CN103162346A - Central heating monitoring system based on cloud service and adjustment method thereof - Google Patents
Central heating monitoring system based on cloud service and adjustment method thereof Download PDFInfo
- Publication number
- CN103162346A CN103162346A CN2013101023307A CN201310102330A CN103162346A CN 103162346 A CN103162346 A CN 103162346A CN 2013101023307 A CN2013101023307 A CN 2013101023307A CN 201310102330 A CN201310102330 A CN 201310102330A CN 103162346 A CN103162346 A CN 103162346A
- Authority
- CN
- China
- Prior art keywords
- heating
- user
- load
- function
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
本发明公开了一种基于云服务的集中供暖监控系统及集中供暖系统的调整方法,所述集中供暖监控系统包括云端服务器和与云端服务器通信连接的供暖终端监控设备;云端服务器根据历史数据获取每一用户对应的用户行为函数,用户行为函数反应房屋供暖设备参数与各个用户的供暖负荷、供水温度以及时间的关系,云端服务器预测各个用户供暖负荷和获取各个用户的当前供水温度,并根据上述参数计算房间供暖设备参数并下发到各个供暖终端监控设备;供暖终端监控设备根据所述房间供暖设备参数进行调节。本发明能从整体上优化各个用户的供暖系统,从而降低了整个供暖系统的负荷,智能程度高,精度好,节能程度也得到一定提高。
The invention discloses a central heating monitoring system based on cloud services and an adjustment method of the central heating system. The central heating monitoring system includes a cloud server and a heating terminal monitoring device communicatively connected to the cloud server; A user behavior function corresponding to a user. The user behavior function reflects the relationship between the parameters of the house heating equipment and the heating load, water supply temperature and time of each user. The cloud server predicts the heating load of each user and obtains the current water supply temperature of each user, and according to the above parameters The parameters of the room heating equipment are calculated and sent to each heating terminal monitoring equipment; the heating terminal monitoring equipment adjusts according to the parameters of the room heating equipment. The invention can optimize the heating system of each user as a whole, thereby reducing the load of the entire heating system, has high intelligence, good precision, and certain improvement in energy saving.
Description
技术领域technical field
本发明涉及智能供暖技术,具体涉及基于云服务的集中供暖监控系统及集中供暖系统调节方法。The invention relates to intelligent heating technology, in particular to a central heating monitoring system and a central heating system adjustment method based on cloud services.
背景技术Background technique
我国城市集中供热面积至少30亿平方米,这些供热面积内的用户大多不具备自动调节供暖温度的节能系统,这样既浪费能源,又不舒适。The central heating area of my country's cities is at least 3 billion square meters. Most of the users in these heating areas do not have energy-saving systems that automatically adjust the heating temperature, which wastes energy and is uncomfortable.
现有的室内供暖终端监控设备调节方法一种是用户人工调节用户操作面板完成对供回水管路的流量的调节。这种方式需要用户人工调节,自动化程度低,能耗高。One of the existing indoor heating terminal monitoring equipment adjustment methods is that the user manually adjusts the user operation panel to complete the adjustment of the flow rate of the water supply and return pipeline. This method requires manual adjustment by the user, which has a low degree of automation and high energy consumption.
另一种室内供暖终端监控设备通过室内温度传感器来进行自动调节。用户设定室内温度后,将室内温度传感器的检测值与用户设定的室内温度值进行比较,比较结果发送给控制部分,通过对安装在供热水管上的电动调节阀进行控制,可以使室内的温度达到设定的目标值。该技术方案虽然在一定程度上可以达到节能减排的效果,但是根据温度传感器的探测值进行被动调节,室内的实际温度很难保持在用户的设定值上。而且由于热能的传导性,每单元的供热消耗量除该单元的自身消耗外与该单元在楼内的位置、邻居情况及建筑本身的护围结构有密切关系,因此,这种室内供暖终端监控设备的调节精确度和节能程度仍需提高。Another indoor heating terminal monitoring device performs automatic adjustment through an indoor temperature sensor. After the user sets the indoor temperature, the detection value of the indoor temperature sensor is compared with the indoor temperature value set by the user, and the comparison result is sent to the control part. By controlling the electric regulating valve installed on the water supply pipe, the indoor temperature reaches the set target value. Although this technical solution can achieve the effect of energy saving and emission reduction to a certain extent, it is difficult to keep the actual indoor temperature at the user's set value through passive adjustment according to the detection value of the temperature sensor. Moreover, due to the conductivity of heat energy, the heating consumption of each unit is closely related to the location of the unit in the building, the situation of neighbors and the enclosure structure of the building itself in addition to the unit's own consumption. Therefore, this indoor heating terminal The adjustment accuracy and energy saving degree of monitoring equipment still need to be improved.
发明内容Contents of the invention
本发明的目的在于提出一种基于云服务的集中供暖监控系统及其调节方法,基于云端的大规模计算能力,统筹整个集中供暖系统中各个用户的负荷和用户个人的行为模式,提高室内供暖终端监控设备的调节精确度和节能程度。The purpose of the present invention is to propose a central heating monitoring system based on cloud services and its adjustment method. Based on the large-scale computing power of the cloud, the load of each user in the entire central heating system and the behavior patterns of individual users are coordinated, and the indoor heating terminal is improved. Monitor the adjustment accuracy and energy saving degree of the equipment.
本发明公开了一种基于云服务的集中供暖监控系统,包括云端服务器和与云端服务器通信连接的供暖终端监控设备:The invention discloses a centralized heating monitoring system based on cloud services, which includes a cloud server and a heating terminal monitoring device communicating with the cloud server:
所述云端服务器包括用户行为函数获取模块、负荷及水温获取模块和参数计算模块;The cloud server includes a user behavior function acquisition module, a load and water temperature acquisition module and a parameter calculation module;
所述用户行为函数获取模块用于根据历史数据获取每一用户对应的用户行为函数,所述用户行为函数为房间供暖设备参数与时间、对应的用户供暖负荷、供水温度之间关系的函数;The user behavior function acquisition module is used to acquire the user behavior function corresponding to each user according to historical data, and the user behavior function is a function of the relationship between room heating equipment parameters and time, corresponding user heating load, and water supply temperature;
所述负荷及水温获取模块用于预测各个用户供暖负荷并获取各个用户的当前供水温度;The load and water temperature acquisition module is used to predict the heating load of each user and obtain the current water supply temperature of each user;
所述参数计算模块用于根据预测的各个用户供暖负荷、当前供水温度以及时间信息计算房间供暖设备参数并下发到各个供暖终端监控设备;The parameter calculation module is used to calculate room heating equipment parameters according to the predicted heating load of each user, current water supply temperature and time information, and send them to each heating terminal monitoring equipment;
所述供暖终端监控设备用于获取所监控的房间供暖设备所处用户的当前供水温度以及根据所述房间供暖设备参数对房间供暖设备进行调节。The heating terminal monitoring equipment is used to acquire the current water supply temperature of the monitored user where the room heating equipment is located and adjust the room heating equipment according to the parameters of the room heating equipment.
