CN103123421B - One-dimensional magnetic photonic crystal for achieving broadband optical isolation - Google Patents
One-dimensional magnetic photonic crystal for achieving broadband optical isolation Download PDFInfo
- Publication number
- CN103123421B CN103123421B CN201310065842.0A CN201310065842A CN103123421B CN 103123421 B CN103123421 B CN 103123421B CN 201310065842 A CN201310065842 A CN 201310065842A CN 103123421 B CN103123421 B CN 103123421B
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- composite structure
- dimensional
- optical isolation
- broadband optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 44
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 27
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 26
- 238000002955 isolation Methods 0.000 title claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002223 garnet Substances 0.000 claims abstract description 8
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 150000001875 compounds Chemical group 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 2
- 229910052684 Cerium Inorganic materials 0.000 abstract 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种宽带光隔离体,具体是一种用于实现宽带光隔离器的一维磁光子晶体。 The invention relates to a broadband optical isolator, in particular to a one-dimensional magneto-photonic crystal for realizing a broadband optical isolator.
背景技术 Background technique
光隔离器是一种只允许正向传输光通过的非互易无源器件,它的主要作用是防止反向传输光对光源造成不良影响,提高光路系统传输的稳定性。 An optical isolator is a non-reciprocal passive device that only allows forward-transmitted light to pass through. Its main function is to prevent reverse-transmitted light from adversely affecting the light source and improve the stability of optical system transmission.
现有光隔离器由光轴方向呈45o角的一对偏振器,和置于两偏振器之间的法拉第旋转器组成。该法拉第旋转器包括中心的磁光晶体,和包裹磁光晶体的环型永磁铁。 The existing optical isolator is composed of a pair of polarizers whose optical axes are at an angle of 45 ° , and a Faraday rotator placed between the two polarizers. The Faraday rotator includes a central magneto-optic crystal and a ring-shaped permanent magnet surrounding the magneto-optic crystal.
现代光通信技术的飞速发展要求用于光路的器件微型化,以便于集成。而现有的块状光隔离器由于磁光晶体体积的限制,最小尺度在毫米数量级,显然无法满足光路集成的要求。 The rapid development of modern optical communication technology requires the miniaturization of devices used in optical circuits for easy integration. Due to the limitation of the volume of the magneto-optic crystal, the existing bulk optical isolator has a minimum size of the order of millimeters, which obviously cannot meet the requirements of optical circuit integration.
H.Kato等(Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,Journal of Applied Physics.2003,Vol:93,3906-3911)用磁控溅射镀膜的方法在实验上制备了单缺陷的一维磁光子晶体结构,并将实验值与理论模拟值进行了对比,结果完全吻合,证实了在光子晶体中引入磁光晶体缺陷可以显著的增强磁光晶体的法拉第效应。为光隔离器的集成化提出了新的方向。 H. Kato et al. (Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals, Journal of Applied Physics.2003, Vol:93, 3906-3911) prepared single-defect crystals experimentally by magnetron sputtering coating method. One-dimensional magneto-optic crystal structure, and compared the experimental value with the theoretical simulation value, the results are completely consistent, confirming that the introduction of magneto-optic crystal defects in the photonic crystal can significantly enhance the Faraday effect of the magneto-optic crystal. A new direction is proposed for the integration of optical isolators.
H.Kato等(Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,Transactions On Magnetics.2002,Vol:38,3246-3248)报道了当一维光子晶体中含有二或三层磁光晶体缺陷时,可实现高达99%以上的透射率和45o附近的法拉第旋转角,此结构的法拉第旋转器仅十几微米。但这些结构的光隔离器频谱极窄,只能适用于中心工作波长处。在光源不稳定或在宽带通信中,此结构的光隔离器无法应用。 H. Kato et al. (Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices, Transactions On Magnetics.2002, Vol:38, 3246-3248) reported that when one-dimensional photonic crystals contain two or three layers of magneto-optic crystal defects, It can achieve a transmittance as high as 99% and a Faraday rotation angle near 45 o , and the Faraday rotator of this structure is only a dozen microns. However, the frequency spectrum of optical isolators with these structures is extremely narrow and can only be used at the central working wavelength. When the light source is unstable or in broadband communication, the optical isolator of this structure cannot be applied.
