[go: up one dir, main page]

CN103127886A - A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method - Google Patents

A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method Download PDF

Info

Publication number
CN103127886A
CN103127886A CN2013100682951A CN201310068295A CN103127886A CN 103127886 A CN103127886 A CN 103127886A CN 2013100682951 A CN2013100682951 A CN 2013100682951A CN 201310068295 A CN201310068295 A CN 201310068295A CN 103127886 A CN103127886 A CN 103127886A
Authority
CN
China
Prior art keywords
pdda
sio
solution
pss
carbon ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100682951A
Other languages
Chinese (zh)
Inventor
李琴
王冰
李闯
崔皓
张进
翟建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN2013100682951A priority Critical patent/CN103127886A/en
Publication of CN103127886A publication Critical patent/CN103127886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种中空状磁性介孔SiO2米材料及其制备方法,该材料为中空状结构,组成物质为磁性颗粒及SiO2,磁性颗粒被SiO2包覆。方法步骤是:利用水热合成法制备钴铁氧体纳米颗粒,用葡萄糖水热合成纳米碳球;通过硅源反应在制备的磁性颗粒表面沉积SiO2,制备磁性的介孔SiO2纳米颗粒;以碳球为模板材料,利用吸附作用将磁性介孔SiO2纳米颗粒负载到碳球表面,制备SiO2-CoFe2O4-碳球复合物;将复合物煅烧,制备中空状磁性介孔SiO2纳米材料。本发明所涉及材料具有孔径可调,磁性可控,尺寸均一及无生理毒性等优点。中空的结构使得复合微球还具有低密度和高比表面积等特性。

The invention discloses a hollow magnetic mesoporous SiO 2 meter material and a preparation method thereof. The material has a hollow structure and consists of magnetic particles and SiO 2 , and the magnetic particles are covered by SiO 2 . The steps of the method are: preparing cobalt ferrite nanoparticles by hydrothermal synthesis method, and using glucose to hydrothermally synthesize nano carbon spheres; depositing SiO 2 on the surface of the prepared magnetic particles through silicon source reaction to prepare magnetic mesoporous SiO 2 nanoparticles; Using carbon spheres as a template material, magnetic mesoporous SiO 2 nanoparticles are loaded onto the surface of carbon spheres by adsorption to prepare SiO 2 -CoFe 2 O 4 -carbon sphere composites; the composites are calcined to prepare hollow magnetic mesoporous SiO 2 Nanomaterials. The material involved in the invention has the advantages of adjustable aperture, controllable magnetism, uniform size and no physiological toxicity. The hollow structure makes the composite microspheres also have characteristics such as low density and high specific surface area.

Description

一种中空状磁性介孔SiO2纳米材料及其制备方法A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method

技术领域 technical field

本发明涉及一种新型磁性材料,具体是一种中空状磁性介孔SiO2纳米材料及其制备方法。 The invention relates to a novel magnetic material, in particular to a hollow magnetic mesoporous SiO2 nanometer material and a preparation method thereof.

背景技术 Background technique

纳米铁氧体磁性材料具有独特的结构和磁性能,因其具有高频损耗小、密度高、耐磨及寿命长等优点,在航空、电子、信息、冶金、化工、生物和医学等领域具有广泛的应用。纳米磁性颗粒通常极易团聚,这使其应用受到限制。将磁性颗粒改性或与其他物质结合可有效的减少团聚,有利于颗粒的分散和稳定。目前,利用SiO2包覆磁性颗粒,制备磁性介孔SiO2微球;用SiO2包覆层来提高复合材料的稳定性,并利用SiO2介孔的高比表面积、容易辨析的孔结构和可控孔径等特性,使复合磁性颗粒具有优良的性能。磁性介孔SiO2材料的制备方法主要有两种,原位法和两步法。通过两步法在制备好的磁性颗粒表面上,利用硅源反应得到的磁性介孔SiO2材料具有较多的优点。 Nano-ferrite magnetic materials have unique structure and magnetic properties. Because of their advantages such as low high-frequency loss, high density, wear resistance and long life, they are widely used in aviation, electronics, information, metallurgy, chemical industry, biology and medicine. Wide range of applications. Nanomagnetic particles are usually very easy to agglomerate, which limits their applications. Modification of magnetic particles or combination with other substances can effectively reduce agglomeration and facilitate the dispersion and stability of particles. At present, magnetic mesoporous SiO 2 microspheres are prepared by coating magnetic particles with SiO 2 ; the stability of composite materials is improved by using SiO 2 coating layer, and the high specific surface area of SiO 2 mesoporous, easy-to-distinguish pore structure and The controllable pore size and other characteristics make the composite magnetic particles have excellent performance. There are mainly two methods for the preparation of magnetic mesoporous SiO2 materials, the in-situ method and the two-step method. The magnetic mesoporous SiO2 material obtained by using the silicon source reaction on the surface of the prepared magnetic particles through the two-step method has many advantages.