优选地,所述负荷及水温获取模块根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷;Preferably, the load and water temperature acquisition module predicts the heating load of each user according to the meteorological data and the pre-acquired energy consumption function;
所述能耗函数为体现所述气象数据与每个用户供暖负荷之间关系的函数,其通过对历史气象数据和各个用户供暖负荷的历史数据拟合得到。The energy consumption function is a function reflecting the relationship between the meteorological data and the heating load of each user, which is obtained by fitting the historical meteorological data and the historical data of the heating load of each user.
优选地,所述气象数据包括温度、湿度和照度。Preferably, the weather data includes temperature, humidity and illuminance.
优选地,所述房间供暖设备参数为电动调节阀开度。Preferably, the room heating equipment parameter is the opening degree of an electric regulating valve.
优选地,所述云端服务器还包括反馈调整模块:Preferably, the cloud server also includes a feedback adjustment module:
所述反馈调整模块用于根据用户的手动调节参数修正所述用户行为函数。The feedback adjustment module is used to modify the user behavior function according to the user's manual adjustment parameters.
优选地,所述云端服务器还包括最优调整模块;Preferably, the cloud server also includes an optimal adjustment module;
所述最优调整模块用于根据最节能用户的用户行为函数修正其它用户的用户行为函数。The optimal adjustment module is used to modify the user behavior functions of other users according to the user behavior functions of the most energy-saving users.
本发明还公开了一种基于云服务的集中供暖系统调节方法,包括:The invention also discloses a central heating system adjustment method based on cloud services, including:
云端服务器根据历史数据获取用户行为函数,所述用户行为函数为体现房间供暖设备参数与时间、对应的用户供暖负荷、供水温度之间关系的函数;The cloud server obtains a user behavior function according to historical data, and the user behavior function is a function reflecting the relationship between room heating equipment parameters and time, corresponding user heating load, and water supply temperature;
云端服务器预测各个用户供暖负荷并通过供暖终端监控设备获取各个用户的当前供水温度;The cloud server predicts the heating load of each user and obtains the current water supply temperature of each user through the heating terminal monitoring equipment;
云端服务器根据预测的各个用户供暖负荷、当前供水温度以及时间信息计算房间供暖设备参数并下发到各个供暖终端监控设备;The cloud server calculates room heating equipment parameters based on the predicted heating load of each user, current water supply temperature and time information and sends them to each heating terminal monitoring device;
根据所述房间供暖设备参数对房间供暖设备进行调节。The room heating is adjusted according to the room heating parameters.
优选地,所述云端服务器根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷;Preferably, the cloud server predicts the heating load of each user according to the meteorological data and the pre-acquired energy consumption function;
所述能耗函数为所述气象数据与所述各个用户供暖负荷之间关系的函数,其通过对历史气象数据和各个用户供暖负荷的历史数据拟合获得。The energy consumption function is a function of the relationship between the meteorological data and the heating load of each user, which is obtained by fitting the historical weather data and the historical data of the heating load of each user.
优选地,所述气象数据包括温度、湿度和照度。Preferably, the weather data includes temperature, humidity and illuminance.
优选地,所述房间供暖设备参数为电动调节阀开度。Preferably, the room heating equipment parameter is the opening degree of an electric regulating valve.
优选地,所述方法还包括:Preferably, the method also includes:
根据用户的手动调节参数修正所述用户行为函数。The user behavior function is corrected according to the user's manually adjusted parameters.
优选地,所述方法还包括:Preferably, the method also includes:
根据最节能用户的用户行为函数修正其它用户的用户行为函数。The user behavior functions of other users are corrected according to the user behavior functions of the most energy-saving user.
本发明通过历史数据获取用户行为函数,在云端服务器基于用户行为函数根据预测的各个用户供暖负荷和供水温度周期性地来计算当前的房间供暖设备参数,并根据计算得到的房间供暖参数进行调节。由此,房间供暖设备的调节既能够符合用户的行为模式,又能从整体上优化整个供暖系统的负荷,智能程度高,精度好,节能程度也得到一定提高。The present invention acquires user behavior functions through historical data, and periodically calculates current room heating equipment parameters based on the user behavior functions on the cloud server according to the predicted heating load and water supply temperature of each user, and adjusts according to the calculated room heating parameters. As a result, the adjustment of room heating equipment can not only conform to the user's behavior pattern, but also optimize the load of the entire heating system as a whole, with high intelligence, good precision, and a certain increase in energy saving.
附图说明Description of drawings
图1是本发明第一实施例的基于云服务的集中供暖监控系统的示意图。Fig. 1 is a schematic diagram of a central heating monitoring system based on cloud services according to a first embodiment of the present invention.
图2是本发明第一实施例的基于云服务的集中供暖监控系统的供暖终端监控设备的示意图。Fig. 2 is a schematic diagram of heating terminal monitoring equipment of the central heating monitoring system based on cloud services according to the first embodiment of the present invention.
图3是本发明第二实施例的基于云服务的集中供暖系统的调节方法的流程图。Fig. 3 is a flowchart of a method for adjusting a central heating system based on cloud services according to a second embodiment of the present invention.
主要附图标记说明:Explanation of main reference signs:
云服务器11、供暖终端监控设备12、供暖管道13、气象中心14、用户行为函数获取模块111、负荷及水温获取模块112、参数计算模块113、最优调整模块114、反馈调节模块115、通信模块121、控制电路板122、电动调节阀123、水温传感器124、用户操作设定旋钮125
具体实施方式Detailed ways
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods.
