CN103160612A - Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency - Google Patents
Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency Download PDFInfo
- Publication number
- CN103160612A CN103160612A CN201310127449XA CN201310127449A CN103160612A CN 103160612 A CN103160612 A CN 103160612A CN 201310127449X A CN201310127449X A CN 201310127449XA CN 201310127449 A CN201310127449 A CN 201310127449A CN 103160612 A CN103160612 A CN 103160612A
- Authority
- CN
- China
- Prior art keywords
- wheat
- chromosomes
- tip
- root tip
- transgenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 61
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 50
- 241000209140 Triticum Species 0.000 title claims abstract 11
- 230000035945 sensitivity Effects 0.000 title abstract description 13
- 210000000349 chromosome Anatomy 0.000 claims abstract description 93
- 230000031864 metaphase Effects 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000012634 fragment Substances 0.000 claims abstract description 17
- 238000007901 in situ hybridization Methods 0.000 claims abstract description 16
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 14
- 238000013519 translation Methods 0.000 claims abstract description 6
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 241000196324 Embryophyta Species 0.000 claims description 55
- 230000007071 enzymatic hydrolysis Effects 0.000 claims description 21
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 108090000623 proteins and genes Proteins 0.000 claims description 20
- 244000068988 Glycine max Species 0.000 claims description 12
- 235000010469 Glycine max Nutrition 0.000 claims description 12
- 108010059820 Polygalacturonase Proteins 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 108010093305 exopolygalacturonase Proteins 0.000 claims description 12
- 108010059892 Cellulase Proteins 0.000 claims description 11
- 229940106157 cellulase Drugs 0.000 claims description 11
- 241000234435 Lilium Species 0.000 claims description 10
- 240000001987 Pyrus communis Species 0.000 claims description 9
- 235000014443 Pyrus communis Nutrition 0.000 claims description 9
- 230000002255 enzymatic effect Effects 0.000 claims description 8
- 210000000745 plant chromosome Anatomy 0.000 claims description 8
- 229920000742 Cotton Polymers 0.000 claims description 6
- 244000299507 Gossypium hirsutum Species 0.000 claims description 6
- 241000512259 Ascophyllum nodosum Species 0.000 claims description 5
- 241000743774 Brachypodium Species 0.000 claims description 5
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 5
- 240000003768 Solanum lycopersicum Species 0.000 claims description 5
- 240000006394 Sorghum bicolor Species 0.000 claims description 5
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 5
- 238000001976 enzyme digestion Methods 0.000 claims description 5
- 238000002372 labelling Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 210000001519 tissue Anatomy 0.000 claims description 4
- 241000209510 Liliopsida Species 0.000 claims description 3
- 230000032823 cell division Effects 0.000 claims description 3
- 241001233957 eudicotyledons Species 0.000 claims description 3
- 230000004544 DNA amplification Effects 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 abstract description 22
- 108700019146 Transgenes Proteins 0.000 abstract description 14
- 238000003776 cleavage reaction Methods 0.000 abstract description 3
- 230000000442 meristematic effect Effects 0.000 abstract description 3
- 230000007017 scission Effects 0.000 abstract description 3
- 244000098338 Triticum aestivum Species 0.000 description 54
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 24
- 238000002360 preparation method Methods 0.000 description 17
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 101100117609 Arabidopsis thaliana DREB3 gene Proteins 0.000 description 10
- 238000011160 research Methods 0.000 description 9
- 210000002262 tip cell Anatomy 0.000 description 9
- 240000008042 Zea mays Species 0.000 description 7
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 7
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 7
- 235000005822 corn Nutrition 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 244000105624 Arachis hypogaea Species 0.000 description 6
- 229960000583 acetic acid Drugs 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000001272 nitrous oxide Substances 0.000 description 6
- 235000013842 nitrous oxide Nutrition 0.000 description 6
- 235000020232 peanut Nutrition 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010765 pachytene Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000020138 yakult Nutrition 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000024346 drought recovery Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000026211 mitotic metaphase Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- -1 octahydroxyquinoline Chemical compound 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种改良的高灵敏高效的检测和鉴定小麦转基因的方法,所述方法包括下述步骤:1)通过N2O气体预处理并酶解小麦根尖分生区细胞分裂旺盛的组织获得图像清晰、染色体分散良好的中期分裂相标本;2)利用切口平移方法标记所需检测目的片段(例如,转基因载体携带的转基因片段)的荧光探针;3)利用步骤2)构建的转基因载体目的片段的荧光探针对利用步骤1)转基因小麦中期分裂相染色体进行荧光原位杂交;和4)分析步骤3)得到的荧光原位杂交结果,和对照材料进行比对确定待检测转基因小麦中荧光信号的分布。利用本发明提供的方法不但可以应用到小麦外源转基因的染色体定位,其中灵敏度可达2-3kb,也可以应用到对其他农作物的转基因信号鉴定工作中。The invention discloses an improved method for detecting and identifying wheat transgenes with high sensitivity and high efficiency. The method comprises the following steps: 1) pretreating with N 2 O gas and enzymolyzing the cells in the root tip meristematic zone of wheat Obtain metaphase specimens with clear images and well-dispersed chromosomes; 2) use the nick translation method to label the fluorescent probes for the target fragment (for example, the transgene fragment carried by the transgene vector); 3) use the transgene constructed in step 2) The fluorescent probe pair of the target fragment of the carrier is carried out by using step 1) fluorescence in situ hybridization of the metaphase cleavage phase chromosome of transgenic wheat; and 4) analyzing the result of fluorescence in situ hybridization obtained in step 3), and comparing with the control material to determine the transgenic wheat to be detected The distribution of fluorescent signals in . The method provided by the invention can not only be applied to the chromosome location of exogenous transgenes in wheat, and the sensitivity can reach 2-3 kb, but also can be applied to the identification of transgene signals of other crops.
Description
技术领域 technical field
本发明涉及一种高灵敏高效的检测转基因小麦染色体的方法,本发明还涉及一个快速高效的获取形态良好的中期分裂相的植物染色体的方法,属于细胞生物学和分子生物学研究领域。 The invention relates to a highly sensitive and efficient method for detecting transgenic wheat chromosomes, and also relates to a fast and efficient method for obtaining metaphase plant chromosomes in good shape, belonging to the research fields of cell biology and molecular biology. the
背景技术 Background technique
小麦是世界上重要的粮食作物之一,与社会经济发展、粮食安全供给和人类营养健康密切相关。遗传基础狭窄已经成为制约作物品种单产水平、抗性、适应性等重要农艺性状进一步提升的关键因素(叶兴国et al.2011)。基因工程育种作为杂交育种的主要补充手段,已经在大豆、玉米、棉花和油菜等作物中取得了巨大成功,基因工程赋予了这些作物本身所不具备的抗除草剂、抗虫等一些优良的性状。在国家“863”计划和“转基因植物研究与产业化专项”等科技项目的资助下,我国转基因小麦研究尤其理论上取得了很大进展。随着分子生物学和植物基因工程的不断发展,越来越多的育种工作者开始利用转基因技术获得常规育种技术难以得到的新种质和新品种。 Wheat is one of the most important food crops in the world, which is closely related to social and economic development, food security supply and human nutrition and health. The narrow genetic base has become a key factor restricting the further improvement of important agronomic traits such as yield level, resistance and adaptability of crop varieties (Ye Xingguo et al. 2011). Genetic engineering breeding, as the main supplementary method of hybrid breeding, has achieved great success in crops such as soybeans, corn, cotton, and rapeseed. Genetic engineering has endowed these crops with some excellent traits such as herbicide resistance and insect resistance that they do not have. . Under the support of the national "863" plan and the "Special Project of Transgenic Plant Research and Industrialization" and other scientific and technological projects, my country's transgenic wheat research has made great progress, especially theoretically. With the continuous development of molecular biology and plant genetic engineering, more and more breeders have begun to use transgenic technology to obtain new germplasm and new varieties that are difficult to obtain by conventional breeding techniques. the