近年来,随着合成技术和制备方法的进步,涉及具有特殊性质与功能的中空纳米微球光催化剂引起人们广泛关注。这类结构的材料具有低密度、高比表面积的特性,而且其空心部分可容纳大量的客体分子或大尺寸的功能材料,因此,空心微球材料在催化、可控药物释放和人造细胞等领域具有广泛的应用前景。但是目前尚未见到有涉及SiO2包覆的钴铁氧体中空复合磁性颗粒的报道。 In recent years, with the advancement of synthesis technology and preparation methods, photocatalysts involving hollow nanospheres with special properties and functions have attracted widespread attention. Materials with this type of structure have the characteristics of low density and high specific surface area, and their hollow parts can accommodate a large number of guest molecules or large-sized functional materials. Therefore, hollow microsphere materials are widely used in the fields of catalysis, controlled drug release and artificial cells. It has broad application prospects. However, there is no report on SiO 2 -coated cobalt ferrite hollow composite magnetic particles.

发明内容 Contents of the invention

本发明所解决的技术问题是提供一种磁性和尺寸均可调的中空状磁性介孔SiO2纳米材料及其制备方法。 The technical problem to be solved by the present invention is to provide a hollow magnetic mesoporous SiO 2 nanometer material with adjustable magnetism and size and a preparation method thereof.

本发明所述的中空状磁性介孔SiO2纳米材料,包括形貌及组成物质,其特征在于:所述形貌为中空状结构,组成物质为磁性颗粒及SiO2,磁性颗粒被SiO2包覆。 The hollow magnetic mesoporous SiO 2 nanomaterial of the present invention includes a shape and a composition material, and is characterized in that: the shape is a hollow structure, the composition material is magnetic particles and SiO 2 , and the magnetic particles are covered by SiO 2 cover.

本发明还提供了该中空状磁性介孔SiO2纳米材料的制备方法,其由以下步骤制备而成: The present invention also provides the preparation method of the hollow magnetic mesoporous SiO nanomaterial , which is prepared by the following steps:

1) 将葡萄糖溶液通过水热合成法制备成碳球; 1) Preparation of glucose solution into carbon spheres by hydrothermal synthesis;

2) 利用聚甲基二烯丙基氯化铵和聚苯乙烯磺酸钠改性步骤1)的碳球,使其表面沉积正电荷,得到碳球-(PDDA-PSS-PDDA); 2) Use polymethyl diallyl ammonium chloride and sodium polystyrene sulfonate to modify the carbon spheres in step 1) to deposit positive charges on the surface to obtain carbon spheres-(PDDA-PSS-PDDA);

3)制备钴铁氧体颗粒; 3) preparing cobalt ferrite particles;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,搅拌反应,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.04~0.4 g/L的钴铁氧体颗粒,搅拌;引入0.06~0.6 g/L步骤2)制备的碳球-(PDDA-PSS-PDDA),搅拌干燥,制得SiO2-CoFe2O4-碳球复合物; 4) Add ethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir to react, wherein the volume ratio of ethanol, water, ammonia, and ethyl orthosilicate is 100:2:4:1; add 0.04~0.4 g/L cobalt ferrite particles, stirring; introducing 0.06~0.6 g/L carbon spheres-(PDDA-PSS-PDDA) prepared in step 2), stirring and drying to obtain SiO 2 -CoFe 2 O 4 -carbon spheres Complex;

5) 在350~650 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350-650°C for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

所述步骤1)的具体过程为:将0.05~0.5 g/mL的葡萄糖溶液通过水热合成法在水热温度150~200 ℃下水热4~12 h,制备成碳球。 The specific process of the step 1) is as follows: the 0.05-0.5 g/mL glucose solution is hydrothermally heated at a hydrothermal temperature of 150-200 °C for 4-12 h by a hydrothermal synthesis method to prepare carbon spheres.