图1是本发明第一实施例的基于云服务的集中供暖监控系统的示意图。如图1所示,基于云服务的集中供暖监控系统包括云服务器11和本地供暖设备,本地供暖设备包括设于用户室内的供暖终端监控设备12和供暖管道13,供暖终端监控设备12可以控制供暖管道13流入室内房间供暖设备的水流量从而控制温度。Fig. 1 is a schematic diagram of a central heating monitoring system based on cloud services according to a first embodiment of the present invention. As shown in Figure 1, the central heating monitoring system based on cloud services includes a
具体地,云端服务器11包括用户行为函数获取模块111,负荷及水温获取模块112、参数计算模块113。Specifically, the
用户行为函数获取模块111用于根据历史数据获取用户行为函数,用户行为函数为体现房间供暖设备参数与时间、各个用户供暖负荷、供水温度之间关系的函数。The user behavior
负荷及水温获取模块112用于预测各个用户供暖负荷并获取当前供水温度。The load and water
参数计算模块113用于根据预测的各个用户供暖负荷、当前供水温度、时间信息计算房间供暖设备参数并下发到供暖终端监控设备。The
图2是本发明第一实施例的基于云服务的集中供暖系统的供暖终端监控设备的示意图。如图2所示,供暖终端监控设备12包括通信模块121、控制电路板122、设置于供暖管道上的用于调节进入室内的热水流量的电动调节阀123和设置于供暖管道上的水温传感器124。优选地,还可以包括用户操作设定旋钮125。Fig. 2 is a schematic diagram of a heating terminal monitoring device of a central heating system based on a cloud service according to a first embodiment of the present invention. As shown in Figure 2, the heating terminal monitoring device 12 includes a communication module 121, a control circuit board 122, an electric regulating valve 123 arranged on the heating pipe for adjusting the flow of hot water entering the room, and a water temperature sensor arranged on the heating pipe 124. Preferably, a user-operated setting knob 125 may also be included.
通信模块121用于与云端服务器通信上报水温传感器124测量的当前时刻的供暖管道供水温度,并接收来自云端服务器11计算获得的房间供暖设备参数。The communication module 121 is used to communicate with the cloud server to report the water supply temperature of the heating pipe at the current moment measured by the water temperature sensor 124 , and to receive the room heating equipment parameters calculated and obtained from the
控制电路板122与通信模块121连接,用于根据通信模块121传递的房间供暖设备参数控制电动调节阀123进行调节。The control circuit board 122 is connected with the communication module 121 and is used for controlling the electric regulating valve 123 to adjust according to the parameters of the room heating equipment transmitted by the communication module 121 .
电动调节阀123用于根据控制电路板122控制对进水量进行调节。The electric regulating valve 123 is used for regulating the water intake according to the control of the control circuit board 122 .
优选地,用户操作设定旋钮125与控制电路板122连接,用于向控制电路板122传递用户的操作指令。Preferably, the user-operated setting knob 125 is connected to the control circuit board 122 and is used to transmit the user's operation instruction to the control circuit board 122 .
在本实施例的一个优选实施方式中,房间供暖设备参数为供暖终端监控设备电动调节阀123的开度。所述云端服务器的用户行为函数获取模块111根据保存的供水温度的历史数据、各个用户供暖负荷的历史数据及用户手动操作历史信息来建立供水温度、各个用户供暖负荷与房间供暖设备参数之间的函数关系,也即,用户行为函数。所述历史数据的获取可以以两至三周为周期来进行,也即,周期时间内,不进行自动调整,而是让用户操作调整室内供暖终端监控设备,由此采集反映用户行为模式的历史数据。In a preferred implementation of this embodiment, the parameter of the room heating equipment is the opening degree of the electric regulating valve 123 of the heating terminal monitoring equipment. The user behavior
优选地,可以在本阶段通过用户行为函数获取模块111对时间、负荷、供水温度、电动调节阀开度的历史数据进行经验曲线拟合,计算在不同时间、集中各个用户供暖负荷和供水温度下,用户调节电动调节阀开度的规律,获得所述用户行为函数如下:Preferably, at this stage, the user behavior
Phi=f(t)*(a1+a2*L+a3*L2+b1*T+b2*T2+c*L*T)Phi=f(t)*(a1+a2*L+a3*L 2 +b1*T+b2*T 2 +c*L*T)
其中,Phi为电动调节阀123开度;f(t)为表示供暖终端监控设备调节时间的函数,L为集中各个用户供暖负荷,其可以通过云端服务器在函数获取周期内各个用户供暖负荷参数计算获得;T为供水温度,其通过设置于供暖管道上的水温传感器124采集;a1、a2、a3、b1、b2、c为拟合系数。Among them, Phi is the opening degree of the electric control valve 123; f(t) is a function representing the adjustment time of the heating terminal monitoring equipment, and L is the heating load of each user, which can be calculated by the cloud server within the function acquisition cycle. Obtained; T is the water supply temperature, which is collected by the water temperature sensor 124 arranged on the heating pipeline; a1, a2, a3, b1, b2, c are fitting coefficients.
由此,云端服务器可以根据时间、各个用户供暖负荷和供水温度来计算获取符合用户行为模式的房间供暖设备参数。Thus, the cloud server can calculate and obtain room heating equipment parameters that conform to user behavior patterns according to time, heating load of each user, and water supply temperature.
在本实施例的一个优选实施方式中,云端服务器11的负荷及水温获取模块112根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷,并通过供暖终端监控设备12的通信模块121获取该供暖终端监控设备的供暖管道13的供水温度。In a preferred implementation of this embodiment, the load and water
所述能耗函数为体现所述气象数据与所述各个用户供暖负荷之间关系的函数,也即,各个用户供暖符合随气象数据的变化而变化的规律,其通过对历史数据按照预测算法训练或拟合获得。可以通过在云服务器11上设置专门的模块利用来自于气象中心14的数据以及为获取用户行为函数所积累的历史数据来训练或拟合获取所述的能耗函数,也可以对上述数据单独训练获取或拟合获取所述的能耗函数。The energy consumption function is a function that reflects the relationship between the meteorological data and the heating load of each user, that is, the heating of each user conforms to the law that changes with the change of the meteorological data, and it is trained according to the prediction algorithm on the historical data or obtained by fitting. The energy consumption function can be obtained through training or fitting by setting a special module on the
优选地,可以在云端服务器11中基于气象预测算法根据用户所在区域的气象信息及天气预报预测的全天气象信息逐时计算温度、湿度、照度等气象信息。利用气象预测算法来进行气象参数的逐时计算可以在一定程度提高气象信息的获取效率。Preferably, weather information such as temperature, humidity, and illuminance can be calculated hourly in the
逐时温度T根据天气预报得到的最高室外温度Th和最低室外温度Tl信息采用下述公式进行计算:The hourly temperature T is calculated according to the information of the highest outdoor temperature T h and the lowest outdoor temperature T l obtained from the weather forecast using the following formula:
T=Th-αt×(Th-Tl),T=T h -α t ×(T h -T l ),
式中,αt为预设的t时刻温度预测系数,该系数可以根据该地区历史温度信息拟合得到。In the formula, αt is the preset temperature prediction coefficient at time t, which can be obtained by fitting according to the historical temperature information of the area.