检测转基因是否发生目前常用的方法主要有:PCR法,Southern杂交和荧光原位杂交(FISH)。PCR可以检测目的基因是否整合在受体细胞的染色体上,PCR反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生。同时对多位点插入难以检测。检测外源基因整合在植物染色体上最可靠的方法就是Southern杂交和原位杂交。Southern杂交可检测外源基因插入的拷贝数和插入方式,是一种较为精确的分析,Southern法准确性高、特异性强,但存在费时费力的缺点。另外,由于Southern法检测不经过靶片段的扩增(PCR),一般每个电泳通道需要10-30μg的DNA,在实际操作中 就需要较大量的植物材料来提取DNA,而转基因植物的愈伤组织在无菌条件下经过筛选、重新分化后一般都比较细弱,不宜大量取样。如果外源基因在插入时发生基因重组,造成限制性酶切位点丢失,Southern法也无法检测到。这些因素都制约了Southern法在T0代转基因植物中检测外源基因拷贝数的应用。 The commonly used methods to detect whether the transgene occurs are: PCR method, Southern hybridization and fluorescence in situ hybridization (FISH). PCR can detect whether the target gene is integrated on the chromosome of the recipient cell. The biggest feature of the PCR reaction is its large amplification ability and high sensitivity. cause false positives. Simultaneous detection of multiple insertions is difficult. The most reliable methods to detect exogenous gene integration in plant chromosomes are Southern hybridization and in situ hybridization. Southern hybridization can detect the copy number and insertion mode of exogenous gene insertion. It is a relatively accurate analysis. Southern method has high accuracy and strong specificity, but it has the disadvantage of time-consuming and labor-intensive. In addition, because the Southern method does not undergo target fragment amplification (PCR), generally 10-30 μg of DNA is required for each electrophoresis channel, and a relatively large amount of plant material is required to extract DNA in actual operation, and the callus of transgenic plants Tissues are generally weak after being screened and redifferentiated under sterile conditions, so it is not suitable to take a large number of samples. If the gene recombination occurs when the foreign gene is inserted, resulting in the loss of the restriction enzyme cutting site, the Southern method cannot detect it. These factors restrict the application of Southern method in detecting the copy number of exogenous gene in transgenic plants of T0 generation. the
荧光原位杂交(FISH)是20世纪生物学领域的一项新技术,是一项利用标记的DNA探针直接在染色体、间期核和DNA纤维上定位特定靶DNA序列的技术,具有较高的敏感性和特异性,已成为当今细胞生物学、分子生物学研究的重要手段,广泛应用于植物学各方面的研究,例如植物基因的染色体物理作图(Miller et al.1983;Mukai et al.1990),杂种中亲本染色体的鉴定,外源染色体或染色体片段的检测(Schwarzacher et al.1989),物种进化及亲缘关系的探讨(Mukai et al.1993),转基因材料中外源基因的定位(Kenton et al.1995)等。尤其在检测转入基因及其表达产物方面有着明显的优势,它不仅能检测外源基因是否存在而且还能将外源基因直接定位在染色体的相应位置,但由于转化基因一般为小的单拷贝序列,所以对于转基因植株的FISH分析技术要求较高,难度最大。需要优良的染色体制片和高灵敏度的FISH操作程序(Harwood et al.2004)。 Fluorescence in situ hybridization (FISH) is a new technology in the field of biology in the 20th century. It is a technology that uses labeled DNA probes to directly locate specific target DNA sequences on chromosomes, interphase nuclei and DNA fibers. It has a high Sensitivity and specificity have become an important means of cell biology and molecular biology research, and are widely used in various aspects of botany research, such as chromosome physical mapping of plant genes (Miller et al.1983; Mukai et al .1990), the identification of parental chromosomes in hybrids, the detection of foreign chromosomes or chromosome fragments (Schwarzacher et al.1989), the discussion of species evolution and kinship (Mukai et al.1993), the positioning of foreign genes in transgenic materials ( Kenton et al.1995) and so on. It has obvious advantages especially in detecting the transgene and its expression product. It can not only detect whether the exogenous gene exists but also locate the exogenous gene directly on the corresponding position of the chromosome. However, because the transformed gene is generally a small single copy Therefore, the technical requirements for FISH analysis of transgenic plants are relatively high and the difficulty is the greatest. Good chromosome preparation and highly sensitive FISH procedures are required (Harwood et al. 2004). the
在植物FISH实验中,传统方法是取分裂旺盛的植物根尖,采用低温处理或化学药剂进行预处理,使染色体适当凝缩、分散,然后进行压片,压片法是植物染色体制片的最常用的方法,也就是将经过预处理的材料在卡诺固定液中固定后,用HCl或维素酶与果胶酶混合液解离,除去部分细胞壁和细胞质,然后用45%的醋酸压片,液氮冷冻揭去盖玻片,但这种方法成功率较低,主要是因为压片力度不好掌握,染色体很难完全散开,容易产生重叠、变形、断裂等,此外未去除干净的细胞质及细胞壁对染色体的覆盖,使原位杂交的信噪比增高。同时在揭片时可能由于玻片清洁度的原因,很容易将染色体揭掉,整个过程费时费力,且技术难度较大,很难获得良好的染色体制片。由于其染色质凝缩程度很高,细胞质较厚,一般情况下分辨率为5-10Mb(Pedersen and Linde-Laursen 1995),灵敏度为10kb左右,对于大多数实验室而言小于10kb的基因检出率很低(荣红颖et al.2007)。金危危等(金危危et al.2001)利用减数分裂中期染色体制片对转入 水稻的大约4.8kb的外源基因进行了定位,检出率为11.7-30.4%。植物减数分裂粗线期染色体的凝缩程度比中期染色体的低得多,其长度比相应的中期染色体大7~50倍,使探针DNA容易进入,因而检测灵敏度也有所提高。不过,选择时期合适的用于制备粗线期染色体的花粉母细胞是很困难的,并且粗线期染色体很长,难以追溯和识别单个的染色体这些不利因素限制了粗线期FISH的应用。 In the plant FISH experiment, the traditional method is to take the vigorously dividing plant root tips, use low temperature treatment or chemical agents for pretreatment, so that the chromosomes can be properly condensed and dispersed, and then pressed into pieces. The commonly used method is to fix the pretreated material in Carnot's fixative solution, dissociate it with HCl or a mixture of vitaminase and pectinase, remove part of the cell wall and cytoplasm, and then press it with 45% acetic acid , liquid nitrogen freezing to remove the cover slip, but the success rate of this method is low, mainly because the pressing force is not easy to master, the chromosomes are difficult to completely disperse, and it is easy to overlap, deform, break, etc. The coverage of chromosomes by cytoplasm and cell wall increases the signal-to-noise ratio of in situ hybridization. At the same time, it may be easy to remove the chromosomes due to the cleanliness of the slides. The whole process is time-consuming, laborious, and technically difficult, making it difficult to obtain good chromosome preparations. Due to the high degree of chromatin condensation and thick cytoplasm, the resolution is generally 5-10Mb (Pedersen and Linde-Laursen 1995), and the sensitivity is about 10kb. For most laboratories, the detection of genes less than 10kb The rate is very low (Rong Hongying et al.2007). Jin Weiwei et al. (Jin Weiwei et al.2001) utilized meiotic metaphase chromosome production to locate the foreign gene of about 4.8 kb transferred into rice, and the detection rate was 11.7-30.4%. The degree of condensation of plant meiotic pachytene chromosomes is much lower than that of metaphase chromosomes, and its length is 7 to 50 times larger than that of the corresponding metaphase chromosomes, which makes the probe DNA easy to enter and thus improves the detection sensitivity. However, it is very difficult to select a suitable pollen mother cell for the preparation of pachytene chromosomes, and the pachytene chromosomes are very long, making it difficult to trace and identify individual chromosomes. These unfavorable factors limit the application of pachytene FISH. the
小麦是异源六倍体,染色体数目是2n=42,基因组庞大,重复序列多而复杂,对于外源染色体的追踪和鉴定比较困难,我们参照Akio Kato等(Kato et al.2004)方法进行修改,根据不同的材料,处理不同的时间,得到最好状态的染色体,对转基因进行分析和精确的定位。 Wheat is an allohexaploid, the number of chromosomes is 2n=42, the genome is huge, and the repetitive sequences are many and complex. It is difficult to track and identify foreign chromosomes. We refer to the method of Akio Kato et al. (Kato et al.2004) to modify , according to different materials, process different time, get the chromosome in the best state, analyze and precisely locate the transgene. the
发明内容 Contents of the invention
本发明的一个目的是提供高灵敏的检测转基因小麦的染色体的方法,其中灵敏度可达2-3kb。 One object of the present invention is to provide a highly sensitive method for detecting chromosomes of transgenic wheat, wherein the sensitivity can reach 2-3kb. the
在第一方面中,本发明提供一种高灵敏的检测转基因小麦的染色体的方法,所述方法包括下述步骤: In a first aspect, the present invention provides a highly sensitive method for detecting the chromosome of transgenic wheat, said method comprising the steps of:
1)通过N2O气体预处理并酶解转基因小麦和对照材料的根尖分生区细胞分裂旺盛的组织获得图像清晰、染色体分散良好的中期分裂相标本; 1) Pretreatment with N 2 O gas and enzymatic hydrolysis of the tissues with vigorous cell division in the root apical meristem of transgenic wheat and control materials to obtain metaphase specimens with clear images and well-dispersed chromosomes;
2)利用切口平移方法标记所需检测的目的片段的荧光探针; 2) Use the nick translation method to label the fluorescent probe of the target fragment to be detected;
3)利用步骤2)构建的所需检测的目的片段的荧光探针对利用步骤1)转基因小麦中期分裂相染色体进行荧光原位杂交; 3) using the fluorescent probe of the target fragment to be detected in step 2) to perform fluorescence in situ hybridization on the metaphase chromosome of transgenic wheat using step 1);
4)分析步骤3)得到的荧光原位杂交结果,和对照材料进行比对确定待检测转基因小麦中荧光信号的分布。 4) Analyzing the fluorescence in situ hybridization results obtained in step 3), and comparing them with the control materials to determine the distribution of fluorescent signals in the transgenic wheat to be detected. the
上述步骤中最关键的步骤是步骤1)能否获得图像清晰、染色体分散良好的中期分裂相标本将影响对转基因检测的灵敏性。如上所述,步骤1)通过N2O(俗称笑气)预处理和酶解处理转基因小麦和对照材料根尖分生区细胞,包括下述步骤:(a)N2O气体预处理:取合适的根尖,放在湿润的离心管里,放入N2O气室中处理0.5-5小时,N2O的压强为10ATM(1.01Mpa);(b)将N2O气体预处理的根尖固定;(c)酶解处理:将固定好的根尖用水洗涤,切下根尖分生组织,用果胶酶和纤维素酶处理30min-2h。 The most critical step in the above steps is step 1) Whether a metaphase sample with clear images and well-dispersed chromosomes can be obtained will affect the sensitivity of the detection of transgenes. As mentioned above, step 1) pretreatment with N 2 O (commonly known as laughing gas) and enzymatic treatment of transgenic wheat and control material root apical meristem cells, including the following steps: (a) N 2 O gas pretreatment: take Appropriate root tips are placed in a wetted centrifuge tube and placed in a N 2 O gas chamber for 0.5-5 hours. The pressure of N 2 O is 10ATM (1.01Mpa); (b) pre-treated with N 2 O gas Root tip fixation; (c) enzymatic treatment: wash the fixed root tip with water, cut off the root tip meristem, and treat with pectinase and cellulase for 30min-2h.