所述步骤2)的具体过程为:制0.003~0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.1~0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌过滤,得到碳球-PDDA;配制0.003~0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.05~0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA), The specific process of the step 2) is: prepare 0.003~0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, prepare 0.1~0.2 wt.% PDDA solution, add the above steps 1) The obtained product was stirred and filtered to obtain carbon spheres-PDDA; a NaCl solution of 0.003~0.006 g/mL was prepared, and sodium polystyrene sulfonate (PSS) was added to prepare a 0.05~0.1 wt.% PSS solution, and carbon Ball-PDDA and stirring and filtering to prepare carbon ball-(PDDA-PSS); adding carbon ball-(PDDA-PSS) to the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA),

步骤3)的具体过程为:将0.045~0.405 g/mL FeCl3·6H2O和0.02~0.18 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.021~0.187 g/mL,PVP的浓度为0.0017~0.015 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制得钴铁氧体颗粒。 The specific process of step 3) is: dissolve 0.045~0.405 g/mL FeCl 3 6H 2 O and 0.02~0.18 g/mL CoCl 2 6H 2 O in ethylene glycol, wherein FeCl 3 6H 2 O and CoCl 2. The molar ratio of 6H 2 O is 2:1; then add urea and polyvinylpyrrolidone (PVP) into the solution and stir at room temperature until a brown solution is formed. The concentration of urea is 0.021~0.187 g/mL, and the concentration of PVP is 0.0017 ~0.015 g/mL; the solution was transferred to a reactor for hydrothermal reaction at 180 ℃ for 20 h to prepare cobalt ferrite particles.

本发明的制备方法中,通过引入碳球模板制备中空材料,并利用聚电解质PDDA和PSS改性碳球,使其表面沉积正电荷。相对现有技术具有如下优点: In the preparation method of the present invention, the hollow material is prepared by introducing a carbon sphere template, and the carbon sphere is modified with polyelectrolyte PDDA and PSS to deposit positive charges on its surface. Compared with the prior art, it has the following advantages:

1)      本发明具有制备简单,成本低,环境友好等优点。 1) The present invention has the advantages of simple preparation, low cost, and environmental friendliness.

2)      呈中空状,与实心磁性微球相比具有低密度、高比表面积等不可比拟的优势。 2) It is hollow and has incomparable advantages such as low density and high specific surface area compared with solid magnetic microspheres.

3)      本发明制备的中空状微球直径可调,且磁性可控,尺寸为纳米级,有利于满足不同领域对于材料性能的差异性要求。 3) The diameter of the hollow microspheres prepared by the present invention is adjustable, and the magnetic properties are controllable, and the size is nanoscale, which is conducive to meeting the different requirements for material properties in different fields.

附图说明 Description of drawings

图1为本发明所涉及的中空状磁性介孔SiO2纳米材料的透射电镜图, Fig. 1 is hollow shape magnetic mesoporous SiO involved in the present invention The transmission electron microscope figure of nanometer material,

具体实施方式 实施例1 Specific Embodiments Embodiment 1

1) 将0.15 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热8 h,制备成碳球; 1) The 0.15 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 8 h to prepare carbon spheres;

2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon sphere-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon sphere-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;

3) 将0.135 g/mL FeCl3·6H2O和0.06 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中搅拌至形成棕色溶液,尿素浓度为0.063 g/mL,PVP浓度为0.005 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒;  3) Dissolve 0.135 g/mL FeCl 3 6H 2 O and 0.06 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 :1; then urea and polyvinylpyrrolidone (PVP) were added to the solution and stirred to form a brown solution, the concentration of urea was 0.063 g/mL, and the concentration of PVP was 0.005 g/mL; Heat reaction for 20 h to prepare cobalt ferrite particles;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.16 g/L的钴铁氧体颗粒,搅拌30 min;引入0.25 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.16 g/L cobalt ferrite particles, stir for 30 min; introduce 0.25 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 °C for 10 h to prepare SiO 2 -CoFe 2 O 4 -carbon ball complex;

5) 在550 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 550° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

  the

图1中列出了实施例1制备的中空状磁性介孔SiO2纳米材料的透射电镜图。可以看到本发明呈中空状。 Figure 1 lists the transmission electron microscope images of the hollow magnetic mesoporous SiO2 nanomaterials prepared in Example 1. It can be seen that the present invention is hollow.

