CN103127886A - A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method - Google Patents
A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method Download PDFInfo
- Publication number
- CN103127886A CN103127886A CN2013100682951A CN201310068295A CN103127886A CN 103127886 A CN103127886 A CN 103127886A CN 2013100682951 A CN2013100682951 A CN 2013100682951A CN 201310068295 A CN201310068295 A CN 201310068295A CN 103127886 A CN103127886 A CN 103127886A
- Authority
- CN
- China
- Prior art keywords
- pdda
- sio
- solution
- pss
- carbon ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title description 10
- 229910052681 coesite Inorganic materials 0.000 title description 5
- 229910052906 cristobalite Inorganic materials 0.000 title description 5
- 239000000377 silicon dioxide Substances 0.000 title description 5
- 235000012239 silicon dioxide Nutrition 0.000 title description 5
- 229910052682 stishovite Inorganic materials 0.000 title description 5
- 229910052905 tridymite Inorganic materials 0.000 title description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 86
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 22
- 229910003321 CoFe Inorganic materials 0.000 claims abstract description 17
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 13
- 239000006249 magnetic particle Substances 0.000 claims abstract description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 11
- 239000008103 glucose Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 68
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 53
- 238000003756 stirring Methods 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 32
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 26
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 claims description 25
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 24
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 24
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 16
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- 239000004202 carbamide Substances 0.000 claims description 16
- 239000011780 sodium chloride Substances 0.000 claims description 16
- -1 poly-methyl diallyl ammonium chloride Chemical compound 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 9
- 238000001354 calcination Methods 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 229940059939 kayexalate Drugs 0.000 claims 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 20
- 229910017052 cobalt Inorganic materials 0.000 abstract description 18
- 239000010941 cobalt Substances 0.000 abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 14
- 239000004005 microsphere Substances 0.000 abstract description 5
- 230000005389 magnetism Effects 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract 3
- 229910021392 nanocarbon Inorganic materials 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 230000001988 toxicity Effects 0.000 abstract 1
- 231100000419 toxicity Toxicity 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 28
- 229960002796 polystyrene sulfonate Drugs 0.000 description 21
- 239000011970 polystyrene sulfonate Substances 0.000 description 21
- 229910021529 ammonia Inorganic materials 0.000 description 14
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 235000019270 ammonium chloride Nutrition 0.000 description 5
- 241000143432 Daldinia concentrica Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000592 Artificial Cell Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- PZNOBXVHZYGUEX-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine;hydrochloride Chemical compound Cl.C=CCNCC=C PZNOBXVHZYGUEX-UHFFFAOYSA-N 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Silicon Compounds (AREA)
Abstract
本发明公开了一种中空状磁性介孔SiO2米材料及其制备方法,该材料为中空状结构,组成物质为磁性颗粒及SiO2,磁性颗粒被SiO2包覆。方法步骤是:利用水热合成法制备钴铁氧体纳米颗粒,用葡萄糖水热合成纳米碳球;通过硅源反应在制备的磁性颗粒表面沉积SiO2,制备磁性的介孔SiO2纳米颗粒;以碳球为模板材料,利用吸附作用将磁性介孔SiO2纳米颗粒负载到碳球表面,制备SiO2-CoFe2O4-碳球复合物;将复合物煅烧,制备中空状磁性介孔SiO2纳米材料。本发明所涉及材料具有孔径可调,磁性可控,尺寸均一及无生理毒性等优点。中空的结构使得复合微球还具有低密度和高比表面积等特性。
The invention discloses a hollow magnetic mesoporous SiO 2 meter material and a preparation method thereof. The material has a hollow structure and consists of magnetic particles and SiO 2 , and the magnetic particles are covered by SiO 2 . The steps of the method are: preparing cobalt ferrite nanoparticles by hydrothermal synthesis method, and using glucose to hydrothermally synthesize nano carbon spheres; depositing SiO 2 on the surface of the prepared magnetic particles through silicon source reaction to prepare magnetic mesoporous SiO 2 nanoparticles; Using carbon spheres as a template material, magnetic mesoporous SiO 2 nanoparticles are loaded onto the surface of carbon spheres by adsorption to prepare SiO 2 -CoFe 2 O 4 -carbon sphere composites; the composites are calcined to prepare hollow magnetic mesoporous SiO 2 Nanomaterials. The material involved in the invention has the advantages of adjustable aperture, controllable magnetism, uniform size and no physiological toxicity. The hollow structure makes the composite microspheres also have characteristics such as low density and high specific surface area.
