CN103149271A - Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas - Google Patents
Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas Download PDFInfo
- Publication number
- CN103149271A CN103149271A CN2013100855325A CN201310085532A CN103149271A CN 103149271 A CN103149271 A CN 103149271A CN 2013100855325 A CN2013100855325 A CN 2013100855325A CN 201310085532 A CN201310085532 A CN 201310085532A CN 103149271 A CN103149271 A CN 103149271A
- Authority
- CN
- China
- Prior art keywords
- absorption
- solution
- flue gas
- sample
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 86
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 239000003546 flue gas Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000010521 absorption reaction Methods 0.000 claims abstract description 118
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 66
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims abstract description 52
- 230000002378 acidificating effect Effects 0.000 claims abstract description 45
- 239000007788 liquid Substances 0.000 claims abstract description 41
- 238000005070 sampling Methods 0.000 claims abstract description 38
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 34
- 239000001103 potassium chloride Substances 0.000 claims abstract description 26
- 235000011164 potassium chloride Nutrition 0.000 claims abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000011084 recovery Methods 0.000 claims abstract description 10
- 238000002133 sample digestion Methods 0.000 claims abstract description 8
- 239000000741 silica gel Substances 0.000 claims abstract description 8
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 72
- 239000000523 sample Substances 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 22
- 229910017604 nitric acid Inorganic materials 0.000 claims description 22
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 claims description 18
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims description 16
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 15
- 239000012085 test solution Substances 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 11
- 229910052753 mercury Inorganic materials 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 9
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 238000005352 clarification Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 230000003189 isokinetic effect Effects 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 238000009616 inductively coupled plasma Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 239000012488 sample solution Substances 0.000 claims description 3
- 239000000779 smoke Substances 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims description 2
- 241000143437 Aciculosporium take Species 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 239000006210 lotion Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 15
- 239000003245 coal Substances 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000673 graphite furnace atomic absorption spectrometry Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000000587 hydride generation inductively coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- NSVHDIYWJVLAGH-UHFFFAOYSA-M silver;n,n-diethylcarbamodithioate Chemical compound [Ag+].CCN(CC)C([S-])=S NSVHDIYWJVLAGH-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明提供了一种同时测定燃煤烟气中不同形态的重金属的方法,其步骤为:使用样品采集系统进行燃煤烟气样品的采集,所述样品采集系统包括顺序连接的带有吸气嘴的采样管、设置于热箱内的过滤支架和旋风分离器和通过导管顺序连接的置于冰浴中的吸收瓶,其中第1~3个吸收瓶内为氯化钾溶液,第4~5个吸收瓶内为酸性双氧水溶液,第6~7个吸收瓶内为酸性高锰酸钾溶液,第8个吸收瓶内装有硅胶;样品采集后对各吸收瓶中的吸收液样品分别进行样品恢复,并将烟气样品进行密封保存;之后对各吸收瓶中的吸收液样品分别进行样品消解;再对经过消解的各样品进行检测,根据测得的各吸收液样品中的重金属含量,计算烟气中不同形态重金属浓度。
The invention provides a method for simultaneously measuring heavy metals in different forms in coal-burning flue gas, the steps of which are: using a sample collection system to collect coal-fired flue gas samples. The sampling tube of the nozzle, the filter holder and cyclone separator set in the hot box, and the absorption bottles placed in the ice bath connected sequentially through the catheter, of which the 1st to 3rd absorption bottles contain potassium chloride solution, and the 4th to 3rd absorption bottles are filled with potassium chloride solution. The 5 absorption bottles contain acidic hydrogen peroxide solution, the 6th to 7th absorption bottles contain acidic potassium permanganate solution, and the 8th absorption bottle contains silica gel; after sample collection, the absorption liquid samples in each absorption bottle are sampled separately. recovery, and seal the flue gas samples; then carry out sample digestion on the absorption liquid samples in each absorption bottle; then test the digested samples, and calculate the Concentrations of different forms of heavy metals in flue gas.
Description
技术领域technical field
本发明属于环境保护技术领域,涉及污染源监测方法,更具体地,是一种燃煤烟气中不同形态的不同重金属的同时监测方法。The invention belongs to the technical field of environmental protection and relates to a method for monitoring pollution sources, more specifically, a method for simultaneously monitoring different heavy metals in different forms in coal-fired flue gas.
背景技术Background technique
随着我国经济快速发展,重金属污染日趋严重。据不完全统计,2005年至2009年,全国发生重金属污染事件39起,特别是2009年以来连续发生的陕西凤翔县、湖南武冈市和浏阳市等20多起重特大重金属污染事件。重金属(比重>5.5g/cm3)污染具有长期性、累积性、潜伏性和不可逆等特点,对人体健康造成严重威胁,引起了我国学术界和政府的高度关注。With the rapid development of my country's economy, heavy metal pollution is becoming more and more serious. According to incomplete statistics, from 2005 to 2009, there were 39 heavy metal pollution incidents across the country, especially since 2009, there were more than 20 serious heavy metal pollution incidents in Fengxiang County of Shaanxi, Wugang City and Liuyang City of Hunan Province. Heavy metal (specific gravity > 5.5g/cm 3 ) pollution has the characteristics of long-term, cumulative, latent and irreversible, which poses a serious threat to human health and has aroused great concern from the academic circles and the government of our country.
煤是我国主要的一次能源,2010年我国的燃煤消耗量达到了33亿吨。煤中的重金属燃烧后释放出来,部分的重金属通过烟气排放到大气中,使得燃煤成为我国主要的大气重金属污染源之一。大气重金属可通过干湿沉降进入水体和土壤,破坏自然环境和生态;也可通过呼吸系统直接进入人体血液,严重威胁人类健康。因此,必需严格控制燃煤引起的大气重金属污染。要控制燃煤大气重金属排放,首先必需掌握我国燃煤大气重金属排放现状,如何准确监测燃煤烟气中的重金属将是我国大气重金属污染控制的关键。Coal is the primary energy source in my country. In 2010, my country's coal consumption reached 3.3 billion tons. The heavy metals in coal are released after combustion, and part of the heavy metals are discharged into the atmosphere through flue gas, making coal burning one of the main sources of atmospheric heavy metal pollution in my country. Atmospheric heavy metals can enter water and soil through dry and wet deposition, damaging the natural environment and ecology; they can also directly enter human blood through the respiratory system, seriously threatening human health. Therefore, it is necessary to strictly control the atmospheric heavy metal pollution caused by coal burning. To control the emission of heavy metals in the atmosphere of coal combustion, it is first necessary to grasp the current situation of heavy metal emissions in the atmosphere of coal combustion in my country. How to accurately monitor the heavy metals in the flue gas of coal combustion will be the key to the control of heavy metal pollution in the atmosphere of my country.