M. Zamani等(Adjustable magneto-optical isolators with flat-top responses,Optics Express.2012,Vol:20,24524-24535)提出了几种可以实现宽带光隔离的一维磁光子晶体结构,并指出了一种通过水平旋转外加磁场来使法拉第旋转角精确等于45o的方法。但上述几种结构的层数较多,在工艺上不容易制备,所产生宽带范围内的隔离效果也不是最佳。 M. Zamani et al. (Adjustable magneto-optical isolators with flat-top responses, Optics Express.2012, Vol:20, 24524-24535) proposed several one-dimensional magneto-photonic crystal structures that can achieve broadband optical isolation, and pointed out a A method of making the Faraday rotation angle exactly equal to 45o by horizontally rotating an applied magnetic field. However, the above-mentioned structures have a large number of layers, which are not easy to manufacture in terms of technology, and the isolation effect in the broadband range produced is not optimal.
发明内容 Contents of the invention
本发明要解决的具体技术问题是现有光隔离结构的层数较多,所产生宽带范围内的隔离效果欠佳,目的是提供一种实现宽带光隔离的一维磁光子晶体。 The specific technical problem to be solved by the present invention is that the existing optical isolation structure has a large number of layers, and the resulting isolation effect in the broadband range is not good. The purpose is to provide a one-dimensional magnetophotonic crystal that realizes broadband optical isolation.
本发明上述所提供的一种实现宽带光隔离的一维磁光子晶体,包括一维磁光子晶体,其特征在于:所述一维磁光子晶体的基本组元S0的结构式如下: The above-mentioned one-dimensional magneto-photonic crystal that realizes broadband optical isolation provided by the present invention includes a one-dimensional magneto-photonic crystal, and is characterized in that: the structural formula of the basic component S of the one-dimensional magneto-photonic crystal is as follows:
[H/L]2/M/[L/H]5/M/[H/L]2/M/[L/H]2/M/[H/L]5/M/[L/H]2; [H/L] 2 /M/[L/H] 5 /M/[H/L] 2 /M/[L/H] 2 /M/[H/L] 5 /M/[L/H] 2 ;
其中:H是硅,L是二氧化硅,M是掺铈钇铁石榴石; Wherein: H is silicon, L is silicon dioxide, M is cerium-doped yttrium iron garnet;
其第一复合结构S1= S0/M/S0;第二复合结构S2=S0/M/S0/M/S0。 Its first composite structure S 1 =S 0 /M/S 0 ; the second composite structure S 2 =S 0 /M/S 0 /M/S 0 .
在上述技术方案中,进一步地附加技术特征在于: In the above technical solution, further additional technical features are:
所述第一复合结构S1与第二复合结构S2的中心工作波长是1550nm。 The central operating wavelengths of the first composite structure S 1 and the second composite structure S 2 are 1550 nm.
所述中心工作波长在1550nm下:硅Si的折射率是3.48;二氧化硅SiO2的折射率是1.495;掺铈钇铁石榴石Ce:YIG是电介质张量中ε1=4.884,ε2=0.009。 The central working wavelength is at 1550nm: the refractive index of silicon Si is 3.48; the refractive index of silicon dioxide SiO 2 is 1.495; cerium-doped yttrium iron garnet Ce:YIG is ε 1 =4.884, ε 2 =0.009 in the dielectric tensor.
所述基本组元S0中的硅的厚度是111.35nm;二氧化硅的厚度是259.2nm;掺铈钇铁石榴石的厚度是158.68nm。 The thickness of silicon in the basic component S 0 is 111.35 nm; the thickness of silicon dioxide is 259.2 nm; the thickness of cerium-doped yttrium iron garnet is 158.68 nm.
所述第一复合结构S1在外加磁场与光轴方向在水平面上呈14.14o角时的法拉第旋转角是45o。 The Faraday rotation angle of the first composite structure S 1 is 45 ° when the applied magnetic field and the optical axis form an angle of 14.14 ° on the horizontal plane.