具体来说,笑气预处理操作方法如下: Specifically, the operation method of laughing gas pretreatment is as follows:
剪下合适的小麦根尖,放在湿润的离心管里,笑气(N2O)处理30分钟至5小时,N2O的压强为10ATM(1.01Mpa),并将N2O预处理的根尖固定,以用于下一步的酶切处理。 Cut off suitable wheat root tips, put them in a wet centrifuge tube, treat with nitrous oxide (N 2 O) for 30 minutes to 5 hours, and the pressure of N 2 O is 10ATM (1.01Mpa), and the N 2 O pretreated The root tips were fixed for the next step of enzymatic digestion.
根据植物种类不同,基因组大小不同,笑气处理时间不同,比如花生、大豆等植物根尖或芽尖处理30-40分钟,小麦、玉米等植物根尖或芽尖处理2小时,而对于像百合这样的大基因组植物根尖或芽尖处理时间可达到4-5小时。处理时间不当过长或者过短都会影响染色体的制备。例如小麦的根尖或芽尖处理1个小时,染色体过长,一个细胞中的染色体会交叠在一起,影响后面的转基因鉴定等试验,梨的根尖或芽尖细胞处理1.5h,染色体会高度凝缩,甚至有的染色体会出现边缘的丝状,也会影响后面的实验部分。本领域技术人员可以需要根据植物基因组的大小、N2O的压强等因素选择合适的N2O处理时间。 Depending on the plant species, the genome size is different, and the treatment time of nitrous oxide is different. For example, the root tips or shoot tips of plants such as peanuts and soybeans are treated for 30-40 minutes, and the root tips or shoot tips of plants such as wheat and corn are treated for 2 hours. The root tip or shoot tip treatment time of such a large genome plant can reach 4-5 hours. If the processing time is too long or too short, it will affect the preparation of chromosomes. For example, if the root tip or shoot tip of wheat is treated for 1 hour, the chromosomes will be too long, and the chromosomes in one cell will overlap, which will affect the subsequent transgenic identification and other tests. Highly condensed, even some chromosomes will appear filamentous at the edge, which will also affect the later experimental part. Those skilled in the art may need to select an appropriate N 2 O treatment time according to factors such as the size of the plant genome and the pressure of N 2 O.
其中,酶解根尖或芽尖的操作方法如下: Among them, the operation method of enzymatically hydrolyzing the root tip or shoot tip is as follows:
将经过N2O预处理并且固定好的根尖或芽尖用水洗3次,洗去残留的醋酸和酒精,用滤纸将根尖或芽尖上的水稍微吸干,将根尖或芽尖分生组织(约1-2mm)切下,放入果胶酶和纤维素酶的20μL混合液中。根据植物基因组大小的不同,酶解时间也不相同,比如花生、大豆等植物根尖或芽尖酶解20-35分钟,小麦、玉米等植物根尖或芽尖酶解48分钟,而对于像百合这样的大基因组植物根尖或芽尖酶解时间可达到1-2个小时。酶解时间的把握也会直接影响染色体的制备以及后期的染色体的鉴定,比如小麦的染色体酶解40分钟,酶解时间短,染色体就会呈现出细长,不规则的形态,如果酶解时间达到55分钟甚至更长的时间,细胞中的染色体就会形态各异,大部分的染色体也不能完全分开,都得不到好的染色体从而对后期的鉴定工作带来很多不便。本领域技术人员可以需要根据植物基因组的大小等因素选择合适的酶解时间。 Wash the root tip or shoot tip that has been pretreated and fixed with water 3 times to remove residual acetic acid and alcohol , use filter paper to dry the water on the root tip or shoot tip slightly, and remove the root tip or shoot tip The meristem (approximately 1-2 mm) was excised and placed in 20 μL of a mixture of pectinase and cellulase. Depending on the size of the plant genome, the enzymatic hydrolysis time is also different, such as 20-35 minutes for the root or shoot tips of plants such as peanuts and soybeans, 48 minutes for the enzymatic hydrolysis of the root or shoot tips of plants such as wheat and corn, and The enzymatic hydrolysis time of the root tip or shoot tip of a plant with a large genome like lily can reach 1-2 hours. The grasp of the enzymatic hydrolysis time will also directly affect the preparation of chromosomes and the identification of later chromosomes. For example, the enzymatic hydrolysis of wheat chromosomes takes 40 minutes. If the enzymatic hydrolysis time is short, the chromosomes will appear elongated and irregular. If it takes 55 minutes or even longer, the chromosomes in the cells will have different shapes, and most of the chromosomes cannot be completely separated, so no good chromosomes can be obtained, which will bring a lot of inconvenience to the later identification work. Those skilled in the art may need to select an appropriate enzymatic hydrolysis time according to factors such as the size of the plant genome.
在第二方面中,本发明还提供一种能够快速高效的获取形态良好的中期分裂相的植物染色体的方法,包括下述步骤:(a)N2O气体预处理:取所述植物合适的根尖或芽尖,放在湿润的离心管里,放入N2O气室中处理 0.5-5小时,N2O的压强为10ATM(1.01Mpa);(b)将N2O气体预处理的根尖或芽尖固定;(c)酶解处理:将固定好的根尖或芽尖用水洗涤,切下根尖或芽尖分生组织,用果胶酶和纤维素酶处理30min-2h。 In the second aspect, the present invention also provides a method for quickly and efficiently obtaining metaphase plant chromosomes in good shape, comprising the following steps: (a) N 2 O gas pretreatment: taking a suitable Root tip or shoot tip, placed in a wet centrifuge tube, placed in N 2 O gas chamber for 0.5-5 hours, the pressure of N 2 O is 10ATM (1.01Mpa); (b) Pretreatment with N 2 O gas (c) enzymatic treatment: wash the fixed root tip or shoot tip with water, cut off the root tip or shoot tip meristem, and treat with pectinase and cellulase for 30min-2h .
