CN103136912A - Moving posture capture system - Google Patents
Moving posture capture system Download PDFInfo
- Publication number
- CN103136912A CN103136912A CN2013100685593A CN201310068559A CN103136912A CN 103136912 A CN103136912 A CN 103136912A CN 2013100685593 A CN2013100685593 A CN 2013100685593A CN 201310068559 A CN201310068559 A CN 201310068559A CN 103136912 A CN103136912 A CN 103136912A
- Authority
- CN
- China
- Prior art keywords
- module
- data
- motion
- main control
- attitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000033001 locomotion Effects 0.000 claims description 66
- 230000005540 biological transmission Effects 0.000 claims description 34
- 238000005259 measurement Methods 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 28
- 230000004927 fusion Effects 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- 230000001133 acceleration Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 238000013480 data collection Methods 0.000 claims description 7
- 230000010354 integration Effects 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000036544 posture Effects 0.000 description 22
- 238000005094 computer simulation Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 210000003423 ankle Anatomy 0.000 description 4
- 210000003127 knee Anatomy 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 210000000707 wrist Anatomy 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
本发明的运动姿态捕捉系统,包括多个测量运动姿态的传感器和用于处理姿态数据的上位机,其中:惯性姿态测量传感器模块通过USART通信电缆与主控模块双向连接,主控模块与上位机无线双向连接,电源管理模块分别连接惯性姿态测量传感器模块和主控模块。该系统集成三轴磁场传感器和六轴加速度与角速度的传感器,使用惯性捷联姿态解算,结合卡尔曼数字滤波和数据融合算法,能实现准确的三维立体测量,能自动修正所采集的数据,可以不受环境因素的影响,能准确实时捕捉人、动物和物体的动作姿态,用户可直接利用该系统输出的数据,制作效果更逼真的高质量动画。可用于动漫、影视和游戏的角色模型等动态仿真,以及人、动物和物体运动状态的科学研究。
The motion posture capturing system of the present invention includes a plurality of sensors for measuring motion postures and a host computer for processing posture data, wherein: the inertial posture measurement sensor module is bidirectionally connected with the main control module through a USART communication cable, and the main control module and the upper computer Wireless two-way connection, the power management module is connected to the inertial attitude measurement sensor module and the main control module respectively. The system integrates a three-axis magnetic field sensor and a six-axis acceleration and angular velocity sensor, and uses inertial strapdown attitude calculation, combined with Kalman digital filtering and data fusion algorithms, to achieve accurate three-dimensional measurement and automatically correct the collected data. It can not be affected by environmental factors, and can accurately capture the movements and postures of people, animals and objects in real time. Users can directly use the data output by the system to produce more realistic and high-quality animations. It can be used for dynamic simulation such as character models in animation, film and television, and games, as well as scientific research on the motion state of people, animals, and objects.
Description
技术领域 technical field
本发明涉及运动姿态的数据采集,具体是运动姿态捕捉系统。 The invention relates to data collection of motion postures, in particular to a motion posture capture system.
背景技术 Background technique
三维动态/静态模拟仿真在数字化的今天显得越来越重要,动画、影视和游戏的角色模型动态仿真制作若再使用实物建模或手工绘制显然不适应潮流,效率低下,工作量大,成本高。随着人们对角色模型动作仿真的要求越来越高,对动作捕捉系统的效率、使用的方便性、精度和成本的要求也越来越来越高,这就要求该系统向低成本、简单易用、高精确度和高效率等方向发展。动作捕捉系统被越来越多地应用于动画,影视和游戏的三维动态模拟仿真制作当中,而三维动态模拟仿真已成为三维制造行业的主力军。 3D dynamic/static simulation is becoming more and more important in today's digital age. If the dynamic simulation of animation, film and game role models is made by using physical modeling or manual drawing, it is obviously not suitable for the trend, low efficiency, heavy workload and high cost. . As people's requirements for motion simulation of character models are getting higher and higher, the requirements for the efficiency, convenience of use, precision and cost of motion capture systems are also getting higher and higher, which requires the system to be low-cost, simple and Ease of use, high precision and high efficiency are developed. Motion capture systems are increasingly used in the production of 3D dynamic simulation of animation, film and television and games, and 3D dynamic simulation has become the main force in the 3D manufacturing industry.
在国际上,特别是科技发达的美国,角色模型动态仿真早已发展起来,在美国的动画电影、科幻电影和游戏中均有体现,且已达到了一定的水平。通过动作捕捉系统可以非常方便实现设计者所要求角色模型所要做的动作,只需在电脑中建立好角色模型,再将动作捕捉系统安装在演员的身上,让演员做设计者所要求的动作,再将动作捕捉系统所采集到的数据通过三维动画制作软件导入到角色模型中,角色模型便会做出和演员一样的运动仿真动画。从而可快速方便地实现三维动态模拟仿真,降低了成本,节省了时间。 Internationally, especially in the United States, where technology is advanced, dynamic simulation of character models has already been developed, and it is reflected in American animated films, science fiction films and games, and has reached a certain level. Through the motion capture system, it is very convenient to realize the actions required by the designer for the character model. You only need to build the character model in the computer, and then install the motion capture system on the actor, so that the actor can do the action required by the designer. Then import the data collected by the motion capture system into the character model through the 3D animation production software, and the character model will make the same motion simulation animation as the actor. Therefore, the three-dimensional dynamic simulation can be realized quickly and conveniently, which reduces the cost and saves time.
