CN103165720B - Formal dress triple-junction monolithic solar cell and preparation method thereof - Google Patents
Formal dress triple-junction monolithic solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN103165720B CN103165720B CN201310093060.8A CN201310093060A CN103165720B CN 103165720 B CN103165720 B CN 103165720B CN 201310093060 A CN201310093060 A CN 201310093060A CN 103165720 B CN103165720 B CN 103165720B
- Authority
- CN
- China
- Prior art keywords
- junction
- solar cell
- gaas substrate
- type
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 49
- 230000007704 transition Effects 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052714 tellurium Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 230000035772 mutation Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 description 12
- 239000002019 doping agent Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052785 arsenic Inorganic materials 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明提供一种正装三结级联太阳电池及其制备方法,实现多结太阳电池合理的带隙组合,减小电流失配同时而又不提高电池制作成本和难度。所述电池包括GaAs衬底、在GaAs衬底上依次设置的GaInP过渡层、InGaAs底电池、第一隧道结、InGaAsP中间电池、第二隧道结、InAlAs顶电池以及欧姆接触层。所述电池的制备方法,包括步骤:1)提供一GaAs衬底;2)在GaAs衬底上依次生长In组分步进的GaInP过渡层、InGaAs底电池、第一隧道结、InGaAsP中间电池、第二隧道结、InAlAs顶电池以及欧姆接触层;3)分别在所述欧姆接触层和GaAs衬底上制备上、下电极,获得目标太阳电池。
The invention provides a front-mounted three-junction cascaded solar cell and a preparation method thereof, which can realize a reasonable bandgap combination of multi-junction solar cells, reduce current mismatch without increasing the cost and difficulty of cell production. The cell comprises a GaAs substrate, a GaInP transition layer sequentially arranged on the GaAs substrate, an InGaAs bottom cell, a first tunnel junction, an InGaAsP middle cell, a second tunnel junction, an InAlAs top cell and an ohmic contact layer. The preparation method of the battery comprises the steps of: 1) providing a GaAs substrate; 2) sequentially growing a GaInP transition layer with stepped In composition, an InGaAs bottom cell, a first tunnel junction, an InGaAsP intermediate cell, and A second tunnel junction, an InAlAs top cell, and an ohmic contact layer; 3) preparing upper and lower electrodes on the ohmic contact layer and the GaAs substrate, respectively, to obtain a target solar cell.
Description
技术领域 technical field
本发明涉及太阳能电池领域,具体涉及一种基于GaAs衬底的InAlAs/InGaAsP/InGaAs正装三结级联太阳电池及其制备方法,该三结太阳电池可实现对太阳光谱的充分利用,在聚光下具有高于51%的理论转换效率。 The present invention relates to the field of solar cells, in particular to a GaAs substrate-based InAlAs/InGaAsP/InGaAs positive triple-junction cascaded solar cell and a preparation method thereof. It has a theoretical conversion efficiency higher than 51%.
背景技术 Background technique
在III-V族太阳电池领域,通常采用多结体系实现对太阳光谱的分段吸收利用,以获得较高的转换效率。目前研究较多而且技术较为成熟的体系是GaInP/GaAs/Ge和GaInP/GaAs/InGaAs(~1.0eV)三结电池。前者在一个太阳下目前达到的最高转换效率为32-33%。但是该体系仍然存在一个主要问题是Ge电池覆盖较宽的光谱,其短路电流最大可达到另外两结电池的2倍,由于受三结电池串联的制约,Ge电池对应的太阳光谱的能量没有被充分转换利用。而GaInP/GaAs/InGaAs(~1.0eV)三结电池由于GaAs和InGaAs电池之间存在约2.1%的晶格失配,往往采用倒置生长的方法,然后采用衬底剥离等技术,增大了生长和工艺的难度及成本。 In the field of III-V solar cells, multi-junction systems are usually used to achieve segmental absorption and utilization of the solar spectrum in order to obtain higher conversion efficiency. GaInP/GaAs/Ge and GaInP/GaAs/InGaAs (~1.0eV) triple-junction cells are the most researched and technically mature systems. The former currently achieves a maximum conversion efficiency of 32-33% under one sun. However, there is still a major problem in this system that the Ge battery covers a wider spectrum, and its short-circuit current can reach twice that of the other two-junction batteries. Due to the constraints of the three-junction batteries connected in series, the energy of the solar spectrum corresponding to the Ge battery is not captured. Full conversion utilization. However, GaInP/GaAs/InGaAs (~1.0eV) triple-junction cells often use an inverted growth method due to a 2.1% lattice mismatch between GaAs and InGaAs cells, and then use techniques such as substrate lift-off to increase the growth rate. and the difficulty and cost of the process.
如何实现多结太阳电池合理的带隙组合,减小电流失配同时而又不提高电池制作成本和难度成为当前Ⅲ-Ⅴ族太阳电池亟需解决的问题。 How to achieve a reasonable bandgap combination of multi-junction solar cells and reduce the current mismatch without increasing the cost and difficulty of cell manufacturing has become an urgent problem to be solved for current III-V solar cells.
发明内容 Contents of the invention
本发明的目的是,提供正装三结级联太阳电池及其制备方法,实现多结太阳电池合理的带隙组合,减小电流失配同时而又不提高电池制作成本和难度。 The object of the present invention is to provide a front-mounted three-junction cascaded solar cell and a preparation method thereof, realize a reasonable bandgap combination of multi-junction solar cells, reduce current mismatch without increasing the cost and difficulty of cell manufacturing.