具体地,所述能够快速高效的获取形态良好的中期分裂相的植物染色体的方法,包括下述步骤: Specifically, the method for quickly and efficiently obtaining the plant chromosomes of the metaphase cleavage phase with good shape comprises the following steps:
1)N2O处理所述植物的根尖或芽尖分生区 1) N 2 O treatment of the root tip or shoot tip meristematic zone of the plant
将合适的根尖或芽尖放在湿润的离心管里,N2O气室中处理1-3h,压强为10ATM(1.01Mpa); Put the appropriate root tip or shoot tip in a wet centrifuge tube, and treat it in an N2O air chamber for 1-3 hours, with a pressure of 10ATM (1.01Mpa);
2)根尖或芽尖固定 2) Root tip or shoot tip fixation
90%乙酸固定5-10分钟(置于冰上,不超过1h),蒸馏水洗2次。 Fix with 90% acetic acid for 5-10 minutes (on ice, no more than 1 hour), and wash with distilled water twice. the
3)酶解 3) Enzymolysis
将根尖或芽尖分生组织切下,放入果胶酶和纤维素酶的中,37℃水浴。 Cut off the root tip or shoot tip meristem, put it in the medium of pectinase and cellulase, and put it in a 37°C water bath. the
4)滴片 4) Drop tablets
用70%酒精洗掉酶解液,用解剖针将根尖捣碎,离心将酒精倒干,加入冰乙酸悬浮。 Wash off the enzymatic solution with 70% alcohol, mash the root tip with a dissecting needle, centrifuge to drain the alcohol, and add glacial acetic acid to suspend. the
5)镜检 5) Microscopic examination
将干净的载玻片放在湿润的盒子中,每张载玻片滴6-7μl根尖或芽尖细胞悬浮液,盖上盒盖,5分钟以后镜检。 Put the clean glass slides in a humid box, drop 6-7μl root tip or shoot tip cell suspension on each slide, cover the box lid, and check under the microscope after 5 minutes. the
该染色体制备的方法适用的植物包括小麦(2n=42),短柄草(2n=10,20,30),海带(n=31),大豆(2n=40),番茄(2n=24),棉花(2n=52),梨(2n=34),百合(2n=24,36,60),高粱(2n=20)等双子叶植物和单子叶植物。 The plants suitable for the chromosome preparation method include wheat (2n=42), brachypodium (2n=10, 20, 30), kelp (n=31), soybean (2n=40), tomato (2n=24), Cotton (2n=52), pear (2n=34), lily (2n=24, 36, 60), sorghum (2n=20) and other dicots and monocots. the
在本发明的一个具体实施方案中,本发明提供一种高灵敏高效的检测和鉴定小麦转基因的方法,其包括下述步骤: In a specific embodiment of the present invention, the present invention provides a kind of highly sensitive and efficient detection and the method for identification wheat transgene, it comprises the following steps:
1)利用本发明第二方面的方法制备转基因小麦与对照材料的有丝分裂中期分裂相; 1) Utilize the method for the second aspect of the present invention to prepare the mitosis metaphase of transgenic wheat and control material;
2)荧光标记所述转基因小麦所包含的目的基因,制成荧光探针; 2) fluorescently labeling the target gene contained in the transgenic wheat to make a fluorescent probe;
3)利用步骤2)标记的荧光探针对转基因小麦中期分裂相染色体进行荧光原位杂交;和 3) using the fluorescent probe labeled in step 2) to carry out fluorescence in situ hybridization on metaphase chromosomes of transgenic wheat; and
4)分析步骤3)得到的荧光原位杂交结果,确定待测植物中转基因荧光信 号的分布。 4) Analyzing the fluorescence in situ hybridization result obtained in step 3) to determine the distribution of the transgenic fluorescent signal in the plant to be tested. the
在本发明的一个具体实施方案中,所述待检测的转基因植株为TaDREB3转基因小麦与对照材料济麦19。 In a specific embodiment of the present invention, the transgenic plants to be detected are TaDREB3 transgenic wheat and the control material Jimai 19. the
本发明的方法适用于制备不同植物的中期细胞染色体。特别地,本发明的方法首次成功地快速、高效、简单方便的得到植物染色体,克服了现有技术中植物常染色体检测效果不理想的问题,是一种技术突破。具体地讲,本发明的方法有以下几点技术突破:1)染色体制片技术的改进,本发明的方法采用了笑气(N2O)对根尖或芽尖预处理,而非传统的化学试剂秋水仙素、八羟基喹啉、对二氯苯等化学试剂,主要优点体现在无毒害、分散效果好,同时也掌握了笑气(N2O)处理时间长短对后续染色体制备的影响;2)对根尖或芽尖分生区细胞酶切处理,掌握了不同酶切处理时间长短对后续染色体制备的影响,这主要是跟基因组大小有关;3)荧光探针构建及荧光原位杂交技术与同类方法相比较也体现了快捷、高效、信号强等特点; The method of the present invention is suitable for preparing metaphase cell chromosomes of different plants. In particular, the method of the present invention successfully obtains plant chromosomes quickly, efficiently, simply and conveniently for the first time, which overcomes the problem of unsatisfactory detection results of plant autosomes in the prior art, and is a technological breakthrough. Specifically, the method of the present invention has the following technical breakthroughs: 1) the improvement of chromosome preparation technology, the method of the present invention has adopted laughing gas (N 2 O) to root tip or shoot tip pretreatment, rather than traditional The main advantages of chemical reagents such as colchicine, octahydroxyquinoline, and p-dichlorobenzene are that they are non-toxic and have good dispersion effects. At the same time, the influence of the treatment time of laughing gas (N 2 O) on the subsequent chromosome preparation is also mastered. ; 2) Enzyme digestion treatment of root tip or shoot apex meristematic zone cells, mastered the influence of different enzyme digestion treatment time on subsequent chromosome preparation, which is mainly related to genome size; 3) Fluorescent probe construction and fluorescence in situ Compared with similar methods, hybridization technology also reflects the characteristics of fastness, high efficiency and strong signal;
虽然上述技术中的一种或几种在相关的研究中得到了应用,但是综合应用这样几种技术构成完整的实验方案,并应用到高灵敏高效检测小麦转基因未见到相关研究报道。本发明首次利用该套研究方案成功地以高灵敏度检测转基因小麦,克服了现有技术中植物常染色体检测效果不理想的问题,是一种技术突破,体现了该研究方法具有较好的先进性、创新性和实用性。 Although one or several of the above technologies have been applied in related research, there are no relevant research reports on the comprehensive application of these technologies to form a complete experimental program and their application to highly sensitive and efficient detection of wheat transgenics. For the first time, the present invention successfully detects transgenic wheat with high sensitivity using this set of research schemes, which overcomes the problem of unsatisfactory detection of plant autosomes in the prior art. It is a technological breakthrough and reflects the advanced nature of the research method , innovation and practicality. the
综上所述,本发明提供下列各项: In summary, the present invention provides the following items:
1.一种高灵敏高效的检测和鉴定转基因小麦的方法,其包括下述步骤: 1. A method for highly sensitive and efficient detection and identification of transgenic wheat, comprising the steps of:
1)通过N2O气体预处理并酶解转基因小麦和对照材料的根尖分生区细胞分裂旺盛的组织获得图像清晰、染色体分散良好的中期分裂相标本; 1) Pretreatment with N 2 O gas and enzymatic hydrolysis of the tissues with vigorous cell division in the root apical meristem of transgenic wheat and control materials to obtain metaphase specimens with clear images and well-dispersed chromosomes;
2)利用切口平移方法标记所需检测的目的片段的荧光探针; 2) Use the nick translation method to label the fluorescent probe of the target fragment to be detected;
3)利用步骤2)构建的所需检测的目的片段的荧光探针对利用步骤1)转基因小麦中期分裂相染色体进行荧光原位杂交; 3) using the fluorescent probe of the target fragment to be detected in step 2) to perform fluorescence in situ hybridization on the metaphase chromosome of transgenic wheat using step 1);
4)分析步骤3)得到的荧光原位杂交结果,和对照材料进行比对确定待检测转基因小麦中荧光信号的分布。 4) Analyzing the fluorescence in situ hybridization results obtained in step 3), and comparing them with the control materials to determine the distribution of fluorescent signals in the transgenic wheat to be detected. the
2.第1项所述的方法,其中步骤1)包括下述步骤:(a)N2O气体预处理:取合适的小麦根尖,放在湿润的离心管里,放入N2O气室中处理0.5-5小时,N2O的压强为10ATM(1.01Mpa);(b)将N2O气体预处理的根尖固定;(c)酶解处理:将固定好的根尖用水洗涤,切下根尖分生组织,用果胶酶和纤维素酶处理30min-2h。
2. The method described in
3.第1项所述的方法,其中步骤2)通过酶切分离转基因载体中的目的片段,借助切口平移方法对目的基因扩增产物进行荧光探针标记,所述目的片段为转基因载体携带的基因片段。
3. The method described in
4.一种获取形态良好的中期分裂相的植物染色体的方法,所述方法包括下述步骤: 4. A method for obtaining the plant chromosome of the metaphase cleavage phase with good shape, said method may further comprise the steps:
(a)N2O气体预处理:取所述植物合适的根尖或芽尖,放在湿润的离心管里,放入N2O气室中处理0.5-5小时,N2O的压强为10ATM(1.01Mpa);(b)将N2O气体预处理的根尖或芽尖固定;(c)酶解处理:将固定好的根尖或芽尖用水洗涤,切下根尖或芽尖分生组织,用果胶酶和纤维素酶处理30min-2h。 (a) N 2 O gas pretreatment: take the suitable root tip or bud tip of the plant, put it in a wet centrifuge tube, put it into a N 2 O gas chamber and process it for 0.5-5 hours, and the pressure of N 2 O is 10ATM (1.01Mpa); (b) fix the root tip or shoot tip pretreated by N 2 O gas; (c) enzymatic treatment: wash the fixed root tip or shoot tip with water, cut off the root tip or shoot tip Meristem, treated with pectinase and cellulase for 30min-2h.
