glucose in human serum determined by capillaryelectrophoresis with glucose micro-biosensor[J].Analyst,2011,136,1753-1759.
干扰实验interference experiment
实际样品中常含有一些电活性物质如抗坏血酸(AA)、半胱氨酸(L-Cys)、尿酸(UA)等,这些物质在测定葡萄糖的过程中会产生峰电流有可能会干扰到葡萄糖的检测,因此对包含这些可能存在的物质进行干扰测定,配置含有葡萄糖、DA、L-Cys、AA、UA的混合标准样品,对此混合样品进行同时检测,得到的电泳谱图如图5所示,从图中可以看出,它们的迁移时间与葡萄糖的迁移时间不同,电泳峰可以和葡萄糖的电泳峰得到良好地分离,因此不会影响到葡萄糖的检测。Actual samples often contain some electroactive substances such as ascorbic acid (AA), cysteine (L-Cys), uric acid (UA), etc. These substances will generate peak currents during the determination of glucose and may interfere with the detection of glucose , therefore, the interference determination of these possible substances is carried out, a mixed standard sample containing glucose, DA, L-Cys, AA, and UA is configured, and the mixed sample is detected simultaneously, and the obtained electrophoretic spectrum is shown in Figure 5. It can be seen from the figure that their migration time is different from that of glucose, and the electrophoretic peak can be well separated from the electrophoretic peak of glucose, so the detection of glucose will not be affected.
人血清中葡萄糖的检测Detection of Glucose in Human Serum
上述毛细管电泳电化学检测可用于人血液样品中葡萄糖的检测,分别检测了两个高血压和两个正常人血液中的葡萄糖的浓度,分别将血样用0.025mol/L PB稀释100倍,然后直接进行毛细管进样,标准加入法测定4份血清样品中葡萄糖含量,其中1份样品的结果如图6所示。The above-mentioned capillary electrophoresis electrochemical detection can be used for the detection of glucose in human blood samples. The concentration of glucose in the blood of two hypertensive and two normal people was detected respectively. The blood samples were diluted 100 times with 0.025mol/L PB, and then directly Carry out capillary sampling, measure the glucose content in 4 serum samples by standard addition method, the result of 1 sample among them is shown in Figure 6.
表2人血清中葡萄糖的含量测定的结果The result of the content determination of glucose in table 2 human serum
样品1,3---糖尿病人血清;样品2,4---健康人血清。Sample 1, 3---serum of diabetic person; sample 2, 4---serum of healthy person.
从表2可以看出,此法进行血液中葡萄糖的检测和医院的检测结果基本符合,但总体稍小,可能是因为血样放置时间比较长,导致葡萄糖少量分解的原因。It can be seen from Table 2 that the detection of glucose in blood by this method is basically consistent with the detection results of the hospital, but the overall result is slightly smaller, which may be because the blood sample is placed for a long time, resulting in a small amount of glucose decomposition.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100871775A CN103175884A (en) | 2013-03-18 | 2013-03-18 | High-sensitivity glucose biosensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100871775A CN103175884A (en) | 2013-03-18 | 2013-03-18 | High-sensitivity glucose biosensor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103175884A true CN103175884A (en) | 2013-06-26 |
Family
ID=48635884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100871775A Pending CN103175884A (en) | 2013-03-18 | 2013-03-18 | High-sensitivity glucose biosensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103175884A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630869A (en) * | 2015-01-22 | 2015-05-20 | 江南大学 | DNA sensor for detecting staphylococcus aureus as well as preparation method and application of DNA sensor |
CN105301086A (en) * | 2015-12-05 | 2016-02-03 | 桂林理工大学 | Preparation method and application of glucose oxidase biosensor |
CN105606674A (en) * | 2015-12-22 | 2016-05-25 | 张利琴 | Modified gold electrode and preparation method thereof |
CN107782777A (en) * | 2017-08-31 | 2018-03-09 | 华南师范大学 | A kind of either high redox activity bovine serum albumin(BSA) carbon nano-tube combination electrode and its preparation method and application |
CN108918448A (en) * | 2018-06-28 | 2018-11-30 | 河南省肿瘤医院 | A kind of preparation method based on the enhanced enzyme biological sensing material of nanogold |
CN109813777A (en) * | 2018-11-30 | 2019-05-28 | 合肥天一生物技术研究所有限责任公司 | A kind of three electrode sensor detection devices |
CN110023745A (en) * | 2016-12-09 | 2019-07-16 | 东北大学 | Robust enzyme-based biosensor and droplet deposition immobilization method |
CN114252487A (en) * | 2020-09-24 | 2022-03-29 | 中国科学院理化技术研究所 | Enzyme electrode, electrochemical biosensor and method for analyzing phenol concentration in water |
WO2022148114A1 (en) * | 2021-01-08 | 2022-07-14 | 中山大学 | Sensor for detecting plant active small molecules and manufacturing method |
-
2013
- 2013-03-18 CN CN2013100871775A patent/CN103175884A/en active Pending
Non-Patent Citations (3)
Title |
---|
ZHANG FEN-FEN等: "A Novel Glucose Biosensor Based on Palladium Nanoparticles and Its Application in Detection of Glucose Level in Urine", 《CHINESE JOURNAL OF CHEMISTRY》 * |
徐颖等: "基于钯纳米颗粒修饰直立碳纳米管电极的电化学葡萄糖生物传感器", 《高等学校化学学报》 * |
赵琨: "碳纳米管在电分析化学中的应用研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630869B (en) * | 2015-01-22 | 2017-07-14 | 江南大学 | A kind of DNA sensor for detecting staphylococcus aureus and its preparation and application |