目前的动作捕捉系统主要有三类:1、通过光学原理实现,但这种系统受条件和环境因素影响,对光的变化极为敏感,且系统的操作也较复杂。如前面所述,易受环境影响,使用易受限制;2、通过声学原理,这种方法也不是很理想,抗干扰能力差,系统操作复杂,不好地实现;3、通过机械传感器实现,此种方法简单可行,算法简单,实现起来也较前两者简单,且不受环境地理因素影响,系统操作也较为方便,但目前该方式在三维效果、准确性和实时性、流畅性和逼真性等方面有待改进。 There are three main types of motion capture systems at present: 1. Realized by optical principles, but this kind of system is affected by conditions and environmental factors, is extremely sensitive to changes in light, and the operation of the system is also relatively complicated. As mentioned above, it is easily affected by the environment and its use is easily limited; 2. Through the acoustic principle, this method is not very ideal, the anti-interference ability is poor, the system operation is complicated, and it is not easy to realize; 3. Through mechanical sensors, This method is simple and feasible, the algorithm is simple, and it is easier to implement than the previous two, and it is not affected by environmental and geographical factors, and the system operation is also more convenient. There is room for improvement in terms of sex and so on.
发明内容 Contents of the invention
本发明的目的是提供一种运动姿态捕捉系统,它可以不受环境因素的影响,能准确实时捕捉人、动物和物体的动作姿态,计算机可直接利用该系统输出的数据,提升了动画的质量,使效果更逼真。可服务于动漫、影视和游戏的角色模型等动态仿真,以及人、动物和物体运动状态的科学研究。 The purpose of the present invention is to provide a motion posture capture system, which can not be affected by environmental factors, and can accurately capture the motion postures of people, animals and objects in real time, and the computer can directly use the data output by the system to improve the quality of animation , making the effect more realistic. It can serve dynamic simulations such as role models for animation, film and television, and games, as well as scientific research on the motion states of people, animals, and objects.
为了达到上述目的,本发明采用了如下的技术方案: In order to achieve the above object, the present invention adopts following technical scheme:
所述运动姿态捕捉系统,包括多个测量运动姿态的传感器和用于处理姿态数据的上位机,其中:惯性姿态测量传感器模块通过USART通信电缆与主控模块双向连接,主控模块与上位机无线双向连接,电源管理模块分别连接惯性姿态测量传感器模块和主控模块。 The motion posture capture system includes a plurality of sensors for measuring motion posture and a host computer for processing posture data, wherein: the inertial posture measurement sensor module is bidirectionally connected with the main control module through a USART communication cable, and the main control module is wireless with the upper computer Two-way connection, the power management module is connected to the inertial attitude measurement sensor module and the main control module respectively.
进一步,惯性姿态测量传感器模块通过USART通信电缆连接主控模块中的网络节点数据集合以及节点数据处理模块和人体姿态数据整合模块。 Further, the inertial attitude measurement sensor module is connected to the network node data set in the main control module, the node data processing module and the human body attitude data integration module through the USART communication cable.
为了更好地进行数据采集和处理,上述的惯性姿态测量传感器模块中,姿态测量中央处理器集成内部FLASH参数读取装置、内部参数校准装置、上位机指令读取装置、定时器、信号采集与滤波处理装置、数据融合与姿态解算装置、USART通信接口,内部FLASH参数读取装置依次连接着内部参数校准装置、定时器、信号采集与滤波处理装置、数据融合与姿态解算装置、USART通信接口,USART通信接口之后的上位机指令读取装置接入内部参数校准装置,三轴磁场传感器、六轴加速度与角速度传感器均接入姿态测量中央处理器的信号采集与滤波处理装置。其中姿态解算最好采用惯性捷联姿态解算,滤波处理最好采用卡尔曼滤波算法。 In order to carry out data acquisition and processing better, in the above-mentioned inertial attitude measurement sensor module, the attitude measurement central processor integrates an internal FLASH parameter reading device, an internal parameter calibration device, a host computer command reading device, a timer, signal acquisition and Filter processing device, data fusion and attitude calculation device, USART communication interface, internal FLASH parameter reading device is connected to internal parameter calibration device, timer, signal acquisition and filter processing device, data fusion and attitude calculation device, USART communication in turn Interface, the host computer command reading device behind the USART communication interface is connected to the internal parameter calibration device, and the three-axis magnetic field sensor, six-axis acceleration and angular velocity sensor are all connected to the signal acquisition and filter processing device of the attitude measurement central processor. Among them, the attitude calculation is best to use inertial strapdown attitude calculation, and the filter processing is best to use Kalman filter algorithm.
为了传输数据,上述的三轴磁场传感器、六轴加速度与角速度传感器均连接姿态测量中央处理器的A/D转换接口。 In order to transmit data, the above-mentioned three-axis magnetic field sensor, six-axis acceleration and angular velocity sensor are all connected to the A/D conversion interface of the attitude measurement central processing unit.
上述的主控模块中,网络节点数据集合以及节点数据处理模块之后连接节点数据融合模块,人体姿态数据整合模块分别与节点数据融合模块、运动状态数据传输协议模块双向连接,运动状态数据传输协议模块与无线数据传输模块1双向连接。 In the above-mentioned main control module, the node data fusion module is connected after the network node data collection and the node data processing module, the human body posture data integration module is respectively connected with the node data fusion module, the motion state data transmission protocol module, and the motion state data transmission protocol module Two-way connection with the wireless data transmission module 1.
本发明中,上位机中与主控模块无线数据传输模块1无线双向连接的无线数据传输模块2双向连接运动状态数据解释模块,运动状态数据解释模块与上位机管理系统双向连接。 In the present invention, the wireless data transmission module 2 bidirectionally connected with the wireless data transmission module 1 of the main control module in the host computer is bidirectionally connected with the motion state data interpretation module, and the motion state data interpretation module is bidirectionally connected with the host computer management system.