逐时湿度根据某一天的历史数据采集湿度变化趋势,利用天气预报得到的全天平均相对湿度信息对历史变化趋势进行修正:hourly humidity The humidity change trend is collected according to the historical data of a certain day, and the historical change trend is corrected by using the whole-day average relative humidity information obtained from the weather forecast:
式中,为某天τ时刻典型气象年历史湿度;为某天的全天累计相对湿度;RH为天气预报得到的全天平均相对湿度。In the formula, is the historical humidity of a typical meteorological year at time τ on a certain day; is the cumulative relative humidity of a day; RH is the average relative humidity of the whole day obtained from the weather forecast.
逐时照度通过下面公式进行计算:The hourly illuminance is calculated by the following formula:
式中,Qτ(t)为t时刻太阳逐时总辐射量;Q为日总辐射量;tr、td分别为天气预报得到的日出日落时间。In the formula, Q τ (t) is the hourly total radiation of the sun at time t; Q is the total daily radiation; t r and t d are the sunrise and sunset times obtained from the weather forecast, respectively.
当然本领域技术人员可以理解,也可以通过提供逐时天气预报的气象中心14直接从外部获取上述气象数据。Of course, those skilled in the art can understand that the above weather data can also be obtained directly from the outside through the
根据获取的历史气象数据以及各个用户供暖负荷的历史数据,即可通过拟合或其它方式建立能耗函数。According to the acquired historical meteorological data and the historical data of each user's heating load, the energy consumption function can be established by fitting or other methods.
优选地,可将历史气象、负荷数据作为负荷预测神经网络算法的训练数据,经已有算法训练可得出冷(热)负荷与时刻、室外温度、相对湿度和辐照度的对应关系,也即获取能耗函数,并将能耗函数保存在云端服务器11。Preferably, the historical meteorological and load data can be used as the training data of the load forecasting neural network algorithm, and the corresponding relationship between the cooling (heating) load and time, outdoor temperature, relative humidity and irradiance can be obtained through the training of the existing algorithm, and also That is, the energy consumption function is obtained, and the energy consumption function is stored in the
由此,云端服务器11的负荷及水温获取模块112在要进行房间供暖参数调节时(在一个优选的方式中,可以是周期性的或者由事件触发来进行调节)可以根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷。从而后续参数计算模块113可以根据预测的各个用户供暖负荷、当前供水温度以及时间信息计算房间供暖设备参数并下发到供暖终端监控设备12,并进而由供暖终端监控设备12执行相应的参数调节,例如,电动调节阀开度的调节。Therefore, when the load and water
本实施例通过历史数据获取用户行为函数,在云端服务器11基于用户行为函数根据预测的各个用户供暖负荷和供水温度周期性地来计算房间供暖设备参数,根据房间供暖设备参数进行调节。由此,房间供暖设备的调节既能够符合用户的行为模式,又能从整体上优化整个供暖系统的负荷,智能程度高,精度好,节能程度也得到一定提高。In this embodiment, the user behavior function is acquired through historical data, and the
在本实施例的一个优选实施方式中,云端服务器11还可以包括最优调整模块114,其根据最节能用户的用户行为函数修正其它用户的用户行为函数。In a preferred implementation of this embodiment, the
具体地,最优调整模块114根据云端服务器同区域用户的用户行为记录,选择与本用户所在同一建筑或相似建筑相同户型的用户行为模型记录,分析在各种供暖系统整体负荷、供水温度条件下用户对房间供暖设备参数的控制信息,并从记录中寻找最节能的房间供暖设备参数控制方式,建立最优的用户行为函数。然后根据最优的用户行为函数对各个用户的用户行为函数进行调整,并使用该修正过的用户行为函数对用户的房间供暖设备参数进行调节。在这种方式下,用户仍可以根据自己的舒适度需求手动对房间供暖设备参数进行调节,调节记录保存在云服务中心的云服务器11上。Specifically, the
在本实施例的一个优选实施方式中,云端服务器11还可以包括对用户行为函数进行动态调整的模块,该模块可以例如是反馈调整模块115,其用于根据用户的手动调节参数修正所述用户行为函数。In a preferred implementation of this embodiment, the
具体地,反馈调整模块115对于在自动控制阶段有调节房间供暖设备参数记录的用户,根据用户对房间供暖设备的操作记录以及相应的时间、负荷、供水温度信息按照模型识别阶段的方法对用户行为模型进行经验曲线拟合得到新的用户行为函数,并用该用户行为函数替代原来的用户行为函数。Specifically, the
本优选方式可以通过用户的手动反馈不断动态调整用户行为函数,实现对于房间供暖设备的智能动态调节。In this preferred mode, the user's behavior function can be continuously and dynamically adjusted through the user's manual feedback, so as to realize the intelligent dynamic adjustment of the room heating equipment.
上述两种实施方式中涉及的调整模块可以并存也可以独立存在,不断动态调整用户行为函数。The adjustment modules involved in the above two implementation manners can coexist or exist independently, and continuously and dynamically adjust user behavior functions.
图3是本发明第二实施例的基于云服务的集中供暖系统的调节方法的流程图。如图3所示,所述方法包括:Fig. 3 is a flowchart of a method for adjusting a central heating system based on cloud services according to a second embodiment of the present invention. As shown in Figure 3, the method includes:
步骤310、云端服务器根据历史数据获取用户行为函数,所述用户行为函数为体现房间供暖设备参数与时间、各个用户供暖负荷、供水温度之间关系的函数。
在本实施例的一个优选实施方式中,房间供暖设备参数为供暖终端监控设备电动调节阀的开度。所述云端服务器根据保存的供水温度的历史数据、各个用户供暖负荷的历史数据及用户手动操作历史信息来建立供水温度、各个用户供暖负荷与房间供暖设备参数之间的函数关系,也即,用户行为函数。所述历史数据的获取可以以两至三周为周期来进行,也即,周期时间内,不进行自动调整,而是让用户操作调整室内供暖终端监控设备,由此采集反映用户行为模式的历史数据。In a preferred implementation of this embodiment, the parameter of the room heating equipment is the opening degree of the electric regulating valve of the heating terminal monitoring equipment. The cloud server establishes the functional relationship between the water supply temperature, the heating load of each user and the parameters of the room heating equipment according to the stored historical data of the water supply temperature, the historical data of the heating load of each user, and the historical information of the user's manual operation, that is, the user Behavior function. The acquisition of the historical data can be carried out in a cycle of two to three weeks, that is, within the cycle time, no automatic adjustment is performed, but the user is allowed to operate and adjust the indoor heating terminal monitoring equipment, thereby collecting historical data reflecting user behavior patterns data.