为了实现上述目的,本发明提供了一种正装三结级联太阳电池,包括GaAs衬底、在GaAs衬底上依次设置的GaInP过渡层、InGaAs底电池、第一隧道结、InGaAsP中间电池、第二隧道结、InAlAs顶电池以及欧姆接触层。 In order to achieve the above object, the present invention provides a positive three-junction cascaded solar cell, comprising a GaAs substrate, a GaInP transition layer sequentially arranged on the GaAs substrate, an InGaAs bottom cell, a first tunnel junction, an InGaAsP intermediate cell, a second Two tunnel junctions, InAlAs top cell and ohmic contact layer.
进一步,所述InAlAs顶电池、InGaAsP中间电池以及InGaAs底电池之间晶格常数匹配,所述的正装三结级联太阳电池带隙组合为1.93eV、1.39eV、0.94eV。 Further, the lattice constants of the InAlAs top cell, the InGaAsP middle cell, and the InGaAs bottom cell are matched, and the bandgap combinations of the positive triple-junction cascaded solar cell are 1.93eV, 1.39eV, and 0.94eV.
进一步,所述的正装三结级联太阳电池与所述GaAs衬底之间存在晶格失配,二者通过晶格异变生长所述GaInP过渡层实现连接。 Further, there is a lattice mismatch between the positive triple-junction cascaded solar cell and the GaAs substrate, and the two are connected by growing the GaInP transition layer through lattice anomaly.
进一步,所述GaInP过渡层选择In组分步进的Ga1-xInxP材料作为渐变过渡层,实现由GaAs衬底到InGaAs底电池的过渡,x的取值由0.49变化至0.85。 Further, the GaInP transition layer selects the Ga 1-x In x P material with stepped In composition as the graded transition layer to realize the transition from the GaAs substrate to the InGaAs bottom cell, and the value of x changes from 0.49 to 0.85.
进一步,所述GaInP过渡层选择In组分步进的Ga1-xInxP材料作为渐变过渡层,所述渐变过渡层通过多个界面抑制穿透位错向上穿透到达InGaAs底电池,x的取值由0.49变化至0.85。 Further, the GaInP transition layer selects the Ga 1-x In x P material with stepped In composition as the graded transition layer, and the graded transition layer suppresses threading dislocations from penetrating upwards to the InGaAs bottom cell through multiple interfaces, x The value of changed from 0.49 to 0.85.
进一步,所述GaAs衬底采用P型GaAs衬底,或者采用N型GaAs衬底并通过一隧道结实现由N型到P型的转化。 Further, the GaAs substrate adopts a P-type GaAs substrate, or adopts an N-type GaAs substrate and realizes conversion from N-type to P-type through a tunnel junction.
为了实现上述目的,本发明还提供一种本发明所述的正装三结级联太阳电池的制备方法,包括步骤:1)提供一GaAs衬底;2)在GaAs衬底上依次生长In组分步进的GaInP过渡层、InGaAs底电池、第一隧道结、InGaAsP中间电池、第二隧道结、InAlAs顶电池以及欧姆接触层;3)分别在所述欧姆接触层和GaAs衬底上制备上、下电极,获得目标太阳电池。 In order to achieve the above object, the present invention also provides a method for preparing the front-mounted triple-junction cascaded solar cell described in the present invention, comprising the steps of: 1) providing a GaAs substrate; 2) sequentially growing In components on the GaAs substrate Stepped GaInP transition layer, InGaAs bottom cell, first tunnel junction, InGaAsP middle cell, second tunnel junction, InAlAs top cell, and ohmic contact layer; 3) Prepare top, The lower electrode is used to obtain the target solar cell.
进一步,所述正装三结级联太阳电池中的各结构层均采用MOCVD法生长形成,其中的N型掺杂原子为Si、Se、S或Te,P型掺杂原子为Zn、Mg或C。 Further, each structural layer in the positive three-junction cascaded solar cell is grown and formed by MOCVD, wherein the N-type dopant atoms are Si, Se, S or Te, and the P-type dopant atoms are Zn, Mg or C .
进一步,所述正装三结级联太阳电池中的各结构层均采用MBE法生长形成,其中的N型掺杂原子为Si、Se、S、Sn或Te,P型掺杂原子为Be、Mg或C。 Further, each structural layer in the positive three-junction cascaded solar cell is grown by the MBE method, wherein the N-type dopant atoms are Si, Se, S, Sn or Te, and the P-type dopant atoms are Be, Mg or C.
本发明提供的正装三结级联太阳电池及其制备方法,优点在于: The advantages of the front-mounted triple-junction cascaded solar cell and its preparation method provided by the present invention are:
1.该太阳电池带隙组合为1.93eV,1.39eV,0.94eV,有效实现了对太阳光谱的分段吸收,各个子电池的电流失配小,减小了光电转换过程中的热能损失,在100倍聚光下其效率可达51%以上; 1. The bandgap combination of the solar cell is 1.93eV, 1.39eV, 0.94eV, which effectively realizes the segmental absorption of the solar spectrum, and the current mismatch of each sub-cell is small, which reduces the heat loss during the photoelectric conversion process. Under 100 times concentrated light, its efficiency can reach more than 51%;
2.该太阳电池各个子电池之间晶格匹配,且采用传统正装方法生长,生长过程简单; 2. The lattice of each sub-cell of the solar cell is matched, and it is grown by the traditional formal method, and the growth process is simple;
3.该太阳电池制作工艺简单。 3. The manufacturing process of the solar cell is simple.