进一步,为了使本发明的运动姿态捕捉系统更好地工作,获得更加逼真流畅准确的三维效果,本发明的上位机管理系统设置上位机管理系统主界面及分别与之链接的: Further, in order to make the motion posture capture system of the present invention work better and obtain a more realistic, smooth and accurate three-dimensional effect, the host computer management system of the present invention sets the main interface of the host computer management system and links to it respectively:
关键部位安装位置设定子系统; Key position installation position setting subsystem;
传感器校准子系统; Sensor calibration subsystem;
传感器灵敏度设置子系统; Sensor sensitivity setting subsystem;
运动姿态数据记录子系统; Motion posture data recording subsystem;
虚拟人物动作展示子系统。 Virtual character action display subsystem.
本发明中,惯性姿态测量传感器模块主要放置在人体的主要关键部位:在人体的左踝、右踝、左膝、右膝、左手腕、右手腕、左肘、右肘、颈部和腰关节处。惯性姿态传感器模块(主要是各个传感器)的放置方向可以根据实际的接线方式,可以进行不同的放置,但是需要在在网络节点数据集合以及节点数据处理中设置,否则在运动过程中将会出现一些错误的动作。 In the present invention, the inertial posture measurement sensor module is mainly placed on the main key parts of the human body: left ankle, right ankle, left knee, right knee, left wrist, right wrist, left elbow, right elbow, neck and waist joints of the human body place. The placement direction of the inertial attitude sensor module (mainly each sensor) can be placed differently according to the actual wiring method, but it needs to be set in the network node data collection and node data processing, otherwise there will be some wrong action.
网络节点数据集合以及节点数据处理模块接收各个惯性姿态测量传感器模块的数据,将各个传感器的安装方向进行设置,校准各个传感器模块的输出是否正确,并进行节点数据处理,标注每一个关键部位传感器模块的数据,以便节点数据融合。 The network node data collection and node data processing module receives the data of each inertial attitude measurement sensor module, sets the installation direction of each sensor, calibrates whether the output of each sensor module is correct, and performs node data processing, marking each key sensor module data for node data fusion.
电源管理模块至关重要,电源的稳定性直接关系到传感器数据的正确性,如果电源的输出文波太大,直接影响了整个运动状态捕捉系统的稳定工作,本电源管理模块采用16V锂电池供电,锂电池的容量为4000毫安时,设置了开关电源电路设计,保证了转换精度和实时性。 The power management module is very important. The stability of the power supply is directly related to the correctness of the sensor data. If the output wave of the power supply is too large, it will directly affect the stable operation of the entire motion state capture system. The power management module is powered by a 16V lithium battery. , The capacity of the lithium battery is 4000 mAh, and the switching power supply circuit design is set to ensure the conversion accuracy and real-time performance.
人体姿态数据整合模块把各个节点的数据,根据人体的运动方式,计算出各个关节的主要运动方向、速度和方式,并建立立体空间XYZ三维坐标系统,随着人体的运动而产生相应的运动方式和路线。同时也对人体各个主要关键部位放置的惯性姿态测量传感器模块的原始数据和融合后的数据进行比对,确定三个轴向数据的正确性。 The human body posture data integration module calculates the main movement direction, speed and mode of each joint based on the data of each node according to the movement mode of the human body, and establishes a three-dimensional space XYZ three-dimensional coordinate system, and generates a corresponding movement mode along with the movement of the human body and routes. At the same time, the original data of the inertial attitude measurement sensor module placed on each main key part of the human body is compared with the fused data to determine the correctness of the three axial data.
节点数据融合模块:标注了节点的传感器数据由于是惯性器件,存在一些噪声,那些在节点数据融合中,需要用软件滤波将所采集到的数据进行处理的方式,本过程就是利用卡尔曼滤波将采集到信号中的干扰信号和杂音进行过滤,并且将失真的信号还原,得到符合人体姿态测量要求的信号。 Node data fusion module: because the sensor data marked with nodes is an inertial device, there are some noises. In the node data fusion, it is necessary to use software filtering to process the collected data. This process uses Kalman filtering to The interference signal and noise in the collected signal are filtered, and the distorted signal is restored to obtain a signal that meets the requirements of human body posture measurement.
运动状态数据传输协议模块是把人体运动姿态数据整合的数据进行编码,编码的格式是十六进制格式,在运动状态数据传输之前加上数据指令头,标注指令传输长度,中间就是运动状态数据,最后有数据校验和数据传输结束标注。采用这个格式可以保证传输的无误性和实时性。 The motion state data transmission protocol module encodes the data integrated with the human body motion posture data. The encoding format is in hexadecimal format. Before the motion state data transmission, the data instruction header is added, and the instruction transmission length is marked, and the motion state data is in the middle. , and finally marked with data checksum and end of data transmission. Using this format can ensure the error-free and real-time transmission.
无线数据传输模块1采用一个现有的无线数据传输模块,具有发送和接收功能,该模块采用XBee-PRO 900HP,设置了一块XBEE-PRO 900HP的底板,底板也包含了电源稳压模块,数据收发过程中,为了防止处理器(CPU)对该模块产生数据干扰,专门设置了一个射极跟随器,从而隔离了处理器与无线数据传输模块的串扰。 Wireless data transmission module 1 adopts an existing wireless data transmission module with sending and receiving functions. This module uses XBee-PRO 900HP, and a base board of XBee-PRO 900HP is set. In the process, in order to prevent the processor (CPU) from causing data interference to the module, an emitter follower is specially set up to isolate the crosstalk between the processor and the wireless data transmission module.