Description
技术领域 technical field
本发明涉及一种新型磁性材料,具体是一种中空状磁性介孔SiO2纳米材料及其制备方法。 The invention relates to a novel magnetic material, in particular to a hollow magnetic mesoporous SiO2 nanometer material and a preparation method thereof.
背景技术 Background technique
纳米铁氧体磁性材料具有独特的结构和磁性能,因其具有高频损耗小、密度高、耐磨及寿命长等优点,在航空、电子、信息、冶金、化工、生物和医学等领域具有广泛的应用。纳米磁性颗粒通常极易团聚,这使其应用受到限制。将磁性颗粒改性或与其他物质结合可有效的减少团聚,有利于颗粒的分散和稳定。目前,利用SiO2包覆磁性颗粒,制备磁性介孔SiO2微球;用SiO2包覆层来提高复合材料的稳定性,并利用SiO2介孔的高比表面积、容易辨析的孔结构和可控孔径等特性,使复合磁性颗粒具有优良的性能。磁性介孔SiO2材料的制备方法主要有两种,原位法和两步法。通过两步法在制备好的磁性颗粒表面上,利用硅源反应得到的磁性介孔SiO2材料具有较多的优点。 Nano-ferrite magnetic materials have unique structure and magnetic properties. Because of their advantages such as low high-frequency loss, high density, wear resistance and long life, they are widely used in aviation, electronics, information, metallurgy, chemical industry, biology and medicine. Wide range of applications. Nanomagnetic particles are usually very easy to agglomerate, which limits their applications. Modification of magnetic particles or combination with other substances can effectively reduce agglomeration and facilitate the dispersion and stability of particles. At present, magnetic mesoporous SiO 2 microspheres are prepared by coating magnetic particles with SiO 2 ; the stability of composite materials is improved by using SiO 2 coating layer, and the high specific surface area of SiO 2 mesoporous, easy-to-distinguish pore structure and The controllable pore size and other characteristics make the composite magnetic particles have excellent performance. There are mainly two methods for the preparation of magnetic mesoporous SiO2 materials, the in-situ method and the two-step method. The magnetic mesoporous SiO2 material obtained by using the silicon source reaction on the surface of the prepared magnetic particles through the two-step method has many advantages.
近年来,随着合成技术和制备方法的进步,涉及具有特殊性质与功能的中空纳米微球光催化剂引起人们广泛关注。这类结构的材料具有低密度、高比表面积的特性,而且其空心部分可容纳大量的客体分子或大尺寸的功能材料,因此,空心微球材料在催化、可控药物释放和人造细胞等领域具有广泛的应用前景。但是目前尚未见到有涉及SiO2包覆的钴铁氧体中空复合磁性颗粒的报道。 In recent years, with the advancement of synthesis technology and preparation methods, photocatalysts involving hollow nanospheres with special properties and functions have attracted widespread attention. Materials with this type of structure have the characteristics of low density and high specific surface area, and their hollow parts can accommodate a large number of guest molecules or large-sized functional materials. Therefore, hollow microsphere materials are widely used in the fields of catalysis, controlled drug release and artificial cells. It has broad application prospects. However, there is no report on SiO 2 -coated cobalt ferrite hollow composite magnetic particles.
发明内容 Contents of the invention
本发明所解决的技术问题是提供一种磁性和尺寸均可调的中空状磁性介孔SiO2纳米材料及其制备方法。 The technical problem to be solved by the present invention is to provide a hollow magnetic mesoporous SiO 2 nanometer material with adjustable magnetism and size and a preparation method thereof.
