CN103149838B - The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process - Google Patents
The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process Download PDFInfo
- Publication number
- CN103149838B CN103149838B CN201310066499.1A CN201310066499A CN103149838B CN 103149838 B CN103149838 B CN 103149838B CN 201310066499 A CN201310066499 A CN 201310066499A CN 103149838 B CN103149838 B CN 103149838B
- Authority
- CN
- China
- Prior art keywords
- hydrogen production
- methanol
- flow
- formula
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 120
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 61
- 239000001257 hydrogen Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 238000002407 reforming Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000010438 heat treatment Methods 0.000 title claims 2
- 230000003044 adaptive effect Effects 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 230000008859 change Effects 0.000 claims abstract description 11
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000012886 linear function Methods 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims 1
- 229960004217 benzyl alcohol Drugs 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000002453 autothermal reforming Methods 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000013178 mathematical model Methods 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
针对甲醇自热重整制氢过程模型参数的不确定性,本发明提出的甲醇自热重整制氢过程的自适应控制方法不依赖于被控对象的精确数学模型,在模型失配时依然可以获得良好的控制效果。本发明采用自适应控制器根据期望氢气产量、实际氢气产量和实际氢气产量变化率来操纵反应原料甲醇水溶液的流量,同时采用具有重整温度约束的变比值控制器来操纵另一反应原料空气的流量。本发明可以适应甲醇自热重整制氢过程的模型参数不确定性和输入之间的耦合,实现对甲醇自热重整制氢过程的先进控制。
Aiming at the uncertainty of model parameters in the methanol autothermal reforming hydrogen production process, the self-adaptive control method for the methanol autothermal reforming hydrogen production process proposed by the present invention does not depend on the precise mathematical model of the controlled object, and remains stable when the model is mismatched. A good control effect can be obtained. In the present invention, an adaptive controller is used to control the flow rate of the reaction raw material methanol aqueous solution according to the expected hydrogen production, the actual hydrogen production and the actual hydrogen production change rate, and at the same time, a variable ratio controller with reforming temperature constraints is used to control the flow rate of the other reaction raw material air. flow. The invention can adapt to the coupling between model parameter uncertainty and input in the hydrogen production process of methanol autothermal reforming, and realizes the advanced control of the hydrogen production process of methanol autothermal reforming.
Description
技术领域technical field
本发明涉及甲醇自热重整制氢过程的控制方法,特别涉及甲醇自热重整制氢过程的自适应控制方法。The invention relates to a control method for the hydrogen production process of methanol autothermal reforming, in particular to an adaptive control method for the hydrogen production process of methanol autothermal reforming.
背景技术Background technique
随着能源危机的加剧,寻求可以替代化石燃料的新能源已经成为一个研究热点。能源问题对国民经济和国家发展有着重大影响,因此我国也将开发新能源作为一个战略。With the intensification of the energy crisis, seeking new energy sources that can replace fossil fuels has become a research hotspot. Energy issues have a major impact on the national economy and national development, so my country also takes the development of new energy as a strategy.
氢气被认为是一种高效的清洁能源。燃料电池技术的快速发展也在推动着氢能的开发。燃料电池是一种将化学能直接转化为电能的能源转换装置。燃料电池因其具有很高的能量转换效率而受到关注。燃料电池的一个非常合适的燃料就是氢气。但由于氢气分子小、易燃易爆等性质,导致氢气的存储和运输存在困难。甲醇自热重整制氢工艺是直接为燃料电池现场供氢的优选方案之一。Hydrogen is considered to be an efficient and clean energy. The rapid development of fuel cell technology is also promoting the development of hydrogen energy. A fuel cell is an energy conversion device that converts chemical energy directly into electrical energy. Fuel cells have attracted attention due to their high energy conversion efficiency. A very suitable fuel for fuel cells is hydrogen. However, due to the small size of hydrogen molecules, flammability and explosive properties, it is difficult to store and transport hydrogen. The methanol autothermal reforming hydrogen production process is one of the preferred solutions for directly supplying hydrogen to fuel cells on site.