无线数据传输模块2与无线数据传输模块1一样。 The wireless data transmission module 2 is the same as the wireless data transmission module 1 .
运动状态数据解释模块根据传输的协议格式,解释每一个字段的具体含义,校验数据的正确性,如果校验后准确,则把人体各个主要关节的十六进制数据并转化成ASCII码。 The motion state data interpretation module interprets the specific meaning of each field according to the transmitted protocol format, and verifies the correctness of the data. If it is correct after verification, it converts the hexadecimal data of each major joint of the human body into ASCII code.
上位机管理系统把人体的主要关节ASCII码数据,虚拟重构到上位机的人物上,并实时展示出运动的状态。同时,设置传感器灵敏度、发出关键部位安装位置设定以及传感器校准的指令,并记录运动姿态数据。 The host computer management system virtual reconstructs the ASCII code data of the main joints of the human body to the characters on the host computer, and displays the state of motion in real time. At the same time, set the sensitivity of the sensor, send instructions for setting the installation position of key parts and calibrating the sensor, and record the motion posture data.
本发明的系统的工作过程是: The course of work of the system of the present invention is:
1、开机,运行上位机管理系统及相关程序; 1. Turn on the computer and run the upper computer management system and related programs;
2、分别将惯性姿态测量传感器模块安放在表演者身体上的各个关键部位,如 2. Place the inertial attitude measurement sensor module on various key parts of the performer's body, such as
在人体的左踝、右踝、左膝、右膝、左手腕、右手腕、左肘、右肘、颈部和腰关节处,再将主控模块安装在演员身体的背部中心; At the left ankle, right ankle, left knee, right knee, left wrist, right wrist, left elbow, right elbow, neck and waist joints of the human body, the main control module is installed in the back center of the actor's body;
3、分别用USART双向通信电缆将各惯性姿态测量传感器模块与主控模块相连,然后开启主控模块与上位机的无线连接; 3. Use USART two-way communication cables to connect each inertial attitude measurement sensor module with the main control module, and then open the wireless connection between the main control module and the host computer;
4、表演者身体立正,全部打开运动姿态捕捉系统的电源,运动姿态捕捉系统开始初始化,系统的指示灯开始闪烁,上位机会源源不断地接收到表演者动作姿态的数据并保存下来,同时,虚拟人物动作展示子系统就会显示模拟的运动。 4. The performer stands at attention, all turn on the power of the motion posture capture system, the motion posture capture system starts to initialize, the indicator light of the system starts to flash, and the host computer continuously receives and saves the data of the performer’s motion posture. At the same time, the virtual The character motion display subsystem will display the simulated motion.
本发明的积极效果是: The positive effect of the present invention is:
1、本发明采用了ARM处理器技术实现数据采集,保证了数据采集、数据融合准确性和实时性; 1. The present invention adopts ARM processor technology to realize data acquisition, which ensures the accuracy and real-time performance of data acquisition and data fusion;
2、该系统集成三轴磁场传感器和六轴加速度与角速度的传感器,使用惯性捷联姿态解算,结合卡尔曼数字滤波和数据融合算法,能实现准确的三维立体测量,提供高精度姿态; 2. The system integrates a three-axis magnetic field sensor and a six-axis acceleration and angular velocity sensor, and uses inertial strapdown attitude calculation, combined with Kalman digital filtering and data fusion algorithms, to achieve accurate three-dimensional measurement and provide high-precision attitude;
3、该系统采用60Hz数据的刷新速率,大幅地提高了动画的流畅性和逼真性; 3. The system adopts a data refresh rate of 60Hz, which greatly improves the fluency and fidelity of animation;
4、该系统能自动修正所采集的数据,具有较强的纠错能力,保证长时间运行测量结果准确,保证了动作姿态数据的准确性和实时性。 4. The system can automatically correct the collected data, has strong error correction ability, ensures the accuracy of long-term running measurement results, and ensures the accuracy and real-time performance of action posture data.
附图说明 Description of drawings
图1是本发明的运动状态捕捉系统硬件结构示意图; Fig. 1 is a schematic diagram of the hardware structure of the motion state capture system of the present invention;
图2是惯性姿态测量传感器模块结构示意图; Fig. 2 is a schematic structural diagram of an inertial attitude measurement sensor module;
图3为上位机管理系统框图。 Figure 3 is a block diagram of the upper computer management system.
具体实施方式 Detailed ways
下面将结合附图和具体实施方式对本发明做进一步详细说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,惯性姿态测量传感器模块通过USART通信电缆与主控模块双向连接,主控模块与上位机无线双向连接,电源管理模块分别连接惯性姿态测量传感器模块和主控模块。 As shown in Figure 1, the inertial attitude measurement sensor module is bidirectionally connected to the main control module through the USART communication cable, the main control module is bidirectionally connected to the upper computer wirelessly, and the power management module is connected to the inertial attitude measurement sensor module and the main control module respectively.
惯性姿态测量传感器模块通过USART通信电缆连接主控模块中的网络节点数据集合以及节点数据处理模块和人体姿态数据整合模块。 The inertial attitude measurement sensor module is connected to the network node data collection in the main control module, the node data processing module and the human body attitude data integration module through the USART communication cable.