实验中,将本发明的纳米材料置于水中,当外加磁场靠近容器时,纳米材料随即被吸附在容器表面,可见本发明含有一定的磁性,在外加磁场的作用下可方便与水分离,实现回收再利用。 In the experiment, the nanomaterial of the present invention is placed in water, and when the external magnetic field is close to the container, the nanomaterial is immediately adsorbed on the surface of the container. It can be seen that the present invention contains a certain degree of magnetism, and can be easily separated from water under the action of an external magnetic field to achieve Recycle.

  the

实施例2: Example 2:

1) 将0.05 g/mL的葡萄糖溶液通过水热合成法在水热温度200 ℃下水热4 h,制备成碳球; 1) The 0.05 g/mL glucose solution was hydrothermally heated at a hydrothermal temperature of 200 °C for 4 h by hydrothermal synthesis to prepare carbon spheres;

2) 配制0.003 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.1 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.003 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.05 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.003 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.1 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon sphere-PDDA; prepare 0.003 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.05 wt.% PSS solution, add carbon sphere-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); add carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, and finally make the surface of carbon balls uniformly distributed positive charges;

3) 将0.045 g/mL FeCl3·6H2O和0.02 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.021 g/mL,PVP的浓度为0.0017 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.045 g/mL FeCl 3 6H 2 O and 0.02 g/mL CoCl 2 6H 2 O in ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.021 g/mL, and the concentration of PVP is 0.0017 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.04 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.06 g/L步骤2)制备的碳球,搅拌12 h, 100 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.04 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.06 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 100 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;

5) 在650 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 650° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

  the

实施例3 Example 3

1) 将0.5 g/mL的葡萄糖溶液通过水热合成法在水热温度150 ℃下水热12 h,制备成碳球; 1) The 0.5 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 150 °C for 12 h to prepare carbon spheres;

2) 配制0.005 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.005 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)继续进入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.005 g/mL NaCl solution, add polymethyldiallylammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.005 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Ball-(PDDA-PSS); continue to enter the carbon ball-(PDDA-PSS) into the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA) particles, and finally make the carbon ball surface evenly distributed positive charges;

3) 将0.405 g/mL FeCl3·6H2O和0.18 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.187 g/mL,PVP的浓度为0.015 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.405 g/mL FeCl 3 6H 2 O and 0.18 g/mL CoCl 2 6H 2 O in ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.187 g/mL, and the concentration of PVP is 0.015 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.4 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.6 g/L步骤2)制备的碳球,搅拌12 h,80 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.4 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.6 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 80 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;

5) 在350~650 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350-650 °C for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

  the

实施例4 Example 4

1) 将0.45 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热6 h,制备成碳球; 1) The 0.45 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 6 h to prepare carbon spheres;

2) 配制0.004 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.004 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.004 g/mL NaCl solution, add polymethyldiallylammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.004 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;

3) 将0.09 g/mL FeCl3·6H2O和0.04 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1; 然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.0242 g/mL,PVP的浓度为0.0034 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.09 g/mL FeCl 3 6H 2 O and 0.04 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; Then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.0242 g/mL, and the concentration of PVP is 0.0034 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.08 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.12 g/L步骤2)制备的碳球,搅拌12 h,80 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.08 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.12 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 80 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;

5) 在450 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 450° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

  the

实施例5 Example 5

1) 将0.35 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热8 h,制备成碳球; 1) The 0.35 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 8 h to prepare carbon spheres;

2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)继续进入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Ball-(PDDA-PSS); continue to enter the carbon ball-(PDDA-PSS) into the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA) particles, and finally make the carbon ball surface evenly distributed positive charges;

3) 将0.270 g/mL FeCl3·6H2O和0.12 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.126 g/mL,PVP的浓度为0.01 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.270 g/mL FeCl 3 6H 2 O and 0.12 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.126 g/mL, and the concentration of PVP is 0.01 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.32 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.5 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.32 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.5 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;

5) 在350 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

  the

实施例6 Example 6

1) 将0.15 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热4~12 h,制备成碳球; 1) The 0.15 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 4-12 h to prepare carbon spheres;

2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;

3) 将0.18 g/mL FeCl3·6H2O和0.08 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1; 然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.084 g/mL,PVP的浓度为0.0068 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.18 g/mL FeCl 3 6H 2 O and 0.08 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; Then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.084 g/mL, and the concentration of PVP is 0.0068 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;

4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.12 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.24 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.12 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.24 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;

5) 在550 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 550° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.