CN104630869A (en) * | 2015-01-22 | 2015-05-20 | 江南大学 | DNA sensor for detecting staphylococcus aureus as well as preparation method and application of DNA sensor |
CN105301086A (en) * | 2015-12-05 | 2016-02-03 | 桂林理工大学 | Preparation method and application of glucose oxidase biosensor |
CN105606674A (en) * | 2015-12-22 | 2016-05-25 | 张利琴 | Modified gold electrode and preparation method thereof |
CN110023745B (en) * | 2016-12-09 | 2022-08-23 | 东北大学 | Robust enzyme-based biosensor and droplet deposition immobilization method |
CN110023745A (en) * | 2016-12-09 | 2019-07-16 | 东北大学 | Robust enzyme-based biosensor and droplet deposition immobilization method |
US12213784B2 (en) | 2016-12-09 | 2025-02-04 | Northeastern University | Durable enzyme-based biosensor and process for drop deposition immobilization |
CN107782777A (en) * | 2017-08-31 | 2018-03-09 | 华南师范大学 | A kind of either high redox activity bovine serum albumin(BSA) carbon nano-tube combination electrode and its preparation method and application |
CN108918448A (en) * | 2018-06-28 | 2018-11-30 | 河南省肿瘤医院 | A kind of preparation method based on the enhanced enzyme biological sensing material of nanogold |
CN108918448B (en) * | 2018-06-28 | 2020-10-02 | 河南省肿瘤医院 | A kind of preparation method based on nano-gold enhanced enzyme biosensing material |
CN109813777A (en) * | 2018-11-30 | 2019-05-28 | 合肥天一生物技术研究所有限责任公司 | A kind of three electrode sensor detection devices |
CN114252487B (en) * | 2020-09-24 | 2024-08-27 | 中国科学院理化技术研究所 | Enzyme electrode, electrochemical biosensor and analysis method for phenol concentration in water |
CN114252487A (en) * | 2020-09-24 | 2022-03-29 | 中国科学院理化技术研究所 | Enzyme electrode, electrochemical biosensor and method for analyzing phenol concentration in water |
WO2022148114A1 (en) * | 2021-01-08 | 2022-07-14 | 中山大学 | Sensor for detecting plant active small molecules and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103175884A (en) | High-sensitivity glucose biosensor and preparation method thereof | |
Wu et al. | Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode | |
Abdelwahab et al. | Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters | |
Sun et al. | Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification | |
CN103336043B (en) | Preparation method of hydrogen peroxide biosensor | |
CN101699277B (en) | Detection method of electrochemical sensor to micro ochratoxin A | |
Zhan et al. | A novel epinephrine biosensor based on gold nanoparticles coordinated polydopamine-functionalized acupuncture needle microelectrode | |
Su et al. | Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements | |
Kianipour et al. | Room temperature ionic liquid/multiwalled carbon nanotube/chitosan-modified glassy carbon electrode as a sensor for simultaneous determination of ascorbic acid, uric acid, acetaminophen, and mefenamic acid | |
Kan et al. | A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection | |
Narayanan et al. | Towards a dual in-line electrochemical biosensor for the determination of glucose and hydrogen peroxide | |
CN111562296A (en) | Construction and application of an aptamer sensor using nano-gold/zinc oxide-graphene composite as photosensitive element | |
CN102353712B (en) | Preparation method of modified electrode for detecting uric acid and detection method | |
CN103076375A (en) | Preparation method and application of coaxial solid/nanoporous gold/Co3O4 composite electrode material | |
CN102288656A (en) | Sandwich-type electrochemical sensor for detecting ovarian SKOV-3 cancer cell | |
CN109085225A (en) | A kind of preparation method of the protein electrochemistry trace sensor of step sedimentation modification carbon electrode | |
CN101793862A (en) | L-cysteine/chitosan-modified electrochemical sensor and use thereof | |
CN106468681A (en) | A kind of selective light electrochemical analysis method of Microcystins in Water MC-LR | |
CN114563454A (en) | Based on Au/Ti3C2TxDopamine electrochemical sensor for modifying glassy carbon working electrode and preparation method thereof | |
CN110441360A (en) | A kind of preparation method of one-dimensional copper nano-wire glucose sensor electrode material | |
CN108333241A (en) | Electrochemica biological sensor modified electrode and preparation method thereof, electrochemica biological sensor and its preparation method and application | |
CN105223247A (en) | The carbon paste electrode that a kind of graphene/carbon nano-tube is modified and preparation method and application | |
Ehzari et al. | A sensitive electrochemical sensor based on multiwall carbon nanotube-ionic liquid/nickel oxide nanoparticles for simultaneous determination of the antipsychotic drugs clozapine and sertraline | |
CN106018532B (en) | Preparation and Assembled Electrochemical Detection Device of Graphene Oxide and Phytic Acid Modified Electrode | |
CN101726521B (en) | Biosensor for rapidly detecting sterigmatocystin and assembling method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130626 |