所述第二复合结构S2在外加磁场与光轴方向在水平面上呈49.61o角时的法拉第旋转角是45o。 The Faraday rotation angle of the second composite structure S 2 is 45 ° when the applied magnetic field and the optical axis form an angle of 49.61 ° on the horizontal plane.
实现本发明所提供的一种宽带光隔离的一维磁光子晶体的技术方案,是在一维光子晶体中更合理的加入磁光晶体缺陷,解决了现有光隔离结构层数较多,所产生宽带范围内的隔离效果欠佳的问题,与现有技术相比,所构成的一维磁光子晶体结合了光子晶体和磁光晶体的优点,在光子晶体尺度上实现了相应的磁光效应。 To realize the technical solution of a broadband optical isolation one-dimensional magneto-optic crystal provided by the present invention is to add magneto-optic crystal defects in the one-dimensional photonic crystal more reasonably, which solves the problem that the existing optical isolation structure has a large number of layers. The isolation effect in the broadband range is not good. Compared with the existing technology, the formed one-dimensional magneto-photonic crystal combines the advantages of photonic crystal and magneto-optic crystal, and realizes the corresponding magneto-optic effect on the scale of photonic crystal. .
第一复合结构S1,与现有实现3.5nm宽带隔离的一维磁光子晶体相比,膜层总层数从173层减少到83层,降低了制备难度,将此结构的一维磁光子晶体应用于光隔离器中可以进一步减小光隔离器的尺度,更便于集成; The first composite structure S 1 , compared with the existing one-dimensional magneto-photonic crystal that achieves 3.5nm broadband isolation, the total number of film layers is reduced from 173 to 83, which reduces the difficulty of preparation. The one-dimensional magneto-photonic crystal of this structure The application of crystals in optical isolators can further reduce the scale of optical isolators and facilitate integration;
第二复合结构为S2,与现有实现2.5nm宽带隔离的一维磁光子晶体结构相比,法拉第旋转角的波动范围从45o-54.56o减小到45o-48.55o,将此结构的一维磁光子晶体应用于光隔离器中可提高光隔离器工作的稳定性。 The second composite structure is S 2 . Compared with the existing one-dimensional magneto-photonic crystal structure that achieves 2.5nm broadband isolation, the fluctuation range of the Faraday rotation angle is reduced from 45 o -54.56 o to 45 o -48.55 o . The application of the one-dimensional magneto-photonic crystal in the optical isolator can improve the stability of the optical isolator.
附图说明 Description of drawings
图1是本发明基本组元S0的结构示意图。 Fig. 1 is a schematic structural diagram of the basic component S0 of the present invention.
图2是本发明第一复合结构S1的结构示意图。 Fig. 2 is a schematic structural view of the first composite structure S1 of the present invention.
图3是本发明第二复合结构S2的结构示意图。 Fig. 3 is a schematic structural diagram of the second composite structure S2 of the present invention.
图4是当外加磁场与光路方向平行时,本发明第一复合结构S1的透射率和法拉第旋转角在中心波长附近的波动曲线图。 Fig. 4 is a graph showing the fluctuation curves of the transmittance and Faraday rotation angle of the first composite structure S1 of the present invention around the central wavelength when the applied magnetic field is parallel to the direction of the optical path.
图5是当外加磁场在水平方向上转动时,本发明第一复合结构S1的透射率和法拉第旋转角在不同外加磁场旋转角下的取值图。 Fig. 5 is a value diagram of the transmittance and Faraday rotation angle of the first composite structure S 1 of the present invention under different rotation angles of the applied magnetic field when the applied magnetic field rotates in the horizontal direction.
图6是当外加磁场在水平方向上转动14.14o角时,本发明第一复合结构S1的透射率和法拉第旋转角在中心波长附近的波动曲线图。 Fig. 6 is a graph showing the fluctuation curves of the transmittance and Faraday rotation angle of the first composite structure S 1 of the present invention around the central wavelength when the applied magnetic field rotates at an angle of 14.14 o in the horizontal direction.
图7是当外加磁场与光路方向平行时,本发明第二复合结构S2的透射率和法拉第旋转角在中心波长附近的波动曲线图。 Fig. 7 is a graph showing the fluctuation curves of the transmittance and Faraday rotation angle of the second composite structure S2 of the present invention around the central wavelength when the applied magnetic field is parallel to the direction of the optical path.
图8是当外加磁场在水平方向上转动时,本发明第二复合结构S2的透射率和法拉第旋转在不同外加磁场旋转角下的取值图。 Fig. 8 is a value diagram of the transmittance and Faraday rotation of the second composite structure S 2 of the present invention at different rotation angles of the applied magnetic field when the applied magnetic field rotates in the horizontal direction.
图9是当外加磁场在水平方向上转动49.61o角时,本发明第二复合结构S2的透射率和法拉第旋转角在中心波长附近的波动曲线图。 Fig. 9 is a graph showing the fluctuation curves of the transmittance and Faraday rotation angle of the second composite structure S 2 of the present invention around the central wavelength when the applied magnetic field rotates at an angle of 49.61 o in the horizontal direction.
具体实施方式 Detailed ways
实施本发明一种宽带光隔离的一维磁光子晶体,中心工作波长是1550nm。 A one-dimensional magneto-photonic crystal with broadband optical isolation for implementing the present invention has a central working wavelength of 1550nm.
实施本发明一种宽带光隔离的一维磁光子晶体,包括一维磁光子晶体,如图一所示,其构成在于上述所描述的一维磁光子晶体的基本组元S0的结构式是: Implement a kind of one-dimensional magneto-photonic crystal of broadband optical isolation of the present invention, comprise one-dimensional magneto-photonic crystal, as shown in Figure 1, its constitution is that the structural formula of the basic component S of the one-dimensional magneto-photonic crystal described above is:
[H/L]2/M/[L/H]5/M/[H/L]2/M/[L/H]2/M/[H/L]5/M/[L/H]2,其中H是厚度是111.35nm、折射率是3.48的硅Si;L是厚度是259.2nm、折射率是1.495的二氧化硅SiO2;M是厚度是158.68nm、电介质张量中ε1=4.884,ε2=0.009的掺铈钇铁石榴石Ce:YIG。 [H/L] 2 /M/[L/H] 5 /M/[H/L] 2 /M/[L/H] 2 /M/[H/L] 5 /M/[L/H] 2 , where H is silicon Si with a thickness of 111.35nm and a refractive index of 3.48; L is silicon dioxide SiO 2 with a thickness of 259.2nm and a refractive index of 1.495; M is a thickness of 158.68nm and ε 1 =4.884 in the dielectric tensor, ε 2 =0.009 cerium-doped yttrium iron garnet Ce:YIG.
实施例1 Example 1
如图2所示的本发明第一复合结构S1=S0/M/S0,可用磁控溅射镀膜的方法在光学基片上按结构S1的顺序沉积这三种薄膜,共83层。当外加磁场与光路方向平行时,本发明第一复合结构S1的透射率和法拉第旋转角在中心波长附近的波动曲线如图4所示。为了使本发明第一复合结构S1获得45o的法拉第旋转角,我们需要将外加磁场在水平方向上转动,第一复合结构S1的透射率和法拉第旋转角取值随外加磁场转角度的变化如图5所示。将外加磁场水平旋转到与光路方向呈14.14o角时,可得到如图6所示的透射率和法拉第旋转角在中心波长附近的波动曲线。由图6可见,此光隔离器在1548.25nm-155.75nm范围内有比较平坦的宽带,在此范围内法拉第旋转角在45o-53.5o内波动,透射率在99.73%-99.75%内波动。 As shown in Figure 2, the first composite structure S 1 =S 0 /M/S 0 of the present invention can deposit these three films on the optical substrate in the order of structure S 1 by the method of magnetron sputtering coating, totally 83 layers . When the applied magnetic field is parallel to the direction of the optical path, the fluctuation curves of the transmittance and Faraday rotation angle of the first composite structure S 1 of the present invention around the central wavelength are shown in FIG. 4 . In order to obtain the Faraday rotation angle of 45 ° for the first composite structure S1 of the present invention, we need to rotate the applied magnetic field in the horizontal direction, and the values of the transmittance and the Faraday rotation angle of the first composite structure S1 vary with the rotation angle of the applied magnetic field. The changes are shown in Figure 5. When the applied magnetic field is horizontally rotated to an angle of 14.14 o with the direction of the optical path, the fluctuation curves of transmittance and Faraday rotation angle around the central wavelength can be obtained as shown in Figure 6. It can be seen from Figure 6 that this optical isolator has a relatively flat broadband in the range of 1548.25nm-155.75nm. In this range, the Faraday rotation angle fluctuates within 45 ° -53.5 ° , and the transmittance fluctuates within 99.73%-99.75%.
实施例2 Example 2
如图3所示的本发明第二复合结构S2=S0/M/S0/M/S0,可用磁控溅射镀膜的方法在光学基片上按结构S2的顺序沉积这三种薄膜,共125层。当外加磁场与光路方向平行时,本发明第一复合结构S2的透射率和法拉第旋转角在中心波长附近的波动曲线如图7所示。为了使本发明第一复合结构S2获得45o的法拉第旋转角,我们需要将外加磁场在水平方向上转动,第一复合结构S2的透射率和法拉第旋转角取值随外加磁场转角度的变化如图8所示。将外加磁场水平旋转到与光路方向呈49.61o角时,可得到如图9所示的透射率和法拉第旋转角在中心波长附近的波动曲线。由图9可见,此结构的光隔离器在1548.75nm-155.25nm范围内可实现相对稳定的隔离效果,在此范围内法拉第旋转角在45o-48.55o内波动,透射率在99.61%-99.87%内波动。 As shown in Figure 3, the second composite structure S 2 =S 0 /M/S 0 /M/S 0 of the present invention can be deposited on the optical substrate in the order of structure S 2 by magnetron sputtering coating method. Film, a total of 125 layers. When the applied magnetic field is parallel to the direction of the optical path, the fluctuation curves of the transmittance and Faraday rotation angle of the first composite structure S 2 of the present invention around the central wavelength are shown in FIG. 7 . In order to obtain the Faraday rotation angle of 45 ° for the first composite structure S2 of the present invention, we need to rotate the applied magnetic field in the horizontal direction, and the values of the transmittance and the Faraday rotation angle of the first composite structure S2 vary with the rotation angle of the applied magnetic field. The changes are shown in Figure 8. When the applied magnetic field is horizontally rotated to an angle of 49.61 o to the direction of the optical path, the fluctuation curves of transmittance and Faraday rotation angle around the central wavelength can be obtained as shown in Figure 9. It can be seen from Figure 9 that the optical isolator with this structure can achieve a relatively stable isolation effect in the range of 1548.75nm - 155.25nm . % fluctuations.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310065842.0A CN103123421B (en) | 2013-03-04 | 2013-03-04 | One-dimensional magnetic photonic crystal for achieving broadband optical isolation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310065842.0A CN103123421B (en) | 2013-03-04 | 2013-03-04 | One-dimensional magnetic photonic crystal for achieving broadband optical isolation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103123421A CN103123421A (en) | 2013-05-29 |
CN103123421B true CN103123421B (en) | 2015-06-17 |
Family
ID=48454461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310065842.0A Expired - Fee Related CN103123421B (en) | 2013-03-04 | 2013-03-04 | One-dimensional magnetic photonic crystal for achieving broadband optical isolation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103123421B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472598B (en) * | 2013-10-12 | 2015-12-09 | 太原理工大学 | A kind of one-dimensional magnetic photonic crystal realizing light isolation |
CN104483764B (en) * | 2014-11-11 | 2017-08-04 | 江苏大学 | A defect magneto-photonic crystal with non-reciprocity properties and its application |
CN105093571A (en) * | 2015-07-31 | 2015-11-25 | 南京邮电大学 | Large-incident-angle magnetic photonic crystal broadband photoisolator |
CN106200023A (en) * | 2016-08-31 | 2016-12-07 | 欧阳征标 | Magneto-optic memory technique void fraction wave magnetic conduction surface Fast-wave direction controllable light diode |
CN108538933A (en) * | 2018-05-11 | 2018-09-14 | 南京工业大学 | Magneto-optical material microstructure photovoltaic radiator with nonreciprocity |
CN110133800B (en) * | 2019-05-24 | 2020-08-04 | 太原理工大学 | Waveguide type photonic crystal heterostructure capable of realizing wide-band unidirectional high transmission |