见图2。惯性姿态测量传感器模块中,姿态测量中央处理器集成内部FLASH参数读取装置、内部参数校准装置、上位机指令读取装置、定时器、信号采集与滤波处理装置、数据融合与姿态解算装置、USART通信接口(双向),内部FLASH参数读取装置依次连接着内部参数校准装置、定时器、信号采集与滤波处理装置、数据融合与姿态解算装置、USART通信接口,USART通信接口之后的上位机指令读取装置接入内部参数校准装置,三轴磁场传感器、六轴加速度与角速度传感器均接入姿态测量中央处理器的信号采集与滤波处理装置。其中姿态解算采用惯性捷联姿态解算,滤波处理采用卡尔曼滤波算法。 See Figure 2. In the inertial attitude measurement sensor module, the attitude measurement central processor integrates an internal FLASH parameter reading device, an internal parameter calibration device, a host computer command reading device, a timer, a signal acquisition and filtering processing device, a data fusion and attitude calculation device, USART communication interface (two-way), the internal FLASH parameter reading device is sequentially connected to the internal parameter calibration device, timer, signal acquisition and filtering processing device, data fusion and attitude calculation device, USART communication interface, and the host computer behind the USART communication interface The command reading device is connected to the internal parameter calibration device, and the three-axis magnetic field sensor, six-axis acceleration and angular velocity sensor are all connected to the signal acquisition and filter processing device of the attitude measurement central processor. The attitude calculation adopts the inertial strapdown attitude calculation, and the filter processing adopts the Kalman filter algorithm.
三轴磁场传感器、六轴加速度与角速度传感器均连接姿态测量中央处理器的A/D转换接口。 The three-axis magnetic field sensor, six-axis acceleration and angular velocity sensor are all connected to the A/D conversion interface of the attitude measurement central processing unit.
网络节点数据集合以及节点数据处理模块之后连接节点数据融合模块,人体姿态数据整合模块分别与节点数据融合模块、运动状态数据传输协议模块双向连接,运动状态数据传输协议模块与无线数据传输模块1双向连接。 After the network node data collection and node data processing module, the node data fusion module is connected. The human body posture data integration module is connected with the node data fusion module and the motion state data transmission protocol module in two directions, and the motion state data transmission protocol module is bidirectionally connected with the wireless data transmission module. connect.
上位机中与主控模块无线数据传输模块1无线双向连接的无线数据传输模块2双向连接运动状态数据解释模块,运动状态数据解释模块与上位机管理系统双向连接。 The wireless data transmission module 2 in the host computer is bidirectionally connected with the wireless data transmission module 1 of the main control module, and the motion state data interpretation module is bidirectionally connected, and the motion state data interpretation module is bidirectionally connected with the host computer management system.
见图3。上位机管理系统设置上位机管理系统主界面及分别与之链接的如下五个子系统: See Figure 3. The upper computer management system sets the main interface of the upper computer management system and the following five subsystems respectively linked to it:
关键部位安装位置设定子系统——设定设定传感器的安装位置和方向; Key position installation position setting subsystem - set the installation position and direction of the sensor;
传感器校准子系统——包括三轴磁场校准和六轴加速度与角速度传感器(三轴加速度计校准、三轴陀螺仪校准); Sensor calibration subsystem - including three-axis magnetic field calibration and six-axis acceleration and angular velocity sensors (three-axis accelerometer calibration, three-axis gyroscope calibration);
传感器灵敏度设置子系统——包括三轴磁场灵敏度设置和六轴加速度与角速度传感器(三轴加速度计灵敏度设置、三轴陀螺仪灵敏度设置); Sensor sensitivity setting subsystem - including three-axis magnetic field sensitivity setting and six-axis acceleration and angular velocity sensor (three-axis accelerometer sensitivity setting, three-axis gyroscope sensitivity setting);
运动姿态数据记录子系统——存入硬盘; Movement attitude data recording subsystem - stored in the hard disk;
虚拟人物动作展示子系统。 Virtual character action display subsystem.
本发明中,惯性姿态测量传感器模块的工作流程包括如下步骤: In the present invention, the workflow of the inertial attitude measurement sensor module includes the following steps:
1) 开始,姿态测量中央处理器上电开始工作,启动看门狗复位系统; 1) At the beginning, the attitude measurement CPU is powered on and starts to work, and the watchdog reset system is started;
2) 系统准备,内部参数校准参数读取; 2) System preparation, internal parameter calibration parameter reading;
3) 读取上位机发出的陀螺初始化、磁场校准的指令,以便于对各个传感器进行校准; 3) Read the gyro initialization and magnetic field calibration instructions issued by the host computer, so as to calibrate each sensor;
4) 读取内部FLASH校准参数,采用出厂时默认参数值进行姿态计算; 4) Read the internal FLASH calibration parameters, and use the factory default parameter values for attitude calculation;
5) 开启定时器中断,启动ARM处理器内部的系统中断,进行内部数据融合,姿态计算等工作; 5) Turn on the timer interrupt, start the system interrupt inside the ARM processor, perform internal data fusion, attitude calculation, etc.;
6) 信号采集以及滤波算法,根据各个传感器数据的输出特性,采用卡尔曼滤波技术进行滤波; 6) Signal acquisition and filtering algorithm, according to the output characteristics of each sensor data, use Kalman filtering technology for filtering;
7) 数据融合与姿态解算,对六轴加速度与角速度的传感器,三轴磁场传感器采用四元素法求解姿态角; 7) Data fusion and attitude calculation, for the six-axis acceleration and angular velocity sensor, the three-axis magnetic field sensor adopts the four-element method to solve the attitude angle;
8) 将姿态角数据通过USART通信接口传送到主控模块。 8) Transmit the attitude angle data to the main control module through the USART communication interface.