燃煤烟气中重金属含量低(为ppb级,甚至为ppt级)并且存在颗粒态和气态重金属,而气态重金属又包括水溶性和非水溶性两种不同形态。烟气中这三种不同形态的重金属具有不同的性质,对环境和人体健康造成不同的影响,并且可采用不同方法加以控制。颗粒态重金属可以通过除尘器协同脱除,而水溶性的重金属则可通过石灰石-石膏湿法脱硫装置协同脱除。因此,测定烟气中不同形态的不同重金属含量对于大气重金属污染控制是非常有意义的。而且燃煤烟气中成份非常复杂(包括水气、SO2、NOx,VOC等),这些成份都有可能会影响测试精度。目前,我国关于固定源废气中重金属的标准测定方法有固定污染源废气汞的测定冷原子吸收分光光度法(暂行)(HJ543-2009)、环境空气和废气砷的测定二乙基二硫代氨基甲酸银分光光度法(暂行)(HJ540-2009),固定污染源废气铅的测定火焰原子吸收分光光度法(暂行)(HJ538-2009),大气固定污染源镉的测定对-偶氮苯重氮氨基偶氮苯磺酸吸收分光光度法(HJ/T64.3-2001),大气固定污染源镉的测定火焰原子吸收分光光度法(HJ/T64.1-2001),大气固定污染源镉的测定石墨炉原子吸收分光光度法(HJ/T64.2-2001)。各标准测定方法分别针对废气中不同的颗粒态重金属,只有汞是针对气态汞;并且不同的重金属要采用不同的样品采集和分析方法。如果需要测定燃煤烟气中不同的重金属,采用这些测定方法必需分别进行,不仅操作繁琐,工作量大;而且不能区分不同形态。因此,开发出一种能够同时测定燃煤烟气中不同形态的不同重金属的方法成为了本领域亟需解决的问题。The content of heavy metals in coal combustion flue gas is low (ppb level, even ppt level) and there are particulate and gaseous heavy metals, and gaseous heavy metals include two different forms: water-soluble and water-insoluble. These three different forms of heavy metals in flue gas have different properties, have different impacts on the environment and human health, and can be controlled by different methods. Particulate heavy metals can be removed synergistically through a dust collector, while water-soluble heavy metals can be synergistically removed through a limestone-gypsum wet desulfurization unit. Therefore, it is very meaningful to measure the content of different heavy metals in different forms in flue gas for the control of atmospheric heavy metal pollution. Moreover, the components in coal-fired flue gas are very complex (including water vapor, SO 2 , NO x , VOC, etc.), and these components may affect the test accuracy. At present, China's standard methods for the determination of heavy metals in waste gas from stationary sources include cold atomic absorption spectrophotometry (provisional) (HJ543-2009) for the determination of mercury in waste gas from stationary sources, and the determination of arsenic in ambient air and waste gas. Diethyldithiocarbamate Silver Spectrophotometry (Provisional) (HJ540-2009), Determination of Lead in Exhaust Gas from Stationary Pollution Sources Flame Atomic Absorption Spectrophotometry (Provisional) (HJ538-2009), Determination of Cadmium in Atmospheric Stationary Pollution Sources p-Azobenzenediazoaminoazo Benzenesulfonic acid absorption spectrophotometry (HJ/T64.3-2001), determination of cadmium from fixed atmospheric pollution sources Flame atomic absorption spectrophotometry (HJ/T64.1-2001), determination of cadmium from fixed atmospheric pollution sources Graphite furnace atomic absorption spectrometry Photometry (HJ/T64.2-2001). Each standard determination method is for different particulate heavy metals in exhaust gas, only mercury is for gaseous mercury; and different heavy metals require different sample collection and analysis methods. If it is necessary to measure different heavy metals in coal-fired flue gas, these determination methods must be carried out separately, which is not only cumbersome to operate, but also requires a lot of work; moreover, different forms cannot be distinguished. Therefore, it is an urgent problem to be solved in this field to develop a method capable of simultaneously measuring different forms of different heavy metals in coal-fired flue gas.
发明内容Contents of the invention
本发明的目的在于,提供一种同时燃煤烟气中不同形态重金属(包括铅、汞、铬、镉、锰等)的方法,实现燃煤烟气中重金属的有效监测。The purpose of the present invention is to provide a method for simultaneous monitoring of heavy metals in different forms (including lead, mercury, chromium, cadmium, manganese, etc.)
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种同时测定燃煤烟气中不同形态的重金属的方法,其特征在于,其步骤如下:A method for simultaneously measuring heavy metals in different forms in coal-fired flue gas, characterized in that the steps are as follows:
(1)使用样品采集系统进行燃煤烟气样品的采集,所述样品采集系统包括顺序连接的带有吸气嘴的采样管、颗粒态重金属捕获装置和气态重金属吸收装置,以及用于监控系统内温度的温度传感器、监控和调节系统内气压的压差计、抽气管线、抽气泵和阀门、和监控系统内烟气流量的干式流量计等辅助装置;(1) Use a sample collection system to collect coal-fired flue gas samples. The sample collection system includes sequentially connected sampling pipes with suction nozzles, particulate heavy metal capture devices, and gaseous heavy metal absorption devices, as well as monitoring systems. Auxiliary devices such as temperature sensors for internal temperature, differential pressure gauges for monitoring and adjusting the air pressure in the system, exhaust pipelines, exhaust pumps and valves, and dry flow meters for monitoring the flow of flue gas in the system;
所述颗粒态重金属捕获装置包括设置于热箱内的过滤支架和在过滤支架和采样管末端之间设置的旋风分离器,过滤支架内放置有石英纤维滤纸;The particulate heavy metal trapping device includes a filter holder arranged in the hot box and a cyclone separator arranged between the filter holder and the end of the sampling pipe, and a quartz fiber filter paper is placed in the filter holder;
所述气态重金属吸收装置包括8个通过导管顺序连接的置于冷箱中的吸收瓶,自靠近颗粒态重金属捕获装置一侧起的各吸收瓶中的吸收液为:第1~3个吸收瓶内为氯化钾溶液,用于吸收烟气中水溶性重金属,第4~5个吸收瓶内为酸性双氧水溶液,用于收集非水溶性重金属,第6~7个吸收瓶内为酸性高锰酸钾溶液,用于收集非水溶性重金属(特别是汞);第8个吸收瓶内装有硅胶,用于吸收烟气中的水分;The gaseous heavy metal absorption device includes 8 absorption bottles placed in a cold box connected sequentially through conduits, and the absorption liquid in each absorption bottle from the side close to the particulate heavy metal capture device is: the first to third absorption bottles Inside is potassium chloride solution, which is used to absorb water-soluble heavy metals in flue gas. The fourth to fifth absorption bottles are acidic hydrogen peroxide solution, which is used to collect non-water-soluble heavy metals. The sixth to seventh absorption bottles are acid permanganese. Potassium acid solution is used to collect water-insoluble heavy metals (especially mercury); the eighth absorption bottle is filled with silica gel to absorb moisture in the flue gas;
(2)对各吸收瓶中的吸收液样品分别进行样品恢复,并将采集的烟气样品进行密封保存;(2) Perform sample recovery on the absorption liquid samples in each absorption bottle, and seal and store the collected smoke samples;
(3)对不同吸收液样品分别进行样品消解,减少分析过程中溶解在吸收液中的烟气中的SO2、NOx,和VOC等对分析结果的影响;(3) Digest samples of different absorption liquid samples separately to reduce the influence of SO 2 , NO x , and VOC in the flue gas dissolved in the absorption liquid during the analysis process on the analysis results;
(4)采用电感耦合等离子体-质谱仪(ICP-MASS)或电感耦合等离子体原子发射光谱仪(ICP-AES)对经过步骤(3)消解的各样品进行检测,根据测得的各吸收液样品中的重金属含量,计算烟气中不同形态重金属浓度。(4) Use an inductively coupled plasma-mass spectrometer (ICP-MASS) or an inductively coupled plasma-atomic emission spectrometer (ICP-AES) to detect each sample digested in step (3). Calculate the concentration of heavy metals in different forms in flue gas.