甲醇自热重整制氢过程是一个涉及多个化学反应的复杂过程,是一个多输入多输出系统,并且模型参数具有不确定性,输入之间还存在着耦合。另外,燃料电池对输入气体的压力有严格的要求,频繁的大幅波动会引起燃料电池故障和缩短燃料电池的寿命。这些都给控制带来了困难,因此经典控制算法难以取得良好的控制效果。自适应控制因其具有适应变化的能力,成为一种可以应对系统不确定性的有效工具。The hydrogen production process of methanol autothermal reforming is a complex process involving multiple chemical reactions. It is a multi-input and multi-output system, and the model parameters are uncertain, and there are couplings between inputs. In addition, the fuel cell has strict requirements on the pressure of the input gas, and frequent large fluctuations will cause fuel cell failure and shorten the life of the fuel cell. All of these bring difficulties to the control, so the classical control algorithm is difficult to achieve good control effect. Adaptive control is an effective tool to cope with system uncertainty because of its ability to adapt to changes.
发明内容Contents of the invention
为解决甲醇自热重整制氢过程的控制问题,本发明提供一种甲醇自热重整制氢过程的自适应控制方法。In order to solve the control problem of the hydrogen production process of methanol autothermal reforming, the invention provides an adaptive control method for the hydrogen production process of methanol autothermal reforming.
甲醇自热重整制氢过程的自适应控制方法,其特征是采用自适应控制器根据期望氢气产量yd、实际氢气产量y和实际氢气产量变化率x2来操纵反应原料甲醇水溶液的流量u1,同时采用具有重整温度T约束的变比值控制器来操纵另一反应原料空气的流量u2,具体步骤包括:An adaptive control method for the hydrogen production process of methanol autothermal reforming, which is characterized in that an adaptive controller is used to manipulate the flow rate u of methanol aqueous solution as the reaction raw material according to the expected hydrogen production y d , the actual hydrogen production y and the actual hydrogen production change rate x 2 1. At the same time, use a variable ratio controller with a constraint on the reforming temperature T to manipulate the flow rate u 2 of another reaction raw material air. The specific steps include:
所述自适应控制器按以下实际氢气产量y和甲醇水溶液的流量u1之间的模型来操纵甲醇水溶液的流量u1:The adaptive controller manipulates the methanol - water flow u1 according to the following model between the actual hydrogen production y and the methanol - water flow u1:
式中,x1为表征实际氢气产量的状态变量,为x1的导数;为x2的导数;为u1的导数;d为干扰,其绝对值小于等于干扰的上限值dM;为x1、x2、u1、与d的线性函数,a1、a2、b1、b2为所述线性函数的正系数。In the formula, x 1 is the state variable representing the actual hydrogen production, is the derivative of x 1 ; is the derivative of x 2 ; is the derivative of u 1 ; d is interference, its absolute value is less than or equal to the upper limit value d M of interference; for x 1 , x 2 , u 1 , A linear function with d, a 1 , a 2 , b 1 , b 2 are positive coefficients of the linear function.
所述自适应控制器中,定义误差e1、误差e2和误差r为In the adaptive controller, define error e 1 , error e 2 and error r as
r=λe1+e2 (3)r=λe 1 +e 2 (3)
式中,λ为大于0的系数。In the formula, λ is a coefficient greater than 0.