优选地,可以在本阶段通过对时间、负荷、供水温度、电动调节阀开度的历史数据进行经验曲线拟合,计算在不同时间、各个用户供暖负荷和供水温度下,用户调节电动调节阀开度的规律,获得所述用户行为函数如下:Preferably, at this stage, empirical curve fitting can be performed on the historical data of time, load, water supply temperature, and opening of the electric regulating valve to calculate the user's adjustment of the opening of the electric regulating valve at different times, each user's heating load and water supply temperature. According to the law of degree, the user behavior function is obtained as follows:
Phi=f(t)*(a1+a2*L+a3*L2+b1*T+b2*T2+c*L*T)Phi=f(t)*(a1+a2*L+a3*L 2 +b1*T+b2*T 2 +c*L*T)
其中,Phi为电动调节阀开度;f(t)为表示供暖终端监控设备调节时间的函数,L为集中各个用户供暖负荷,其可以通过云端服务器在函数获取周期内采集供暖系统的负荷参数计算获得;T为供水温度,其通过设置于供暖管道上的水温传感器采集;a1、a2、a3、b1、b2、c为拟合系数。Among them, Phi is the opening degree of the electric control valve; f(t) is a function representing the adjustment time of the heating terminal monitoring equipment, and L is the centralized heating load of each user, which can be calculated by collecting the load parameters of the heating system within the function acquisition period through the cloud server Obtained; T is the water supply temperature, which is collected by the water temperature sensor installed on the heating pipeline; a1, a2, a3, b1, b2, c are fitting coefficients.
由此,云端服务器可以根据时间、集中供暖系统各个用户供暖负荷和供水温度来计算获取符合用户行为模式的房间供暖设备参数。Thus, the cloud server can calculate and obtain room heating equipment parameters that conform to user behavior patterns according to time, heating load of each user of the central heating system, and water supply temperature.
步骤320、云端服务器预测各个用户供暖负荷并通过供暖终端监控设备获取各个用户的当前供水温度。
在本实施例的一个优选实施方式中,云端服务器根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷,并通过供暖终端监控设备的通信模块获取该供暖终端监控设备的供暖管道的供水温度。In a preferred implementation of this embodiment, the cloud server predicts the heating load of each user according to the meteorological data and the pre-acquired energy consumption function, and obtains the water supply temperature of the heating pipeline of the heating terminal monitoring device through the communication module of the heating terminal monitoring device .
所述能耗函数为体现所述气象数据与所述各个用户供暖负荷之间关系的函数,也即,各个用户供暖符合随气象数据的变化而变化的规律,其通过对历史数据按照预测算法训练或拟合获得。可以通过在云服务器上设置专门的模块利用来自于气象中心的数据以及为获取用户行为函数所积累的历史数据来训练或拟合获取所述的能耗函数,也可以对上述数据单独训练或拟合获取所述的能耗函数。The energy consumption function is a function that reflects the relationship between the meteorological data and the heating load of each user, that is, the heating of each user conforms to the law that changes with the change of the meteorological data, and it is trained according to the prediction algorithm on the historical data or obtained by fitting. The energy consumption function can be obtained through training or fitting by setting a special module on the cloud server using the data from the weather center and the historical data accumulated to obtain the user behavior function, or the above data can be trained or simulated separately. Combined to obtain the energy consumption function.
优选地,可以在云端服务器中基于气象预测算法根据用户所在区域的气象信息及天气预报预测的全天气象信息逐时计算温度、湿度、照度等气象信息。利用气象预测算法来进行气象参数的逐时计算可以在一定程度提高气象信息的获取效率。Preferably, the weather information such as temperature, humidity, and illuminance can be calculated hourly in the cloud server based on the weather forecast algorithm according to the weather information of the user's area and the weather information predicted by the weather forecast. The hourly calculation of meteorological parameters using meteorological forecasting algorithms can improve the efficiency of meteorological information acquisition to a certain extent.
逐时温度T根据天气预报得到的最高室外温度Th和最低室外温度Tl信息采用下述公式进行计算:The hourly temperature T is calculated according to the information of the highest outdoor temperature T h and the lowest outdoor temperature T l obtained from the weather forecast using the following formula:
T=Th-αt×(Th-Tl),T=T h -α t ×(T h -T l ),
式中,αt为预设的t时刻温度预测系数,该系数可以根据该地区历史温度信息拟合得到。In the formula, αt is the preset temperature prediction coefficient at time t, which can be obtained by fitting according to the historical temperature information of the area.
逐时湿度根据某一天的历史数据采集湿度变化趋势,利用天气预报得到的全天平均相对湿度信息对历史变化趋势进行修正:hourly humidity The humidity change trend is collected according to the historical data of a certain day, and the historical change trend is corrected by using the whole-day average relative humidity information obtained from the weather forecast:
式中,为某天τ时刻典型气象年历史湿度;为某天的全天累计相对湿度;RH为天气预报得到的全天平均相对湿度。In the formula, is the historical humidity of a typical meteorological year at time τ on a certain day; is the cumulative relative humidity of a day; RH is the average relative humidity of the whole day obtained from the weather forecast.
逐时照度通过下面公式进行计算:The hourly illuminance is calculated by the following formula:
式中,Qτ(t)为t时刻太阳逐时总辐射量;Q为日总辐射量;tr、td分别为天气预报得到的日出日落时间。In the formula, Q τ (t) is the hourly total radiation of the sun at time t; Q is the total daily radiation; t r and t d are the sunrise and sunset times obtained from the weather forecast, respectively.
当然本领域技术人员可以理解,也可以通过提供逐时天气预报的气象中心直接从外部获取上述气象数据。Of course, those skilled in the art can understand that the above weather data can also be obtained directly from the outside through a weather center that provides hourly weather forecasts.
根据获取的历史气象数据以及各个用户供暖负荷的历史数据,即可通过拟合或其它方式建立能耗函数。According to the acquired historical meteorological data and the historical data of each user's heating load, the energy consumption function can be established by fitting or other methods.
优选地,可将历史气象、负荷数据作为负荷预测神经网络算法的训练数据,经已有算法训练可得出冷(热)负荷与时刻、室外温度、相对湿度和辐照度的对应关系,也即获取能耗函数,并将能耗函数保存在云端服务器。Preferably, the historical meteorological and load data can be used as the training data of the load forecasting neural network algorithm, and the corresponding relationship between the cooling (heating) load and time, outdoor temperature, relative humidity and irradiance can be obtained through the training of the existing algorithm, and also That is, the energy consumption function is obtained, and the energy consumption function is saved in the cloud server.