如上所述的方法,优选地,所述各吸收液的组成为:氯化钾溶液的浓度为1mol/L;酸性双氧水为体积百分比4~5%的HNO3和体积百分比8~10%的H2O2的混合溶液;酸性高锰酸钾溶液为3~4%g/L的KMnO4和体积百分比8~10%的H2SO4的混合溶液。The above-mentioned method, preferably, the composition of each absorption liquid is: the concentration of potassium chloride solution is 1mol/L; the acidic hydrogen peroxide is 4-5% by volume of HNO 3 and 8-10% by volume of H 2 O 2 mixed solution; the acidic potassium permanganate solution is a mixed solution of 3-4% g/L KMnO 4 and 8-10% volume percent H 2 SO 4 .
如上所述的方法,优选地,所述颗粒态重金属捕获装置的热箱内的温度设为20±5.6°C,所述气态重金属吸收装置的8个吸收瓶在冷箱内置于冰浴中。In the above method, preferably, the temperature in the hot box of the particulate heavy metal capture device is set to 20±5.6°C, and the 8 absorption bottles of the gaseous heavy metal absorption device are placed in an ice bath in the cold box.
如上所述的方法,优选地,所述各吸收瓶在加入吸收液之前,先用约0.1mol/L的稀硫酸和蒸馏水润洗并烘干。In the above method, preferably, each absorption bottle is rinsed and dried with about 0.1 mol/L dilute sulfuric acid and distilled water before adding the absorption liquid.
如上所述的方法,优选地,步骤(1)中,采用等速采样方式对采样点的燃煤烟气进行采样2~3个小时。In the above-mentioned method, preferably, in step (1), the coal-fired flue gas at the sampling point is sampled for 2 to 3 hours by means of isokinetic sampling.
如上所述的方法,优选地,步骤(2)中所述的样品恢复,具体操作为:As described above, preferably, the sample recovery described in step (2), the specific operation is:
A.将第1~3吸收瓶中的氯化钾吸收液集中放在一个500mL的容量瓶中,并滴加1~5mL10%g/L的重铬酸钾和1~5mL5%g/L的高锰酸钾溶液,使得吸收液保持浅紫色,用少量0.1mol/L的硝酸冲洗采样管及氯化钾吸收瓶,将洗液倒入收集氯化钾吸收液的容量瓶中并定容,密封保存;A. Put the potassium chloride absorption solution in the 1st to 3rd absorption bottles into a 500mL volumetric flask, and add 1~5mL of 10%g/L potassium dichromate and 1~5mL of 5%g/L potassium dichromate dropwise. Potassium permanganate solution, so that the absorption liquid remains light purple, rinse the sampling tube and potassium chloride absorption bottle with a small amount of 0.1mol/L nitric acid, pour the washing liquid into the volumetric flask that collects the potassium chloride absorption liquid and make it to volume, Sealed storage;
B.将第4~5吸收瓶中的酸性双氧水吸收液集中放在一个500mL的容量瓶中,用少量0.1mol/L的硝酸冲洗酸性双氧水吸收瓶,将洗液倒入收集酸性双氧水吸收液的容量瓶中并定容,密封保存;B. Put the acidic hydrogen peroxide absorption solution in the 4th to 5th absorption bottles in a 500mL volumetric flask, rinse the acidic hydrogen peroxide absorption bottle with a small amount of 0.1mol/L nitric acid, and pour the washing solution into the container where the acidic hydrogen peroxide absorption solution was collected. In the volumetric flask and constant volume, sealed preservation;
C.将第6~7吸收瓶中的酸性高锰酸钾吸收液集中放在一个500mL的容量瓶中,并滴加2~10mL10%g/L的重铬酸钾溶液,用少量0.1mol/L的硝酸冲洗酸性高锰酸钾吸收瓶,将洗液倒入收集酸性高锰酸钾吸收液的容量瓶中并定容,密封保存。C. Put the acidic potassium permanganate absorption solution in the 6th to 7th absorption bottles in a 500mL volumetric flask, and add 2 to 10mL of 10% g/L potassium dichromate solution dropwise, with a small amount of 0.1mol/L Rinse the acidic potassium permanganate absorption bottle with 1 L of nitric acid, pour the washing solution into the volumetric flask that collects the acidic potassium permanganate absorption solution, make it to volume, and keep it sealed.
如上所述的方法,优选地,步骤(3)中所述的样品消解,具体操作为:As described above, preferably, the sample digestion described in step (3) is performed as follows:
A.针对氯化钾吸收液样品:取10mL装有氯化钾吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.50mL98.3wt%的浓硫酸、0.25mL65wt%的浓硝酸和10mL5%g/L的高锰酸钾溶液,水浴90°C加热2h后,滴加10%g/L的盐酸羟胺直至澄清,完成水溶性待测液的消解;A. For potassium chloride absorption liquid sample: take 10mL of the sample in the volumetric flask containing potassium chloride absorption liquid, add 0.75mL5%g/L potassium persulfate solution, 0.50mL98.3wt% concentrated sulfuric acid, 0.25mL65wt% % concentrated nitric acid and 10mL5%g/L of potassium permanganate solution, after heating at 90°C in a water bath for 2h, dropwise add 10%g/L of hydroxylamine hydrochloride until clarification, and complete the digestion of the water-soluble test solution;
其余氯化钾吸收液作为水溶性其他重金属待测样;The remaining potassium chloride absorption solution is used as other water-soluble heavy metals to be tested;
B.针对酸性双氧水吸收液样品:取5mL装有酸性双氧水吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.25mL38wt%的浓盐酸和0.25mL65wt%的浓硝酸,置于冰箱冷却15min后,逐滴加入5%g/L的高锰酸钾溶液,开始滴加时样品反应剧烈,继续滴加,直至样品溶液保持紫色并稳定,水浴90°C加热2h后,滴加10%g/L的盐酸羟胺直至澄清,完成元素态汞待测液1的制备。B. For the acidic hydrogen peroxide absorbent sample: take 5mL of the sample in the volumetric flask containing the acidic hydrogen peroxide absorbent, add 0.75mL of 5% g/L potassium persulfate solution, 0.25mL of 38wt% concentrated hydrochloric acid and 0.25mL of 65wt% concentrated nitric acid , after cooling in the refrigerator for 15 minutes, add 5% g/L potassium permanganate solution drop by drop, the sample reacts violently at the beginning of dropwise addition, continue to add dropwise until the sample solution remains purple and stable, after heating in a water bath at 90°C for 2 hours , dropwise add 10% g/L of hydroxylamine hydrochloride until clear, and complete the preparation of elemental mercury test solution 1.