5.第4项所述的方法,其中所述植物包括单子叶植物或双子叶植物。 5. The method of item 4, wherein the plant comprises a monocot or a dicot. the
6.第4项所述的方法,其中所述植物选自小麦、短柄草、海带、大豆、番茄、棉花、梨、百合或高粱。 6. The method of item 4, wherein the plant is selected from wheat, brachypodium, kelp, soybean, tomato, cotton, pear, lily or sorghum. the
附图说明 Description of drawings
从下面结合附图的详细描述中,本发明的上述特征和优点将更明显,其中: From the following detailed description in conjunction with the accompanying drawings, the above-mentioned features and advantages of the present invention will be more apparent, wherein:
图1显示小麦转基因信号的染色体定位: Figure 1 shows the chromosomal location of the wheat transgenic signal:
图1A,对照材料济麦19细胞中期分裂相,细胞中42条小麦染色体,为本实验的阴性对照;图1B:Ta DREB3转基因小麦细胞中期分裂相,箭头示转基因信号,位于同源染色体的端部,探针所用目的片段长度为1264bp,其灵敏性可达到2kb左右,绿色荧光信号在显微镜下清晰可见。 Figure 1A, Metaphase of control material Jimai 19 cells, 42 wheat chromosomes in the cell, which is the negative control of this experiment; Figure 1B: Metaphase of Ta DREB3 transgenic wheat cells, the arrow indicates the transgene signal, located at the end of the homologous chromosome In the section, the length of the target fragment used by the probe is 1264bp, and its sensitivity can reach about 2kb, and the green fluorescent signal can be clearly seen under the microscope. the
图2显示不同植物的中期染色体,A,大豆(2n=40),B,棉花(2n=52), C,水稻(2n=24),D,海带孢子体(2n=62),E,高粱(2n=20),F,短柄草(2n=10),G,百合(2n=36),H,梨(2n=34),I,番茄(2n=24)。 Figure 2 shows the metaphase chromosomes of different plants, A, soybean (2n=40), B, cotton (2n=52), C, rice (2n=24), D, kelp sporophyte (2n=62), E, sorghum (2n=20), F, Brachypodium (2n=10), G, Lily (2n=36), H, Pear (2n=34), I, Tomato (2n=24). the
图3显示不同笑气处理时间的中期染色体: Figure 3 shows metaphase chromosomes at different times of nitrous oxide treatment:
图3A,普通小麦根尖处理1小时的条件制备的中期细胞染色体,染色体过长,一个细胞中的染色体会交叠在一起。图3B,普通小麦根尖处理2小时的条件制备的中期细胞染色体,染色体清晰可见,辨识清楚。图3C,梨的根尖细胞处理1:30h,染色体会高度凝缩,甚至有的染色体会出现边缘的丝状。 Figure 3A, the chromosomes of metaphase cells prepared under the condition of common wheat root tip treatment for 1 hour, the chromosomes are too long, and the chromosomes in one cell will overlap. Figure 3B, the chromosomes of metaphase cells prepared under the condition of common wheat root tip treatment for 2 hours, the chromosomes are clearly visible and clearly identified. Figure 3C, pear root tip cells treated for 1:30h, the chromosomes will be highly condensed, and some chromosomes will even appear filamentous at the edge. the
图4显示不同酶解时间的中期染色体: Figure 4 shows metaphase chromosomes at different enzymatic hydrolysis times:
图4A,小麦的染色体酶解40m,酶解时间短,染色体就会呈现出细长,不规则的形态。图4B,小麦根尖细胞酶解时间达到55m甚至更长的时间,细胞中的染色体就会形态各异,大部分的染色体交叠在一起,不能完全辨识。图4C,梨根尖细胞酶解30m,时间短,染色体会出现边缘丝状,不能完全辨识。 Figure 4A, the enzymatic hydrolysis of wheat chromosomes is 40m, and the enzymatic hydrolysis time is short, the chromosomes will appear elongated and irregular. Figure 4B, when the enzymatic hydrolysis time of wheat root tip cells reaches 55 m or even longer, the chromosomes in the cells will have different shapes, and most of the chromosomes overlap and cannot be fully identified. Figure 4C, pear root tip cells were enzymatically hydrolyzed for 30m, and the time was short, and the chromosomes would appear filamentous at the edge, which could not be fully identified. the
具体实施方式 Detailed ways
下面参考实施例和附图详细描述本发明。本领域的普通技术人员可以理解的是,下述实施例是举例说明的目的,其不应以任何方式解释为对本发明的限制。本发明的保护范围由后附的权利要求所限定。 The present invention is described in detail below with reference to Examples and drawings. Those of ordinary skill in the art can understand that the following examples are for the purpose of illustration and should not be construed as limiting the present invention in any way. The protection scope of the present invention is defined by the appended claims. the
另外,本领域技术人员还应该理解,除非另外具体说明,下述实施例中所用的试剂均为市售分析纯级别的试剂。 In addition, those skilled in the art should also understand that unless otherwise specified, the reagents used in the following examples are commercially available reagents of analytical grade. the
实施例1.Ta DREB3转基因小麦与对照材料济麦19荧光原位杂交的鉴定 Example 1. Identification of Ta DREB3 transgenic wheat and control material Jimai 19 fluorescence in situ hybridization
1.转基因小麦有丝分裂中期分裂相的制备 1. Preparation of transgenic wheat mitotic metaphase
所用Ta DREB3转基因小麦与对照材料济麦19,来自中国农科院马有志实验室提供(XiaoYan H,Ming C,HuiJun X,ShiQing G,XianGuo C,LianCheng L,LiPu D,XinGuo Y,YouZhi M(2005)Obtaining of transgenic wheats with GH-DREB gene and their physiological index analysis on drought tolerance.Southwest China Journal of Agricultural Sciences 18:616-620)。 The Ta DREB3 transgenic wheat and the reference material Jimai 19 were provided by Ma Youzhi Laboratory, Chinese Academy of Agricultural Sciences (XiaoYan H, Ming C, HuiJun X, ShiQing G, XianGuo C, LianCheng L, LiPu D, XinGuo Y, YouZhi M( 2005) Obtaining of transgenic wheats with GH-DREB gene and their physiological index analysis on drought tolerance. Southwest China Journal of Agricultural Sciences 18:616-620). the
1)N2O处理根尖 1) N 2 O treatment of root tips
待根尖长到2-3cm时,剪下,放在湿润的离心管里,盖上盖子后放入 N2O气室中处理1-3h,压强为10ATM (1.01Mpa); When the root tip grows to 2-3cm, cut it off, put it in a wet centrifuge tube, cover it and put it in a N2O air chamber for 1-3h, the pressure is 10ATM (1.01Mpa);
2)根尖固定 2) root tip fixation
90%乙酸固定5-10分钟(不超过1h),蒸馏水洗2次。固定后的根尖可转入70%的乙醇中放入-20℃可保存多年; Fix with 90% acetic acid for 5-10 minutes (no more than 1 hour), and wash with distilled water twice. The fixed root tips can be transferred to 70% ethanol and stored at -20°C for many years;
3)酶解 3) Enzymolysis
用滤纸将根尖上的水稍微吸干,将根尖分生组织切下,放入果胶酶和纤维素酶的20μL混合液(酶解液配制:把一个塑料培养皿放到天平上,向里面加入1×柠檬酸缓冲液(10mM柠檬酸钠+10mM EDTA,pH 5.5)9.7g,取出置于冰上,称取0.1g果胶酶Y-23(购自日本Japan Yakult公司,1%w/w)和0.2g纤维素酶Onozuka R-10(购自日本Japan Yakult公司,2%w/w)加入缓冲液中,用枪头吹吸助溶,酶溶解后用分液器分装到0.5ml薄壁PCR管中,-20℃保存)中,37℃水浴40-60分钟, Use filter paper to blot the water on the root tip slightly dry, cut off the root tip meristem, and put in 20 μL of a mixture of pectinase and cellulase (enzymolysis solution preparation: put a plastic petri dish on a balance, Add 9.7 g of 1 × citric acid buffer (10 mM sodium citrate + 10 mM EDTA, pH 5.5), take it out and put it on ice, weigh 0.1 g of pectinase Y-23 (purchased from Japan Yakult Company, 1% w/w) and 0.2g cellulase Onozuka R-10 (purchased from Japan Yakult Company, 2% w/w) were added to the buffer solution, blown and sucked with a pipette tip to aid dissolution, and the enzyme was dissolved and then packed with a dispenser into a 0.5ml thin-walled PCR tube, stored at -20°C), in a 37°C water bath for 40-60 minutes,
4)滴片 4) Drop tablets
用70%酒精洗2次,洗第二次时留一点酒精,大约200ul在离心管里,用解剖针将根尖捣碎,低速(<2000转)离心10秒左右,将酒精倒干,加冰乙酸(每个根尖20-40μl,视植物根尖大小)悬浮根尖细胞。 Wash twice with 70% alcohol, leave a little alcohol for the second wash, put about 200ul in the centrifuge tube, mash the root tip with a dissecting needle, centrifuge at low speed (<2000 rpm) for about 10 seconds, drain the alcohol, add Glacial acetic acid (20-40 μl per root tip, depending on the size of the root tip of the plant) was used to suspend the root tip cells. the
5)镜检 5) Microscopic examination
将干净的载玻片放在湿润的盒子中,每张载玻片滴6-7μl根尖细胞悬浮液,盖上盒盖,5分钟以后镜检,将染色体制片标本保存在冰箱中备用。 Put the clean glass slides in a humid box, drop 6-7μl root tip cell suspension on each slide, cover the box lid, check under the microscope after 5 minutes, and keep the chromosome preparation specimens in the refrigerator for later use. the
2.Ta DREB3目的基因的探针标记 2. Probe labeling of Ta DREB3 target gene
1)将下列组分在冰上加入离心管中 1) Add the following components to a centrifuge tube on ice
其中Ta DREB3(SEQ ID No.1,GenBank:FJ560494.1)利用酶切从转基因载体上切下,浓度为200ng/μl,上述各种组分加好后,用枪头反复吹 打混匀,不能涡旋,15℃保温2小时。置于金属浴仪(H2O3-PRO,中国)中15℃反应2h。(标记的-dNTP为Alexa Fluor-488-dUTP(绿光),购自Invitrogen公司;DNA聚合酶I购自Invitrogen公司,浓度为10U/μL,可直接使用,10x Nick缓冲液:100ml缓冲液中包含Tris 6.05g,MgCl2,0.47g,用HCl调pH 7.8); Among them, Ta DREB3 (SEQ ID No.1, GenBank: FJ560494.1) was excised from the transgenic vector by enzyme digestion, and the concentration was 200ng/μl. Vortex and incubate at 15°C for 2 hours. Place it in a metal bath (H2O3-PRO, China) at 15°C for 2h. (The labeled-dNTP is Alexa Fluor-488-dUTP (green light), purchased from Invitrogen; DNA polymerase I was purchased from Invitrogen, with a concentration of 10U/μL, which can be used directly, 10x Nick buffer: in 100ml buffer Contains Tris 6.05g, MgCl 2 , 0.47g, adjusted to pH 7.8 with HCl);
2)13000转离心30-40分钟,弃上清液,分别用70%乙醇和无水乙醇洗一次沉淀,避光晾干。 2) Centrifuge at 13,000 rpm for 30-40 minutes, discard the supernatant, wash the precipitate once with 70% ethanol and absolute ethanol, and dry in the dark. the
3)加10μl 2×SSC,1×TE缓冲液(pH 7.0),使探针终浓度为200ng/ul。 3) Add 10 μl of 2×SSC, 1×TE buffer (pH 7.0) to make the final concentration of the probe 200ng/ul. the
3.利用标记好的Ta DREB3目的基因的探针对Ta DREB3转基因小麦与对照材料济麦19进行荧光原位杂交的鉴定 3. Identification of Ta DREB3 transgenic wheat and control material Jimai 19 by fluorescence in situ hybridization using the probe of the labeled Ta DREB3 target gene
1)用程序1的方法制备Ta DREB3转基因小麦与对照材料济麦19(来自中国农科院马有志实验室)中期染色体标本。
1) Prepare metaphase chromosome samples of Ta DREB3 transgenic wheat and control material Jimai 19 (from Ma Youzhi Laboratory, Chinese Academy of Agricultural Sciences) by the method of
2)将待杂交标本(制片)放入紫外交联仪(code-No.CL-1000,购自美国UVP公司)中0.125J/cm2交联。 2) Put the specimen (prepared sheet) to be hybridized into an ultraviolet crosslinker (code-No. CL-1000, purchased from UVP Company, USA) for crosslinking at 0.125J/cm2. the
3)用2×SSC(0.3mol/L NaCl,0.03mol/L柠檬酸钠),1×TE缓冲液(10mmol/L Tris-HCl,1mmol/L EDTA,pH 8.0)稀释探针,不同的探针稀释比例不同,一般1∶5-1∶10稀释。 3) Dilute the probe with 2×SSC (0.3mol/L NaCl, 0.03mol/L sodium citrate), 1×TE buffer (10mmol/L Tris-HCl, 1mmol/L EDTA, pH 8.0), different probes The needle dilution ratio is different, generally 1:5-1:10 dilution. the
4)将制片放在冰上,加5-6μL杂交液,盖上塑料盖玻片,放入小铁盆中(铁盆中垫有吸水纸,用水喷湿),用塑料盒子盖上,放入沸水中5min,然后放入已预热的湿盒中55℃杂交过夜。 4) Put the preparation on ice, add 5-6 μL of hybridization solution, cover with a plastic cover glass, put it into a small iron basin (the iron basin is lined with absorbent paper, spray it with water), cover it with a plastic box, Put into boiling water for 5min, and then put into a preheated humid box at 55°C for overnight hybridization. the
5)将制片从湿盒中取出,放入2×SSC中使盖玻片滑落,用吸水纸把片子背面擦干,滴上一滴含DAPI的抗淬灭剂(H-1200,购自美国Vector Labs公司),盖上24×50mm的盖玻片,数分钟后即可用荧光显微镜(Olympus BX61)进行镜检、照相(Magnafier CCD camera)。 5) Take the slide out of the wet box, put it in 2×SSC to make the cover glass slide off, dry the back of the slide with absorbent paper, and drop a drop of antifade agent containing DAPI (H-1200, purchased from the United States Vector Labs), cover with a 24×50mm cover glass, and use a fluorescent microscope (Olympus BX61) for microscopic examination and photography (Magnafier CCD camera) after a few minutes. the
4.结果和讨论 4. Results and Discussion
研究结果见图1。 The results of the study are shown in Figure 1. the
如图1A所示,对照材料济麦19细胞中期分裂相,细胞中42条小麦 染色体可以清晰进行辨认,绿色通道是探针信号,即使曝光很强,绿色探针也没有荧光信号,为本实验的阴性对照;图1B所示:Ta DREB3转基因小麦细胞中期分裂相,箭头示转基因信号,位于同源染色体的端部,探针所用目的片段长度为1264bp,其灵敏性可达到2kb左右,绿色荧光信号在显微镜下清晰可见,在染色体上直观清楚,确认为转基因阳性植株,为后续生物学实验提供基础。本次试验生物学重复三次,均为一致的结果。 As shown in Figure 1A, the control material Jimai 19 cell metaphase, 42 wheat chromosomes in the cell can be clearly identified, the green channel is the probe signal, even if the exposure is strong, the green probe has no fluorescent signal, for this experiment negative control; as shown in Figure 1B: Ta DREB3 transgenic wheat cell metaphase, the arrow shows the transgene signal, located at the end of the homologous chromosome, the length of the target fragment used by the probe is 1264bp, and its sensitivity can reach about 2kb, green fluorescence The signal is clearly visible under the microscope and intuitively clear on the chromosome, confirming that it is a transgene-positive plant, which provides a basis for subsequent biological experiments. The biological experiment was repeated three times with consistent results. the
本研究首次利用2kb左右的目的基因PCR扩增产物作为荧光探针,对转基因小麦进行鉴定,结果显示信号非常清晰,表明利用本发明采用的方法成功检测和鉴定了转基因小麦阳性植株,本实验从发种子到鉴定结束只是需要3天时间,不仅高效而且灵敏,灵敏度可达到2-3kb。 For the first time in this study, the target gene PCR amplification product of about 2 kb was used as a fluorescent probe to identify transgenic wheat, and the results showed that the signal was very clear, indicating that the positive plants of transgenic wheat were successfully detected and identified by the method adopted in the present invention. It only takes 3 days from sending seeds to the end of identification, which is not only efficient but also sensitive, and the sensitivity can reach 2-3kb. the
实施例2.不同植物的中期染色体制备 Embodiment 2. The metaphase chromosome preparation of different plants
1.种子萌发 1. Germination of seeds
(1)将多种植物的种子分别放在垫有湿润滤纸的培养皿里,21-23℃恒温箱中萌发。 (1) The seeds of various plants are respectively placed in petri dishes lined with moist filter paper, and germinated in an incubator at 21-23°C. the
2.植物染色体标本制备 2. Plant chromosome specimen preparation
1)同实施例1.1。待根尖长到2-3cm时,剪下,放在湿润的离心管里,笑气处理30分钟至5小时,根据植物种类不同,基因组大小不同,笑气处理时间不同,比如花生、大豆等植物根尖处理30-40分钟,小麦、玉米等植物根尖处理2小时,而对于像百合这样的大基因组植物根尖处理时间可达到4-5小时。 1) With embodiment 1.1. When the root tip grows to 2-3cm, cut it off, put it in a humid centrifuge tube, and treat it with nitrous oxide for 30 minutes to 5 hours. Depending on the plant species, the genome size is different, and the time of nitrous oxide treatment is different, such as peanuts, soybeans, etc. Plant root tips are treated for 30-40 minutes, wheat, corn and other plant root tips are treated for 2 hours, and for plants with large genomes such as lilies, the treatment time can reach 4-5 hours. the
2)同实施例1.2。 2) With embodiment 1.2. the
3)同实施例1.3。 3) With embodiment 1.3. the
4)同实施例1.4。用滤纸将根尖上的水稍微吸干,将根尖分生组织切下,放入果胶酶和纤维素酶的混合液中,37℃水浴40-80分钟,根据植物基因组大小的不同,酶解时间也不相同,比如花生、大豆等植物根尖酶解20-35分钟,小麦、玉米等植物根尖酶解48分钟,而对于像百合这样的大基因组植物根尖酶解时间可达到1-2个小时。 4) With embodiment 1.4. Blot the water on the root tip with filter paper, cut off the root tip meristem, put it in a mixture of pectinase and cellulase, and put it in a water bath at 37°C for 40-80 minutes. Depending on the size of the plant genome, The enzymatic hydrolysis time is also different, such as 20-35 minutes for the root tips of plants such as peanuts and soybeans, and 48 minutes for the root tips of plants such as wheat and corn, and the enzymatic hydrolysis time for the root tips of plants with large genomes such as lilies can reach 1-2 hours. the
5)同实施例1.5。 5) With embodiment 1.5. the
3.结果和讨论 3. Results and Discussion
研究结果见图2,图3和图4。 The results of the study are shown in Figure 2, Figure 3 and Figure 4. the
如图2所示,大豆(2n=40),棉花(2n=52),水稻(2n=24),海带孢子体(2n=62),高粱(2n=20),短柄草(2n=10),百合(2n=36),梨(2n=34),番茄(2n=24)等单子叶植物和双子叶植物的中期细胞染色体,染色体形态呈棒状结构,呈现明显的着丝粒,清晰可见,方便后续的实验。 As shown in Figure 2, soybean (2n=40), cotton (2n=52), rice (2n=24), kelp sporophyte (2n=62), sorghum (2n=20), Brachypodium (2n=10 ), lily (2n=36), pear (2n=34), tomato (2n=24) and other monocotyledonous and dicotyledonous plant metaphase cell chromosomes, the chromosome shape is rod-shaped structure, showing obvious centromere, clearly visible , which is convenient for subsequent experiments. the
研究结果见图3和图4。 The results of the study are shown in Figures 3 and 4. the
图3A,普通小麦根尖处理1小时的条件制备的中期细胞染色体,染色体过长,一个细胞中的染色体会交叠在一起。图3B,普通小麦根尖处理2小时的条件制备的中期细胞染色体,染色体清晰可见,辨识清楚。图3C,梨的根尖细胞处理1:30h,染色体会高度凝缩,甚至有的染色体会出现边缘的丝状。处理时间不当过长或者过短都会影响染色体的制备,根据植物种类不同,基因组大小不同,笑气处理时间不同,比如花生、大豆等植物根尖处理30-40分钟,小麦、玉米等植物根尖处理2小时,而对于像百合这样的大基因组植物根尖处理时间可达到4-5小时。 Figure 3A, the chromosomes of metaphase cells prepared under the condition of common wheat root tip treatment for 1 hour, the chromosomes are too long, and the chromosomes in one cell will overlap. Figure 3B, the chromosomes of metaphase cells prepared under the condition of common wheat root tip treatment for 2 hours, the chromosomes are clearly visible and clearly identified. Figure 3C, pear root tip cells treated for 1:30h, the chromosomes will be highly condensed, and some chromosomes will even appear filamentous at the edge. Improper treatment time that is too long or too short will affect the preparation of chromosomes. Depending on the plant species, the genome size is different, and the treatment time with nitrous oxide is different. For example, the root tips of plants such as peanuts and soybeans are treated for 30-40 minutes, and the root tips of plants such as wheat and corn are treated for 30-40 minutes. The treatment time is 2 hours, and the treatment time can reach 4-5 hours for the root tips of plants with large genomes like lilies. the
图4A,小麦的染色体酶解40分钟,酶解时间短,染色体就会呈现出细长,不规则的形态。图4B,小麦根尖细胞酶解时间达到55分钟甚至更长的时间,细胞中的染色体就会形态各异,大部分的染色体交叠在一起,不能完全辨识。图4C,梨根尖细胞酶解30分钟,时间短,染色体会出现边缘丝状,不能完全辨识。酶解时间的把握直接影响染色体的制备以及后期的染色体的鉴定。根据植物基因组大小的不同,酶解时间也不相同,比如花生、大豆等植物根尖酶解20-35分钟,小麦、玉米等植物根尖酶解48分钟,而对于像百合这样的大基因组植物根尖酶解时间可达到1-2个小时。 Figure 4A, wheat chromosomes were enzymatically hydrolyzed for 40 minutes. If the enzymatic hydrolysis time is short, the chromosomes will appear elongated and irregular. Figure 4B, when the enzymatic hydrolysis time of wheat root tip cells reaches 55 minutes or longer, the chromosomes in the cells will have different shapes, and most of the chromosomes overlap and cannot be fully identified. Figure 4C, pear root tip cells were enzymatically hydrolyzed for 30 minutes. If the time is short, the chromosomes will appear filamentous at the edge and cannot be fully identified. The grasp of the enzymatic hydrolysis time directly affects the preparation of chromosomes and the identification of later chromosomes. Depending on the size of the plant genome, the enzymatic hydrolysis time is also different. For example, the root tip of plants such as peanuts and soybeans is enzymatically hydrolyzed for 20-35 minutes, and the root tip of plants such as wheat and corn is enzymatically hydrolyzed for 48 minutes. For plants with large genomes such as lily The root tip enzymatic hydrolysis time can reach 1-2 hours. the
应该理解,尽管参考其示例性的实施方案,已经对本发明进行具体地显示和描述,但是本领域的普通技术人员应该理解,在不背离由权利要求书所定义的本发明的精神和范围的条件下,可以在其中进行各种形式和细节的变化,可以进行各种实施方案的任意组合。 It should be understood that while the invention has been particularly shown and described with reference to exemplary embodiments thereof, those skilled in the art will appreciate that, without departing from the spirit and scope of the invention as defined by the appended claims, Various changes in form and details can be made therein, and any combination of various embodiments can be made. the
参考文献 references
Harwood WA,Bilham LJ,Travella S,Salvo-Garrido H,Snape JW(2004)Fluorescence in situ hybridization to localize transgenes in plant chromosomes.METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA-286:327-340 Harwood WA, Bilham LJ, Travelella S, Salvo-Garrido H, Snape JW (2004) Fluorescence in situ hybridization to localize transgenes in plant chromosomes. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA-286: 327-340
Kato A,Lamb JC,Birchler JA (2004)Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize.Proceedings of the National Academy of Sciences of the United States of America 101:13554-13559 Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize.Proceedings of the National Academy of Sciences of the United States of America 941-1355 941:135
Kenton A,Khashoggi A,Parokonny A,Bennett M,Lichtenstein C(1995)Chromosomal location of endogenous geminivirus-related DNA sequences inNicotiana tabacum L.Chromosome Research 3:346-350 Kenton A, Khashoggi A, Parokonny A, Bennett M, Lichtenstein C (1995) Chromosomal location of endogenous geminivirus-related DNA sequences in Nicotiana tabacum L. Chromosome Research 3: 346-350
Miller T,Hutchinson J,Reader S (1983)The identification of the nucleolus organiser chromosomes of diploid wheat.TAG Theoretical and Applied Genetics 65:145-147 Miller T, Hutchinson J, Reader S (1983) The identification of the nucleus organiser chromosomes of diploid wheat. TAG Theoretical and Applied Genetics 65: 145-147
Mukai Y,Endo T,Gill B(1990)Physical mapping of the 5S rRNA multigene family in common wheat.Journal of Heredity 81:290-295 Mukai Y, Endo T, Gill B(1990) Physical mapping of the 5S rRNA multigene family in common wheat. Journal of Heredity 81: 290-295
Mukai Y,Nakahara Y,Yamamoto M (1993)Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes.Genome 36:489-494 Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489-494
Pedersen C,Linde-Laursen I (1995)The relationship between physical and genetic distances at the Hor1 and Hor2 loci of barley estimated by two-colour fluorescent in situ hybridization.TAG Theoretical and Applied Genetics 91:941-946 Pedersen C, Linde-Laursen I (1995) The relationship between physical and genetic distances at the Hor1 and Hor2 loci of barley estimated by two-colour fluorescent in situ hybridization.TAG Theoretical and Applied Genetics 91: 941-9
Schwarzacher T,Leitch A,Bennett M,Heslop-Harrison J (1989)In situ localization of parental genomes in a wide hybrid.Annals of Botany 64:315-324 Schwarzacher T, Leitch A, Bennett M, Heslop-Harrison J (1989) In situ localization of parental genomes in a wide hybrid. Annals of Botany 64: 315-324
Xiao Yan H,Ming C,HuiJun X,ShiQing G,XianGuo C,LianCheng L,LiPu D,XinGuo Y,YouZhi M (2005)Obtaining of transgenic wheats with GH-DREB gene and their physiological index analysis on drought tolerance.Southwest China Journal of Agricultural Sciences 18:616-620 Xiao Yan H, Ming C, HuiJun X, ShiQing G, XianGuo C, LianCheng L, LiPu D, XinGuo Y, YouZhi M (2005) Obtaining of transgenic wheats with GH-DREB gene and their physiological index analysis on drought tolerance.Southwest China Journal of Agricultural Sciences 18: 616-620
金危危,李霞,李宗芸,宁顺斌,凌定厚,宋运淳(2001)转基因水稻中外源基因的荧光原位杂交(FISH)分析.实验生物学报34:163-168 Jin Weiwei, Li Xia, Li Zongyun, Ning Shunbin, Ling Dinghou, Song Yunchun (2001) Fluorescence in situ hybridization (FISH) analysis of exogenous genes in transgenic rice. Acta Experimental Biology 34: 163-168
叶兴国,陈明,杜丽璞,徐惠君(2011)小麦转基因方法及其评述.遗传33:422-430 Ye Xingguo, Chen Ming, Du Lipu, Xu Huijun (2011) Wheat transgenic methods and their review. Genetics 33: 422-430
荣红颖,张晓东,郭新梅(2007)植物荧光原位杂交技术的发展及在基因工程育种中的应用.分子植物育种5:89-96 。 Rong Hongying, Zhang Xiaodong, Guo Xinmei (2007) The development of plant fluorescence in situ hybridization technology and its application in genetic engineering breeding. Molecular Plant Breeding 5: 89-96.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310127449XA CN103160612A (en) | 2013-04-12 | 2013-04-12 | Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310127449XA CN103160612A (en) | 2013-04-12 | 2013-04-12 | Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103160612A true CN103160612A (en) | 2013-06-19 |
Family
ID=48584146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310127449XA Pending CN103160612A (en) | 2013-04-12 | 2013-04-12 | Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103160612A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103993095A (en) * | 2014-06-10 | 2014-08-20 | 中国科学院西北高原生物研究所 | Preparation method of cell chromosome metaphase specimen of psathyrostachys nevski plant |
CN104006997A (en) * | 2014-06-10 | 2014-08-27 | 中国科学院西北高原生物研究所 | Chromosome flaking method of leymus hochst plant root tips |
CN105567860A (en) * | 2016-03-15 | 2016-05-11 | 南京晓庄学院 | Ammopiptanthus mongolicus chromosome fluorescence in-situ hybridization method |
CN105586419A (en) * | 2016-01-29 | 2016-05-18 | 江汉大学 | Detection method of transgenic components in wheat processing product |
CN105603077A (en) * | 2016-01-29 | 2016-05-25 | 江汉大学 | Detection method of wheat transgenic ingredients |
CN105648092A (en) * | 2016-03-15 | 2016-06-08 | 南京晓庄学院 | Method for fluorescence in situ hybridization of ammopiptanthus nanus chromosome |
CN106350593A (en) * | 2016-09-19 | 2017-01-25 | 长江师范学院 | Dripping piece preparation method of plant chromosome |
CN107246987A (en) * | 2017-06-06 | 2017-10-13 | 南京农业大学 | A kind of method of Helminthosporium sativum chromosome sectioning |
CN110364224A (en) * | 2018-12-29 | 2019-10-22 | 上海北昂医药科技股份有限公司 | A Chromosome Division Phase Positioning and Sorting Method |
CN116855504A (en) * | 2023-05-11 | 2023-10-10 | 四川农业大学 | A wheat red ginkgo red stalk gene RgM4G52 and its KASP molecular markers and applications |
CN117929064A (en) * | 2024-01-24 | 2024-04-26 | 四川农业大学 | A method for preparing chromosomes of root meristems of buckwheat plants |
-
2013
- 2013-04-12 CN CN201310127449XA patent/CN103160612A/en active Pending
Non-Patent Citations (2)
Title |
---|
AKIO KATO ET AL: "Air drying method using nitrous oxide for chromosome counting in maize", 《BIOTECHNIC AND HISTOCHEMISTRY》 * |
AKIO KATO ET AL: "Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize", 《PNAS》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104006997B (en) * | 2014-06-10 | 2016-06-08 | 中国科学院西北高原生物研究所 | A kind of leymus plant root tip chromosome flaking method |
CN104006997A (en) * | 2014-06-10 | 2014-08-27 | 中国科学院西北高原生物研究所 | Chromosome flaking method of leymus hochst plant root tips |
CN103993095B (en) * | 2014-06-10 | 2016-02-10 | 中国科学院西北高原生物研究所 | A kind of Psathyrostachys plant cell chromosome division phases sample preparation method |
CN103993095A (en) * | 2014-06-10 | 2014-08-20 | 中国科学院西北高原生物研究所 | Preparation method of cell chromosome metaphase specimen of psathyrostachys nevski plant |
CN105586419A (en) * | 2016-01-29 | 2016-05-18 | 江汉大学 | Detection method of transgenic components in wheat processing product |
CN105603077A (en) * | 2016-01-29 | 2016-05-25 | 江汉大学 | Detection method of wheat transgenic ingredients |
CN105567860A (en) * | 2016-03-15 | 2016-05-11 | 南京晓庄学院 | Ammopiptanthus mongolicus chromosome fluorescence in-situ hybridization method |
CN105648092A (en) * | 2016-03-15 | 2016-06-08 | 南京晓庄学院 | Method for fluorescence in situ hybridization of ammopiptanthus nanus chromosome |
CN106350593A (en) * | 2016-09-19 | 2017-01-25 | 长江师范学院 | Dripping piece preparation method of plant chromosome |
CN107246987A (en) * | 2017-06-06 | 2017-10-13 | 南京农业大学 | A kind of method of Helminthosporium sativum chromosome sectioning |
CN110364224A (en) * | 2018-12-29 | 2019-10-22 | 上海北昂医药科技股份有限公司 | A Chromosome Division Phase Positioning and Sorting Method |
CN110364224B (en) * | 2018-12-29 | 2021-06-08 | 上海北昂医药科技股份有限公司 | A method for locating and sorting chromosome division phases |
CN116855504A (en) * | 2023-05-11 | 2023-10-10 | 四川农业大学 | A wheat red ginkgo red stalk gene RgM4G52 and its KASP molecular markers and applications |
CN117929064A (en) * | 2024-01-24 | 2024-04-26 | 四川农业大学 | A method for preparing chromosomes of root meristems of buckwheat plants |
CN117929064B (en) * | 2024-01-24 | 2025-02-11 | 四川农业大学 | A method for preparing chromosomes of root meristems of buckwheat plants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103160612A (en) | Improved method for detecting and identifying transgenic wheat with high sensitivity and high efficiency | |
CN103205500B (en) | A kind of quick analysis and the multi-color fluorescence in situ hybridization method of qualification Semen Tritici aestivi exogenous chromosome | |
CN102876801B (en) | Method for identifying exogenous chromosomes and chromosome segments in plant distant hybrids | |
CN102965443A (en) | Method for identifying purity of tobacco variety Zhongyan 90 by using specific molecular marker method | |
CN108588272A (en) | A kind of molecular labeling and its application with Plant Height in Wheat and spike length character main effect QTL compact linkage | |
CN107400715B (en) | Development and application of specialized molecular markers and probes for Deploid R. longa | |
CN104342434B (en) | The method for identifying molecules of cotton cells matter male sterile restoring line | |
CN101294161A (en) | Molecular marker linked to rice white-backed planthopper resistance gene and its development method | |
CN104004849A (en) | Method for quickly establishing metaphase chromosome karyotype of cucumber through genomic in-situ hybridization | |
CN107475390B (en) | Development and application of decaploid elytrigia elongata series repeat sequence specific probe | |
CN108796120A (en) | Haynaldia villosa 1VS chromosome-specific molecules labeled primer and its application | |
CN110331222A (en) | A kind of relevant molecular labeling of cotton fertility restorer and its application | |
CN110453008A (en) | A Molecular Marker ZMM6206 Tightly Linked to the Major Gene Loci of Sesame Leaf Length and Width and Its Application | |
CN106755507B (en) | Molecular detection method for distinguishing chromosomes of cultivated rye and wild rye | |
CN102747080B (en) | Molecular marker of pot shattering resistance trait major gene locus of rapes and application | |
Brammer et al. | Genomic in situ hybridization in Triticeae: a methodological approach | |
CN104419763B (en) | Physical positioning method for cucumber single-copy gene on chromosome | |
CN101988118B (en) | Rape oil content character major gene resistance bit and application | |
CN108396026B (en) | Development and application of specific molecular markers and fluorescent in situ hybridization probes for the blue grain trait of decoploid wheatgrass | |
CN117051166A (en) | dCAPS marker primer and method for rapidly screening high-content geraniol primrose glycoside tea tree germplasm | |
CN114350701B (en) | Method for preparing angiosperm haploid by egg cell specific expression gene ECS and application | |
CN116987814A (en) | Molecular marker, method, primer pair and kit for identifying melon pulp thickness character and application of molecular marker | |
CN106676171A (en) | Molecular detection method for multi-gene pyramiding breeding of cotton | |
CN109777884B (en) | Chromosome-specific Molecular Markers of 1Ssh in Goat grass and its application | |
Dong et al. | The use of FISH in chromosomal localization of transgenes in rice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130619 |