由此,云端服务器要进行房间供暖参数调节时(在一个优选的方式中,可以是周期性的或者由事件触发来进行调节),可以根据气象数据以及预先获得的能耗函数预测各个用户供暖负荷。Therefore, when the cloud server needs to adjust the room heating parameters (in a preferred way, it can be adjusted periodically or triggered by events), it can predict the heating load of each user according to the meteorological data and the pre-acquired energy consumption function .
步骤330、云端服务器根据预测的各个用户供暖负荷、当前供水温度以及时间信息计算房间供暖设备参数并下发到供暖终端监控设备。
步骤340、供暖终端监控设备根据所述房间供暖设备参数对房间供暖设备进行调节。
在本实施例的一个优选实施方式中,所述方法还包括步骤350(图中用虚线表示),根据最节能用户的用户行为函数修正当前用户的用户行为函数。In a preferred implementation of this embodiment, the method further includes step 350 (indicated by a dotted line in the figure), modifying the user behavior function of the current user according to the user behavior function of the most energy-saving user.
具体地,根据云端服务器同区域用户的用户行为记录,选择与本用户所在同一建筑或相似建筑相同户型的用户行为模型记录,分析在各种用户供暖负荷、供水温度条件下用户对房间供暖设备参数的控制信息,并从记录中寻找最节能的房间供暖设备参数控制方式,建立最优的用户行为函数。然后根据最优的用户行为函数对各个用户的用户行为函数进行调整,并使用该修正过的用户行为函数对用户的房间供暖设备参数进行调节。在这种方式下,用户仍可以根据自己的舒适度需求手动的对房间供暖设备参数进行调节,调节记录保存在云服务中心的云服务器上,并根据本阶段第一种修正方式对用户行为模型进行修正。Specifically, according to the user behavior records of users in the same area on the cloud server, select the user behavior model records of the same building or similar buildings where the user is located, and analyze the user's response to the room heating equipment parameters under various user heating loads and water supply temperature conditions. control information, and find the most energy-efficient room heating equipment parameter control method from the records, and establish the optimal user behavior function. Then adjust the user behavior function of each user according to the optimal user behavior function, and use the corrected user behavior function to adjust the parameters of the user's room heating equipment. In this way, users can still manually adjust the parameters of the room heating equipment according to their own comfort requirements, and the adjustment records are saved on the cloud server of the cloud service center, and the user behavior model is modified according to the first correction method at this stage. Make corrections.
在本实施例的一个优选实施方式中,所述方法还包括步骤360(图中用虚线表示),根据用户的手动调节参数修正所述用户行为函数。In a preferred implementation of this embodiment, the method further includes step 360 (indicated by a dotted line in the figure), modifying the user behavior function according to the user's manual adjustment parameters.
具体地,对于在自动控制阶段有手动的调节房间供暖设备参数的用户,根据用户对房间供暖设备参数的操作记录以及相应的时间、负荷、供水温度信息按照模型识别阶段的方法对用户行为模型进行经验曲线拟合得到新的用户行为函数,并用该用户行为函数替代原来的用户行为函数,然后返回步骤320。Specifically, for users who manually adjust the parameters of room heating equipment in the automatic control stage, the user behavior model is analyzed according to the user's operation records on the room heating equipment parameters and the corresponding time, load, and water supply temperature information according to the method of the model identification stage. A new user behavior function is obtained by fitting the experience curve, and the original user behavior function is replaced by the user behavior function, and then returns to step 320 .
上述两种实施方式中涉及的调整方式可以并存也可以独立存在,不断动态调整用户行为函数,实现对于供暖终端监控设备的智能动态调节。The adjustment methods involved in the above two implementation manners can coexist or exist independently, continuously and dynamically adjust the user behavior function, and realize the intelligent dynamic adjustment of the heating terminal monitoring equipment.
本实施例通过历史数据获取用户行为函数,在云端服务器11基于用户行为函数根据预测的各个用户供暖负荷和供水温度周期性地来计算房间供暖设备参数,根据房间供暖设备参数进行调节。由此,房间供暖设备的调节既能够符合用户的行为模式,又能从整体上优化整个供暖系统的负荷,智能程度高,精度好,节能程度也得到一定提高。In this embodiment, the user behavior function is acquired through historical data, and the
显然,本领域技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个计算装置上,或者分布在多个计算装置所组成的网络上,可选地,他们可以用计算机装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件的结合。Obviously, those skilled in the art should understand that each module or each step of the present invention described above can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed on a network formed by multiple computing devices, Optionally, they can be implemented with executable program codes of computer devices, so that they can be stored in storage devices and executed by computing devices, or they can be made into individual integrated circuit modules, or multiple of them Modules or steps are implemented as a single integrated circuit module. As such, the present invention is not limited to any specific combination of hardware and software.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310102330.7A CN103162346B (en) | 2013-03-27 | 2013-03-27 | Based on central heating supervisory control system and the central heating system control method of cloud service |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310102330.7A CN103162346B (en) | 2013-03-27 | 2013-03-27 | Based on central heating supervisory control system and the central heating system control method of cloud service |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103162346A true CN103162346A (en) | 2013-06-19 |
CN103162346B CN103162346B (en) | 2015-12-23 |
Family
ID=48585660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310102330.7A Active CN103162346B (en) | 2013-03-27 | 2013-03-27 | Based on central heating supervisory control system and the central heating system control method of cloud service |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103162346B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104534556A (en) * | 2014-12-08 | 2015-04-22 | 北京华电方胜技术发展有限公司 | Heat supply control method based on energy consumption monitoring |
CN104866693A (en) * | 2015-06-19 | 2015-08-26 | 天津商业大学 | Optimal stop time prediction model of floor-radiating heating system |
CN104866694A (en) * | 2015-06-19 | 2015-08-26 | 天津商业大学 | Optimal start time prediction model of floor-radiating heating system |
CN105783108A (en) * | 2016-03-30 | 2016-07-20 | 张久明 | Energy-saving heat supply control method and system and cloud server |
CN106292408A (en) * | 2015-06-01 | 2017-01-04 | 南京索乐优节能科技有限公司 | A kind of multiple-energy-sources based on RSMC's data comprehensive utilization control system |
CN107104825A (en) * | 2017-04-01 | 2017-08-29 | 深圳天珑无线科技有限公司 | Terminal parameter configuring method and device |