本发明所述的中空状磁性介孔SiO2纳米材料,包括形貌及组成物质,其特征在于:所述形貌为中空状结构,组成物质为磁性颗粒及SiO2,磁性颗粒被SiO2包覆。 The hollow magnetic mesoporous SiO 2 nanomaterial of the present invention includes a shape and a composition material, and is characterized in that: the shape is a hollow structure, the composition material is magnetic particles and SiO 2 , and the magnetic particles are covered by SiO 2 cover.
本发明还提供了该中空状磁性介孔SiO2纳米材料的制备方法,其由以下步骤制备而成: The present invention also provides the preparation method of the hollow magnetic mesoporous SiO nanomaterial , which is prepared by the following steps:
1) 将葡萄糖溶液通过水热合成法制备成碳球; 1) Preparation of glucose solution into carbon spheres by hydrothermal synthesis;
2) 利用聚甲基二烯丙基氯化铵和聚苯乙烯磺酸钠改性步骤1)的碳球,使其表面沉积正电荷,得到碳球-(PDDA-PSS-PDDA); 2) Use polymethyl diallyl ammonium chloride and sodium polystyrene sulfonate to modify the carbon spheres in step 1) to deposit positive charges on the surface to obtain carbon spheres-(PDDA-PSS-PDDA);
3)制备钴铁氧体颗粒; 3) preparing cobalt ferrite particles;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,搅拌反应,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.04~0.4 g/L的钴铁氧体颗粒,搅拌;引入0.06~0.6 g/L步骤2)制备的碳球-(PDDA-PSS-PDDA),搅拌干燥,制得SiO2-CoFe2O4-碳球复合物; 4) Add ethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir to react, wherein the volume ratio of ethanol, water, ammonia, and ethyl orthosilicate is 100:2:4:1; add 0.04~0.4 g/L cobalt ferrite particles, stirring; introducing 0.06~0.6 g/L carbon spheres-(PDDA-PSS-PDDA) prepared in step 2), stirring and drying to obtain SiO 2 -CoFe 2 O 4 -carbon spheres Complex;
5) 在350~650 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350-650°C for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
所述步骤1)的具体过程为:将0.05~0.5 g/mL的葡萄糖溶液通过水热合成法在水热温度150~200 ℃下水热4~12 h,制备成碳球。 The specific process of the step 1) is as follows: the 0.05-0.5 g/mL glucose solution is hydrothermally heated at a hydrothermal temperature of 150-200 °C for 4-12 h by a hydrothermal synthesis method to prepare carbon spheres.
所述步骤2)的具体过程为:制0.003~0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.1~0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌过滤,得到碳球-PDDA;配制0.003~0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.05~0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA), The specific process of the step 2) is: prepare 0.003~0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, prepare 0.1~0.2 wt.% PDDA solution, add the above steps 1) The obtained product was stirred and filtered to obtain carbon spheres-PDDA; a NaCl solution of 0.003~0.006 g/mL was prepared, and sodium polystyrene sulfonate (PSS) was added to prepare a 0.05~0.1 wt.% PSS solution, and carbon Ball-PDDA and stirring and filtering to prepare carbon ball-(PDDA-PSS); adding carbon ball-(PDDA-PSS) to the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA),
步骤3)的具体过程为:将0.045~0.405 g/mL FeCl3·6H2O和0.02~0.18 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.021~0.187 g/mL,PVP的浓度为0.0017~0.015 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制得钴铁氧体颗粒。 The specific process of step 3) is: dissolve 0.045~0.405 g/mL FeCl 3 6H 2 O and 0.02~0.18 g/mL CoCl 2 6H 2 O in ethylene glycol, wherein FeCl 3 6H 2 O and CoCl 2. The molar ratio of 6H 2 O is 2:1; then add urea and polyvinylpyrrolidone (PVP) into the solution and stir at room temperature until a brown solution is formed. The concentration of urea is 0.021~0.187 g/mL, and the concentration of PVP is 0.0017 ~0.015 g/mL; the solution was transferred to a reactor for hydrothermal reaction at 180 ℃ for 20 h to prepare cobalt ferrite particles.
本发明的制备方法中,通过引入碳球模板制备中空材料,并利用聚电解质PDDA和PSS改性碳球,使其表面沉积正电荷。相对现有技术具有如下优点: In the preparation method of the present invention, the hollow material is prepared by introducing a carbon sphere template, and the carbon sphere is modified with polyelectrolyte PDDA and PSS to deposit positive charges on its surface. Compared with the prior art, it has the following advantages:
1) 本发明具有制备简单,成本低,环境友好等优点。 1) The present invention has the advantages of simple preparation, low cost, and environmental friendliness.
2) 呈中空状,与实心磁性微球相比具有低密度、高比表面积等不可比拟的优势。 2) It is hollow and has incomparable advantages such as low density and high specific surface area compared with solid magnetic microspheres.
3) 本发明制备的中空状微球直径可调,且磁性可控,尺寸为纳米级,有利于满足不同领域对于材料性能的差异性要求。 3) The diameter of the hollow microspheres prepared by the present invention is adjustable, and the magnetic properties are controllable, and the size is nanoscale, which is conducive to meeting the different requirements for material properties in different fields.
附图说明 Description of drawings
图1为本发明所涉及的中空状磁性介孔SiO2纳米材料的透射电镜图, Fig. 1 is hollow shape magnetic mesoporous SiO involved in the present invention The transmission electron microscope figure of nanometer material,
具体实施方式 实施例1 Specific Embodiments Embodiment 1
1) 将0.15 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热8 h,制备成碳球; 1) The 0.15 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 8 h to prepare carbon spheres;
2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon sphere-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon sphere-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;
3) 将0.135 g/mL FeCl3·6H2O和0.06 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中搅拌至形成棕色溶液,尿素浓度为0.063 g/mL,PVP浓度为0.005 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.135 g/mL FeCl 3 6H 2 O and 0.06 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 :1; then urea and polyvinylpyrrolidone (PVP) were added to the solution and stirred to form a brown solution, the concentration of urea was 0.063 g/mL, and the concentration of PVP was 0.005 g/mL; Heat reaction for 20 h to prepare cobalt ferrite particles;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.16 g/L的钴铁氧体颗粒,搅拌30 min;引入0.25 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.16 g/L cobalt ferrite particles, stir for 30 min; introduce 0.25 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 °C for 10 h to prepare SiO 2 -CoFe 2 O 4 -carbon ball complex;
5) 在550 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 550° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
the
图1中列出了实施例1制备的中空状磁性介孔SiO2纳米材料的透射电镜图。可以看到本发明呈中空状。 Figure 1 lists the transmission electron microscope images of the hollow magnetic mesoporous SiO2 nanomaterials prepared in Example 1. It can be seen that the present invention is hollow.
实验中,将本发明的纳米材料置于水中,当外加磁场靠近容器时,纳米材料随即被吸附在容器表面,可见本发明含有一定的磁性,在外加磁场的作用下可方便与水分离,实现回收再利用。 In the experiment, the nanomaterial of the present invention is placed in water, and when the external magnetic field is close to the container, the nanomaterial is immediately adsorbed on the surface of the container. It can be seen that the present invention contains a certain degree of magnetism, and can be easily separated from water under the action of an external magnetic field to achieve Recycle.
the
实施例2: Example 2:
1) 将0.05 g/mL的葡萄糖溶液通过水热合成法在水热温度200 ℃下水热4 h,制备成碳球; 1) The 0.05 g/mL glucose solution was hydrothermally heated at a hydrothermal temperature of 200 °C for 4 h by hydrothermal synthesis to prepare carbon spheres;
2) 配制0.003 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.1 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.003 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.05 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.003 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.1 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon sphere-PDDA; prepare 0.003 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.05 wt.% PSS solution, add carbon sphere-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); add carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, and finally make the surface of carbon balls uniformly distributed positive charges;
3) 将0.045 g/mL FeCl3·6H2O和0.02 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.021 g/mL,PVP的浓度为0.0017 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.045 g/mL FeCl 3 6H 2 O and 0.02 g/mL CoCl 2 6H 2 O in ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.021 g/mL, and the concentration of PVP is 0.0017 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.04 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.06 g/L步骤2)制备的碳球,搅拌12 h, 100 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.04 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.06 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 100 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;
5) 在650 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 650° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
the
实施例3 Example 3
1) 将0.5 g/mL的葡萄糖溶液通过水热合成法在水热温度150 ℃下水热12 h,制备成碳球; 1) The 0.5 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 150 °C for 12 h to prepare carbon spheres;
2) 配制0.005 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.005 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)继续进入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.005 g/mL NaCl solution, add polymethyldiallylammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.005 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Ball-(PDDA-PSS); continue to enter the carbon ball-(PDDA-PSS) into the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA) particles, and finally make the carbon ball surface evenly distributed positive charges;
3) 将0.405 g/mL FeCl3·6H2O和0.18 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.187 g/mL,PVP的浓度为0.015 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.405 g/mL FeCl 3 6H 2 O and 0.18 g/mL CoCl 2 6H 2 O in ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.187 g/mL, and the concentration of PVP is 0.015 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.4 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.6 g/L步骤2)制备的碳球,搅拌12 h,80 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.4 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.6 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 80 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;
5) 在350~650 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350-650 °C for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
the
实施例4 Example 4
1) 将0.45 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热6 h,制备成碳球; 1) The 0.45 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 6 h to prepare carbon spheres;
2) 配制0.004 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.004 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.004 g/mL NaCl solution, add polymethyldiallylammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.004 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;
3) 将0.09 g/mL FeCl3·6H2O和0.04 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1; 然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.0242 g/mL,PVP的浓度为0.0034 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.09 g/mL FeCl 3 6H 2 O and 0.04 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; Then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.0242 g/mL, and the concentration of PVP is 0.0034 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.08 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.12 g/L步骤2)制备的碳球,搅拌12 h,80 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.08 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.12 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 80 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;
5) 在450 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 450° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
the
实施例5 Example 5
1) 将0.35 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热8 h,制备成碳球; 1) The 0.35 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 8 h to prepare carbon spheres;
2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)继续进入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Ball-(PDDA-PSS); continue to enter the carbon ball-(PDDA-PSS) into the above PDDA solution to prepare carbon ball-(PDDA-PSS-PDDA) particles, and finally make the carbon ball surface evenly distributed positive charges;
3) 将0.270 g/mL FeCl3·6H2O和0.12 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1;然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.126 g/mL,PVP的浓度为0.01 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.270 g/mL FeCl 3 6H 2 O and 0.12 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.126 g/mL, and the concentration of PVP is 0.01 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.32 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.5 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.32 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.5 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;
5) 在350 ℃下煅烧步骤4) 制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 350° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
the
实施例6 Example 6
1) 将0.15 g/mL的葡萄糖溶液通过水热合成法在水热温度180 ℃下水热4~12 h,制备成碳球; 1) The 0.15 g/mL glucose solution was hydrothermally synthesized at a hydrothermal temperature of 180 °C for 4-12 h to prepare carbon spheres;
2) 配制0.006 g/mL 的NaCl溶液,加入聚甲基二烯丙基氯化铵,即PDDA,制备成0.2 wt.% PDDA溶液,加入上述步骤1)得到的产物并搅拌60 min后过滤,得到碳球-PDDA;配制0.006 g/mL 的NaCl溶液,加入聚苯乙烯磺酸钠,即PSS,制备成0.1 wt.% PSS溶液,加入碳球-PDDA并搅拌30 min后过滤,制得碳球-(PDDA-PSS);将碳球-(PDDA-PSS)加入到上述PDDA溶液中,制备碳球-(PDDA-PSS-PDDA)颗粒,最终使得碳球表面分布均匀的正电荷; 2) Prepare a 0.006 g/mL NaCl solution, add polymethyldiallyl ammonium chloride, namely PDDA, to prepare a 0.2 wt.% PDDA solution, add the product obtained in the above step 1) and stir for 60 min before filtering, Obtain carbon spheres-PDDA; prepare 0.006 g/mL NaCl solution, add polystyrene sulfonate sodium, namely PSS, to prepare a 0.1 wt.% PSS solution, add carbon spheres-PDDA and stir for 30 min, then filter to obtain carbon Balls-(PDDA-PSS); adding carbon balls-(PDDA-PSS) to the above PDDA solution to prepare carbon balls-(PDDA-PSS-PDDA) particles, finally making the surface of carbon balls uniformly distributed positive charges;
3) 将0.18 g/mL FeCl3·6H2O和0.08 g/mL CoCl2·6H2O溶解到乙二醇中,其中FeCl3·6H2O与CoCl2·6H2O的摩尔比为2:1; 然后将尿素和聚乙烯吡咯烷酮(PVP)加入到溶液中常温搅拌至形成棕色溶液,尿素的浓度为0.084 g/mL,PVP的浓度为0.0068 g/mL;将溶液转移至反应釜中在180 ℃下水热反应20 h,制备钴铁氧体颗粒; 3) Dissolve 0.18 g/mL FeCl 3 6H 2 O and 0.08 g/mL CoCl 2 6H 2 O into ethylene glycol, where the molar ratio of FeCl 3 6H 2 O to CoCl 2 6H 2 O is 2 : 1; Then urea and polyvinylpyrrolidone (PVP) are added to the solution and stirred at normal temperature to form a brown solution, the concentration of urea is 0.084 g/mL, and the concentration of PVP is 0.0068 g/mL; Cobalt ferrite particles were prepared by hydrothermal reaction at 180 ℃ for 20 h;
4) 在乙醇、水和氨水的混合溶液中加入正硅酸乙酯,40 ℃下搅拌反应20 min,其中乙醇、水、氨水、正硅酸乙酯的体积比为100:2:4:1;加入0.12 g/L的钴铁氧体颗粒,搅拌30 min;并引入0.24 g/L步骤2)制备的碳球,搅拌12 h,60 ℃干燥10 h,制备SiO2-CoFe2O4-碳球复合物; 4) Add tetraethyl orthosilicate to the mixed solution of ethanol, water and ammonia, and stir for 20 min at 40 °C. The volume ratio of ethanol, water, ammonia and tetraethyl orthosilicate is 100:2:4:1 ; add 0.12 g/L cobalt ferrite particles, stir for 30 min; and introduce 0.24 g/L carbon spheres prepared in step 2), stir for 12 h, and dry at 60 ℃ for 10 h to prepare SiO 2 -CoFe 2 O 4 - Carbon sphere composite;
5) 在550 ℃下煅烧步骤4)制备的SiO2-CoFe2O4-碳球复合物4 h,获得中空状磁性介孔SiO2纳米材料。 5) Calcining the SiO 2 -CoFe 2 O 4 -carbon sphere composite prepared in step 4) at 550° C. for 4 h to obtain a hollow magnetic mesoporous SiO 2 nanomaterial.
本发明通过调节碳球模板的尺寸和钴铁氧体的添加量可以实现中空状磁性介孔SiO2纳米材料尺寸和磁性可控的制备;同时中空结构密度小,比表面积高的优势拓宽了材料的工业应用价值。利用此方法制备的中空状磁性介孔SiO2纳米材料有望满足不同领域对于材料性能的差异性要求。 The present invention can realize the size and magnetic controllable preparation of hollow magnetic mesoporous SiO 2 nanomaterials by adjusting the size of the carbon sphere template and the addition amount of cobalt ferrite; at the same time, the advantages of small hollow structure density and high specific surface area broaden the material industrial application value. The hollow magnetic mesoporous SiO 2 nanomaterials prepared by this method are expected to meet the different requirements for material properties in different fields.
以上是本发明的思路及实施方法,具体应用途径很多,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。 The above is the thinking and implementation method of the present invention, and there are many specific application approaches. It should be pointed out that for those of ordinary skill in the art, some improvements can also be made without departing from the principles of the present invention. It is regarded as the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100682951A CN103127886A (en) | 2013-03-05 | 2013-03-05 | A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100682951A CN103127886A (en) | 2013-03-05 | 2013-03-05 | A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103127886A true CN103127886A (en) | 2013-06-05 |
Family
ID=48488713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100682951A Pending CN103127886A (en) | 2013-03-05 | 2013-03-05 | A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103127886A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103801705A (en) * | 2014-02-11 | 2014-05-21 | 常州大学 | Method for loading nanocrystalline metal oxide or nanocrystalline metal materials by porous carbon |
CN106694039A (en) * | 2016-09-19 | 2017-05-24 | 安徽师范大学 | Preparation method and application of carbon sphere/Au nanometer composite material |
CN107828715A (en) * | 2017-11-15 | 2018-03-23 | 佛山科学技术学院 | A kind of plant root edge cell processing method for being used to deposit nano silicon |
CN108461243A (en) * | 2018-04-02 | 2018-08-28 | 浙江理工大学 | A kind of porous camellia shape MnFe2O4@C nucleocapsid compounds and preparation method thereof |
CN109317162A (en) * | 2018-11-14 | 2019-02-12 | 扬州大学 | A kind of preparation method of efficient heterogeneous Fenton-like catalyst MnFe2O4/SiO2 |
CN109796019A (en) * | 2019-02-21 | 2019-05-24 | 华中科技大学 | A kind of hollow silicon dioxide nanosphere and its preparation method and application |
CN113181879A (en) * | 2021-05-21 | 2021-07-30 | 福州大学 | Preparation method and application of hollow carbon-based magnesium silicate microsphere adsorbent |
CN113856688A (en) * | 2021-11-16 | 2021-12-31 | 扬州大学 | For CO2Preparation method of Cu-based catalyst for preparing methanol by hydrogenation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966344A (en) * | 2010-10-29 | 2011-02-09 | 中国科学院上海硅酸盐研究所 | Hollow core-shell nanometer mesoporous medicament carrying system with magnetism and luminescent performance, preparation method and application thereof |
CN102284264A (en) * | 2011-06-15 | 2011-12-21 | 北京化工大学 | Method for preparing hydrotalcite coated ferroferric oxide microspheres |
CN102824884A (en) * | 2012-05-14 | 2012-12-19 | 无锡润鹏复合新材料有限公司 | TiO2/Fe2O3 composite hollow microsphere and preparation method thereof |
-
2013
- 2013-03-05 CN CN2013100682951A patent/CN103127886A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966344A (en) * | 2010-10-29 | 2011-02-09 | 中国科学院上海硅酸盐研究所 | Hollow core-shell nanometer mesoporous medicament carrying system with magnetism and luminescent performance, preparation method and application thereof |
CN102284264A (en) * | 2011-06-15 | 2011-12-21 | 北京化工大学 | Method for preparing hydrotalcite coated ferroferric oxide microspheres |
CN102824884A (en) * | 2012-05-14 | 2012-12-19 | 无锡润鹏复合新材料有限公司 | TiO2/Fe2O3 composite hollow microsphere and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
周长: "模板法制备过渡金属氧化物空心微球及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 5, 15 May 2012 (2012-05-15) * |
杨朝晖: "基于重氮基高分子的层层自组装,复合微球及空心球", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, no. 11, 15 November 2006 (2006-11-15) * |
苑红磊: "铁氧体纳米结构(空心)微球的合成及磁性研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 8, 15 August 2011 (2011-08-15) * |
解林艳等: "介孔SiO2/Fe3O4中空磁性复合微球的制备与表征", 《无机化学学报》, vol. 26, no. 10, 31 October 2010 (2010-10-31) * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103801705B (en) * | 2014-02-11 | 2016-08-31 | 常州大学 | A kind of method that porous charcoal supported nano-gold belongs to oxide or nano metal material |
CN103801705A (en) * | 2014-02-11 | 2014-05-21 | 常州大学 | Method for loading nanocrystalline metal oxide or nanocrystalline metal materials by porous carbon |
CN106694039B (en) * | 2016-09-19 | 2019-11-26 | 安徽师范大学 | A kind of preparation method and applications of carbon ball/Au nanocomposite |
CN106694039A (en) * | 2016-09-19 | 2017-05-24 | 安徽师范大学 | Preparation method and application of carbon sphere/Au nanometer composite material |
CN107828715A (en) * | 2017-11-15 | 2018-03-23 | 佛山科学技术学院 | A kind of plant root edge cell processing method for being used to deposit nano silicon |
CN108461243B (en) * | 2018-04-02 | 2021-04-30 | 浙江理工大学 | Porous camellia-shaped MnFe2O4@ C core-shell structure compound and preparation method thereof |
CN108461243A (en) * | 2018-04-02 | 2018-08-28 | 浙江理工大学 | A kind of porous camellia shape MnFe2O4@C nucleocapsid compounds and preparation method thereof |
CN109317162A (en) * | 2018-11-14 | 2019-02-12 | 扬州大学 | A kind of preparation method of efficient heterogeneous Fenton-like catalyst MnFe2O4/SiO2 |
CN109796019A (en) * | 2019-02-21 | 2019-05-24 | 华中科技大学 | A kind of hollow silicon dioxide nanosphere and its preparation method and application |
CN109796019B (en) * | 2019-02-21 | 2020-12-15 | 华中科技大学 | A kind of hollow silica nanosphere and its preparation method and application |
CN113181879A (en) * | 2021-05-21 | 2021-07-30 | 福州大学 | Preparation method and application of hollow carbon-based magnesium silicate microsphere adsorbent |
CN113856688A (en) * | 2021-11-16 | 2021-12-31 | 扬州大学 | For CO2Preparation method of Cu-based catalyst for preparing methanol by hydrogenation |
CN113856688B (en) * | 2021-11-16 | 2023-11-10 | 扬州大学 | Preparation method of Cu-based catalyst for CO2 hydrogenation to methanol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103127886A (en) | A hollow magnetic mesoporous SiO2 nanomaterial and its preparation method | |
Deng et al. | Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach | |
CN102861921B (en) | A kind of preparation method of core-shell magnetic/gold nanocomposite particles | |
Li et al. | Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors | |
Kalia et al. | Magnetic polymer nanocomposites for environmental and biomedical applications | |
Cao et al. | Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures | |
CN103525414B (en) | Carbon quantum dot magnetic fluorescent dual-function nano material and preparation method thereof | |
CN104610913B (en) | A kind of preparation method of the microwave absorbing material with MOFs molecular structure as template | |
CN101599335B (en) | Oxidation resistant dimethyl silicon oil based magnetic fluid and preparation method thereof | |
CN1971780B (en) | Preparation method of carbon nanotube magnetic composite material coated with nanometer iron tetraoxide | |
CN106582562A (en) | Magnetic graphene oxide composite nanomaterial and preparation method thereof | |
CN107601461A (en) | A kind of magnetic composite of Fe 3 O 4 coating carbon nanotube and preparation method thereof | |
CN105233799A (en) | Magnetic metal-organic framework material with core-shell structure and preparation method therefor | |
CN104078229B (en) | A kind of method of coated with silica magnetic ferric oxide nano particles | |
CN113385143B (en) | A kind of magnetic nano carbon dot/ferric oxide composite material and its preparation method and application | |
CN102764617A (en) | Method for preparing silver-carried silica microsphere functional materials | |
Xu et al. | The synthesis of size-adjustable superparamagnetism Fe 3 O 4 hollow microspheres | |
CN102601384A (en) | Chemical method for preparing cobalt nickel nanoscale alloy powder | |
CN101444711A (en) | Magnetic silicon dioxide compound microballoon of core-shell structure and preparation method thereof | |
CN110589802A (en) | A kind of three-dimensional MXene in situ growth of carbon nanotubes and its general synthesis method | |
CN103143359A (en) | A magnetic recyclable hollow TiO2-SiO2-CoFe2O4 nano photocatalytic material and its preparation method | |
CN109950014A (en) | A method for preparing magnetic mesoporous silica composite microspheres by weak hydrolysis system | |
CN104045336A (en) | Preparation method of nickel ferrite magnetic nanofiber material | |
CN101279769A (en) | Preparation method of ferromagnetic ferric oxide nanometer material | |
CN101786601B (en) | Preparation method of Fe3O4/CoO core-shell structure composite nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130605 |