附图说明 Description of drawings
图1所示为本发明一具体实施方式提供的正装三结级联太阳电池的结构示意图; Figure 1 shows a schematic structural view of a front-mounted three-junction cascaded solar cell provided by a specific embodiment of the present invention;
图2为图1所示的正装三结级联太阳电池制成品的结构示意图; Fig. 2 is a schematic structural view of the finished product of the front-mounted three-junction cascaded solar cell shown in Fig. 1;
图3所示为本发明一具体实施方式提供的正装三结级联太阳电池的制备方法步骤流程图。 FIG. 3 is a flow chart showing the steps of a method for preparing a front-mounted triple-junction cascaded solar cell provided by a specific embodiment of the present invention.
具体实施方式 detailed description
下面结合附图对本发明提供的正装三结级联太阳电池及其制备方法做详细说明。 The front-mounted triple-junction cascaded solar cell provided by the present invention and its preparation method will be described in detail below in conjunction with the accompanying drawings.
首先结合附图给出本发明所述正装三结级联太阳电池的具体实施方式。 Firstly, the specific implementation manner of the front-mounted triple-junction cascaded solar cell of the present invention is given with reference to the accompanying drawings.
参考附图1、2所示,其中,图1是本具体实施方式提供的正装三结级联太阳电池的结构示意图,图2为图1所示的正装三结级联太阳电池制成品的结构示意图,接下来对附图1、2所示的结构做详细说明。 Referring to the accompanying drawings 1 and 2, wherein, Fig. 1 is a schematic structural view of a front-mounted three-junction cascaded solar cell provided in this specific embodiment, and Fig. 2 is a finished product of the front-mounted three-junction cascaded solar cell shown in Fig. 1 Schematic diagram of the structure, the structure shown in Figures 1 and 2 will be described in detail next.
本具体实施方式提供一种正装三结级联太阳电池,包括:GaAs衬底31、InGaAs底电池24、第一隧道结25、InGaAsP中间电池26、第二隧道结27、InAlAs顶电池28以及欧姆接触层23。所述InAlAs顶电池28和所述GaAs衬底31上分别设有电极(如图2所示电极29、30)。 This specific embodiment provides a positive three-junction cascaded solar cell, including: a GaAs substrate 31, an InGaAs bottom cell 24, a first tunnel junction 25, an InGaAsP middle cell 26, a second tunnel junction 27, an InAlAs top cell 28, and an ohmic contact layer 23 . Electrodes (electrodes 29 and 30 shown in FIG. 2 ) are respectively provided on the InAlAs top cell 28 and the GaAs substrate 31 .
三结子电池InAlAs顶电池28、InGaAsP中间电池26以及InGaAs底电池24的带隙组合为1.93eV,1.39eV,0.94eV,且各子电池之间晶格常数匹配,均为0.5807nm。各子电池的电流匹配,减小了光电转换过程中的热能损失,提高了电池效率。 The bandgap combinations of the three-junction sub-cells InAlAs top cell 28 , InGaAsP middle cell 26 and InGaAs bottom cell 24 are 1.93eV, 1.39eV, 0.94eV, and the lattice constants of each sub-cell are matched, all of which are 0.5807nm. The current matching of each sub-battery reduces the heat energy loss in the photoelectric conversion process and improves the battery efficiency.
作为一种优选实施方式,所述的正装三结级联太阳电池采用P型GaAs衬底31。具体为:在P型GaAs衬底31上首先生长P型GaAs缓冲层01,其次生长GaInP过渡层02,然后依次生长InGaAs底电池24、InGaAsP中间电池26以及InAlAs顶电池28三结子电池,各子电池之间通过隧穿结串联在一起,最后生长一层N型InGaAs欧姆接触层23。 As a preferred implementation manner, the positive-mounted triple-junction cascaded solar cell uses a P-type GaAs substrate 31 . Specifically: first grow a P-type GaAs buffer layer 01 on a P-type GaAs substrate 31, then grow a GaInP transition layer 02, and then grow an InGaAs bottom cell 24, an InGaAsP middle cell 26, and an InAlAs top cell 28 in sequence. The cells are connected in series through a tunnel junction, and finally a layer of N-type InGaAs ohmic contact layer 23 is grown.
作为另一种优选实施方式,所述的正装三结级联太阳电池采用N型GaAs衬底31。具体为:在N型GaAs衬底31上首先生长N型GaAs缓冲层01,再生长一隧道结实现由N型到P型的转化,其次生长GaInP过渡层02,然后依次生长InGaAs底电池24、InGaAsP中间电池26、InAlAs顶电池28三结子电池,各子电池之间通过隧穿结串联在一起,最后生长一层N型InGaAs欧姆接触层23。 As another preferred implementation manner, the positive-mounted triple-junction cascaded solar cell uses an N-type GaAs substrate 31 . Specifically: on the N-type GaAs substrate 31, first grow the N-type GaAs buffer layer 01, then grow a tunnel junction to realize the conversion from N-type to P-type, then grow the GaInP transition layer 02, and then grow the InGaAs bottom cell 24, The InGaAsP middle cell 26 and the InAlAs top cell 28 are three-junction sub-cells, and the sub-cells are connected in series through a tunnel junction, and finally a layer of N-type InGaAs ohmic contact layer 23 is grown.