其余酸性双氧水吸收液样品浓缩至20mL,然后加入30mL50%(v/v)的硝酸、10mL3%(v/v)的过氧化氢(所用的过氧化氢为市售的浓度为30wt%的过氧化氢,即所述的3%(v/v)的过氧化氢,是将30wt%的过氧化氢溶液按照3体积溶液:100体积水的比例进行稀释后得到的溶液)和50mL的70℃热水,定容到100mL,完成除汞元素以外重金属待测液的制备;The rest of the acidic hydrogen peroxide absorption liquid sample was concentrated to 20mL, and then 30mL of 50% (v/v) nitric acid and 10mL of 3% (v/v) hydrogen peroxide were added (the hydrogen peroxide used was commercially available peroxide with a concentration of 30wt%) Hydrogen, that is, the 3% (v/v) hydrogen peroxide is the solution obtained by diluting a 30wt% hydrogen peroxide solution according to the ratio of 3 volumes of solution: 100 volumes of water) and 50mL of 70°C hot Water, set the volume to 100mL, and complete the preparation of the test solution for heavy metals other than mercury;
C.针对酸性高锰酸钾吸收液样品:取10mL装有酸性高锰酸钾吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.5mL65wt%的浓硝酸和10mL5%g/L的高锰酸钾溶液,水浴90°C加热2~3h后,滴加10%g/L的盐酸羟胺直至澄清,完成元素态汞待测液2的制备。C. For acidic potassium permanganate absorption liquid sample: take 10mL of the sample in the volumetric flask containing acidic potassium permanganate absorption liquid, add 0.75mL5%g/L potassium persulfate solution, 0.5mL65wt% concentrated nitric acid and 10mL of 5%g/L potassium permanganate solution was heated in a water bath at 90°C for 2 to 3 hours, and then 10%g/L of hydroxylamine hydrochloride was added dropwise until clarified to complete the preparation of elemental mercury test solution 2.
如上所述的方法,其中,所述的重金属包括铅、砷、镉、铬、钴、锰以及汞。The above method, wherein the heavy metals include lead, arsenic, cadmium, chromium, cobalt, manganese and mercury.
如上所述的方法,其中,所述的燃煤烟气包括燃煤电厂锅炉和工业锅炉排放管道中的燃煤烟气。The above-mentioned method, wherein the coal-fired flue gas includes coal-fired flue gas in the exhaust pipes of coal-fired power plant boilers and industrial boilers.
如上所述的方法,其中,所述的燃煤烟气包括燃煤电厂不同位置的烟气,包括脱硝装置前、除尘装置前、脱硫装置前和脱硫装置后等位置。The above-mentioned method, wherein, the coal-fired flue gas includes flue gas from different positions of the coal-fired power plant, including positions before the denitrification device, before the dust removal device, before the desulfurization device, and after the desulfurization device.
如上所述的方法,其中,所述燃煤烟气中待测重金属的浓度范围可以在10ng/Nm3至100μg/Nm3之间。The above-mentioned method, wherein the concentration range of the heavy metal to be detected in the coal combustion flue gas may be between 10 ng/Nm 3 and 100 μg/Nm 3 .
本发明的有益效果为:The beneficial effects of the present invention are:
本发明通过等速采样方式采集颗粒态重金属样品,并采用不同化学试剂溶液吸收烟气中不同形态的气态重金属,再将采集的颗粒态重金属样品和气态重金属样品经过恢复和消解后,分析测定样品中的不同重金属含量,从而计算烟气中不同形态不同重金属的浓度。The present invention collects granular heavy metal samples by means of isokinetic sampling, and uses different chemical reagent solutions to absorb gaseous heavy metals in different forms in flue gas, and then analyzes and measures the collected granular heavy metal samples and gaseous heavy metal samples after recovery and digestion The content of different heavy metals in the flue gas, so as to calculate the concentration of different heavy metals in different forms in the flue gas.
本发明所用的颗粒态重金属捕获装置中加入了旋风分离装置,可适应于高灰烟气的采样。本发明还通过吸收液的有效配比以及分析仪器的优化,实现了燃煤烟气中不同形态不同重金属的同时测定,减少了人工和试剂大量消耗,并且在样品分析过程中减少了人为干扰因素,提高了分析精度。The cyclone separation device is added to the particulate heavy metal capture device used in the present invention, which can be adapted to the sampling of high-ash smoke. The present invention also realizes the simultaneous determination of different forms and different heavy metals in the coal-fired flue gas through the effective proportioning of the absorption liquid and the optimization of the analysis instrument, which reduces labor and reagent consumption, and reduces human interference factors in the sample analysis process , improving the analysis accuracy.
本发明的方法能同时准确测定燃煤烟气中不同形态不同重金属浓度,具有普遍应用性。普及本发明方法可方便地掌握我国燃煤烟气重金属污染现状,为我国大气重金属防治提供可靠的数据支撑。The method of the invention can simultaneously and accurately measure the concentrations of heavy metals in different forms and in the flue gas of coal combustion, and has universal applicability. By popularizing the method of the invention, the present situation of heavy metal pollution in my country's coal-fired flue gas can be easily grasped, and reliable data support can be provided for the prevention and control of atmospheric heavy metals in my country.
下面结合附图和具体实施方式进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1是本发明方法步骤示意图。Fig. 1 is a schematic diagram of the steps of the method of the present invention.
具体实施方式Detailed ways
为了简单和清楚的目的,下文恰当的省略了公知技术的描述,以免那些不必要的细节影响对本技术方案的描述。For the purpose of simplicity and clarity, descriptions of known technologies are appropriately omitted below, so as not to affect the description of the technical solution with unnecessary details.
如图1所示,本发明的测试步骤包括样品采集、样品恢复、样品消解、分析测定和计算四个阶段。其中,样品采集是采用等速采样方式采集采样点的燃煤烟气样品;样品恢复用于现场稳定溶液吸收烟气样品,对于易挥发性的重金属非常必要,便于长途运输保存;样品消解是通过对样品的处理,消除样品中吸收的烟气中其它成分(例如SO2、NOx等)对待测重金属的干扰,便于检测分析;分析测定,是采用电感耦合等离子体-质谱仪(ICP-MASS)或电感耦合等离子体原子发射光谱仪(ICP-AES)完成烟气中不同价态不同重金属的检测,之后根据测定所得的各吸收液样品中重金属含量和烟气量,计算烟气中不同形态的重金属浓度。As shown in FIG. 1 , the test procedure of the present invention includes four stages of sample collection, sample recovery, sample digestion, analysis and determination, and calculation. Among them, the sample collection is to collect the coal-fired flue gas samples at the sampling points by means of isokinetic sampling; the sample recovery is used to stabilize the solution on site to absorb the flue gas samples, which is very necessary for volatile heavy metals and is convenient for long-distance transportation and storage; the sample digestion is through The treatment of the sample eliminates the interference of other components in the flue gas absorbed in the sample (such as SO 2 , NOx, etc.) to facilitate the detection and analysis of the heavy metals to be measured; the analysis and determination is carried out by using an inductively coupled plasma-mass spectrometer (ICP-MASS) Or inductively coupled plasma atomic emission spectrometer (ICP-AES) completes the detection of different heavy metals in different valence states in the flue gas, and then calculates the heavy metals in different forms in the flue gas according to the measured heavy metal content and flue gas volume in each absorption liquid sample concentration.