CN113934026A (en) * | 2021-09-15 | 2022-01-14 | 安徽工程大学 | Nonreciprocal heat radiator based on Fabonacci quasi-periodic structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6825982B1 (en) * | 2002-06-27 | 2004-11-30 | The United States Of Americas As Represented By The Administrator Of The National Aeronautics And Space Administration | Strongly-refractive one-dimensional photonic crystal prisms |
-
2013
- 2013-03-04 CN CN201310065842.0A patent/CN103123421B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6825982B1 (en) * | 2002-06-27 | 2004-11-30 | The United States Of Americas As Represented By The Administrator Of The National Aeronautics And Space Administration | Strongly-refractive one-dimensional photonic crystal prisms |
Non-Patent Citations (4)
Title |
---|
《一维光子晶体的可调谐光学和磁光性质的研究》;孙婷婷;《中国优秀硕士学位论文全文数据库 基础科学辑》;20120630;全文 * |
《基于磁光光子晶体的光隔离器》;冯睿;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120531;全文 * |
《多缺陷结构的一维磁光多层膜隔离器》;温晓文等;《物理学报》;20041031;第53卷(第10期);全文 * |
《应用于光隔离器的一维磁光子晶体结构探索》;周慧等;《光子学报》;20080131;第37卷(第1期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103123421A (en) | 2013-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103123421B (en) | One-dimensional magnetic photonic crystal for achieving broadband optical isolation | |
Asadchy et al. | Sub‐wavelength passive optical isolators using photonic structures based on Weyl semimetals | |
Block et al. | Growth parameters of fully crystallized YIG, Bi: YIG, and Ce: YIG films with high Faraday rotations | |
Shoji et al. | Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics | |
CN104280901B (en) | Optical isolator | |
Zhang et al. | Dysprosium substituted Ce: YIG thin films with perpendicular magnetic anisotropy for silicon integrated optical isolator applications | |
JP5792832B2 (en) | Optical isolator | |
CN106772754A (en) | Terahertz polarization conversion and the one-way transmission device of two-layered medium metal grating structure | |
CN103472598B (en) | A kind of one-dimensional magnetic photonic crystal realizing light isolation | |
CN104483764B (en) | A defect magneto-photonic crystal with non-reciprocity properties and its application | |
CN105158849B (en) | A kind of preparation method and its device of lithium niobate fiber waveguide device | |
Ma et al. | Tunable omnidirectional band gap and polarization splitting in one-dimensional magnetized plasma photonic crystals with a quasi-periodic topological structure | |
CN105093571A (en) | Large-incident-angle magnetic photonic crystal broadband photoisolator | |
Ikeda et al. | Large Faraday effect in nanogranular films with a high refractive index matrix | |
Han et al. | Mechanical Deformation Induced Circular Dichroism in Propeller‐Shaped Terahertz Metamaterials | |
KR101550502B1 (en) | Integratable planar waveguide-type optical isolator and circulator with polarization-mode control | |
Aibibula et al. | BaTi (BO 3) 2: an excellent birefringent material with highly coplanar isolated [BO 3] groups | |
Fei et al. | Magneto-optical isolators with flat-top responses based on one-dimensional magneto-photonic crystals | |
JPWO2009016972A1 (en) | Optical device, optical integrated device, and manufacturing method thereof | |
CN107132616A (en) | The polarizer that a kind of transverse electric field based on composite waveguide passes through | |
CN105739135B (en) | The magneto optic isolator prepared using low-k Meta Materials | |
Wang et al. | Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure | |
Zamani et al. | Potential of SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in achieving integrated magneto-optical isolators | |
Zamani et al. | Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals | |
Yanaga et al. | Compact magnetooptical isolator with cobalt ferrite on silicon photonic circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150617 |