所述的正装三结级联太阳电池的各子电池与GaAs衬底31之间存在晶格失配,在本实施方式中存在2.72%的晶格失配。所述的正装三结级联太阳电池与所述GaAs衬底31之间可以通过晶格异变生长所述GaInP过渡层02实现连接。例如,可以采用在GaAs衬底31和InGaAs底电池24之间采用晶格异变生长In组分步进的Ga1-xInxP(x=0.49~0.85)过渡层的方法实现晶格常数的过渡。Ga1-xInxP组分渐变过渡层可以使晶格失配应力充分释放。In组分步进的Ga1-xInxP渐变过渡层可以通过多个界面抑制穿透位错向上穿透到达InGaAs底电池24。 There is a lattice mismatch between each sub-cell of the above-mentioned positive three-junction cascaded solar cell and the GaAs substrate 31 , and there is a lattice mismatch of 2.72% in this embodiment. The connection between the positive triple-junction cascaded solar cell and the GaAs substrate 31 can be achieved by growing the GaInP transition layer 02 through lattice anomaly growth. For example, the lattice constant can be achieved by growing a Ga 1-x In x P (x=0.49~0.85) transition layer with stepped In composition between the GaAs substrate 31 and the InGaAs bottom cell 24 by lattice anomaly growth. Transition. The Ga 1-x In x P composition gradient transition layer can fully release the lattice mismatch stress. The Ga 1-x In x P graded transition layer with stepped In composition can suppress threading dislocations from penetrating upwards to reach the InGaAs bottom cell 24 through multiple interfaces.
所述InGaAs底电池24包括依次按照逐渐远离GaAs衬底31方向设置的P型GaInP背场层03,P型InGaAs基区04、N型InGaAs发射区05以及N型GaInP窗口层06。优选的,所述的InGaAs底电池24中In的组分约为38%,其禁带宽度约为0.94eV。 The InGaAs bottom cell 24 includes a P-type GaInP back field layer 03 , a P-type InGaAs base region 04 , an N-type InGaAs emitter region 05 and an N-type GaInP window layer 06 arranged in sequence in a direction gradually away from the GaAs substrate 31 . Preferably, the composition of In in the InGaAs bottom cell 24 is about 38%, and its forbidden band width is about 0.94eV.
所述第一隧道结25包含依次按照逐渐远离GaAs衬底31方向设置的N型Al(Ga)InP或InAlAs势垒层07,N型GaInP重掺层08,P型InGaAs重掺层09,P型Al(Ga)InP或InAlAs势垒层10。其中,Al(Ga)InP表示AlInP或AlGaInP。 The first tunnel junction 25 includes an N-type Al(Ga)InP or InAlAs barrier layer 07, an N-type GaInP redoped layer 08, a P-type InGaAs redoped layer 09, and a P Type Al(Ga)InP or InAlAs barrier layer 10. Here, Al(Ga)InP represents AlInP or AlGaInP.
所述InGaAsP中间电池26包括依次按照逐渐远离GaAs衬底31方向设置的P型Al(Ga)InP或InAlAs背场层11,P型InGaAsP基区12、N型InGaAsP发射区13,N型In0.37Al0.63As窗口层14。优选的,所述的InGaAsP中间电池26中In和As的组分分别约为38%、57%,其禁带宽度约为1.39eV。 The InGaAsP intermediate cell 26 includes a P-type Al( Ga )InP or InAlAs back field layer 11, a P-type InGaAsP base region 12, an N-type InGaAsP emitter region 13, and an N-type InGaAsP emitter region 13, which are arranged gradually away from the GaAs substrate 31. Al 0.63 As window layer 14 . Preferably, the composition of In and As in the InGaAsP intermediate cell 26 is about 38% and 57% respectively, and its forbidden band width is about 1.39eV.
所述第二隧道结27包含依次按照逐渐远离GaAs衬底31方向设置的N型In0.37Al0.63As势垒层15,N型GaInP重掺层16,P型InGaAs重掺层17,P型In0.37Al0.63As势垒层18。 The second tunnel junction 27 includes an N-type In 0.37 Al 0.63 As barrier layer 15, an N-type GaInP re-doped layer 16, a P-type InGaAs re-doped layer 17, a P-type In 0.37 Al 0.63 As barrier layer 18.
所述InAlAs顶电池28包括依次按照逐渐远离GaAs衬底31方向设置的P型In0.30Al0.70As背场层19,P型In0.37Al0.63As基区20,N型In0.37Al0.63As发射区21,N型In0.3Al0.7As窗口层层22。优选地,所述InAlAs顶电池28中In组分为37%,其禁带宽度约为1.93eV。 The InAlAs top cell 28 includes a P-type In 0.30 Al 0.70 As back field layer 19, a P-type In 0.37 Al 0.63 As base region 20, and an N-type In 0.37 Al 0.63 As emitter region arranged in sequence in a direction gradually away from the GaAs substrate 31 21. N-type In 0.3 Al 0.7 As window layer 22. Preferably, the In composition in the InAlAs top cell 28 is 37%, and its forbidden band width is about 1.93eV.
在本具体实施方式中,在InAlAs顶电池28上还设有InGaAs层作为欧姆接触层23,其掺杂类型为N型。 In this specific embodiment, an InGaAs layer is further provided on the InAlAs top cell 28 as the ohmic contact layer 23 , and its doping type is N type.
所述正装三结级联太阳电池在所述欧姆接触层23和GaAs衬底31上分别设有电极。在本具体实施方式中,欧姆接触层23上设有电极30,电极30位于欧姆接触层23上表面;GaAs衬底31上设有电极29,从而获得所需的太阳电池。 The positive three-junction cascaded solar cell is provided with electrodes on the ohmic contact layer 23 and the GaAs substrate 31 respectively. In this specific embodiment, the electrode 30 is provided on the ohmic contact layer 23, and the electrode 30 is located on the upper surface of the ohmic contact layer 23; the electrode 29 is provided on the GaAs substrate 31, so as to obtain the desired solar cell.