本发明样品采集系统的核心是8个顺序相连的吸收瓶,第1~3吸收瓶分别装有100mL氯化钾溶液,第4~5吸收瓶分别装有100mL酸性双氧水溶液,第6~7吸收瓶分别装有100mL酸性高锰酸钾溶液,第8个吸收瓶装有200~300g的硅胶。燃煤烟气依次通过这8个吸收瓶,水溶性重金属由第1~3吸收瓶收集,非水溶性重金属由第4~5吸收瓶和第6~7吸收瓶共同收集,第8个吸收瓶吸收烟气中水分。The core of the sample collection system of the present invention is eight sequentially connected absorption bottles, the 1st to 3rd absorption bottles are respectively equipped with 100mL potassium chloride solution, the 4th to 5th absorption bottles are respectively equipped with 100mL acidic hydrogen peroxide solution, and the 6th to 7th absorption The bottles are respectively filled with 100mL of acidic potassium permanganate solution, and the eighth absorption bottle is filled with 200-300g of silica gel. The coal-fired flue gas passes through these 8 absorption bottles in turn. The water-soluble heavy metals are collected by the 1st to 3rd absorption bottles, the water-insoluble heavy metals are collected by the 4th to 5th absorption bottles and the 6th to 7th absorption bottles, and the 8th absorption bottle Absorb moisture in flue gas.
其中,所述的氯化钾溶液的浓度为1mol/L;所述的酸性双氧水为4~5%(v/v)的HNO3和8~10%(v/v)的H2O2的混合溶液;所述的酸性高锰酸钾溶液为3~4%g/L的KMnO4和8~10%(v/v)的H2SO4的混合溶液。Wherein, the concentration of the potassium chloride solution is 1mol/L; the acid hydrogen peroxide is 4-5% (v/v) HNO 3 and 8-10% (v/v) H 2 O 2 Mixed solution; the acidic potassium permanganate solution is a mixed solution of 3-4% g/L KMnO 4 and 8-10% (v/v) H 2 SO 4 .
本发明方法的关键步骤是样品消解,针对不同的吸收液样品和待检测重金属元素采用不同的方法对样品进行消解,减少分析过程中溶解在吸收液中的烟气中的SO2、NOx,和VOC等对分析结果的影响。The key step of the method of the present invention is sample digestion. Different methods are used to digest samples for different absorption liquid samples and heavy metal elements to be detected, so as to reduce SO 2 and NO x dissolved in the flue gas in the absorption liquid during the analysis process. And the influence of VOC etc. on the analysis results.
本发明的另一关键改进在于,在样品采集装置的热箱过滤支架和采样枪之间加入了旋风分离器,解决了高灰采样问题。Another key improvement of the present invention is that a cyclone separator is added between the hot box filter holder and the sampling gun of the sample collection device, which solves the problem of high ash sampling.
实施例1Example 1
目前,我国燃煤电厂大部分电厂安装了脱硫除尘或脱硝等烟气净化装置,不同位置的烟气成分不同,可能会对烟气重金属浓度测试产生影响,因此选择我国典型电厂的不同位置燃煤烟气进行实验研究。At present, most coal-fired power plants in my country have installed flue gas purification devices such as desulfurization and dust removal or denitrification. The composition of flue gas in different locations is different, which may affect the concentration of heavy metals in flue gas. Therefore, choose different locations of typical power plants in my country to burn coal Experimental study of flue gas.
1.样品采集1. Sample collection
A.采样前准备A. Preparation before sampling
在气密容器中称量几份200至300g硅胶,精确到0.5g。在每个容器上记下硅胶加上容器的总重量;或者在组装样品采集系统组件之前立即在第8吸收瓶中直接称量硅胶。Weigh several 200 to 300 g portions of silica gel to the nearest 0.5 g in an airtight container. Record the total weight of the silica gel plus the container on each container; alternatively, weigh the silica gel directly in the 8 Absorber Vial immediately prior to assembling the sample collection system components.
在20±5.6°C(68±10°F)的温度和环境压力下干燥过滤支架24至36h,每隔至少6h称量一次直至恒重,并记录结果,精确至0.1μg。Dry the filter holder at a temperature of 20 ± 5.6°C (68 ± 10°F) and ambient pressure for 24 to 36 h, weigh at least every 6 h until constant weight, and record the result to the nearest 0.1 μg.
清洗采样系统中所有玻璃器皿,遮盖所有会发生污染的玻璃器皿的开口,直至开始采样时。Clean all glassware in the sampling system and cover all glassware openings where contamination occurs until sampling begins.
分别量取100mL已配好的各吸收液,按如上所述的对应关系装入第1~7个吸收瓶中;从上述气密容器中转移大约200至300g硅胶到第8吸收瓶中。称量并记录每一个吸收瓶的重量,用于计算取样烟气的水含量。用一次性手套将称量过的石英纤维滤纸放入过滤支架中。连接整个样品采集系统并检漏。Measure 100mL of each prepared absorption solution, and fill them into the 1st to 7th absorption bottles according to the above-mentioned corresponding relationship; transfer about 200 to 300g of silica gel from the above-mentioned airtight container to the 8th absorption bottle. Weigh and record the weight of each absorption bottle, which is used to calculate the water content of the sampled flue gas. Put the weighed quartz fiber filter paper into the filter holder with disposable gloves. Connect the entire sample collection system and check for leaks.
B.采样B. Sampling
在采样之前清洁吸气嘴,确认热箱中的过滤支架及吸气嘴达到指定温度20±5.6°C(68±10°F),启动抽气泵,打开并调节阀门,直到获得等速取样速率,保持等速采样时的压差值,在所有的取样点和在取样期间保持等速。Clean the suction nozzle before sampling, confirm that the filter holder and suction nozzle in the hot box reach the specified temperature of 20±5.6°C (68±10°F), start the suction pump, open and adjust the valve until a constant sampling rate is obtained , to maintain the differential pressure value at the time of isokinetic sampling, at all sampling points and during the sampling period.
当在不同采样点之间转移样品采集系统时,关闭阀门并停止抽气泵工作。在采样过程中,定期检查吸气嘴和过滤支架出口的取样温度以及压差计的零位,并在必要情况下进行调节。如有必要,加入更多的冰,以保持在冷箱/硅胶瓶出口的温度<20°C(68°F)。When transferring the sample collection system between different sampling points, close the valve and stop the aspirator pump. During the sampling process, regularly check the sampling temperature of the suction nozzle and the outlet of the filter holder and the zero position of the differential pressure gauge, and adjust it if necessary. Add more ice if necessary to keep the temperature at the outlet of the cold box/silicone bottle <20°C (68°F).
采样过程中,如果酸性高锰酸溶液的紫色被完全漂白,则说明发生了KMnO4被烟气中除了元素态铅等重金属的其他组分的还原反应。因此,如果两个酸性高锰酸钾吸收瓶失去了紫色,采样必须重做。如果已知气流含有大量的还原性组分(即,还原性组分含量>2500ppm SO2),或在先前的取样过程中已发生过突破的情况,那么在第4个吸收瓶中的酸性双氧水的数量应加倍,或另外加装一个装有酸性双氧水的吸收瓶,或二者同时采用,以在酸性高锰酸钾吸收瓶之前增加对还原性气体组分的氧化能力。During the sampling process, if the purple color of the acidic permanganate solution is completely bleached, it indicates that the reduction reaction of KMnO 4 by other components in the flue gas except elemental lead and other heavy metals has occurred. Therefore, if two acidic potassium permanganate absorbers lose their purple color, sampling must be redone. If the gas stream is known to contain significant amounts of reducing components (i.e., >2500 ppm SO 2 ), or has had a breakthrough during a previous sampling run, then the acid hydrogen peroxide in the fourth absorber bottle The quantity should be doubled, or an absorption bottle containing acidic hydrogen peroxide should be added, or both should be used at the same time to increase the oxidation capacity of reducing gas components before the acidic potassium permanganate absorption bottle.