本发明的电源管理模块采用16V锂电池供电,锂电池的容量为4000毫安时,设置了开关电源电路。 The power management module of the present invention is powered by a 16V lithium battery, the lithium battery has a capacity of 4000 mA, and a switching power supply circuit is provided.
运动状态数据传输协议模块把人体运动姿态数据整合的数据进行编码,编码的格式是十六进制格式,在运动状态数据传输之前加上数据指令头,标注指令传输长度,中间就是运动状态数据,最后有数据校验和数据传输结束标注。采用这个格式可以保证传输的无误性和实时性。 The motion state data transmission protocol module encodes the data integrated with the human body motion posture data. The encoding format is in hexadecimal format. Before the motion state data is transmitted, the data instruction header is added, and the instruction transmission length is marked. The middle is the motion state data. Finally, there are data checksums and data transmission end marks. Using this format can ensure the error-free and real-time transmission.
无线数据传输模块1采用一个现有的无线数据传输模块,具有发送和接收功能,该模块采用XBee-PRO 900HP,设置了一块XBEE-PRO 900HP的底板,底板也包含了电源稳压模块,数据收发过程中,为了防止处理器(CPU)对该模块产生数据干扰,专门设置了一个射极跟随器,从而隔离了处理器与无线数据传输模块的串扰。 Wireless data transmission module 1 adopts an existing wireless data transmission module with sending and receiving functions. This module uses XBee-PRO 900HP, and a base board of XBee-PRO 900HP is set. In the process, in order to prevent the processor (CPU) from causing data interference to the module, an emitter follower is specially set up to isolate the crosstalk between the processor and the wireless data transmission module.
无线数据传输模块2与无线数据传输模块1一样。 The wireless data transmission module 2 is the same as the wireless data transmission module 1 .
运动状态数据解释模块根据传输的协议格式,解释每一个字段的具体含义,校验数据的正确性,校验准确后,则把人体各个主要关节的十六进制数据并转化成ASCII码。 The motion state data interpretation module interprets the specific meaning of each field according to the transmitted protocol format, and verifies the correctness of the data. After the verification is accurate, it converts the hexadecimal data of each major joint of the human body into ASCII codes.
上位机管理系统把人体的主要关节ASCII码数据,虚拟重构到上位机的人物上,并实时展示出运动的状态。 The host computer management system virtual reconstructs the ASCII code data of the main joints of the human body to the characters on the host computer, and displays the state of motion in real time.
该系统采用60Hz数据的刷新速率。 The system uses a refresh rate of 60Hz data.
本发明研究实验结果表明:同时对相同仿真步长条件下,应用以上方法在高动态角运动环境下的解算精度高,由圆锥运动引起的俯仰角算法漂移误差也得到了有效抑制。用最优估计理论的数据处理方法和卡尔曼滤波器对速度信息进行融合,保证了测量精度的精准性和实时性。并且采用线性卡尔曼滤波器为惯导系统误差提供最小方差估计,然后利用这些误差的估计值去修正姿态控制系统。 The research and experiment results of the present invention show that: under the same simulation step length condition, applying the above method has high calculation accuracy in a high dynamic angular motion environment, and the drift error of the pitch angle algorithm caused by the conical motion is also effectively suppressed. The data processing method of the optimal estimation theory and the Kalman filter are used to fuse the velocity information to ensure the accuracy and real-time performance of the measurement accuracy. And the linear Kalman filter is used to provide the minimum variance estimate for the inertial navigation system error, and then the estimated value of these errors is used to correct the attitude control system.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100685593A CN103136912A (en) | 2013-03-05 | 2013-03-05 | Moving posture capture system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100685593A CN103136912A (en) | 2013-03-05 | 2013-03-05 | Moving posture capture system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103136912A true CN103136912A (en) | 2013-06-05 |
Family
ID=48496689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100685593A Pending CN103136912A (en) | 2013-03-05 | 2013-03-05 | Moving posture capture system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103136912A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103488291A (en) * | 2013-09-09 | 2014-01-01 | 北京诺亦腾科技有限公司 | Immersion virtual reality system based on motion capture |
CN104461015A (en) * | 2014-12-30 | 2015-03-25 | 北京智谷睿拓技术服务有限公司 | Shooting control method, shooting control device, shooting device and wearable device |
CN105118253A (en) * | 2015-06-25 | 2015-12-02 | 厦门市简极科技有限公司 | Intelligent ball and system thereof |
CN105809727A (en) * | 2016-03-16 | 2016-07-27 | 成都电锯互动科技有限公司 | Three-dimensional animation production system |
CN105974948A (en) * | 2016-07-22 | 2016-09-28 | 南阳师范学院 | Wireless head tracker design method based on Kalman filtering and PPM coding |
CN106094639A (en) * | 2016-07-12 | 2016-11-09 | 大连普菲克科技有限公司 | Traveling simulator controls device |
CN106308810A (en) * | 2016-09-27 | 2017-01-11 | 中国科学院深圳先进技术研究院 | Human motion capture system |
CN106503426A (en) * | 2016-10-10 | 2017-03-15 | 哈尔滨工程大学 | A body language detection and tracking system design method for medical robots |
CN106548511A (en) * | 2016-12-09 | 2017-03-29 | 国网冀北电力有限公司张家口供电公司 | Buried cable based on real enhancing technology displaying terminal and method on the spot |
CN106648116A (en) * | 2017-01-22 | 2017-05-10 | 隋文涛 | Virtual reality integrated system based on action capture |