本发明提供的正装三结级联太阳电池各个子电池之间晶格匹配,且采用传统正装方法生长,生长过程以及制作工艺简单。且所述正装三结级联太阳电池的带隙组合为~1.93eV、~1.39eV、~0.94eV,有效实现了对太阳光谱的分段吸收,各个子电池的电流失配小,减小了光电转换过程中的热能损失,在100倍聚光下其效率可达51%以上。 The grid of each sub-cell of the front-mounted three-junction cascaded solar cell provided by the present invention is matched, and the traditional front-mounting method is used for growth, and the growth process and manufacturing process are simple. Moreover, the bandgap combinations of the positive three-junction cascaded solar cells are ~1.93eV, ~1.39eV, and ~0.94eV, which effectively realizes segmental absorption of the solar spectrum, and the current mismatch of each sub-cell is small, reducing the The heat energy loss in the photoelectric conversion process can reach more than 51% under 100 times concentrated light.
接下来结合附图给出本发明所述正装三结级联太阳电池制备方法的具体实施方式。 Next, a specific implementation of the method for preparing a front-mounted triple-junction cascaded solar cell according to the present invention will be given in conjunction with the accompanying drawings.
参考附图3,本具体实施方式提供的正装三结级联太阳电池制备方法的流程图,接下来对图3所示的步骤做详细说明。 Referring to FIG. 3 , the flow chart of the method for preparing a front-mounted triple-junction cascaded solar cell provided in this specific embodiment, the steps shown in FIG. 3 will be described in detail next.
步骤S301,提供一GaAs衬底。 Step S301, providing a GaAs substrate.
所述的正装三结级联太阳电池采用P型GaAs衬底31,在P型GaAs衬底31上首先生长P型GaAs缓冲层01,其次生长GaInP过渡层02。作为另一种优选实施方式,所述的正装三结级联太阳电池还可以采用N型GaAs衬底31,在N型GaAs衬底31上首先生长N型GaAs缓冲层01,再生长一隧道结实现由N型到P型的转化,其次生长GaInP过渡层02。 The positive-mounted triple-junction cascaded solar cell uses a P-type GaAs substrate 31, on which a P-type GaAs buffer layer 01 is grown first, and a GaInP transition layer 02 is grown next. As another preferred embodiment, the positive three-junction cascaded solar cell can also use an N-type GaAs substrate 31. On the N-type GaAs substrate 31, an N-type GaAs buffer layer 01 is first grown, and then a tunnel junction is grown. Realize the conversion from N-type to P-type, and then grow the GaInP transition layer 02.
步骤S302,在GaAs衬底上依次生长In组分步进的GaInP过渡层、InGaAs底电池、第一隧道结、InGaAsP中间电池、第二隧道结、InAlAs顶电池以及欧姆接触层。 Step S302 , sequentially growing a GaInP transition layer with stepped In composition, an InGaAs bottom cell, a first tunnel junction, an InGaAsP middle cell, a second tunnel junction, an InAlAs top cell, and an ohmic contact layer on the GaAs substrate.
在GaAs衬底上生长GaInP过渡层,所述GaInP过渡层选择In组分步进的Ga1-xInxP材料作为渐变过渡层,实现由GaAs衬底到InGaAs底电池的过渡,x的取值由0.49变化至0.85。Ga1-xInxP组分渐变过渡层可以使晶格失配应力充分释放。In组分步进的Ga1-xInxP渐变过渡层可以通过多个界面抑制穿透位错向上穿透到达InGaAs底电池。 A GaInP transition layer is grown on the GaAs substrate, and the GaInP transition layer selects the Ga 1-x In x P material with stepped In composition as the gradient transition layer to realize the transition from the GaAs substrate to the InGaAs bottom cell, and the selection of x Values vary from 0.49 to 0.85. The Ga 1-x In x P composition gradient transition layer can fully release the lattice mismatch stress. The Ga 1-x In x P graded transition layer with stepped In composition can suppress threading dislocations from penetrating upwards to reach the InGaAs bottom cell through multiple interfaces.
在GaInP过渡层上生长InGaAs底电池,所述InGaAs底电池包括依次按照逐渐远离GaAs衬底方向设置的P型GaInP背场层,P型InGaAs基区、N型InGaAs发射区以及N型GaInP窗口层。优选的,InGaAs底电池中In的组分约为38%,其禁带宽度约为0.94eV。 An InGaAs bottom cell is grown on the GaInP transition layer, and the InGaAs bottom cell includes a P-type GaInP back field layer, a P-type InGaAs base region, an N-type InGaAs emitter region, and an N-type GaInP window layer arranged in a direction gradually away from the GaAs substrate. . Preferably, the composition of In in the InGaAs bottom cell is about 38%, and its forbidden band width is about 0.94eV.
在InGaAs底电池上生长第一隧道结,所述第一隧道结包含依次按照逐渐远离GaAs衬底方向设置的N型Al(Ga)InP或InAlAs势垒层,N型GaInP重掺层,P型InGaAs重掺层,P型Al(Ga)InP或InAlAs势垒层。 A first tunnel junction is grown on the InGaAs bottom cell, and the first tunnel junction includes an N-type Al(Ga)InP or InAlAs barrier layer, an N-type GaInP re-doped layer, and a P-type InGaAs heavily doped layer, P-type Al(Ga)InP or InAlAs barrier layer.