在整个采样过程中,使用同一组件,除非是需要同时在两个或更多的采样点进行采样,或是设备故障需要更换组件。During the entire sampling process, use the same component, unless it is necessary to sample at two or more sampling points at the same time, or equipment failure requires replacement of components.
在采样结束后,关闭阀门,抽出吸气嘴并关闭抽气泵。等待吸气嘴冷却,将吸气嘴附近的颗粒擦净,并将吸气嘴盖上避免污染或样品丢失,同时让过滤支架冷却。在移动采样瓶到干净地方之前,将吸气嘴从连接上分开并将两端覆盖,不要丢失可能出现的冷凝水。将第一和最后一个吸收瓶口封闭。将各个连接点断开。采样管、旋风装置和样品吸收瓶可开始进行样品恢复。After sampling, close the valve, draw out the suction nozzle and turn off the suction pump. Wait for the suction nozzle to cool down, wipe off the particles near the suction nozzle, and cover the suction nozzle to avoid contamination or sample loss, and let the filter holder cool down at the same time. Before moving the sampling bottle to a clean place, detach the suction nozzle from the connection and cover both ends, so as not to lose any condensation that may occur. Close the first and last absorbent bottle. Disconnect all connection points. The sampling tube, cyclone, and sample absorber bottle are ready for sample recovery.
3.样品恢复3. Sample recovery
A.将氯化钾吸收液集中放在一个500mL的容量瓶中,并滴加1~5mL10%g/L的重铬酸钾和1~5mL5%g/L的高锰酸钾溶液,使得吸收液保持浅紫色。为保证分析精度,用少量0.1mol/L的硝酸冲洗采样管及氯化钾吸收瓶,将洗液倒入收集氯化钾吸收液的容量瓶中并定容,密封保存。A. Put the potassium chloride absorption solution in a 500mL volumetric flask, and add dropwise 1-5mL of 10%g/L potassium dichromate and 1-5mL of 5%g/L potassium permanganate solution to absorb The liquid remains light purple. In order to ensure the accuracy of the analysis, rinse the sampling tube and the potassium chloride absorption bottle with a small amount of 0.1mol/L nitric acid, pour the washing solution into the volumetric flask that collects the potassium chloride absorption solution, dilute to volume, and seal it for storage.
B.将酸性双氧水吸收液集中放在一个500mL的容量瓶中。为保证分析精度,用少量0.1mol/L的硝酸冲洗酸性双氧水吸收瓶,将洗液倒入收集酸性双氧水吸收液的容量瓶中并定容,密封保存。B. Put the acidic hydrogen peroxide absorption solution in a 500mL volumetric flask. In order to ensure the analysis accuracy, rinse the acidic hydrogen peroxide absorption bottle with a small amount of 0.1mol/L nitric acid, pour the washing solution into the volumetric flask for collecting the acidic hydrogen peroxide absorption solution, make it to volume, and keep it sealed.
C.将酸性高锰酸钾吸收液集中放在一个500mL的容量瓶中,并滴加2~10mL10%g/L的重铬酸钾溶液。为保证分析精度,用少量0.1mol/L的硝酸冲洗酸性高锰酸钾吸收瓶,将洗液倒入收集酸性高锰酸钾吸收液的容量瓶中并定容,密封保存。C. Put the acidic potassium permanganate absorption solution in a 500mL volumetric flask, and add 2-10mL of 10% g/L potassium dichromate solution dropwise. In order to ensure the analysis accuracy, rinse the acidic potassium permanganate absorption bottle with a small amount of 0.1mol/L nitric acid, pour the washing solution into the volumetric flask that collects the acidic potassium permanganate absorption solution, dilute to volume, and seal it for storage.
4、样品消解4. Sample digestion
A.针对氯化钾吸收液样品:取10mL装有氯化钾吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.50mL98.3wt%的浓硫酸、0.25mL65wt%的浓硝酸和10mL5%g/L的高锰酸钾溶液,水浴90°C加热2h后,滴加10%g/L的盐酸羟胺直至澄清,完成水溶性待测液的消解;A. For potassium chloride absorption liquid sample: take 10mL of the sample in the volumetric flask containing potassium chloride absorption liquid, add 0.75mL5%g/L potassium persulfate solution, 0.50mL98.3wt% concentrated sulfuric acid, 0.25mL65wt% % concentrated nitric acid and 10mL5%g/L of potassium permanganate solution, after heating at 90°C in a water bath for 2h, dropwise add 10%g/L of hydroxylamine hydrochloride until clarification, and complete the digestion of the water-soluble test solution;
其余氯化钾吸收液作为水溶性其他重金属待测样。The remaining potassium chloride absorption solution is used as other water-soluble heavy metals to be tested.
B.针对酸性双氧水吸收液样品:取5mL装有酸性双氧水吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.25mL38wt%的浓盐酸和0.25mL65wt%的浓硝酸,置于冰箱冷却15min后,逐滴加入5%g/L的高锰酸钾溶液,开始滴加时样品反应剧烈,继续滴加,直至样品溶液保持紫色并稳定,水浴90°C加热2h后,滴加10%g/L的盐酸羟胺直至澄清,完成元素态汞待测液1的制备;B. For the acidic hydrogen peroxide absorbent sample: take 5mL of the sample in the volumetric flask containing the acidic hydrogen peroxide absorbent, add 0.75mL of 5% g/L potassium persulfate solution, 0.25mL of 38wt% concentrated hydrochloric acid and 0.25mL of 65wt% concentrated nitric acid , after cooling in the refrigerator for 15 minutes, add 5% g/L potassium permanganate solution drop by drop, the sample reacts violently at the beginning of dropwise addition, continue to add dropwise until the sample solution remains purple and stable, after heating in a water bath at 90°C for 2 hours , drop 10% g/L of hydroxylamine hydrochloride until clarification, and complete the preparation of elemental mercury test solution 1;
其余酸性双氧水吸收液样品浓缩至20mL,然后加入30mL50%(v/v)的硝酸、10mL3%(v/v)的过氧化氢(所用过氧化氢为市售的30wt%的过氧化氢,即所述的3%(v/v)的过氧化氢,是将30wt%的过氧化氢溶液按照3体积溶液:100体积水的比例进行稀释后得到的溶液)和50mL的70℃热水,定容到100mL,完成除汞元素重金属待测液的制备。The rest of the acidic hydrogen peroxide absorption liquid sample was concentrated to 20mL, and then 30mL of 50% (v/v) nitric acid and 10mL of 3% (v/v) hydrogen peroxide were added (the hydrogen peroxide used was commercially available 30wt% hydrogen peroxide, ie The 3% (v/v) hydrogen peroxide is the solution obtained by diluting the 30wt% hydrogen peroxide solution according to the ratio of 3 volumes of solution: 100 volumes of water) and 50mL of 70°C hot water. to 100mL to complete the preparation of the mercury-removing heavy metal test solution.