CN106813659A (en) * | 2015-11-27 | 2017-06-09 | 上海乐相科技有限公司 | A kind of sensor device |
CN106886288A (en) * | 2017-03-24 | 2017-06-23 | 苏州创捷传媒展览股份有限公司 | A kind of attitude dynamic method for catching and device |
CN107291265A (en) * | 2016-04-05 | 2017-10-24 | 中科北控成像技术有限公司 | Inertia action catches hardware system |
CN107898466A (en) * | 2017-10-17 | 2018-04-13 | 深圳大学 | A kind of limb motion based on inertial sensor catches system and method |
CN108279593A (en) * | 2018-01-16 | 2018-07-13 | 厦门大学 | A kind of the pose real-time display system and method for large-scale engineering machinery |
CN108447077A (en) * | 2018-03-27 | 2018-08-24 | 王英睿 | A kind of horsemanship jockey posture information acquisition analysis system |
CN108492685A (en) * | 2018-05-21 | 2018-09-04 | 广东工业大学 | A kind of single pendulum system |
CN109269483A (en) * | 2018-09-20 | 2019-01-25 | 国家体育总局体育科学研究所 | A kind of scaling method of motion capture node, calibration system and calibration base station |
CN109344922A (en) * | 2018-09-06 | 2019-02-15 | 闫维新 | A kind of dance movement evaluating system having motion-captured function |
CN109445582A (en) * | 2018-10-18 | 2019-03-08 | 看见故事(苏州)影视文化发展有限公司 | A kind of action inertia captures system and method for catching |
CN110384502A (en) * | 2018-04-20 | 2019-10-29 | 清华大学 | Organism athletic posture and nerve signal monitoring analysis system |
CN110916677A (en) * | 2019-12-17 | 2020-03-27 | 陕西瑞特测控技术有限公司 | Human motion state capturing method based on inertial sensor |
CN111897412A (en) * | 2019-05-05 | 2020-11-06 | 清华大学 | motion capture device |
CN112581574A (en) * | 2020-12-25 | 2021-03-30 | 江苏环影动漫文化有限公司 | Human body motion capture system and method |
CN112790760A (en) * | 2021-01-05 | 2021-05-14 | 北京诺亦腾科技有限公司 | Three-dimensional motion attitude capturing method, device, processing equipment and system |
CN113876317A (en) * | 2021-11-09 | 2022-01-04 | 南宁师范大学 | A multi-channel human lower limb movement information collection system and method based on human acupoint positioning |
CN114041782A (en) * | 2021-07-26 | 2022-02-15 | 南宁师范大学 | A multi-channel human lower limb movement information collection system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009101108A (en) * | 2007-10-22 | 2009-05-14 | Aichi Micro Intelligent Corp | Motor performance detecting device |
CN101579238A (en) * | 2009-06-15 | 2009-11-18 | 吴健康 | Human motion capture three dimensional playback system and method thereof |
CN101799934A (en) * | 2010-04-02 | 2010-08-11 | 北京大学软件与微电子学院无锡产学研合作教育基地 | Real time human movement capture system based on micro electro mechanical inertia sensing network |
CN101886927A (en) * | 2010-06-25 | 2010-11-17 | 武汉大学 | Three-dimensional motion tracking system and method based on inertial sensor and geomagnetic sensor |
CN202486922U (en) * | 2012-03-15 | 2012-10-10 | 西安中星测控有限公司 | Human body falling monitoring and alarming device with location function |
-
2013
- 2013-03-05 CN CN2013100685593A patent/CN103136912A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009101108A (en) * | 2007-10-22 | 2009-05-14 | Aichi Micro Intelligent Corp | Motor performance detecting device |
CN101579238A (en) * | 2009-06-15 | 2009-11-18 | 吴健康 | Human motion capture three dimensional playback system and method thereof |
CN101799934A (en) * | 2010-04-02 | 2010-08-11 | 北京大学软件与微电子学院无锡产学研合作教育基地 | Real time human movement capture system based on micro electro mechanical inertia sensing network |
CN101886927A (en) * | 2010-06-25 | 2010-11-17 | 武汉大学 | Three-dimensional motion tracking system and method based on inertial sensor and geomagnetic sensor |
CN202486922U (en) * | 2012-03-15 | 2012-10-10 | 西安中星测控有限公司 | Human body falling monitoring and alarming device with location function |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103488291B (en) * | 2013-09-09 | 2017-05-24 | 北京诺亦腾科技有限公司 | Immersion virtual reality system based on motion capture |
CN103488291A (en) * | 2013-09-09 | 2014-01-01 | 北京诺亦腾科技有限公司 | Immersion virtual reality system based on motion capture |
CN104461015A (en) * | 2014-12-30 | 2015-03-25 | 北京智谷睿拓技术服务有限公司 | Shooting control method, shooting control device, shooting device and wearable device |
CN105118253A (en) * | 2015-06-25 | 2015-12-02 | 厦门市简极科技有限公司 | Intelligent ball and system thereof |
CN106813659A (en) * | 2015-11-27 | 2017-06-09 | 上海乐相科技有限公司 | A kind of sensor device |
CN105809727A (en) * | 2016-03-16 | 2016-07-27 | 成都电锯互动科技有限公司 | Three-dimensional animation production system |
CN107291265A (en) * | 2016-04-05 | 2017-10-24 | 中科北控成像技术有限公司 | Inertia action catches hardware system |
CN106094639A (en) * | 2016-07-12 | 2016-11-09 | 大连普菲克科技有限公司 | Traveling simulator controls device |
CN105974948A (en) * | 2016-07-22 | 2016-09-28 | 南阳师范学院 | Wireless head tracker design method based on Kalman filtering and PPM coding |
CN106308810A (en) * | 2016-09-27 | 2017-01-11 | 中国科学院深圳先进技术研究院 | Human motion capture system |
CN106503426B (en) * | 2016-10-10 | 2019-04-19 | 哈尔滨工程大学 | A design method of body language detection and tracking system for medical robots |