在第一隧道结上生长InGaAsP中间电池,所述InGaAsP中间电池包括依次按照逐渐远离GaAs衬底方向设置的P型Al(Ga)InP或InAlAs背场层,P型InGaAsP基区、N型InGaAsP发射区,N型In0.37Al0.63As窗口层。优选的,所述的InGaAsP中间电池中In和As的组分分别约为38%、57%,其禁带宽度约为1.39eV。 An InGaAsP intermediate cell is grown on the first tunnel junction, and the InGaAsP intermediate cell includes a P-type Al(Ga)InP or InAlAs back field layer arranged in a direction gradually away from the GaAs substrate, a P-type InGaAsP base region, and an N-type InGaAsP emitter. area, N-type In 0.37 Al 0.63 As window layer. Preferably, the composition of In and As in the InGaAsP intermediate battery is about 38% and 57% respectively, and its forbidden band width is about 1.39eV.
在InGaAsP中间电池上生长第二隧道结,所述第二隧道结包含依次按照逐渐远离GaAs衬底方向设置的N型In0.37Al0.63As势垒层,N型GaInP重掺层,P型InGaAs重掺层,P型In0.37Al0.63As势垒层。 A second tunnel junction is grown on the InGaAsP intermediate cell, and the second tunnel junction includes an N-type In 0.37 Al 0.63 As barrier layer, an N-type GaInP heavily doped layer, and a P-type InGaAs heavy Doped layer, P-type In 0.37 Al 0.63 As barrier layer.
在第二隧道结上生长InAlAs顶电池,所述InAlAs顶电池包括依次按照逐渐远离GaAs衬底方向设置的P型In0.30Al0.70As背场层,P型In0.37Al0.63As基区,N型In0.37Al0.63As发射区,N型In0.3Al0.7As窗口层。优选地,所述InAlAs顶电池中In组分为37%,其禁带宽度约为1.93eV。 An InAlAs top cell is grown on the second tunnel junction, and the InAlAs top cell includes a P-type In 0.30 Al 0.70 As back field layer, a P-type In 0.37 Al 0.63 As base region, and an N-type In 0.37 Al 0.63 As emission region, N-type In 0.3 Al 0.7 As window layer. Preferably, the In composition in the InAlAs top cell is 37%, and its forbidden band width is about 1.93eV.
在InAlAs顶电池上生长GaAs层作为欧姆接触层,其掺杂类型为N型。 A GaAs layer is grown on the InAlAs top cell as an ohmic contact layer, and its doping type is N type.
步骤S303,分别在所述欧姆接触层和GaAs衬底上制备上、下电极,获得目标太阳电池。 Step S303, preparing upper and lower electrodes on the ohmic contact layer and the GaAs substrate respectively to obtain a target solar cell.
将生长的InAlAs/InGaAsP/InGaAs正装三结级联太阳电池在InAlAs顶电池上的欧姆接触层的表面制备上电极(例如N电极),在GaAs衬底上制备下电极(例如P电极),从而获得所需的太阳电池。 Prepare the upper electrode (such as N electrode) on the surface of the ohmic contact layer of the grown InAlAs/InGaAsP/InGaAs positive mounted triple-junction cascaded solar cell on the InAlAs top cell, and prepare the lower electrode (such as P electrode) on the GaAs substrate, so that Get the solar cells you need.
上述生长过程可采用MOCVD(MetalOrganicChemicalVaporDeposition,金属有机化合物化学气相沉淀)或MBE(MolecularBeamEpitaxy,分子束外延)方式生长。 The above growth process can be grown by MOCVD (MetalOrganic Chemical Vapor Deposition, metal organic compound chemical vapor deposition) or MBE (Molecular Beam Epitaxy, molecular beam epitaxy).
若采用MOCVD法生长形成,所述正装三结级联太阳电池中的N型掺杂原子为Si、Se、S或Te,P型掺杂原子为Zn、Mg或C。 If grown by MOCVD, the N-type dopant atoms in the positive triple-junction cascaded solar cell are Si, Se, S or Te, and the P-type dopant atoms are Zn, Mg or C.
若采用MBE法生长形成,所述正装三结级联太阳电池中的N型掺杂原子为Si、Se、S、Sn或Te,P型掺杂原子为Be、Mg或C。 If it is grown by MBE method, the N-type dopant atoms in the positive triple-junction cascaded solar cell are Si, Se, S, Sn or Te, and the P-type dopant atoms are Be, Mg or C.
本发明提供的正装三结级联太阳电池制备方法采用正装生长,避免了倒置生长电池结构需要先与其它支撑衬底材料键合再去除GaAs衬底的复杂工艺,降低了电池的制作难度,In组分步进的Ga1-xInxP组分渐变过渡层可以通过多个界面抑制穿透位错向上穿透到达InGaAs底电池,可以使晶格失配应力充分释放。 The preparation method of the front-mounted three-junction cascaded solar cell provided by the present invention adopts the front-mounted growth, which avoids the complicated process of first bonding with other supporting substrate materials and then removing the GaAs substrate for the inverted growth cell structure, and reduces the difficulty of manufacturing the cell. The composition-stepped Ga 1-x In x P composition graded transition layer can suppress threading dislocations from penetrating upwards to the InGaAs bottom cell through multiple interfaces, and can fully release the lattice mismatch stress.
接下来结合附图1、2给出本发明一优选实施例,对本发明提供的技术方案作进一步说明,本优选实施例采用MOCVD方法生长本发明所述正装三结级联太阳电池。 Next, a preferred embodiment of the present invention is given in conjunction with accompanying drawings 1 and 2, and the technical solution provided by the present invention is further described. This preferred embodiment adopts the MOCVD method to grow the front-mounted triple-junction cascaded solar cell of the present invention.