C.针对酸性高锰酸钾吸收液样品:取10mL装有酸性高锰酸钾吸收液的容量瓶中的样品,加入0.75mL5%g/L的过硫酸钾溶液、0.5mL65wt%的浓硝酸和10mL5%g/L的高锰酸钾溶液,水浴90°C加热2h后,滴加10%g/L的盐酸羟胺直至澄清,完成元素态汞待测液2的制备。C. For acidic potassium permanganate absorption liquid sample: take 10mL of the sample in the volumetric flask containing acidic potassium permanganate absorption liquid, add 0.75mL5%g/L potassium persulfate solution, 0.5mL65wt% concentrated nitric acid and 10mL of 5%g/L potassium permanganate solution was heated in a water bath at 90°C for 2h, and then 10%g/L of hydroxylamine hydrochloride was added dropwise until clarified to complete the preparation of elemental mercury test solution 2.
5.分析测定5. Analysis and determination
采用电感耦合等离子体原子发射光谱仪(ICP-AES)对上述得到的各待测液进行检测,完成烟气中不同价态重金属的检测。为降低汞的仪器检出限,使用主机联用氢化物发生器(HG-ICP-AES)。The inductively coupled plasma atomic emission spectrometer (ICP-AES) was used to detect the above-mentioned liquids to be tested to complete the detection of heavy metals in different valence states in the flue gas. To lower the instrument detection limit of mercury, a main engine coupled with a hydride generator (HG-ICP-AES) was used.
6.计算烟气中不同形态不同重金属浓度6. Calculate the concentration of different heavy metals in different forms in the flue gas
根据上述方法测定所得的各吸收液样品中重金属含量和烟气量,计算烟气中不同形态的重金属浓度。The heavy metal content and flue gas volume in each absorption liquid sample were measured according to the above method, and the concentrations of heavy metals in different forms in the flue gas were calculated.
7.本发明方法的实际应用7. Practical application of the inventive method
采用本发明方法,分别在内蒙古托克托电厂锅炉、湖北荆州电厂锅炉和贵州省安顺电厂锅炉现场进行试验监测,测定结果与采用我国国标方法的测定结果基本吻合。By adopting the method of the present invention, the boilers of Inner Mongolia Tuoketuo Power Plant, Hubei Jingzhou Power Plant and Guizhou Anshun Power Plant are tested and monitored respectively.
以上通过附图及实施例显示和描述了本发明的基本原理、主要特征和发明的优点。本行业的技术人员应该了解,本发明不仅仅受上述实施例的限制,本发明要求保护范围由权利要求书界定。任何本领域技术人员可以预见的等同替换都落入本发明的保护范围内。The basic principles, main features and advantages of the present invention have been shown and described above through the drawings and embodiments. Those skilled in the industry should understand that the present invention is not limited only by the above embodiments, and the protection scope of the present invention is defined by the claims. Any equivalent replacement foreseeable by those skilled in the art falls within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100855325A CN103149271A (en) | 2013-03-18 | 2013-03-18 | Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100855325A CN103149271A (en) | 2013-03-18 | 2013-03-18 | Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103149271A true CN103149271A (en) | 2013-06-12 |
Family
ID=48547475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100855325A Pending CN103149271A (en) | 2013-03-18 | 2013-03-18 | Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103149271A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954678A (en) * | 2014-05-26 | 2014-07-30 | 国家烟草质量监督检验中心 | Method for detecting chromium, nickel, arsenic, selenium, cadmium and lead elements in cigarette ashes |
CN104597067A (en) * | 2014-12-31 | 2015-05-06 | 聚光科技(杭州)股份有限公司 | All-phase detection device for metals in gas, and working method of all-phase detection device for metals in gas |
CN105467140A (en) * | 2014-09-29 | 2016-04-06 | 东亚Dkk株式会社 | Mercury automatic detection system and pre-processing device thereof |
CN105738346A (en) * | 2014-12-10 | 2016-07-06 | 上海宝钢工业技术服务有限公司 | Method for determining content of boron and compounds thereof in air of workplace |
CN105784675A (en) * | 2015-01-13 | 2016-07-20 | 爱科来株式会社 | Plasma Spectrochemical Analysis Method And Plasma Spectrochemical Analyzer |
CN105928926A (en) * | 2016-04-19 | 2016-09-07 | 攀钢集团研究院有限公司 | Sample preparation method and detection method for water-soluble heavy metal elements in solid waste |
CN106855472A (en) * | 2017-03-08 | 2017-06-16 | 中国华能集团清洁能源技术研究院有限公司 | A kind of stationary source particulate Hg and gaseous mercury isokinetic sampling device and the method for sampling |
CN107810402A (en) * | 2015-04-30 | 2018-03-16 | 建国大学校产学协力团 | Pretreatment unit and method for air pollution measurement analysis |
CN108107161A (en) * | 2017-12-27 | 2018-06-01 | 中国科学院北京综合研究中心 | Evaluate the device of oxidation state mercury sorbing material performance |
CN108709951A (en) * | 2018-04-02 | 2018-10-26 | 华北电力大学 | A kind of improvement BCR methods to the occurrence patterns analysis of mercury in coal-fired by-product |
CN111398106A (en) * | 2020-05-18 | 2020-07-10 | 南京信息工程大学 | A method for speciation analysis of heavy metals in atmospheric particulates |
CN111397977A (en) * | 2020-05-08 | 2020-07-10 | 西安热工研究院有限公司 | System and method for sampling and testing selenium and selenium compounds in waste gas of fixed pollution source |
CN111426521A (en) * | 2020-04-01 | 2020-07-17 | 国网河北省电力有限公司电力科学研究院 | Device and method for detecting content of particulate matters and heavy metal elements in tail gas |
CN112986217A (en) * | 2021-02-09 | 2021-06-18 | 上海英凡环保科技有限公司 | On-line monitoring system and on-line monitoring method for multiple heavy metals in flue gas |
CN113405865A (en) * | 2021-06-30 | 2021-09-17 | 上海电力大学 | Coal-fired flue gas arsenic sampling device |
CN114487270A (en) * | 2021-10-11 | 2022-05-13 | 清华大学 | Fractal state testing method and testing device for whole-process flue gas mercury of fixed pollution source |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040299A (en) * | 1974-11-13 | 1977-08-09 | Ethyl Corporation | Air sampling apparatus |
WO1994001754A1 (en) * | 1992-07-03 | 1994-01-20 | Norsk Hydro A.S | Method for analyzing gas in liquid media and equipment for carrying out the method |
US7288499B1 (en) * | 2001-04-30 | 2007-10-30 | Ada Technologies, Inc | Regenerable high capacity sorbent for removal of mercury from flue gas |
US20080060519A1 (en) * | 2006-09-12 | 2008-03-13 | Peter Martin Maly | Sorbents and sorbent composition for mercury removal |
CN101175550A (en) * | 2005-03-17 | 2008-05-07 | Noxⅱ国际有限公司 | Reducing Mercury Emissions from Coal Combustion |
-
2013
- 2013-03-18 CN CN2013100855325A patent/CN103149271A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040299A (en) * | 1974-11-13 | 1977-08-09 | Ethyl Corporation | Air sampling apparatus |
WO1994001754A1 (en) * | 1992-07-03 | 1994-01-20 | Norsk Hydro A.S | Method for analyzing gas in liquid media and equipment for carrying out the method |
US7288499B1 (en) * | 2001-04-30 | 2007-10-30 | Ada Technologies, Inc | Regenerable high capacity sorbent for removal of mercury from flue gas |