本发明通过调节碳球模板的尺寸和钴铁氧体的添加量可以实现中空状磁性介孔SiO2纳米材料尺寸和磁性可控的制备;同时中空结构密度小,比表面积高的优势拓宽了材料的工业应用价值。利用此方法制备的中空状磁性介孔SiO2纳米材料有望满足不同领域对于材料性能的差异性要求。 The present invention can realize the size and magnetic controllable preparation of hollow magnetic mesoporous SiO 2 nanomaterials by adjusting the size of the carbon sphere template and the addition amount of cobalt ferrite; at the same time, the advantages of small hollow structure density and high specific surface area broaden the material industrial application value. The hollow magnetic mesoporous SiO 2 nanomaterials prepared by this method are expected to meet the different requirements for material properties in different fields.

以上是本发明的思路及实施方法,具体应用途径很多,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。 The above is the thinking and implementation method of the present invention, and there are many specific application approaches. It should be pointed out that for those of ordinary skill in the art, some improvements can also be made without departing from the principles of the present invention. It is regarded as the protection scope of the present invention.

Claims (5)

1. magnetic mesoporous SiO of hollow form 2Nano material comprises pattern and component, it is characterized in that: described pattern is the hollow form structure, and component is magnetic-particle and SiO 2, magnetic-particle is by SiO 2Coat.
2. magnetic mesoporous SiO of hollow form claimed in claim 1 2The preparations of nanomaterials method is characterized in that being prepared from by following steps:
1) glucose solution is prepared into the carbon ball by hydrothermal synthesis method;
2) utilize poly-methyl diallyl ammonium chloride and kayexalate modification procedure 1) the carbon ball, make its surface deposition positive charge, obtain carbon ball-(PDDA-PSS-PDDA);
3) preparation Conjugate ferrite particle;
4) add ethyl orthosilicate in the mixed solution of ethanol, water and ammoniacal liquor, stirring reaction, wherein the volume ratio of ethanol, water, ammoniacal liquor, ethyl orthosilicate is 100:2:4:1; The Conjugate ferrite particle that adds 0.04 ~ 0.4 g/L stirs; Introducing 0.06 ~ 0.6 g/L step 2) the carbon ball of preparation-(PDDA-PSS-PDDA), stirring is dry, makes SiO 2-CoFe 2O 4-carbon ball compound;
5) at 350 ~ 650 ℃ of lower calcining steps 4) preparation SiO 2-CoFe 2O 4-carbon ball compound 4 h obtain the magnetic mesoporous SiO of hollow form 2Nano material.
3. the magnetic mesoporous SiO of hollow form according to claim 2 2The preparations of nanomaterials method is characterized in that, the detailed process of described step 1) is: with the glucose solution of 0.05 ~ 0.5 g/mL by hydrothermal synthesis method at 150 ~ 200 ℃ of lower hydro-thermal 4 ~ 12 h of hydrothermal temperature, be prepared into the carbon ball.
4. according to claim 2 or 3 magnetic mesoporous SiO of described hollow form 2The preparations of nanomaterials method, it is characterized in that, described step 2) detailed process is: the NaCl solution of system 0.003 ~ 0.006 g/mL, add poly-methyl diallyl ammonium chloride, be PDDA, be prepared into 0.1 ~ 0.2 wt.% PDDA solution, add above-mentioned steps 1) product and the agitation and filtration that obtain, obtain carbon ball-PDDA; The NaCl solution of preparation 0.003 ~ 0.006 g/mL adds kayexalate, and namely PSS, be prepared into 0.05 ~ 0.1 wt.% PSS solution, adds carbon ball-PDDA and agitation and filtration, makes carbon ball-(PDDA-PSS); With carbon ball-(PDDA-PSS) join in above-mentioned PDDA solution, preparation carbon ball-(PDDA-PSS-PDDA).
5. according to claim 2 or 3 magnetic mesoporous SiO of described hollow form 2The preparations of nanomaterials method is characterized in that, the detailed process of step 3) is: with 0.045 ~ 0.405 g/mL FeCl 36H 2O and 0.02 ~ 0.18 g/mL CoCl 26H 2O is dissolved in ethylene glycol, wherein FeCl 36H 2O and CoCl 26H 2The mol ratio of O is 2:1; Then urea and polyvinylpyrrolidone (PVP) are joined that in solution, stirring at normal temperature is to forming brown solution, the concentration of urea is 0.021 ~ 0.187 g/mL, and the concentration of PVP is 0.0017 ~ 0.015 g/mL; Solution is transferred in reactor at 180 ℃ of lower hydro-thermal reaction 20 h, makes the Conjugate ferrite particle.
CN2013100682951A 2013-03-05 2013-03-05 A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method Pending CN103127886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100682951A CN103127886A (en) 2013-03-05 2013-03-05 A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100682951A CN103127886A (en) 2013-03-05 2013-03-05 A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method