(1)在P型GaAs衬底31上生长P型厚度0.1微米的GaAs缓冲层01,然后生长P型厚度2.5微米的GaInP过渡层02。 (1) On the P-type GaAs substrate 31 grow a P-type GaAs buffer layer 01 with a thickness of 0.1 μm, and then grow a P-type GaInP transition layer 02 with a thickness of 2.5 μm.
(2)依次生长P型掺杂浓度约1×1018cm-3、厚度0.02微米的Ga0.15In0.85P作为背场层03,P型掺杂约3×1017cm-3、厚度2.0微米的In0.38Ga0.62As作为基区04,N型掺杂浓度约为2×1018cm-3、厚度0.2微米的In0.38Ga0.62As作为发射区05,N型高掺杂、厚度约0.02微米Ga0.15In0.85P作为窗口层06,形成InGaAs底电池24。 (2) Sequentially grow Ga 0.15 In 0.85 P with a P-type doping concentration of about 1×10 18 cm -3 and a thickness of 0.02 microns as the back field layer 03, with a P-type doping of about 3×10 17 cm -3 and a thickness of 2.0 microns The In 0.38 Ga 0.62 As of In 0.38 Ga 0.62 As is used as the base region 04, the N-type doping concentration is about 2×10 18 cm -3 , and the In 0.38 Ga 0.62 As with a thickness of 0.2 microns is used as the emitter region 05, and the N-type is highly doped and the thickness is about 0.02 microns Ga 0.15 In 0.85 P is used as the window layer 06 to form the InGaAs bottom cell 24 .
(3)依次生长N型掺杂1×1018cm-3、厚度0.03微米的In0.37Al0.63As或In0.85Al0.15P作为势垒层07,N型掺杂浓度1×1019cm-3以上、厚度0.015微米的Ga0.15In0.85P重掺层08,P型掺杂浓度大于1×1019cm-3、厚度0.015微米的In0.38Ga0.62As重掺层09,以及P型掺杂浓度1×1018cm-3、厚度0.03微米的In0.37(Ga)Al0.63As或In0.85(Ga)Al0.15P作为势垒层10形成第一隧道结25。 (3) Sequentially grow In 0.37 Al 0.63 As or In 0.85 Al 0.15 P with an N-type doping concentration of 1×10 18 cm -3 and a thickness of 0.03 microns as the barrier layer 07 with an N-type doping concentration of 1×10 19 cm -3 Above, the Ga 0.15 In 0.85 P re-doped layer 08 with a thickness of 0.015 microns, the In 0.38 Ga 0.62 As re-doped layer 09 with a P-type doping concentration greater than 1×10 19 cm -3 and a thickness of 0.015 microns, and the P-type doping concentration 1×10 18 cm −3 , In 0.37 (Ga)Al 0.63 As or In 0.85 (Ga)Al 0.15 P with a thickness of 0.03 μm is used as the barrier layer 10 to form the first tunnel junction 25 .
(4)依次生长P型掺杂1×1018cm-3、厚度0.02微米的In0.37Al0.63As或In0.85Al0.15P作为背场层11,P型掺杂约3×1017cm-3、厚度2.0微米的InGaAsP作为基区12,N型掺杂约为2×1018cm-3、厚度0.2微米的InGaAsP作为发射区13,N型高掺杂、厚度约0.02微米In0.37Al0.63As作为窗口层14,形成InGaAsP底电池26。 (4) Sequentially grow In 0.37 Al 0.63 As or In 0.85 Al 0.15 P with a P-type doping of 1×10 18 cm -3 and a thickness of 0.02 microns as the back field layer 11 , with a P-type doping of about 3×10 17 cm -3 InGaAsP with a thickness of 2.0 microns is used as the base region 12, and InGaAsP with an N-type doping of about 2×10 18 cm -3 and a thickness of 0.2 microns is used as the emitter region 13, and an N-type highly doped, In 0.37 Al 0.63 As with a thickness of about 0.02 microns As the window layer 14, an InGaAsP bottom cell 26 is formed.
(5)依次生长N型掺杂1×1018cm-3、厚度0.03微米的In0.37Al0.63As作为势垒层15,N型掺杂浓度1×1019cm-3以上、厚度0.015微米的Ga0.15In0.85P重掺层16,P型掺杂浓度大于1×1019cm-3、厚度0.015微米的In0.38Ga0.62As重掺层17,以及P型掺杂1×1018cm-3、厚度0.03微米的In0.37Al0.63As作为势垒层18形成第二隧道结27。 (5) Sequentially grow In 0.37 Al 0.63 As with an N-type doping concentration of 1×10 18 cm -3 and a thickness of 0.03 microns as the barrier layer 15 , with an N-type doping concentration of 1×10 19 cm -3 or more and a thickness of 0.015 microns Ga 0.15 In 0.85 P re-doped layer 16, In 0.38 Ga 0.62 As re-doped layer 17 with a P-type doping concentration greater than 1×10 19 cm -3 and a thickness of 0.015 microns, and a P-type doping of 1×10 18 cm -3 , In 0.37 Al 0.63 As with a thickness of 0.03 μm is used as the barrier layer 18 to form the second tunnel junction 27 .