CN101175550A (en) * | 2005-03-17 | 2008-05-07 | Noxⅱ国际有限公司 | Reducing Mercury Emissions from Coal Combustion |
US20080060519A1 (en) * | 2006-09-12 | 2008-03-13 | Peter Martin Maly | Sorbents and sorbent composition for mercury removal |
Non-Patent Citations (4)
Title |
---|
ASTM STANDARD: "Standard Test Method for Elemental, Oxidized,Particle-Bound and Total Mercury in Flue Gas Generated from Coal-Fired Stationary Sources (Ontario Hydro Method)", 《ASTM STANDARD》 * |
EPA: "EPA method 5 determination of particulate emissions from stationary sources", 《EPA》 * |
张辰等: "燃用高灰高硫煤电厂的汞排放研究", 《环境工程技术学报》 * |
环境保护部: "固态污染源废气铅的测定火焰原子吸收分光光度法(暂行)(HJ538-2009)", 《中华人民共和国国家环境保护标准》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103954678A (en) * | 2014-05-26 | 2014-07-30 | 国家烟草质量监督检验中心 | Method for detecting chromium, nickel, arsenic, selenium, cadmium and lead elements in cigarette ashes |
CN105467140A (en) * | 2014-09-29 | 2016-04-06 | 东亚Dkk株式会社 | Mercury automatic detection system and pre-processing device thereof |
CN105467140B (en) * | 2014-09-29 | 2018-07-31 | 东亚Dkk株式会社 | Mercury automatic checkout system and its pretreatment unit |
CN105738346A (en) * | 2014-12-10 | 2016-07-06 | 上海宝钢工业技术服务有限公司 | Method for determining content of boron and compounds thereof in air of workplace |
CN104597067A (en) * | 2014-12-31 | 2015-05-06 | 聚光科技(杭州)股份有限公司 | All-phase detection device for metals in gas, and working method of all-phase detection device for metals in gas |
CN105784675B (en) * | 2015-01-13 | 2020-01-07 | 爱科来株式会社 | Plasma spectroscopic analysis method and plasma spectroscopic analysis apparatus |
CN105784675A (en) * | 2015-01-13 | 2016-07-20 | 爱科来株式会社 | Plasma Spectrochemical Analysis Method And Plasma Spectrochemical Analyzer |
CN107810402A (en) * | 2015-04-30 | 2018-03-16 | 建国大学校产学协力团 | Pretreatment unit and method for air pollution measurement analysis |
CN105928926A (en) * | 2016-04-19 | 2016-09-07 | 攀钢集团研究院有限公司 | Sample preparation method and detection method for water-soluble heavy metal elements in solid waste |
CN106855472A (en) * | 2017-03-08 | 2017-06-16 | 中国华能集团清洁能源技术研究院有限公司 | A kind of stationary source particulate Hg and gaseous mercury isokinetic sampling device and the method for sampling |
CN108107161A (en) * | 2017-12-27 | 2018-06-01 | 中国科学院北京综合研究中心 | Evaluate the device of oxidation state mercury sorbing material performance |
CN108709951A (en) * | 2018-04-02 | 2018-10-26 | 华北电力大学 | A kind of improvement BCR methods to the occurrence patterns analysis of mercury in coal-fired by-product |
CN111426521A (en) * | 2020-04-01 | 2020-07-17 | 国网河北省电力有限公司电力科学研究院 | Device and method for detecting content of particulate matters and heavy metal elements in tail gas |
CN111397977A (en) * | 2020-05-08 | 2020-07-10 | 西安热工研究院有限公司 | System and method for sampling and testing selenium and selenium compounds in waste gas of fixed pollution source |
CN111398106A (en) * | 2020-05-18 | 2020-07-10 | 南京信息工程大学 | A method for speciation analysis of heavy metals in atmospheric particulates |
CN112986217A (en) * | 2021-02-09 | 2021-06-18 | 上海英凡环保科技有限公司 | On-line monitoring system and on-line monitoring method for multiple heavy metals in flue gas |
CN113405865A (en) * | 2021-06-30 | 2021-09-17 | 上海电力大学 | Coal-fired flue gas arsenic sampling device |
CN114487270A (en) * | 2021-10-11 | 2022-05-13 | 清华大学 | Fractal state testing method and testing device for whole-process flue gas mercury of fixed pollution source |
CN114487270B (en) * | 2021-10-11 | 2022-11-18 | 清华大学 | Speciation test method and test device for mercury in flue gas from stationary pollution sources |
WO2023061248A1 (en) * | 2021-10-11 | 2023-04-20 | 清华大学 | Form-based test method and apparatus for mercury in flue gas from stationary pollution source in whole process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103149271A (en) | Method for simultaneously measuring heavy metals with different forms in coal-fired flue gas | |
Pandey et al. | Measurement techniques for mercury species in ambient air | |
CN111397977B (en) | System and method for sampling and testing selenium and selenium compounds in waste gas of fixed pollution source | |
CN203396763U (en) | Performance evaluation device for mercury removal adsorbent | |
CN102419292A (en) | SO in flue gas3Measurement system | |
CN102368065A (en) | Device for determining mercury content with different forms in coal-burning flue gas and its application | |
CN104807732A (en) | System and method for measuring mercury in atmospheric particulates | |
CN204043965U (en) | A kind of gas mercury comprehensively sampling device | |
CN109142017B (en) | Equipment and method for separating and collecting mercury in crude oil | |
CN103293326A (en) | A mercury-containing fumes emission continuous monitoring system and a monitoring method thereof | |
CN107941718B (en) | Flue gas pollutant environment monitoring system | |
CN207248581U (en) | A kind of sampling system for being used to measure escape ammonia density total in flue gas | |
CN106248595B (en) | System and method for testing bivalent mercury and zero-valent mercury in flue gas of coal-fired power plant | |
CN103076215B (en) | Bubbling type ultrasonic atomized mercury valence transformation device and method | |
CN104226300B (en) | A kind of SCR catalyst and preparation method thereof | |
CN205593835U (en) | Coal -fired flue gas mercury enrichment pipe for on -line monitoring | |
CN110940559A (en) | Coal-fired flue gas heavy metal adsorption and flue gas component analysis integrated sampling device and method | |
CN202204707U (en) | Smoke absorption bottle for measuring heavy metals in cigarette smoke | |
CN111537293A (en) | A system and method for sampling and measuring HCl and/or HBr | |
CN204679474U (en) | A kind of device measuring escape ammonia concentration in equipment for denitrifying flue gas | |
CN205941099U (en) | But active carbon adsorption device of remove particle thing | |
CN203587464U (en) | Simple measuring device for measuring static saturation adsorption quantity of gaseous chemical substance | |
CN111426521A (en) | Device and method for detecting content of particulate matters and heavy metal elements in tail gas | |
CN210123371U (en) | High-temperature and high-dust flue gas sampling system | |
CN105115924B (en) | A kind of method and device of test carbon-supported catalyst demercuration performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130612 |