CN106503426A (en) * | 2016-10-10 | 2017-03-15 | 哈尔滨工程大学 | A body language detection and tracking system design method for medical robots |
CN106548511A (en) * | 2016-12-09 | 2017-03-29 | 国网冀北电力有限公司张家口供电公司 | Buried cable based on real enhancing technology displaying terminal and method on the spot |
CN106648116A (en) * | 2017-01-22 | 2017-05-10 | 隋文涛 | Virtual reality integrated system based on action capture |
CN106886288A (en) * | 2017-03-24 | 2017-06-23 | 苏州创捷传媒展览股份有限公司 | A kind of attitude dynamic method for catching and device |
CN107898466A (en) * | 2017-10-17 | 2018-04-13 | 深圳大学 | A kind of limb motion based on inertial sensor catches system and method |
CN107898466B (en) * | 2017-10-17 | 2020-12-11 | 深圳大学 | A system and method for limb motion capture based on inertial sensor |
CN108279593A (en) * | 2018-01-16 | 2018-07-13 | 厦门大学 | A kind of the pose real-time display system and method for large-scale engineering machinery |
CN108447077A (en) * | 2018-03-27 | 2018-08-24 | 王英睿 | A kind of horsemanship jockey posture information acquisition analysis system |
CN110384502A (en) * | 2018-04-20 | 2019-10-29 | 清华大学 | Organism athletic posture and nerve signal monitoring analysis system |
CN110384502B (en) * | 2018-04-20 | 2021-03-09 | 清华大学 | Monitoring and analyzing system for motion attitude and nerve signal of organism |
CN108492685A (en) * | 2018-05-21 | 2018-09-04 | 广东工业大学 | A kind of single pendulum system |
CN109344922A (en) * | 2018-09-06 | 2019-02-15 | 闫维新 | A kind of dance movement evaluating system having motion-captured function |
CN109269483A (en) * | 2018-09-20 | 2019-01-25 | 国家体育总局体育科学研究所 | A kind of scaling method of motion capture node, calibration system and calibration base station |
CN109445582A (en) * | 2018-10-18 | 2019-03-08 | 看见故事(苏州)影视文化发展有限公司 | A kind of action inertia captures system and method for catching |
CN111897412A (en) * | 2019-05-05 | 2020-11-06 | 清华大学 | motion capture device |
CN110916677A (en) * | 2019-12-17 | 2020-03-27 | 陕西瑞特测控技术有限公司 | Human motion state capturing method based on inertial sensor |
CN112581574A (en) * | 2020-12-25 | 2021-03-30 | 江苏环影动漫文化有限公司 | Human body motion capture system and method |
CN112790760A (en) * | 2021-01-05 | 2021-05-14 | 北京诺亦腾科技有限公司 | Three-dimensional motion attitude capturing method, device, processing equipment and system |
CN114041782A (en) * | 2021-07-26 | 2022-02-15 | 南宁师范大学 | A multi-channel human lower limb movement information collection system and method |
CN113876317A (en) * | 2021-11-09 | 2022-01-04 | 南宁师范大学 | A multi-channel human lower limb movement information collection system and method based on human acupoint positioning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103136912A (en) | Moving posture capture system | |
CN107833271B (en) | Skeleton redirection method and device based on Kinect | |
CN110327048B (en) | Human upper limb posture reconstruction system based on wearable inertial sensor | |
CN104658012B (en) | Motion capture method based on inertia and optical measurement fusion | |
CN103226398B (en) | Based on the data glove of micro-inertia sensor network technology | |
CN101579238B (en) | Human motion capture three dimensional playback system and method thereof | |
CN104778746B (en) | A kind of method for carrying out accurate three-dimensional modeling using natural gesture based on data glove | |
CN203039726U (en) | Human body three-dimensional posture identifying system | |
CN203673431U (en) | Motion trail virtual device | |
CN201431466Y (en) | Human motion capture and thee-dimensional representation system | |
CN102411440B (en) | Wireless head-controlled mouse based on accelerometer and gyro sensor | |
CN106873787A (en) | A kind of gesture interaction system and method for virtual teach-in teaching | |
CN110928404B (en) | Tracking system and related tracking method thereof | |
CN106125769A (en) | A kind of wireless head movement design of follow-up system method | |
CN114417738B (en) | Sparse IMU real-time human body motion capture and joint stress prediction method and system | |
CN103837157A (en) | Motion measuring method and device | |
CN104020846A (en) | A host motion sensing method, component and motion sensing system | |
CN108279773B (en) | A data glove based on MARG sensor and magnetic field positioning technology | |
CN102607591B (en) | Track data generation method for testing strap-down inertial navigation software | |
CN111515929A (en) | Human motion state estimation method, device, terminal and computer readable storage medium | |
CN110757471A (en) | A computer vision-based dance robot system and its operation method | |
CN111158482B (en) | A method and system for capturing human body gestures | |
CN117958807A (en) | Method, device and medium for measuring limb movement posture based on inertial measurement unit | |
Wang et al. | Twistblocks: Pluggable and twistable modular tui for armature interaction in 3d design | |
Tsekleves et al. | Wii your health: a low-cost wireless system for home rehabilitation after stroke using Wii remotes with its expansions and blender |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130605 |