(6)依次生长P型掺杂为1×1018cm-3、厚度0.02微米的In0.30Al0.70As作为背场层19,P型掺杂约为3×1017cm-3、厚度2.0微米的In0.37Al0.63As作为基区20,N型掺杂浓度约为2×1018cm-3、厚度0.2微米的In0.37Al0.63As作为发射区21,N型高掺杂、厚度约0.02微米In0.30Al0.70As作为窗口层22,形成InGaAs底电池28。 (6) Sequentially grow In 0.30 Al 0.70 As with a P-type doping of 1×10 18 cm -3 and a thickness of 0.02 microns as the back field layer 19 , with a P-type doping of about 3×10 17 cm -3 and a thickness of 2.0 microns In 0.37 Al 0.63 As is used as the base region 20, the N-type doping concentration is about 2×10 18 cm -3 , and the In 0.37 Al 0.63 As with a thickness of 0.2 microns is used as the emitter region 21, the N-type is highly doped, and the thickness is about 0.02 microns In 0.30 Al 0.70 As is used as the window layer 22 to form an InGaAs bottom cell 28 .
(7)然后生长N型掺杂浓度约为6×1018cm-3、厚度0.5微米的In0.38Ga0.62As作为太阳电池的欧姆接触层23。 (7) Then grow In 0.38 Ga 0.62 As with an N-type doping concentration of about 6×10 18 cm −3 and a thickness of 0.5 μm as the ohmic contact layer 23 of the solar cell.
用MOCVD方法生长获得的InAlAs/InGaAsP/InGaAs正装三结级联太阳电池的结构如图1所示。 The structure of the InAlAs/InGaAsP/InGaAs positive triple-junction cascaded solar cell grown by MOCVD method is shown in Figure 1.
太阳电池的电极制备工艺:在P型GaAs衬底31上制备P电极29,在N型欧姆接触层11的表面制备N电极30,获得所需的太阳电池,其结构如附图2所示。 Solar cell electrode preparation process: prepare P electrode 29 on P-type GaAs substrate 31, and prepare N electrode 30 on the surface of N-type ohmic contact layer 11 to obtain the required solar cell. Its structure is shown in Figure 2.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310093060.8A CN103165720B (en) | 2013-03-22 | 2013-03-22 | Formal dress triple-junction monolithic solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310093060.8A CN103165720B (en) | 2013-03-22 | 2013-03-22 | Formal dress triple-junction monolithic solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103165720A CN103165720A (en) | 2013-06-19 |
CN103165720B true CN103165720B (en) | 2016-03-09 |
Family
ID=48588641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310093060.8A Active CN103165720B (en) | 2013-03-22 | 2013-03-22 | Formal dress triple-junction monolithic solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103165720B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367480B (en) * | 2013-07-19 | 2016-04-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Gaas tunnel junction and preparation method thereof |
CN113921642B (en) * | 2021-10-21 | 2024-04-19 | 北京工业大学 | Si-based double-sided three-junction solar cell and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102299159A (en) * | 2011-08-17 | 2011-12-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaInP/GaAs/InGaAsP/InGaAs four-junction cascade solar battery and preparation method thereof |
CN102651417A (en) * | 2012-05-18 | 2012-08-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | Three-knot cascading solar battery and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10374120B2 (en) * | 2005-02-18 | 2019-08-06 | Koninklijke Philips N.V. | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
-
2013
- 2013-03-22 CN CN201310093060.8A patent/CN103165720B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102299159A (en) * | 2011-08-17 | 2011-12-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaInP/GaAs/InGaAsP/InGaAs four-junction cascade solar battery and preparation method thereof |
CN102651417A (en) * | 2012-05-18 | 2012-08-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | Three-knot cascading solar battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103165720A (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102299159B (en) | GaInP/GaAs/InGaAsP/InGaAs four-junction cascade solar battery and preparation method thereof | |
CN102651417B (en) | Three-knot cascading solar battery and preparation method thereof | |
CN103346191B (en) | GaInP/GaAs/InGaAsP/InGaAs four-knot cascade solar cell and preparation method thereof | |
CN103151413B (en) | Upside-down mounting four-junction solar battery and preparation method thereof | |
CN102651419A (en) | Quadruple-junction cascading solar battery and fabrication method thereof | |
CN102790118A (en) | GaInP/GaAs/InGaAs/Ge four-junction solar battery and manufacturing method thereof | |
CN106299011B (en) | Five-junction solar cell based on InP substrate and preparation method thereof | |
CN103199142B (en) | GaInP/GaAs/InGaAs/Ge four-junction solar cell and preparation method thereof | |
CN103346190B (en) | Four knot tandem solar cell of Si substrate and preparation method thereof | |
CN102790119B (en) | GaInP/GaAs/Ge/Ge four-junction solar cell and preparation method thereof | |
CN108878550A (en) | Multijunction solar cell and preparation method thereof | |
CN103165720B (en) | Formal dress triple-junction monolithic solar cell and preparation method thereof | |
CN109638089B (en) | A method for manufacturing a spatial GaInP/GaAs/CuInGaSe triple junction cell epitaxial wafer | |
CN104779313B (en) | Solar cell of four knots cascade and preparation method thereof | |
CN210692559U (en) | Inverted-growth double-heterojunction four-junction flexible solar cell | |
CN103280483B (en) | A kind of three-junction solar battery and preparation method thereof | |
CN103258906B (en) | Three-junction cascade solar cell structure and manufacturing method thereof | |
CN103151414B (en) | Formal dress triple-junction monolithic solar cell and preparation method thereof | |
CN103137766B (en) | Triple-junction monolithic solar cell and preparation method thereof | |
CN103199130B (en) | Formal dress four-junction solar battery and preparation method thereof | |
CN103151415B (en) | Three-junction solar battery and preparation method thereof | |
CN103219404B (en) | Three-junction solar battery and preparation method thereof | |
CN103258908B (en) | A kind of three knot tandem solar cell and preparation method thereof | |
CN103219412B (en) | Triple-junction monolithic solar cell and preparation method thereof | |
CN102651418B (en) | Three knot tandem solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |