[go: up one dir, main page]

CN103124181A - Turbo code decoding iteration cease method based on cosine similarity - Google Patents

Turbo code decoding iteration cease method based on cosine similarity Download PDF

Info

Publication number
CN103124181A
CN103124181A CN2013100227699A CN201310022769A CN103124181A CN 103124181 A CN103124181 A CN 103124181A CN 2013100227699 A CN2013100227699 A CN 2013100227699A CN 201310022769 A CN201310022769 A CN 201310022769A CN 103124181 A CN103124181 A CN 103124181A
Authority
CN
China
Prior art keywords
cosine similarity
external information
component decoder
iteration
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100227699A
Other languages
Chinese (zh)
Inventor
谭力
郝斌
苏钢
刘云翔
周泉
许娅
梁云龙
叶露霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2013100227699A priority Critical patent/CN103124181A/en
Publication of CN103124181A publication Critical patent/CN103124181A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Error Detection And Correction (AREA)

Abstract

本发明公开了一种基于余弦相似度的Turbo码译码迭代停止方法,包括如下步骤:(1)两个分量译码器间进行一次迭代译码;(2)存储分量译码器Ⅱ输出的待译码分块的外部信息序列,并定义为外部信息矢量;(3)计算当前迭代与上次迭代的外部信息矢量间的余弦相似度;(4)将步骤(3)计算所得的余弦相似度与预设的门限比较,若大于门限或当前迭代次数达到预设的最大值,则进入步骤(5);否则,重复步骤(1)-(4);(5)对最后一次迭代分量译码器Ⅱ生成的对数似然比进行解交织和硬判决,并作为译码器的译码结果输出。本方法对LTE/LTE-A系统中的Turbo码型进行译码时迭代译码速度显著提高,对于设计满足LTE/LTE-A系统要求的高速率Turbo译码器有一定价值。

Figure 201310022769

The invention discloses a turbo code decoding iterative stop method based on cosine similarity, which includes the following steps: (1) perform an iterative decoding between two component decoders; (2) store the output of the component decoder II The external information sequence of the block to be decoded is defined as an external information vector; (3) Calculate the cosine similarity between the current iteration and the external information vector of the previous iteration; (4) The cosine similarity calculated in step (3) If it is greater than the threshold or the current iteration number reaches the preset maximum value, then enter step (5); otherwise, repeat steps (1)-(4); (5) translate the last iteration component The logarithmic likelihood ratio generated by encoder II is deinterleaved and hard-decided, and is output as the decoding result of the decoder. The method significantly improves the iterative decoding speed when decoding the Turbo code pattern in the LTE/LTE-A system, and has certain value for designing a high-rate Turbo decoder meeting the requirements of the LTE/LTE-A system.

Figure 201310022769

Description

一种基于余弦相似度的Turbo码译码迭代停止方法An Iterative Stopping Method for Turbo Code Decoding Based on Cosine Similarity

技术领域 technical field

本发明涉及LTE/LTE-A技术,涉及Turbo码高速译码技术,具体涉及一种基于余弦相似度的Turbo码译码迭代停止方法。The present invention relates to LTE/LTE-A technology, relates to Turbo code high-speed decoding technology, in particular to a turbo code decoding iteration stop method based on cosine similarity.

背景技术 Background technique

Turbo码是一种性能优越的信道编码技术。Turbo码通过相互迭代过程在两个分量译码器之间交换外部信息来获得性能的提高,迭代次数越多,译码性能越好,但同时复杂度越高,延时越大。现代通信系统对传输速率要求越来越高,如何有效降低Turbo码的译码延时以及如何平衡译码性能和延时都是十分重要的研究课题。Turbo code is a channel coding technique with superior performance. The performance of Turbo codes is improved by exchanging external information between two component decoders through mutual iterative processes. The more iterations, the better the decoding performance, but at the same time, the higher the complexity, the greater the delay. Modern communication systems require higher and higher transmission rates. How to effectively reduce the decoding delay of Turbo codes and how to balance decoding performance and delay are very important research topics.

3GPP长期演进LTE系统和LTE-A系统中的信道编码均采用了Turbo码。LTE-A系统标准中要求下行峰值速率1Gbit/s,上行峰值速率500Mbit/s。为符合LTE-A系统1Gbit/s的高传输速率的要求,需要对传统的turbo编译码器进行改进,设计和验证符合未来无线通信系统中高传输速率要求的新型译码算法架构。迭代停止策略是提高译码速度的关键技术之一,能够在误码率性能损失较小的情况下大幅减少Turbo译码过程中平均迭代次数,提高译码速度。Both the channel coding in the 3GPP Long Term Evolution LTE system and the LTE-A system use Turbo codes. The LTE-A system standard requires a downlink peak rate of 1Gbit/s and an uplink peak rate of 500Mbit/s. In order to meet the high transmission rate requirements of LTE-A system 1Gbit/s, it is necessary to improve the traditional turbo codec, design and verify a new decoding algorithm architecture that meets the high transmission rate requirements of future wireless communication systems. The iterative stopping strategy is one of the key technologies to improve the decoding speed, which can greatly reduce the average number of iterations in the turbo decoding process and improve the decoding speed with little bit error rate performance loss.

Turbo码的误比特性能随着迭代的进行不断减小,但是当一定迭代次数后,turbo码的性能不再随着迭代的进行而提高,此时继续迭代只会白白增加系统时延。而且对于一些数据序列,经过很少的迭代次数就能实现无差错译码;还有一些数据序列,由于存在的错误太多,无论进行多少次迭代都不可能完全纠错。因此,采用传统的方法是对所有待译码序列都设置相同的固定次数是没有必要的,会造成系统资源和时间的浪费;而按照一定的迭代停止策略动态确定每个数据序列的译码迭代次数,能在Turbo码性能影响不大的条件下有效减少译码迭代次数,提高Turbo译码器的平均译码速度。The bit error performance of the turbo code decreases continuously with the iteration, but after a certain number of iterations, the performance of the turbo code does not improve with the iteration, and the continuous iteration at this time will only increase the system delay in vain. Moreover, for some data sequences, error-free decoding can be achieved after a small number of iterations; for some data sequences, due to the existence of too many errors, it is impossible to completely correct errors no matter how many iterations are performed. Therefore, it is unnecessary to set the same fixed number of times for all sequences to be decoded in the traditional method, which will cause waste of system resources and time; and dynamically determine the decoding iterations of each data sequence according to a certain iteration stop strategy The number of times can effectively reduce the number of decoding iterations and improve the average decoding speed of the Turbo decoder under the condition that the performance of the Turbo code is not greatly affected.

用于衡量不同迭代停止方法的标准主要有译码速度(译码每帧的平均迭代次数)、误码性能(误码率和帧错误率)、停止准则的复杂度等。迭代停止方法要求在误码性能损失较小的情况下大幅减少Turbo译码过程中平均迭代次数,提高译码速度,同时对算法的复杂度加以考虑。The criteria used to measure different iterative stopping methods mainly include decoding speed (the average number of iterations per decoding frame), bit error performance (bit error rate and frame error rate), and the complexity of the stopping criterion. The iterative stopping method needs to greatly reduce the average number of iterations in the process of turbo decoding with little bit error performance loss, improve the decoding speed, and consider the complexity of the algorithm at the same time.

一些常用的迭代停止方法如硬判决辅助(HDA)准则、改进的硬判决辅助准则(IHDA)准则、符号不同比率(SDR)准则复杂度较低。HDA准则在分量译码器Ⅱ的连续两次迭代输出软信息的硬判决符号不再发生变化时停止迭代;IHDA准则对HDA准则进行改进,目的是减少对上一次迭代信息的存储,从而减小存储要求;SDR准则通过比较同一次迭代分量译码器Ⅰ或分量译码器Ⅱ的先验信息和外部信息符号不同的比特数与门限来确定是否继续迭代。这几种准则基于迭代过程中软信息的符号作为度量,平均迭代次数与理想准则差距较大。循环冗余校验(CRC)准则对硬判决结果进行CRC校验,结果为0则停止迭代;CRC准则速度较高,但复杂度较高。Some commonly used iterative stopping methods such as hard decision aided (HDA) criterion, improved hard decision aided criterion (IHDA) criterion and sign difference ratio (SDR) criterion have low complexity. The HDA criterion stops iterating when the hard decision symbol of the soft information output by the two consecutive iterations of the component decoder II no longer changes; the IHDA criterion improves the HDA criterion, and the purpose is to reduce the storage of the last iteration information, thereby reducing Storage requirement; SDR criterion determines whether to continue iteration by comparing the prior information of component decoder I or component decoder II with the different bit number and threshold of external information symbols in the same iteration. These criteria are based on the sign of soft information in the iterative process as a measure, and the average number of iterations is far from the ideal criterion. The cyclic redundancy check (CRC) criterion performs a CRC check on the hard decision result, and if the result is 0, the iteration is stopped; the CRC criterion has a higher speed, but a higher complexity.

发明内容Contents of the invention

本发明的目的是提供一种基于余弦相似度的Turbo码译码迭代停止方法,在误码率性能损失较小的情况下,大幅减少Turbo译码过程中平均迭代次数,进一步提高译码速度。The purpose of the present invention is to provide a turbo code decoding iteration stop method based on cosine similarity, which can greatly reduce the average number of iterations in the turbo decoding process and further improve the decoding speed under the condition of small bit error rate performance loss.

为了实现上述目的,本发明的技术方案为:In order to achieve the above object, the technical solution of the present invention is:

一种基于余弦相似度的Turbo码译码迭代停止方法,包括如下步骤:(1)Turbo译码器的分量译码器Ⅰ和分量译码器Ⅱ之间进行一次迭代译码;(2)存储步骤(1)中分量译码器Ⅱ输出的待译码分块的每个比特的外部信息,把分量译码器Ⅱ输出的待译码分块中第一个比特至最后一位比特的外部信息序列看做一个矢量,称为外部信息矢量,计算并存储该外部信息矢量的模长;(3)从第2次迭代开始计算步骤(2)中得到的外部信息矢量与上一次迭代的外部信息矢量的余弦相似度;(4)将步骤(3)计算所得的余弦相似度与预设的当前迭代次数所对应的门限进行比较,若该余弦相似度大于门限或当前迭代次数达到预设的最大迭代次数,则进入步骤(5);否则,重复步骤(1)、(2)、(3)、(4);(5)对最后一次迭代中分量译码器Ⅱ生成的对数似然比进行解交织和硬判决,并将此硬判决作为Turbo码译码器最终的译码结果输出。A turbo code decoding iterative stop method based on cosine similarity, comprising the following steps: (1) perform an iterative decoding between component decoder I and component decoder II of the turbo decoder; (2) store The external information of each bit of the block to be decoded outputted by the component decoder II in step (1), the external information of the first bit to the last bit in the block to be decoded outputted by the component decoder II The information sequence is regarded as a vector, called the external information vector, and the modulus length of the external information vector is calculated and stored; (3) From the second iteration, the external information vector obtained in step (2) is calculated and the external information vector of the previous iteration Cosine similarity of the information vector; (4) Compare the cosine similarity calculated in step (3) with the threshold corresponding to the preset current iteration number, if the cosine similarity is greater than the threshold or the current iteration number reaches the preset the maximum number of iterations, then go to step (5); otherwise, repeat steps (1), (2), (3), (4); (5) for the log likelihood generated by component decoder II in the last iteration Deinterleaving and hard decision are performed on the ratio, and the hard decision is output as the final decoding result of the Turbo code decoder.

本发明所述步骤(1)具体方法为:(11)第一次迭代前,分量译码器Ⅰ的先验信息初始化为0;(12)系统信息比特、分量译码器Ⅰ的校验比特和先验信息输入到分量译码器Ⅰ进行MAP译码,生成分量译码器Ⅰ的外部信息和对数似然比;(13)经过QPP交织后的分量译码器Ⅰ的外部信息作为分量译码器Ⅱ的先验信息,与经过交织的系统信息比特和分量译码器Ⅱ的校验比特输入到分量译码器Ⅱ进行MAP译码,生成分量译码器Ⅱ的外部信息和对数似然比;(14)经过QPP解交织后的分量译码器Ⅱ的外部信息,将作为分量译码器Ⅰ新的先验信息使用。The specific method of step (1) in the present invention is: (11) before the first iteration, the prior information of the component decoder I is initialized to 0; (12) the system information bit, the check bit of the component decoder I and the prior information are input to the component decoder I for MAP decoding to generate the extrinsic information and log likelihood ratio of the component decoder I; (13) The extrinsic information of the component decoder I after QPP interleaving is used as the component The prior information of the decoder II, the interleaved system information bits and the parity bits of the component decoder II are input to the component decoder II for MAP decoding, and the external information and logarithm of the component decoder II are generated. Likelihood ratio; (14) The external information of component decoder II after QPP deinterleaving will be used as the new prior information of component decoder I.

本发明所述步骤(2)中第n次迭代时的外部信息矢量为分量译码器Ⅱ输出的该分块中第一个比特至最后一位比特的外部信息序列组成的K维矢量,K为信息分块大小。The external information vector at the nth iteration in step (2) of the present invention is a K-dimensional vector composed of the external information sequence from the first bit to the last bit in the block output by the component decoder II, K The block size for the message.

本发明所述步骤(2)中第n次迭代时的外部信息矢量的模长为分量译码器Ⅱ输出的该分块中所有比特的外部信息的平方和的算术平方根;The modulus length of the extrinsic information vector at the nth iteration in the step (2) of the present invention is the arithmetic square root of the sum of the squares of the extrinsic information of all bits in the block output by the component decoder II;

本发明所述步骤(3)中采用第n次迭代与第n-1次迭代的外部信息矢量的余弦相似度作为度量,其中两个矢量的余弦相似度的定义为:In the step (3) of the present invention, the cosine similarity of the external information vector of the nth iteration and the n-1th iteration is used as a measure, wherein the cosine similarity of the two vectors is defined as:

Figure BDA0000276089371
Figure BDA0000276089371

式中,

Figure BDA0000276089372
Figure BDA0000276089373
为两个维度相同的矢量,
Figure BDA0000276089374
Figure BDA0000276089375
分别为矢量
Figure BDA0000276089376
的模长,Ai和Bi分别为
Figure BDA0000276089378
的第i个分量。In the formula,
Figure BDA0000276089372
and
Figure BDA0000276089373
are two vectors of the same dimension,
Figure BDA0000276089374
and
Figure BDA0000276089375
are vectors
Figure BDA0000276089376
and The modulus length of A i and Bi are respectively
Figure BDA0000276089378
and The i-th component of .

本发明所述步骤(3)中计算余弦相似度时,外部信息绝对值的数量级为10-100,为避免计算过程的中间值过大而产生溢出,可将所有外部信息除以100后参与运算,最终得到的余弦相似度大小不变;When calculating the cosine similarity in step (3) of the present invention, the magnitude of the absolute value of the external information is 10-100. In order to avoid overflow due to excessive intermediate values in the calculation process, all external information can be divided by 100 to participate in the calculation , the size of the final cosine similarity remains unchanged;

本发明所述步骤(4)中的一组与当前迭代次数n对应的门限值,即第n次迭代时的门限为θn,n=2,3,…,Nmax-1;其中Nmax为预设的最大迭代次数。θn的范围为θn∈[0.85,1],且θn-1≤θn;θn具体大小需要根据仿真确定;不同迭代次数对应的θn可以取相同值,也可以按迭代次数的高低设为两组或多组不同值。A set of threshold values corresponding to the current iteration number n in step (4) of the present invention, that is, the threshold at the nth iteration is θ n , n=2,3,...,N max -1; where N max is the preset maximum number of iterations. The range of θ n is θ n ∈ [0.85,1], and θ n-1θ n ; the specific size of θ n needs to be determined according to the simulation; High and Low are set to two or more different values.

在本发明的又一实施例中,将步骤(3)中计算所得的余弦相似度与对应的门限θn进行比较,若大于门限则停止迭代过程,即迭代停止条件为:In yet another embodiment of the present invention, the cosine similarity calculated in step (3) is compared with the corresponding threshold θ n , and if it is greater than the threshold, the iterative process is stopped, that is, the iteration stop condition is:

cosα>θn cosα> θn

其中,α为两个外部信息矢量的夹角,迭代次数n满足2≤n≤Nmax-1。Wherein, α is the angle between two external information vectors, and the number of iterations n satisfies 2≤n≤N max -1.

在本发明的又一实施例中,预设一个最大迭代次数Nmax,当迭代次数达到Nmax时无论是否满足迭代停止条件都停止迭代过程。In yet another embodiment of the present invention, a maximum number of iterations N max is preset, and when the number of iterations reaches N max , the iterative process is stopped no matter whether the iteration stop condition is met or not.

在本发明的又一实施例中,余弦相似度中的两个信息矢量为分量译码器的外部信息、先验信息或对数似然比等译码过程中的信息序列或对其作变换后的信息序列;In yet another embodiment of the present invention, the two information vectors in the cosine similarity are the external information of the component decoder, the prior information or the information sequence in the decoding process such as the logarithmic likelihood ratio or transform it The subsequent information sequence;

与现有技术相比,本发明以迭代译码过程中的外部信息矢量间的余弦相似度作为度量,进一步提高了译码速度。本发明在误码率性能损失较小的情况下进一步减少Turbo译码过程中平均迭代次数,提高译码速度。Compared with the prior art, the present invention uses the cosine similarity between external information vectors in the iterative decoding process as a measure, further improving the decoding speed. The present invention further reduces the average number of iterations in the turbo decoding process and improves the decoding speed under the condition that the bit error rate performance loss is small.

附图说明 Description of drawings

图1为本发明基于余弦相似度的Turbo码译码迭代停止方法流程图。FIG. 1 is a flow chart of the iterative stopping method of Turbo code decoding based on cosine similarity in the present invention.

图2为图1所示基于余弦相似度的Turbo码译码迭代停止方法的译码结构图。FIG. 2 is a decoding structure diagram of the turbo code decoding iteration stop method based on cosine similarity shown in FIG. 1 .

具体实施方式 Detailed ways

通过以下的描述并结合附图,本发明将变得更加清晰,这些附图用于解释本发明的实施例。The present invention will become clearer through the following description in conjunction with the accompanying drawings, which are used to explain the embodiments of the present invention.

现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。Embodiments of the present invention will now be described with reference to the drawings, in which like reference numerals represent like elements.

本发明基于余弦相似度的Turbo码译码迭代停止方法,是基于LTE/LTE-A中的Turbo码型实现的;信道类型为加性高斯白噪声信道(AWGN);调制方式采用二进制相移键控(BPSK);译码算法采用MAP译码;Turbo码生成多项式为(13,15);码率1/3。The turbo code decoding iterative stop method based on cosine similarity in the present invention is realized based on the Turbo code pattern in LTE/LTE-A; the channel type is an additive white Gaussian noise channel (AWGN); the modulation mode adopts a binary phase shift key control (BPSK); the decoding algorithm uses MAP decoding; the Turbo code generator polynomial is (13,15); the code rate is 1/3.

下面具体说明本实施例基于余弦相似度的Turbo码译码迭代停止方法的流程。结合图1、图2,则所述方法包括以下步骤:The flow of the iterative stop method for decoding Turbo codes based on cosine similarity in this embodiment will be described in detail below. In conjunction with Fig. 1, Fig. 2, then described method comprises the following steps:

步骤S1,初始化分量译码器Ⅰ的先验信息为0,余弦相似度为0;Step S1, initialize the prior information of the component decoder I to 0, and the cosine similarity to 0;

步骤S2,比较并判断第n次和第n-1次迭代外部信息矢量间的余弦相似度是否大于对应的预设门限θn,或迭代次数n是否大于最大迭代次数Nmax;2≤n≤Nmax-1,若至少有一个条件成立,转至步骤S8;否则,进入下一步;Step S2, comparing and judging whether the cosine similarity between the nth iteration and the n-1th iteration external information vector is greater than the corresponding preset threshold θ n , or whether the number of iterations n is greater than the maximum number of iterations N max ; 2≤n≤ N max -1, if at least one condition is established, go to step S8; otherwise, go to the next step;

步骤S3,迭代次数n增加1;Step S3, the number of iterations n is increased by 1;

步骤S4,分量译码器Ⅱ上次迭代的外部信息经过QPP解交织后,作为分量译码器Ⅰ的先验信息(首次迭代时分量译码器Ⅰ的先验信息为初始化值0),与系统信息比特、分量译码器Ⅰ的校验比特一起输入到分量译码器Ⅰ进行MAP译码,生成分量译码器Ⅰ的外部信息和对数似然比;Step S4, the external information of the last iteration of the component decoder II is deinterleaved by QPP, and used as the prior information of the component decoder I (the prior information of the component decoder I is the initialization value 0 in the first iteration), and System information bits and check bits of component decoder I are input to component decoder I for MAP decoding to generate external information and log likelihood ratio of component decoder I;

步骤S5,经过QPP交织后的分量译码器Ⅰ的外部信息作为分量译码器Ⅱ的先验信息,与经过交织的系统信息比特和分量译码器Ⅱ的校验比特输入到分量译码器Ⅱ进行MAP译码,生成分量译码器Ⅱ的外部信息和对数似然比;Step S5, the external information of the component decoder I after QPP interleaving is used as the prior information of the component decoder II, and the interleaved system information bits and the check bits of the component decoder II are input to the component decoder Ⅱ performs MAP decoding to generate external information and log likelihood ratio of component decoder Ⅱ;

步骤S6,存储分量译码器Ⅱ输出的外部信息矢量,计算并存储外部信息矢量的模长,外部信息矢量为分量译码器Ⅱ输出的该分块中第一个比特至最后一位比特的外部信息序列组成的K维矢量,K为信息分块大小,外部信息矢量的模长为分量译码器Ⅱ输出的该分块中所有比特的外部信息的平方和的算术平方根;Step S6, store the external information vector output by the component decoder II, calculate and store the modulus length of the external information vector, the external information vector is the first bit to the last bit in the block output by the component decoder II The K-dimensional vector composed of the external information sequence, K is the size of the information block, and the modulus length of the external information vector is the arithmetic square root of the sum of the squares of the external information of all bits in the block output by the component decoder II;

步骤S7,计算第n次迭代与第n-1次迭代的外部信息矢量的余弦相似度;两个矢量的余弦相似度的定义为:Step S7, calculate the cosine similarity of the external information vector of the nth iteration and the n-1th iteration; the cosine similarity of the two vectors is defined as:

式中,

Figure BDA00002760893711
Figure BDA00002760893712
为两个维度相同的矢量,
Figure BDA00002760893713
分别为矢量的模长,Ai和Bi分别为
Figure BDA00002760893717
Figure BDA00002760893718
的第i个分量。返回至步骤S2;In the formula,
Figure BDA00002760893711
and
Figure BDA00002760893712
are two vectors of the same dimension,
Figure BDA00002760893713
and are vectors and The modulus length of A i and Bi are respectively
Figure BDA00002760893717
and
Figure BDA00002760893718
The i-th component of . Return to step S2;

步骤S8,停止迭代过程,对分量译码器Ⅱ最后一次生成的对数似然比进行解交织和硬判决,得到最终译码结果;结束。Step S8, stop the iterative process, perform deinterleaving and hard decision on the log-likelihood ratio generated by the component decoder II last time, and obtain the final decoding result; end.

由上可以看出,本实施例基于余弦相似度的Turbo码译码迭代停止方法以迭代译码过程中的两个分量译码器的外部信息的余弦相似度来度量两个译码器继续通过外部信息的交换来提高译码性能的能力,从而判断是够停止迭代过程,以提高译码速度。本发明在误码率性能损失很小的情况下进一步减少Turbo译码过程中平均迭代次数,提高译码速度。It can be seen from the above that the cosine similarity-based Turbo code decoding iteration stop method in this embodiment uses the cosine similarity of the external information of the two component decoders in the iterative decoding process to measure the continuous passing of the two decoders. The ability to improve the decoding performance by exchanging external information, so as to judge whether it is enough to stop the iterative process to improve the decoding speed. The invention further reduces the average number of iterations in the turbo decoding process and improves the decoding speed under the condition that the bit error rate performance loss is small.

以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。The present invention has been described above in conjunction with the best embodiments, but the present invention is not limited to the above-disclosed embodiments, but should cover various modifications and equivalent combinations made according to the essence of the present invention.

Claims (8)

1.一种基于余弦相似度的Turbo码译码迭代停止方法,其特征在于包括如下步骤:(1)Turbo译码器的分量译码器Ⅰ和分量译码器Ⅱ之间进行一次迭代译码;(2)存储步骤(1)中分量译码器Ⅱ输出的待译码分块的每个比特的外部信息,把分量译码器Ⅱ输出的待译码分块中第一个比特至最后一位比特的外部信息序列看做一个矢量,称为外部信息矢量,计算并存储该外部信息矢量的模长;(3)从第2次迭代开始计算步骤(2)中得到的外部信息矢量与上一次迭代的外部信息矢量的余弦相似度;(4)将步骤(3)计算所得的余弦相似度与预设的当前迭代次数所对应的门限进行比较,若该余弦相似度大于门限或当前迭代次数达到预设的最大迭代次数,则进入步骤(5);否则,重复步骤(1)、(2)、(3)、(4);(5)对最后一次迭代中分量译码器Ⅱ生成的对数似然比进行解交织和硬判决,并将此硬判决作为Turbo码译码器最终的译码结果输出。1. A Turbo code decoding iterative stop method based on cosine similarity, is characterized in that comprising the steps: (1) Carry out an iterative decoding between the component decoder I and the component decoder II of the Turbo decoder ; (2) Store the external information of each bit of the block to be decoded output by the component decoder II in step (1), and store the first bit to the last bit in the block to be decoded output by the component decoder II The external information sequence of one bit is regarded as a vector, called the external information vector, and the modulus length of the external information vector is calculated and stored; (3) From the second iteration, the external information vector obtained in step (2) and The cosine similarity of the external information vector of the last iteration; (4) compare the cosine similarity calculated in step (3) with the preset threshold corresponding to the current iteration number, if the cosine similarity is greater than the threshold or the current iteration If the number of iterations reaches the preset maximum number of iterations, go to step (5); otherwise, repeat steps (1), (2), (3), (4); (5) generate the component decoder II in the last iteration The logarithm likelihood ratio is used for deinterleaving and hard decision, and this hard decision is output as the final decoding result of the Turbo code decoder. 2.根据权利要求1所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(1)具体方法为:(11)第一次迭代前,分量译码器Ⅰ的先验信息初始化为0;(12)系统信息比特、分量译码器Ⅰ的校验比特和先验信息输入到分量译码器Ⅰ进行MAP译码,生成分量译码器Ⅰ的外部信息和对数似然比;(13)经过QPP交织后的分量译码器Ⅰ的外部信息作为分量译码器Ⅱ的先验信息,与经过交织的系统信息比特和分量译码器Ⅱ的校验比特输入到分量译码器Ⅱ进行MAP译码,生成分量译码器Ⅱ的外部信息和对数似然比;(14)经过QPP解交织后的分量译码器Ⅱ的外部信息,将作为分量译码器Ⅰ新的先验信息使用。2. The iterative stop method of Turbo code decoding based on cosine similarity according to claim 1, characterized in that: the specific method of the step (1) is: (11) before the first iteration, component decoder I (12) System information bits, parity bits of component decoder I and prior information are input to component decoder I for MAP decoding to generate external information of component decoder I and Logarithmic likelihood ratio; (13) The external information of the component decoder I after QPP interleaving is used as the prior information of the component decoder II, and the interleaved system information bits and the parity bits of the component decoder II Input to component decoder II for MAP decoding to generate external information and log likelihood ratio of component decoder II; (14) The external information of component decoder II after QPP deinterleaving will be used as component decoder Encoder I new prior information is used. 3.根据权利要求1所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(2)中第n次迭代时的外部信息矢量为分量译码器Ⅱ输出的该分块中第一个比特至最后一位比特的外部信息序列组成的K维矢量,K为信息分块大小。3. The turbo code decoding iterative stop method based on cosine similarity according to claim 1, characterized in that: the extrinsic information vector during the nth iteration in the step (2) is the component decoder II output A K-dimensional vector composed of the external information sequence from the first bit to the last bit in the block, where K is the size of the information block. 4.根据权利要求3所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(2)中第n次迭代时的外部信息矢量的模长为分量译码器Ⅱ输出的该分块中所有比特的外部信息的平方和的算术平方根。4. The iterative stopping method of Turbo code decoding based on cosine similarity according to claim 3, characterized in that: the modulus length of the external information vector during the nth iteration in the step (2) is component decoder The arithmetic square root of the sum of the squares of the external information of all bits in the block output by II. 5.根据权利要求1所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(3)中采用第n次迭代与第n-1次迭代的外部信息矢量的余弦相似度作为度量,其中两个矢量的余弦相似度的定义为:5. The iterative stop method of Turbo code decoding based on cosine similarity according to claim 1, characterized in that: the step (3) adopts the difference between the external information vector of the nth iteration and the n-1th iteration Cosine similarity is used as a measure, where the cosine similarity of two vectors is defined as:
Figure FDA0000276089361
Figure FDA0000276089361
式中,
Figure FDA0000276089362
Figure FDA0000276089363
为两个维度相同的矢量,
Figure FDA0000276089365
分别为矢量
Figure FDA0000276089366
Figure FDA0000276089367
的模长,Ai和Bi分别为
Figure FDA0000276089368
Figure FDA0000276089369
的第i个分量。
In the formula,
Figure FDA0000276089362
and
Figure FDA0000276089363
are two vectors of the same dimension, and
Figure FDA0000276089365
are vectors
Figure FDA0000276089366
and
Figure FDA0000276089367
The modulus length of A i and Bi are respectively
Figure FDA0000276089368
and
Figure FDA0000276089369
The i-th component of .
6.根据权利要求5所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(3)中计算余弦相似度时,外部信息绝对值的数量级为10-100,为避免计算过程的中间值过大而产生溢出,将所有外部信息除以100后参与运算,最终得到的余弦相似度大小不变。6. The iterative stopping method of Turbo code decoding based on cosine similarity according to claim 5, characterized in that: when calculating the cosine similarity in the step (3), the magnitude of the absolute value of the external information is 10-100, In order to avoid overflow caused by excessive intermediate values in the calculation process, all external information is divided by 100 to participate in the calculation, and the final cosine similarity remains unchanged. 7.根据权利要求1所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述的余弦相似度中的两个信息矢量为分量译码器的外部信息、先验信息或对数似然比等译码过程中的信息序列或对其作变换后的信息序列。7. the Turbo code decoding iterative stop method based on cosine similarity according to claim 1, is characterized in that: two information vectors in the described cosine similarity are external information, prior information of component decoder Or the information sequence in the decoding process such as the logarithmic likelihood ratio or the information sequence after it is transformed. 8.根据权利要求1所述的基于余弦相似度的Turbo码译码迭代停止方法,其特征在于:所述步骤(4)中的一组与当前迭代次数n对应的门限值,即第n次迭代时的门限为θn,n=2,3,…,Nmax-1;其中Nmax为预设的最大迭代次数;θn的范围为θn∈[0.85,1],且θn-1≤θn8. The iterative stopping method of Turbo code decoding based on cosine similarity according to claim 1, characterized in that: a set of threshold values corresponding to the current number of iterations n in the step (4), that is, the nth The threshold for the first iteration is θ n , n=2,3,…,N max -1; where N max is the preset maximum number of iterations; the range of θ n is θ n ∈ [0.85,1], and θ n -1 ≤ θ n .
CN2013100227699A 2013-01-22 2013-01-22 Turbo code decoding iteration cease method based on cosine similarity Pending CN103124181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100227699A CN103124181A (en) 2013-01-22 2013-01-22 Turbo code decoding iteration cease method based on cosine similarity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100227699A CN103124181A (en) 2013-01-22 2013-01-22 Turbo code decoding iteration cease method based on cosine similarity

Publications (1)

Publication Number Publication Date
CN103124181A true CN103124181A (en) 2013-05-29

Family

ID=48455059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100227699A Pending CN103124181A (en) 2013-01-22 2013-01-22 Turbo code decoding iteration cease method based on cosine similarity

Country Status (1)

Country Link
CN (1) CN103124181A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579369A (en) * 2014-12-18 2015-04-29 中国科学院自动化研究所 Turbo iterative decoding method and device
CN106533454A (en) * 2015-09-14 2017-03-22 展讯通信(上海)有限公司 Decoding and iteration control method and device for Turbo codes
CN108650643A (en) * 2018-05-10 2018-10-12 福建科立讯通信有限公司 A kind of effective method for reducing the signaling response time in DMR/MPT terminal devices
CN112217525A (en) * 2020-10-15 2021-01-12 天津津航计算技术研究所 Automatic updating method for iterative times of Turbo decoding
CN114759930A (en) * 2022-04-11 2022-07-15 宝鸡文理学院 LP early-stop decoding method based on LDPC (Low Density parity check) code of alternating direction multiplier method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020184596A1 (en) * 2001-04-09 2002-12-05 Motorola, Inc. Iteration terminating using quality index criteria of turbo codes
US20070300139A1 (en) * 2006-06-09 2007-12-27 Samsung Electronics Co., Ltd. Unified stopping criteria for binary and duobinary turbo decoding in a software-defined radio system
EP2501048A1 (en) * 2011-03-14 2012-09-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives State metrics based stopping criterion for turbodecoding
US20120272125A1 (en) * 2011-04-19 2012-10-25 Lin Shou-Sheu Stopping Methods for Iterative Signal Processing
CN102832954A (en) * 2012-09-17 2012-12-19 华中科技大学 Turbo code iterative decoding stopping method based on soft information average minimum value

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020184596A1 (en) * 2001-04-09 2002-12-05 Motorola, Inc. Iteration terminating using quality index criteria of turbo codes
US20070300139A1 (en) * 2006-06-09 2007-12-27 Samsung Electronics Co., Ltd. Unified stopping criteria for binary and duobinary turbo decoding in a software-defined radio system
EP2501048A1 (en) * 2011-03-14 2012-09-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives State metrics based stopping criterion for turbodecoding
US20120272125A1 (en) * 2011-04-19 2012-10-25 Lin Shou-Sheu Stopping Methods for Iterative Signal Processing
CN102832954A (en) * 2012-09-17 2012-12-19 华中科技大学 Turbo code iterative decoding stopping method based on soft information average minimum value

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579369A (en) * 2014-12-18 2015-04-29 中国科学院自动化研究所 Turbo iterative decoding method and device
CN104579369B (en) * 2014-12-18 2018-06-15 北京思朗科技有限责任公司 A kind of Turbo iterative decodings method and code translator
CN106533454A (en) * 2015-09-14 2017-03-22 展讯通信(上海)有限公司 Decoding and iteration control method and device for Turbo codes
CN106533454B (en) * 2015-09-14 2019-11-05 展讯通信(上海)有限公司 Turbo code decoding iteration control method and device
CN108650643A (en) * 2018-05-10 2018-10-12 福建科立讯通信有限公司 A kind of effective method for reducing the signaling response time in DMR/MPT terminal devices
CN108650643B (en) * 2018-05-10 2021-06-15 福建科立讯通信有限公司 Method for effectively reducing signaling response time in DMR/MPT terminal equipment
CN112217525A (en) * 2020-10-15 2021-01-12 天津津航计算技术研究所 Automatic updating method for iterative times of Turbo decoding
CN112217525B (en) * 2020-10-15 2023-03-03 天津津航计算技术研究所 Automatic updating method for iterative times of Turbo decoding
CN114759930A (en) * 2022-04-11 2022-07-15 宝鸡文理学院 LP early-stop decoding method based on LDPC (Low Density parity check) code of alternating direction multiplier method
CN114759930B (en) * 2022-04-11 2024-05-10 宝鸡文理学院 LP early-stop decoding method based on alternate direction multiplier method LDPC code

Similar Documents

Publication Publication Date Title
CN103269229B (en) A kind of mixed iteration interpretation method of LDPC-RS two dimension product code
CN105187073B (en) A kind of the BP interpretation methods and device of polarization code
CN107689801B (en) An Early Stopping Method for ADMM Iterative Decoding of LDPC Codes
CN107612560B (en) Early Iterative Stopping Method for Polar Codes Based on Partial Information Bit Likelihood Ratio
CN105933010A (en) Low-complexity polarization code decryption SCL algorithm based on segmented verification assistance
CN106330207A (en) Joint Detection and Decoding Algorithm Based on Turbo-SCMA System
CN102638278A (en) Iterative decoder
CN104579369B (en) A kind of Turbo iterative decodings method and code translator
CN102904668B (en) A kind of quick PBCH coding/decoding method for LTE
CN103124181A (en) Turbo code decoding iteration cease method based on cosine similarity
CN101615913B (en) A Fast Convergent Decoding Method for LDPC Codes
CN102064838A (en) Novel conflict-free interleaver-based low delay parallel Turbo decoding method
CN103354483B (en) General high-performance Radix-4SOVA decoder and interpretation method thereof
CN102904667B (en) Method for decoding tail biting convolution codes of PBCH (physical broadcast channel) decoding in LTE (long term evolution)
CN104767537B (en) A kind of Turbo interpretation methods for OFDM electric line communication systems
CN105530014A (en) Alternating Direction Multiplier Decoding Method for LDPC Codes Based on Simplified Projection Operator
CN106992841A (en) A Hard Decision Iterative Decoding Method for Block Markov Superposition Coding
CN114421971A (en) A dynamic multi-symbol flip decoding method suitable for multivariate LDPC codes
CN105634506A (en) Soft decision decoding method of quadratic residue (QR) code based on shifting search algorithm
CN102832954B (en) Turbo code iterative decoding stopping method based on soft information average minimum value
CN102104444A (en) Rapid encoding and decoding method for channel quality indication in LTE (Long Term Evolution) system
EP2717477B1 (en) Channel decoding method and decoder for tail-biting codes
WO2023116504A1 (en) Double-factor correction turbo decoding method based on simulated annealing algorithm
CN108173624B (en) A partial decoding polar code serial cancellation decoding circuit and method
CN108134612B (en) An Iterative Decoding Method of Concatenated Codes for Correcting Synchronization and Substitution Errors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130529