CN107247407A (en) * | 2017-07-11 | 2017-10-13 | 浙江中易和节能技术有限公司 | A kind of big data self-teaching Correction and Control system and method based on cloud framework |
CN107449030A (en) * | 2017-08-01 | 2017-12-08 | 西安建筑科技大学 | One kind is based on Q τ curve house heatings end capacity determining methods |
CN107797459A (en) * | 2017-09-15 | 2018-03-13 | 珠海格力电器股份有限公司 | Control method and device of terminal equipment, storage medium and processor |
CN109028278A (en) * | 2018-07-17 | 2018-12-18 | 哈尔滨工业大学 | A kind of the area operation system and scheduling strategy of wind power heating |
CN110332605A (en) * | 2019-07-16 | 2019-10-15 | 常州英集动力科技有限公司 | Heat supply network energy consumption index analysis and early warning method and system based on BP neural network |
CN110332606A (en) * | 2019-07-25 | 2019-10-15 | 新奥(中国)燃气投资有限公司 | A kind of heating system and its heat supply method |
CN111076274A (en) * | 2019-12-26 | 2020-04-28 | 内蒙航天动力机械测试所 | Intelligent energy-saving control system for building heat supply |
CN111476439A (en) * | 2020-05-18 | 2020-07-31 | 瑞纳智能设备股份有限公司 | Heating household valve adjusting method, system and equipment based on gray time sequence |
CN111561733A (en) * | 2020-05-18 | 2020-08-21 | 瑞纳智能设备股份有限公司 | Heating household valve adjusting method, system and equipment based on GBDT |
CN111735101A (en) * | 2020-06-28 | 2020-10-02 | 武汉施尔诺新能源科技有限公司 | Linkage compensation system of duplex wall-mounted boiler |
CN112161322A (en) * | 2020-09-24 | 2021-01-01 | 深圳市合信达控制系统有限公司 | Heating equipment and control method thereof |
CN112628845A (en) * | 2020-12-23 | 2021-04-09 | 看见文化科技(深圳)有限公司 | Control center, method and system for intelligent heating |
CN112984593A (en) * | 2019-12-02 | 2021-06-18 | 徐兆良 | Brand-new centralized heating and cooling method |
CN113175700A (en) * | 2021-05-28 | 2021-07-27 | 呼伦贝尔安泰热电有限责任公司满洲里热电厂 | Intelligent equipment management and big data early warning analysis system and method for heat supply network |
CN115875730A (en) * | 2022-12-23 | 2023-03-31 | 吉林化工学院 | Intelligent temperature control system for urban heat supply |
CN117063018A (en) * | 2021-02-07 | 2023-11-14 | 八达通能源供暖有限公司 | Heating installation, method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604160A (en) * | 2008-12-25 | 2009-12-16 | 天津滨海创业能源技术有限公司 | Large area heat supply running automatic monitoring system device |
CN101949559A (en) * | 2010-09-21 | 2011-01-19 | 杭州哲达科技股份有限公司 | Intelligent energy-saving mixed water heat supply method |
WO2011106915A1 (en) * | 2010-03-05 | 2011-09-09 | Jiang Yongdong | Intelligent home energy management control system based on cloud computing and method thereof |
CN202328468U (en) * | 2011-02-14 | 2012-07-11 | 北京盈讯动力科技发展有限公司 | Sectional temperature energy-saving heat supply system |
CN102721104A (en) * | 2012-06-11 | 2012-10-10 | 北京金房暖通节能技术有限公司 | Climate compensation algorithm and control method for supply water temperature of central heating system |
CN102865623A (en) * | 2012-09-28 | 2013-01-09 | 季涛 | Centralized heating public building heat supply energy-saving control method |
-
2013
- 2013-03-27 CN CN201310102330.7A patent/CN103162346B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604160A (en) * | 2008-12-25 | 2009-12-16 | 天津滨海创业能源技术有限公司 | Large area heat supply running automatic monitoring system device |
WO2011106915A1 (en) * | 2010-03-05 | 2011-09-09 | Jiang Yongdong | Intelligent home energy management control system based on cloud computing and method thereof |
CN101949559A (en) * | 2010-09-21 | 2011-01-19 | 杭州哲达科技股份有限公司 | Intelligent energy-saving mixed water heat supply method |
CN202328468U (en) * | 2011-02-14 | 2012-07-11 | 北京盈讯动力科技发展有限公司 | Sectional temperature energy-saving heat supply system |
CN102721104A (en) * | 2012-06-11 | 2012-10-10 | 北京金房暖通节能技术有限公司 | Climate compensation algorithm and control method for supply water temperature of central heating system |
CN102865623A (en) * | 2012-09-28 | 2013-01-09 | 季涛 | Centralized heating public building heat supply energy-saving control method |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104534556A (en) * | 2014-12-08 | 2015-04-22 | 北京华电方胜技术发展有限公司 | Heat supply control method based on energy consumption monitoring |
CN104534556B (en) * | 2014-12-08 | 2017-09-15 | 北京方胜有成科技股份有限公司 | A kind of supply control method for heat based on energy consumption monitoring |
CN106292408A (en) * | 2015-06-01 | 2017-01-04 | 南京索乐优节能科技有限公司 | A kind of multiple-energy-sources based on RSMC's data comprehensive utilization control system |
CN104866693A (en) * | 2015-06-19 | 2015-08-26 | 天津商业大学 | Optimal stop time prediction model of floor-radiating heating system |
CN104866694A (en) * | 2015-06-19 | 2015-08-26 | 天津商业大学 | Optimal start time prediction model of floor-radiating heating system |
CN105783108A (en) * | 2016-03-30 | 2016-07-20 | 张久明 | Energy-saving heat supply control method and system and cloud server |
CN107104825A (en) * | 2017-04-01 | 2017-08-29 | 深圳天珑无线科技有限公司 | Terminal parameter configuring method and device |
CN107247407A (en) * | 2017-07-11 | 2017-10-13 | 浙江中易和节能技术有限公司 | A kind of big data self-teaching Correction and Control system and method based on cloud framework |
CN107449030A (en) * | 2017-08-01 | 2017-12-08 | 西安建筑科技大学 | One kind is based on Q τ curve house heatings end capacity determining methods |
CN107449030B (en) * | 2017-08-01 | 2019-07-02 | 西安建筑科技大学 | A determination method of residential heating terminal capacity based on Q-τ curve |
CN107797459A (en) * | 2017-09-15 | 2018-03-13 | 珠海格力电器股份有限公司 | Control method and device of terminal equipment, storage medium and processor |
CN109028278A (en) * | 2018-07-17 | 2018-12-18 | 哈尔滨工业大学 | A kind of the area operation system and scheduling strategy of wind power heating |
CN109028278B (en) * | 2018-07-17 | 2020-07-31 | 哈尔滨工业大学 | A regional operation system and scheduling strategy for wind power heating |
CN110332605A (en) * | 2019-07-16 | 2019-10-15 | 常州英集动力科技有限公司 | Heat supply network energy consumption index analysis and early warning method and system based on BP neural network |
CN110332605B (en) * | 2019-07-16 | 2020-12-29 | 常州英集动力科技有限公司 | BP neural network-based heat supply network energy consumption index analysis and early warning method |