所述自适应控制器中,甲醇水溶液的流量u1的导数为In the adaptive controller, the derivative of the methanol-water flow u 1 for
式中,δ、kv为大于0的系数;其中为yd的二阶导数;sgn(r)为符号函数;k(t)为In the formula, δ and k v are coefficients greater than 0; in is the second derivative of y d ; sgn(r) is a sign function; k(t) is
式中,σ、ω1、ω2为大于0的系数;h(x1,x2,u1)≥|-a1x1-a2x2+b1u1|。为神经网络的输出;Φ(Z)为作用函数,其中Z=VTX,V为4×N维的权值矩阵,N为神经元的数目,X=[x1 x2 u1 1]T为神经网络的输入;为N×1维的理想权值向量W的估计值,的更新规则为In the formula, σ, ω 1 and ω 2 are coefficients greater than 0; h(x 1 , x 2 , u 1 )≥|-a 1 x 1 -a 2 x 2 +b 1 u 1 |. is the output of the neural network; Φ(Z) is the action function, where Z=V T X, V is a 4×N-dimensional weight matrix, N is the number of neurons, X=[x 1 x 2 u 1 1] T is the input of the neural network; is the estimated value of the N×1-dimensional ideal weight vector W, The update rule for
式中,η、γ为大于0的系数。In the formula, η and γ are coefficients greater than 0.
所述变比值控制器中,空气的流量u2和甲醇水溶液的流量u1的比值为K,即 In the variable ratio controller, the ratio of the flow u2 of the air to the flow u1 of the aqueous methanol solution is K, that is
u2=K(n)u1 (7)u 2 =K(n)u 1 (7)
式中,K(n)为第n个采样周期空气的流量u2和甲醇水溶液的流量u1的比值;K(n)的取值根据重整温度T进行更新,重整温度T偏高时K(n)减小,重整温度T偏低时K(n)增大。In the formula, K(n) is the ratio of the flow rate u 2 of air and the flow rate u 1 of methanol aqueous solution in the nth sampling period; the value of K(n) is updated according to the reforming temperature T, when the reforming temperature T is too high K(n) decreases, and K(n) increases when the reforming temperature T is low.
甲醇自热重整制氢过程的自适应控制方法,其特征是所述实际氢气产量变化率x2采用高增益观测器进行估计,得到实际氢气产量变化率x2的估计值所述高增益观测器为An adaptive control method for the hydrogen production process of methanol autothermal reforming, characterized in that the actual hydrogen production rate of change x 2 is estimated by a high-gain observer to obtain an estimated value of the actual hydrogen production rate of change x 2 The high gain observer is
式中,为实际氢气产量x1的估计值,为的导数;为的导数;为y的估计值;k为观测器增益;p1、p2为系数,取值必须满足如下方程In the formula, is the estimated value of actual hydrogen production x 1 , for derivative of for derivative of is the estimated value of y; k is the observer gain; p 1 and p 2 are coefficients, and the values must satisfy the following equation
z2+p1z+p2=0 (9)z 2 +p 1 z+p 2 =0 (9)
具有互不相同根,其中z为所述方程的未知数。have mutually distinct roots, where z is the unknown of the equation.
本发明的有益效果是,提供了一种甲醇自热重整制氢过程的自适应控制方法。针对甲醇自热重整制氢过程的模型参数不确定性,本发明利用的自适应控制不依赖于被控对象的精确数学模型,这使得控制方法在模型失配时,仍然可以取得良好的控制效果。本发明采用所述自适应控制器根据期望氢气产量yd、实际氢气产量y和实际氢气产量变化率x2来操纵反应原料甲醇水溶液的流量u1,同时采用所述具有重整温度T约束的变比值控制器来操纵另一反应原料空气的流量u2。本发明可以适应甲醇自热重整制氢过程的模型参数不确定性和输入之间的耦合,实现对甲醇自热重整制氢过程的先进控制。The invention has the beneficial effects of providing an adaptive control method for the hydrogen production process of methanol autothermal reforming. Aiming at the uncertainty of model parameters in the hydrogen production process of methanol autothermal reforming, the adaptive control used in the present invention does not depend on the precise mathematical model of the controlled object, which enables the control method to still achieve good control when the model is mismatched Effect. In the present invention, the self-adaptive controller is used to manipulate the flow rate u 1 of the reaction raw material methanol aqueous solution according to the expected hydrogen production y d , the actual hydrogen production y and the actual hydrogen production rate x 2 , and at the same time, the above-mentioned reforming temperature T constraint is adopted A variable ratio controller is used to manipulate the flow rate u 2 of another reaction raw material air. The invention can adapt to the coupling between model parameter uncertainty and input in the hydrogen production process of methanol autothermal reforming, and realizes the advanced control of the hydrogen production process of methanol autothermal reforming.
附图说明Description of drawings
图1为本发明对应的甲醇自热重整制氢过程的控制框图。Fig. 1 is a control block diagram of the hydrogen production process corresponding to the autothermal reforming of methanol in the present invention.
具体实施方式Detailed ways
甲醇自热重整制氢过程的自适应控制方法以反应原料甲醇水溶液的流量u1和另一反应原料空气的流量u2为操纵变量,以氢气产量y和重整温度T为被控变量。The self-adaptive control method of methanol autothermal reforming hydrogen production process uses the flow rate u1 of the reaction raw material methanol water and the flow rate u2 of the other reaction raw material air as the manipulated variables, and takes the hydrogen production y and the reforming temperature T as the controlled variables.
甲醇自热重整制氢过程的自适应控制方法,其特征是采用自适应控制器根据期望氢气产量yd、实际氢气产量y和实际氢气产量变化率x2来操纵反应原料甲醇水溶液的流量u1,同时采用具有重整温度T约束的变比值控制器来操纵另一反应原料空气的流量u2,具体步骤包括:An adaptive control method for the hydrogen production process of methanol autothermal reforming, which is characterized in that an adaptive controller is used to manipulate the flow rate u of methanol aqueous solution as the reaction raw material according to the expected hydrogen production y d , the actual hydrogen production y and the actual hydrogen production change rate x 2 1. At the same time, use a variable ratio controller with a constraint on the reforming temperature T to manipulate the flow rate u 2 of another reaction raw material air. The specific steps include:
所述甲醇水溶液中,水和甲醇的摩尔比一般为(1.0~1.5):1,本实施例采用1.2:1。In the aqueous methanol solution, the molar ratio of water to methanol is generally (1.0-1.5):1, and 1.2:1 is used in this embodiment.
所述自适应控制器按以下实际氢气产量y和甲醇水溶液的流量u1之间的模型来操纵甲醇水溶液的流量u1:The adaptive controller manipulates the methanol - water flow u1 according to the following model between the actual hydrogen production y and the methanol - water flow u1:
式中,x1为表征实际氢气产量的状态变量,为x1的导数;为x2的导数;为u1的导数;d为干扰,其绝对值小于等于干扰的上限值dM;为x1、x2、u1、与d的线性函数,a1、a2、b1、b2为所述线性函数的正系数,正系数a1、a2、b1、b2的取值通过系统辨识实验获得。In the formula, x 1 is the state variable representing the actual hydrogen production, is the derivative of x 1 ; is the derivative of x 2 ; is the derivative of u 1 ; d is interference, its absolute value is less than or equal to the upper limit value d M of interference; for x 1 , x 2 , u 1 , A linear function with d, a 1 , a 2 , b 1 , b 2 are the positive coefficients of the linear function, and the values of the positive coefficients a 1 , a 2 , b 1 , b 2 are obtained through system identification experiments.
所述自适应控制器中,定义误差e1、误差e2和误差r为In the adaptive controller, define error e 1 , error e 2 and error r as
r=λe1+e2 (3)r=λe 1 +e 2 (3)
式中,λ为大于0的系数。In the formula, λ is a coefficient greater than 0.
所述自适应控制器中,甲醇水溶液的流量u1的导数为In the adaptive controller, the derivative of the methanol-water flow u 1 for
式中,δ、kv为大于0的系数;其中为yd的二阶导数;sgn(r)为符号函数;k(t)为In the formula, δ and k v are coefficients greater than 0; in is the second derivative of y d ; sgn(r) is a sign function; k(t) is
式中,σ、ω1、ω2为大于0的系数;h(x1,x2,u1)≥|-a1x1-a2x2+b1u1|。为神经网络的输出;Z=VTX=[z1 z2 … zN]T,V为4×N维的权值矩阵,N为神经元的数目,X=[x1 x2 u1 1]T为神经网络的输入;本实施例的作用函数In the formula, σ, ω 1 and ω 2 are coefficients greater than 0; h(x 1 , x 2 , u 1 )≥|-a 1 x 1 -a 2 x 2 +b 1 u 1 |. is the output of the neural network; Z=V T X=[z 1 z 2 … z N ] T , V is a 4×N-dimensional weight matrix, N is the number of neurons, X=[x 1 x 2 u 1 1] T is the input of neural network; The action function of the present embodiment
Φ(Z)=[φ1(z1) φ1(z2) … φ1(zN)]T Φ(Z)=[φ 1 (z 1 ) φ 1 (z 2 ) … φ 1 (z N )] T
为N×1维的理想权值向量W的估计值,的更新规则为 is the estimated value of the N×1-dimensional ideal weight vector W, The update rule for
式中,η、γ为大于0的系数。In the formula, η and γ are coefficients greater than 0.
所述自适应控制器中有系数λ,σ,ω1,ω2,δ,kv,η和γ,它们对性能存在影响。There are coefficients λ, σ, ω 1 , ω 2 , δ, k v , η and γ in the adaptive controller, which have an influence on the performance.
λ主要影响动态性能。λ的取值越大,动态响应速度加快,但同时操纵变量的变化也更为剧烈,这提高了对执行器的要求。因此,λ的取值需要综合考虑对动态性能的要求和执行器的能力来设定。λ mainly affects the dynamic performance. The larger the value of λ, the faster the dynamic response, but at the same time the change of the manipulated variable is more severe, which increases the requirements for the actuator. Therefore, the value of λ needs to be set in consideration of the requirements for dynamic performance and the ability of the actuator.
σ,ω1和ω2的作用是对k(t)进行调节。k(t)的取值越大,系统的动态响应越快,但同时操纵变量的变化也更为剧烈,因此会提高了对执行器的要求。除此以外,当k(t)的取值过大时,也容易给系统带来超调现象。因此,σ,ω1和ω2的取值需要综合考虑对动态性能的要求和执行器的能力来设定。在实际中,如果对h(x1,x2,u1)的先验知识不足,可以将作为一个整体进行考虑。The role of σ, ω1 and ω2 is to adjust k(t). The larger the value of k(t), the faster the dynamic response of the system, but at the same time the change of the manipulated variable is more severe, so the requirements for the actuator will be increased. In addition, when the value of k(t) is too large, it is easy to bring overshoot to the system. Therefore, the values of σ, ω 1 and ω 2 need to be set in consideration of the requirements for dynamic performance and the ability of the actuator. In practice, if the prior knowledge of h(x 1 ,x 2 ,u 1 ) is insufficient, the Consider it as a whole.
[k(t)δ+kvv2]sgn(r)一项对干扰和噪声有抑制作用,但是过大会产生抖动。因此,δ和kv的取值也需要综合考虑对性能的要求和执行器的能力来设定。[k(t)δ+k v v 2 ] sgn(r) can suppress interference and noise, but if it is too large, it will cause jitter. Therefore, the values of δ and k v also need to be set in consideration of the performance requirements and the ability of the actuator.
η和γ影响的更新速度。η和γ的取值越大,的更新速度越快,但更新过快会加重执行器的负荷,并可能产生超调。因此,η和γ的取值同样需要结合实际情况来设定。η and γ effects update speed. The larger the values of η and γ are, the The faster the update speed is, but too fast update will increase the load on the actuator and may cause overshoot. Therefore, the values of η and γ also need to be set in combination with the actual situation.
所述变比值控制器中,空气的流量u2(单位:升/分钟)和甲醇水溶液的流量u1(单位:毫升/分钟)的比值为K,即In the variable ratio controller, the ratio of the air flow rate u 2 (unit: liter/minute) to the methanol aqueous solution flow rate u 1 (unit: ml/minute) is K, namely
u2=K(n)u1 (7)u 2 =K(n)u 1 (7)
式中,K(n)为第n个采样周期空气的流量u2和甲醇水溶液的流量u1的比值;K(n)的取值根据重整温度T(单位:摄氏度)进行更新,重整温度T偏高时K(n)减小,重整温度T偏低时K(n)增大。本实施例采用的更新规则为In the formula, K(n) is the ratio of the flow rate u 2 of air and the flow rate u 1 of methanol aqueous solution in the nth sampling period; the value of K(n) is updated according to the reforming temperature T (unit: Celsius), and reforming When the temperature T is high, K(n) decreases, and when the reforming temperature T is low, K(n) increases. The update rule adopted in this embodiment is
K(n)=K(n-1)+△KK(n)=K(n-1)+△K
甲醇自热重整制氢过程的自适应控制方法,其特征是所述实际氢气产量变化率x2采用高增益观测器进行估计,得到实际氢气产量变化率x2的估计值所述高增益观测器为An adaptive control method for the hydrogen production process of methanol autothermal reforming, characterized in that the actual hydrogen production rate of change x 2 is estimated by a high-gain observer to obtain an estimated value of the actual hydrogen production rate of change x 2 The high gain observer is
式中,为实际氢气产量x1的估计值,为的导数;为的导数;为y的估计值;k为观测器增益;p1、p2为系数,取值必须满足如下方程In the formula, is the estimated value of actual hydrogen production x 1 , for derivative of for derivative of is the estimated value of y; k is the observer gain; p 1 and p 2 are coefficients, and the values must satisfy the following equation
z2+p1z+p2=0 (9)z 2 +p 1 z+p 2 =0 (9)
具有互不相同根,其中z为所述方程的未知数。have mutually distinct roots, where z is the unknown of the equation.
本发明对应的甲醇自热重整制氢过程的控制框图如图1所示。甲醇自热重整制氢过程的自适应控制方法采用自适应控制器根据期望氢气产量yd、实际氢气产量y和实际氢气产量变化率x2的估计值来操纵反应原料甲醇水溶液的流量u1,同时采用具有重整温度T约束的变比值控制器来操纵另一反应原料空气的流量u2。The control block diagram of the methanol autothermal reforming hydrogen production process corresponding to the present invention is shown in FIG. 1 . The adaptive control method of methanol autothermal reforming hydrogen production process adopts the adaptive controller according to the estimated value of expected hydrogen production y d , actual hydrogen production y and actual hydrogen production change rate x 2 to manipulate the flow rate u 1 of methanol aqueous solution as the reaction raw material, and at the same time use the variable ratio controller with the constraint of reforming temperature T to manipulate the flow rate u 2 of the other reaction raw material air.
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例而已,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。The specific implementation above is used to explain the present invention, and it is only a preferred embodiment of the present invention, rather than restricting the present invention. Within the spirit of the present invention and the scope of protection of the claims, any modifications and equivalent replacements made to the present invention , improvements, etc., all fall within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310066499.1A CN103149838B (en) | 2013-03-01 | 2013-03-01 | The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310066499.1A CN103149838B (en) | 2013-03-01 | 2013-03-01 | The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103149838A CN103149838A (en) | 2013-06-12 |
CN103149838B true CN103149838B (en) | 2015-10-14 |
Family
ID=48547987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310066499.1A Expired - Fee Related CN103149838B (en) | 2013-03-01 | 2013-03-01 | The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103149838B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008092024A1 (en) * | 2007-01-24 | 2008-07-31 | Treadstone Technologies, Inc. | Electrochemical processor for hydrogen processing and power generation |
CN101302139A (en) * | 2008-07-07 | 2008-11-12 | 西南化工研究设计院 | Method for preparing methanol using coal bed gas |
CN101400601A (en) * | 2006-03-14 | 2009-04-01 | 三菱瓦斯化学株式会社 | Hydrogen generator and process for producing hydrogen |
CN102464298A (en) * | 2010-11-04 | 2012-05-23 | 中国科学院大连化学物理研究所 | Optimized minisize hydrogen source heat exchange system |
JP2012167070A (en) * | 2011-02-16 | 2012-09-06 | Nippon Shokubai Co Ltd | Method of synthesizing chemical |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2467354T3 (en) * | 2009-08-20 | 2014-03-10 | Saudi Basic Ind Corp | Process for simultaneous production of methanol and ammonia |
-
2013
- 2013-03-01 CN CN201310066499.1A patent/CN103149838B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101400601A (en) * | 2006-03-14 | 2009-04-01 | 三菱瓦斯化学株式会社 | Hydrogen generator and process for producing hydrogen |
WO2008092024A1 (en) * | 2007-01-24 | 2008-07-31 | Treadstone Technologies, Inc. | Electrochemical processor for hydrogen processing and power generation |
CN101302139A (en) * | 2008-07-07 | 2008-11-12 | 西南化工研究设计院 | Method for preparing methanol using coal bed gas |
CN102464298A (en) * | 2010-11-04 | 2012-05-23 | 中国科学院大连化学物理研究所 | Optimized minisize hydrogen source heat exchange system |
JP2012167070A (en) * | 2011-02-16 | 2012-09-06 | Nippon Shokubai Co Ltd | Method of synthesizing chemical |
Also Published As
Publication number | Publication date |
---|---|
CN103149838A (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Onyeka et al. | Robust decentralised load frequency control for interconnected time delay power systems using sliding mode techniques | |
CN102645892B (en) | Nonuniform sampling guaranteed performance control method for multivariable communication-limited network control system | |
Li et al. | Event-based fuzzy tracking control for nonlinear networked systems subject to dynamic quantization | |
CN103309371A (en) | Intermittent reactor control system based on control variable parameterization method | |
CN102880046B (en) | Chemical multi-variable process decoupling prediction function control method | |
Fan et al. | Performance improvement of a microbial fuel cell based on model predictive control | |
Chen et al. | Artificial neural network modeling and optimization of the solid oxide fuel cell parameters using grey wolf optimizer | |
CN103823504A (en) | Maximum power tracing control method based on least squares support vector machine | |
CN103309234A (en) | Orthogonal collocation optimization based batch reactor control system | |
CN104318303A (en) | Coking furnace temperature predication method of RBF (Radial Basis Function) neural network optimized by genetic algorithm | |
De-Wei et al. | Design of robust model predictive control based on multi-step control set | |
CN106371313A (en) | A design method of H∞ state feedback controller with memory for time-delay LPV systems | |
CN113901653A (en) | An electric-gas integrated energy system and its power flow solution method | |
CN103149838B (en) | The self-adaptation control method of methanol self-heating reforming hydrogen manufacturing process | |
CN102902201B (en) | A kind of decoupled state spatial prediction control method of chemical industry multivariable process | |
CN103324086A (en) | Batch reactor control system based on accurate punishment optimization | |
CN103149837B (en) | The sliding-mode control of methanol self-heating reforming hydrogen manufacturing process | |
CN107908110B (en) | Tubular reactor dynamic optimization system based on control grid refinement | |
CN105335904A (en) | Electric power system Lyapunov stability analysis method | |
Dong et al. | Prescribed‐Time Fault‐Tolerant Control of Linear Time‐Varying Systems by Linear Time‐Varying Feedback | |
CN107910573B (en) | Energy-saving device of reversible fuel cell stack and control method | |
Yu | Optimal Control of a Nonlinear Time‐Delay System in Batch Fermentation Process | |
CN118617399A (en) | A method for solving the motion trajectory of a robotic arm using a noise-resistant complex-valued recurrent neural network | |
CN102880047A (en) | Adjoint matrix decoupling prediction control method for oil refining industrial heating furnace temperature process | |
CN103345275A (en) | Single-shaft batch counteractive flywheel moment optimal distribution method based on angular momentum margin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151014 Termination date: 20200301 |
|
CF01 | Termination of patent right due to non-payment of annual fee |