Publications (1)

Publication Number Publication Date
CN103127886A true CN103127886A (en) 2013-06-05

Family

ID=48488713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100682951A Pending CN103127886A (en) 2013-03-05 2013-03-05 A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method

Country Status (1)

Country Link
CN (1) CN103127886A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801705A (en) * 2014-02-11 2014-05-21 常州大学 Method for loading nanocrystalline metal oxide or nanocrystalline metal materials by porous carbon
CN106694039A (en) * 2016-09-19 2017-05-24 安徽师范大学 Preparation method and application of carbon sphere/Au nanometer composite material
CN107828715A (en) * 2017-11-15 2018-03-23 佛山科学技术学院 A kind of plant root edge cell processing method for being used to deposit nano silicon
CN108461243A (en) * 2018-04-02 2018-08-28 浙江理工大学 A kind of porous camellia shape MnFe2O4@C nucleocapsid compounds and preparation method thereof
CN109317162A (en) * 2018-11-14 2019-02-12 扬州大学 A kind of preparation method of efficient heterogeneous Fenton-like catalyst MnFe2O4/SiO2
CN109796019A (en) * 2019-02-21 2019-05-24 华中科技大学 A kind of hollow silicon dioxide nanosphere and its preparation method and application
CN113181879A (en) * 2021-05-21 2021-07-30 福州大学 Preparation method and application of hollow carbon-based magnesium silicate microsphere adsorbent
CN113856688A (en) * 2021-11-16 2021-12-31 扬州大学 For CO2Preparation method of Cu-based catalyst for preparing methanol by hydrogenation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966344A (en) * 2010-10-29 2011-02-09 中国科学院上海硅酸盐研究所 Hollow core-shell nanometer mesoporous medicament carrying system with magnetism and luminescent performance, preparation method and application thereof
CN102284264A (en) * 2011-06-15 2011-12-21 北京化工大学 Method for preparing hydrotalcite coated ferroferric oxide microspheres
CN102824884A (en) * 2012-05-14 2012-12-19 无锡润鹏复合新材料有限公司 TiO2/Fe2O3 composite hollow microsphere and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966344A (en) * 2010-10-29 2011-02-09 中国科学院上海硅酸盐研究所 Hollow core-shell nanometer mesoporous medicament carrying system with magnetism and luminescent performance, preparation method and application thereof
CN102284264A (en) * 2011-06-15 2011-12-21 北京化工大学 Method for preparing hydrotalcite coated ferroferric oxide microspheres
CN102824884A (en) * 2012-05-14 2012-12-19 无锡润鹏复合新材料有限公司 TiO2/Fe2O3 composite hollow microsphere and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周长: "模板法制备过渡金属氧化物空心微球及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 5, 15 May 2012 (2012-05-15) *
杨朝晖: "基于重氮基高分子的层层自组装,复合微球及空心球", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, no. 11, 15 November 2006 (2006-11-15) *
苑红磊: "铁氧体纳米结构(空心)微球的合成及磁性研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 8, 15 August 2011 (2011-08-15) *
解林艳等: "介孔SiO2/Fe3O4中空磁性复合微球的制备与表征", 《无机化学学报》, vol. 26, no. 10, 31 October 2010 (2010-10-31) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801705B (en) * 2014-02-11 2016-08-31 常州大学 A kind of method that porous charcoal supported nano-gold belongs to oxide or nano metal material
CN103801705A (en) * 2014-02-11 2014-05-21 常州大学 Method for loading nanocrystalline metal oxide or nanocrystalline metal materials by porous carbon
CN106694039B (en) * 2016-09-19 2019-11-26 安徽师范大学 A kind of preparation method and applications of carbon ball/Au nanocomposite
CN106694039A (en) * 2016-09-19 2017-05-24 安徽师范大学 Preparation method and application of carbon sphere/Au nanometer composite material
CN107828715A (en) * 2017-11-15 2018-03-23 佛山科学技术学院 A kind of plant root edge cell processing method for being used to deposit nano silicon
CN108461243B (en) * 2018-04-02 2021-04-30 浙江理工大学 Porous camellia-shaped MnFe2O4@ C core-shell structure compound and preparation method thereof
CN108461243A (en) * 2018-04-02 2018-08-28 浙江理工大学 A kind of porous camellia shape MnFe2O4@C nucleocapsid compounds and preparation method thereof
CN109317162A (en) * 2018-11-14 2019-02-12 扬州大学 A kind of preparation method of efficient heterogeneous Fenton-like catalyst MnFe2O4/SiO2
CN109796019A (en) * 2019-02-21 2019-05-24 华中科技大学 A kind of hollow silicon dioxide nanosphere and its preparation method and application
CN109796019B (en) * 2019-02-21 2020-12-15 华中科技大学 A kind of hollow silica nanosphere and its preparation method and application
CN113181879A (en) * 2021-05-21 2021-07-30 福州大学 Preparation method and application of hollow carbon-based magnesium silicate microsphere adsorbent
CN113856688A (en) * 2021-11-16 2021-12-31 扬州大学 For CO2Preparation method of Cu-based catalyst for preparing methanol by hydrogenation
CN113856688B (en) * 2021-11-16 2023-11-10 扬州大学 Preparation method of Cu-based catalyst for CO2 hydrogenation to methanol

Similar Documents

Publication Publication Date Title
CN103127886A (en) A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method
Deng et al. Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach
CN102861921B (en) A kind of preparation method of core-shell magnetic/gold nanocomposite particles
Li et al. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors
Kalia et al. Magnetic polymer nanocomposites for environmental and biomedical applications
Cao et al. Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures
CN103525414B (en) Carbon quantum dot magnetic fluorescent dual-function nano material and preparation method thereof
CN104610913B (en) A kind of preparation method of the microwave absorbing material with MOFs molecular structure as template
CN101599335B (en) Oxidation resistant dimethyl silicon oil based magnetic fluid and preparation method thereof
CN1971780B (en) Preparation method of carbon nanotube magnetic composite material coated with nanometer iron tetraoxide
CN106582562A (en) Magnetic graphene oxide composite nanomaterial and preparation method thereof
CN107601461A (en) A kind of magnetic composite of Fe 3 O 4 coating carbon nanotube and preparation method thereof
CN105233799A (en) Magnetic metal-organic framework material with core-shell structure and preparation method therefor
CN104078229B (en) A kind of method of coated with silica magnetic ferric oxide nano particles
CN113385143B (en) A kind of magnetic nano carbon dot/ferric oxide composite material and its preparation method and application
CN102764617A (en) Method for preparing silver-carried silica microsphere functional materials
Xu et al. The synthesis of size-adjustable superparamagnetism Fe 3 O 4 hollow microspheres
CN102601384A (en) Chemical method for preparing cobalt nickel nanoscale alloy powder
CN101444711A (en) Magnetic silicon dioxide compound microballoon of core-shell structure and preparation method thereof
CN110589802A (en) A kind of three-dimensional MXene in situ growth of carbon nanotubes and its general synthesis method
CN103143359A (en) A magnetic recyclable hollow TiO2-SiO2-CoFe2O4 nano photocatalytic material and its preparation method
CN109950014A (en) A method for preparing magnetic mesoporous silica composite microspheres by weak hydrolysis system
CN104045336A (en) Preparation method of nickel ferrite magnetic nanofiber material
CN101279769A (en) Preparation method of ferromagnetic ferric oxide nanometer material
CN101786601B (en) Preparation method of Fe3O4/CoO core-shell structure composite nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130605