CN110332606A (en) * | 2019-07-25 | 2019-10-15 | 新奥(中国)燃气投资有限公司 | A kind of heating system and its heat supply method |
CN112984593A (en) * | 2019-12-02 | 2021-06-18 | 徐兆良 | Brand-new centralized heating and cooling method |
CN111076274A (en) * | 2019-12-26 | 2020-04-28 | 内蒙航天动力机械测试所 | Intelligent energy-saving control system for building heat supply |
CN111561733A (en) * | 2020-05-18 | 2020-08-21 | 瑞纳智能设备股份有限公司 | Heating household valve adjusting method, system and equipment based on GBDT |
CN111476439A (en) * | 2020-05-18 | 2020-07-31 | 瑞纳智能设备股份有限公司 | Heating household valve adjusting method, system and equipment based on gray time sequence |
CN111476439B (en) * | 2020-05-18 | 2023-08-04 | 瑞纳智能设备股份有限公司 | Heating valve adjusting method, system and equipment based on gray time sequence |
CN111561733B (en) * | 2020-05-18 | 2021-11-12 | 瑞纳智能设备股份有限公司 | Heating household valve adjusting method, system and equipment based on GBDT |
CN111735101A (en) * | 2020-06-28 | 2020-10-02 | 武汉施尔诺新能源科技有限公司 | Linkage compensation system of duplex wall-mounted boiler |
CN112161322B (en) * | 2020-09-24 | 2022-04-29 | 深圳市合信达控制系统有限公司 | Heating equipment and control method thereof |
CN112161322A (en) * | 2020-09-24 | 2021-01-01 | 深圳市合信达控制系统有限公司 | Heating equipment and control method thereof |
CN112628845A (en) * | 2020-12-23 | 2021-04-09 | 看见文化科技(深圳)有限公司 | Control center, method and system for intelligent heating |
CN117063018A (en) * | 2021-02-07 | 2023-11-14 | 八达通能源供暖有限公司 | Heating installation, method and system |
US12247748B2 (en) | 2021-02-07 | 2025-03-11 | Octopus Energy Heating Limited | Heating installations, methods and systems |
CN113175700B (en) * | 2021-05-28 | 2022-05-10 | 呼伦贝尔安泰热电有限责任公司满洲里热电厂 | Intelligent equipment management and big data early warning analysis system and method for heat supply network |
CN113175700A (en) * | 2021-05-28 | 2021-07-27 | 呼伦贝尔安泰热电有限责任公司满洲里热电厂 | Intelligent equipment management and big data early warning analysis system and method for heat supply network |
CN115875730A (en) * | 2022-12-23 | 2023-03-31 | 吉林化工学院 | Intelligent temperature control system for urban heat supply |
Also Published As
Publication number | Publication date |
---|---|
CN103162346B (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103162346A (en) | Central heating monitoring system based on cloud service and adjustment method thereof | |
Korkas et al. | Grid-connected microgrids: Demand management via distributed control and human-in-the-loop optimization | |
JP6807556B2 (en) | Air conditioning control method, air conditioning control device and air conditioning control program | |
CN107726442B (en) | Heat supply network balance regulation and control method | |
WO2020198971A1 (en) | Management method and system, and control method and system for air conditioning system, and storage medium | |
US10731886B2 (en) | HVAC system including energy analytics engine | |
CN102865647A (en) | Cloud air conditioner with cloud adaption function based on cloud computing technology and cloud adaption method thereof | |
US9817409B2 (en) | Method and apparatus for distributed control of thermostatic electric loads using high-granularity energy usage data | |
CN114165825B (en) | Heat supply regulation and control system and method for heat exchange station | |
Song et al. | An IoT-based smart controlling system of air conditioner for high energy efficiency | |
WO2015183678A1 (en) | Method and apparatus for selective componentized thermostatic controllable loads | |
WO2011106914A1 (en) | Device monitoring system and method based on cloud computing | |
CN104534556A (en) | Heat supply control method based on energy consumption monitoring | |
CN114923265B (en) | Central air conditioning energy-saving control system based on Internet of things | |
WO2011106918A1 (en) | Computer room energy management control system and method for electronic information system based on cloud computing | |
CN203223987U (en) | Secondary network hydraulic balance regulation and control system | |
CN107341562A (en) | A kind of building energy management system and energy management method for merging demand response | |
CN105190193B (en) | Air conditioning control device, air-conditioner control system and air conditioning control method | |
CN202647980U (en) | Remote monitor system based on wireless room-temperature control heat-exchange station valve opening | |
CN112413717A (en) | Control system and method for thermal user to participate in demand response | |
CN107247407A (en) | A kind of big data self-teaching Correction and Control system and method based on cloud framework | |
CN107192098B (en) | Hospital ventilation regulates and controls method and regulator control system | |
Frincu et al. | Towards a scalable cloud enabled smart home automation architecture for demand response | |
CN115585501A (en) | Central heating user-side autonomous adjustment system and method based on network intelligent control | |
CN114992704A (en) | Man-machine interaction system and method for intelligent heat supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: XINAO ENERGY SERVICES (SHANGHAI) CO., LTD. Free format text: FORMER OWNER: XINAO SCIENCE AND TECHNOLOGY DEVELOPMENT CO., LTD. Effective date: 20140519 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 065001 LANGFANG, HEBEI PROVINCE TO: 201203 PUDONG NEW AREA, SHANGHAI |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20140519 Address after: 201203, room 11, building 1388, 01 Zhang Dong Road, Zhangjiang hi tech park, Shanghai, Pudong New Area Applicant after: New Austrian energy services (Shanghai) Co., Ltd. Address before: The 065001 Hebei economic and Technological Development Zone of Langfang Huaxiang new Austrian Science and Technology Park in the Southern District of B City Applicant before: ENN SCIENCE & TECHNOLOGY DEVELOPMENT Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200713 Address after: 065000 Langfang City Development Zone of Hebei province Huaxiang No. 118, No. 0392 Building 1 Patentee after: LANGFANG ENN PANERGY NETWORK TECHNOLOGY SERVICE Co.,Ltd. Address before: 201203, room 11, building 1388, 01 Zhang Dong Road, Zhangjiang hi tech park, Shanghai, Pudong New Area Patentee before: SHANGHAI ENN ENERGY SERVICE Co.,Ltd. |
|
TR01 | Transfer of patent right |