CN103118979A - Aerogel and method for producing same - Google Patents
Aerogel and method for producing same Download PDFInfo
- Publication number
- CN103118979A CN103118979A CN2011800455641A CN201180045564A CN103118979A CN 103118979 A CN103118979 A CN 103118979A CN 2011800455641 A CN2011800455641 A CN 2011800455641A CN 201180045564 A CN201180045564 A CN 201180045564A CN 103118979 A CN103118979 A CN 103118979A
- Authority
- CN
- China
- Prior art keywords
- airgel
- solvent
- gel
- silica sol
- emulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000004964 aerogel Substances 0.000 title abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 115
- 238000000034 method Methods 0.000 claims abstract description 90
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 71
- 239000002245 particle Substances 0.000 claims abstract description 65
- 239000000839 emulsion Substances 0.000 claims abstract description 56
- 239000011148 porous material Substances 0.000 claims abstract description 43
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 35
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 28
- 239000006185 dispersion Substances 0.000 claims abstract description 19
- 238000004438 BET method Methods 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 47
- 125000005372 silanol group Chemical group 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 238000003703 image analysis method Methods 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910008051 Si-OH Inorganic materials 0.000 claims description 4
- 229910006358 Si—OH Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 34
- 238000009413 insulation Methods 0.000 abstract description 14
- 238000004458 analytical method Methods 0.000 abstract description 4
- 239000000499 gel Substances 0.000 description 78
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 48
- 238000001035 drying Methods 0.000 description 29
- 238000005406 washing Methods 0.000 description 18
- 238000001879 gelation Methods 0.000 description 16
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 14
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 14
- 150000002430 hydrocarbons Chemical group 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000003729 cation exchange resin Substances 0.000 description 12
- 230000032683 aging Effects 0.000 description 11
- 230000000704 physical effect Effects 0.000 description 11
- 239000004094 surface-active agent Substances 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011162 core material Substances 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 9
- -1 silicate alkali metal salt Chemical class 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 239000004115 Sodium Silicate Substances 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 229910052911 sodium silicate Inorganic materials 0.000 description 8
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000005051 trimethylchlorosilane Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 238000010979 pH adjustment Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000005055 methyl trichlorosilane Substances 0.000 description 3
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000001593 sorbitan monooleate Substances 0.000 description 3
- 235000011069 sorbitan monooleate Nutrition 0.000 description 3
- 229940035049 sorbitan monooleate Drugs 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 description 1
- FIADVASZMLCQIF-UHFFFAOYSA-N 2,2,4,4,6,6,8,8-octamethyl-1,3,5,7,2,4,6,8-tetrazatetrasilocane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N[Si](C)(C)N1 FIADVASZMLCQIF-UHFFFAOYSA-N 0.000 description 1
- WGGNJZRNHUJNEM-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,2,4,6-triazatrisilinane Chemical compound C[Si]1(C)N[Si](C)(C)N[Si](C)(C)N1 WGGNJZRNHUJNEM-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/16—Preparation of silica xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
提供一种气凝胶以及高效地制造该气凝胶的方法,该气凝胶的绝热性优异,平均粒径为1~20μm左右,形状为球状。一种气凝胶,其通过BET法得到的比表面积为400~1000m2/g,通过BJH法得到的细孔容积和细孔半径的峰值分别为3~8ml/g和10~30nm,通过图像分析法求出的平均粒径和平均圆形度分别为1~20μm和0.8以上。此外,一种气凝胶的制造方法,其依次具有以下工序:制备水性硅溶胶的工序,使该水性硅溶胶分散于疏水性溶剂中而使其形成W/O型乳液的工序,使硅溶胶凝胶化将W/O型乳液转换为凝胶体的分散液的工序,将凝胶体中的水分置换为表面张力小的溶剂的工序,将凝胶体用规定的疏水剂处理的工序,以及去除置换后的溶剂的工序。
Provided are an aerogel having excellent thermal insulation properties, an average particle diameter of about 1 to 20 μm, and a spherical shape, and a method for efficiently producing the aerogel. An airgel, the specific surface area obtained by the BET method is 400-1000m 2 /g, the peak value of the pore volume and pore radius obtained by the BJH method are 3-8ml/g and 10-30nm, respectively, through the image The average particle diameter and average circularity obtained by analytical methods are 1-20 μm and 0.8 or more, respectively. In addition, a method for producing an airgel, which has the following steps in order: a step of preparing an aqueous silica sol, a step of dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion, and making the silica sol The process of converting the W/O emulsion into a gel dispersion by gelling, the process of replacing the water in the gel with a solvent with low surface tension, and the process of treating the gel with a prescribed hydrophobic agent, and a step of removing the substituted solvent.
Description
技术领域technical field
本发明涉及气凝胶及其制造方法。The present invention relates to aerogels and methods for their manufacture.
背景技术Background technique
气凝胶为具有高孔隙率的材料,具有优异的绝热性。在此所称的气凝胶是指具有多孔结构且伴随有气体作为分散介质的固体材料,特别是指孔隙率为60%以上的固体材料。需要说明的是,孔隙率是指以体积百分率表示表观体积中含有的气体量的值。对于物体的内部的热传导而言,分别有赖于固体传导(热振动的传播)、对流和辐射,在孔隙率大的材料中,一般而言贡献最大的是对流。对此,在气凝胶中,由于孔径极小达到10~100nm左右,孔隙中的气体的移动大幅度地被限制,显著阻碍通过对流进行的热传导。因此,气凝胶具有优异的绝热性。Airgel is a material with high porosity, which has excellent thermal insulation properties. The airgel referred to here refers to a solid material with a porous structure accompanied by gas as a dispersion medium, especially a solid material with a porosity of 60% or more. In addition, porosity means the value which shows the gas amount contained in an apparent volume by volume percentage. The internal heat conduction of an object depends on solid conduction (propagation of thermal vibration), convection, and radiation, and in materials with large porosity, convection generally contributes the most. On the other hand, in airgel, since the pore diameter is as small as about 10 to 100 nm, the movement of gas in the pores is largely restricted, and heat conduction by convection is significantly hindered. Therefore, aerogels have excellent thermal insulation properties.
作为气凝胶的制造方法,已有如下方法:将以烷氧基硅烷作为原料进行水解、缩聚而得到的凝胶状化合物在分散介质的超临界状态下进行干燥(专利文献1)。此外还已知有如下方法:以硅酸碱金属盐作为原料,使其通过阳离子交换树脂或添加无机酸而制备溶胶,使其凝胶化后,在分散介质的超临界条件下进行干燥(专利文献2)。由于利用这种方法制造出的气凝胶(二氧化硅气凝胶)具有微细的二氧化硅骨架,尽管具有高孔隙率也表现出优异的机械强度。As a method for producing an airgel, there is known a method of drying a gel compound obtained by hydrolyzing and polycondensing an alkoxysilane as a raw material in a supercritical state of a dispersion medium (Patent Document 1). In addition, the following method is also known: use alkali metal silicate as a raw material, pass it through a cation exchange resin or add an inorganic acid to prepare a sol, make it gel, and dry it under supercritical conditions in a dispersion medium (patent Document 2). Since the aerogel (silica aerogel) produced by this method has a fine silica skeleton, it exhibits excellent mechanical strength despite having a high porosity.
在上述公知的制造方法中,在超临界条件下将凝胶中的分散介质干燥、去除,由此在抑制干燥收缩的同时将分散介质置换为气体,可制造具有高孔隙率的气凝胶。然而,通过上述的超临界条件干燥而成的气凝胶,由于为了实现超临界条件而耗费的成本极高,因此实际用途中限于符合那样的高成本的特殊情况。因此,提出以成本减少为目的的常压干燥法(专利文献3)。In the above-mentioned known production method, the dispersion medium in the gel is dried and removed under supercritical conditions, thereby suppressing drying shrinkage and replacing the dispersion medium with gas, and an aerogel having a high porosity can be produced. However, since the airgel dried under the above-mentioned supercritical conditions requires extremely high costs to realize the supercritical conditions, practical use is limited to special cases that meet such high costs. Therefore, a normal-pressure drying method for the purpose of cost reduction has been proposed (Patent Document 3).
现有技术文献prior art literature
专利文献patent documents
专利文献1:美国专利第4402927号公报Patent Document 1: US Patent No. 4402927
专利文献2:日本特开平10-236817号公报Patent Document 2: Japanese Patent Application Laid-Open No. 10-236817
专利文献3:日本特开平07-257918号公报Patent Document 3: Japanese Patent Application Laid-Open No. 07-257918
专利文献4:日本特表2002-500557号公报Patent Document 4: Japanese PCT Publication No. 2002-500557
发明内容Contents of the invention
发明要解决的问题The problem to be solved by the invention
气凝胶的用途各种各样,有利用高孔隙率和机械强度的作为真空绝热材料的芯材的用途、有利用优异的绝热性的作为绝热涂料用的添加剂的用途等。在这样的用途中重要的是气凝胶颗粒的形状。例如,在用作真空绝热材料的芯材的情况下,对流对热传导没有贡献,因此为了进一步提高绝热性,重要的是减少固体传导的贡献。通过使用球状的颗粒,可减小颗粒之间接触的区域(接触点)的面积,使颗粒间的空隙增大,因此可以抑制介由颗粒的接触的热传导。因此,通过使用球状的气凝胶颗粒作为真空绝热材料的芯材,可以进一步提高真空绝热材料的绝热性。此外,在用作涂料用的添加剂的情况下,通过制成球状能够提高填充率。Airgel is used in a variety of applications, including use as a core material of a vacuum heat insulating material utilizing high porosity and mechanical strength, and use as an additive for heat insulating coatings utilizing excellent heat insulating properties. Of importance in such applications is the shape of the airgel particles. For example, when used as a core material of a vacuum insulation material, convection does not contribute to heat conduction, so in order to further improve heat insulation, it is important to reduce the contribution of solid conduction. By using spherical particles, the area of the contact area (contact point) between the particles can be reduced, and the gap between the particles can be increased, thereby suppressing heat conduction through the contact of the particles. Therefore, by using spherical airgel particles as the core material of the vacuum heat insulating material, the heat insulating property of the vacuum heat insulating material can be further improved. In addition, when used as an additive for paint, the filling rate can be increased by making it into a spherical shape.
作为球状气凝胶的制造方法,提出有如下方法:使用混合喷嘴将酸与硅酸碱金属盐混合后进行喷雾,以液滴的状态使其凝胶化(专利文献4)。利用该方法制造的气凝胶,其粒径由通过喷嘴制成的液滴的大小而决定,因此粒径为数百微米~数毫米左右。另一方面,为了用作上述真空绝热材料的芯材、涂料用添加剂,期望是平均粒径为1~20μm左右的球状气凝胶。但是,利用上述那样的喷雾法极难得到这样的微米等级的微细的球状气凝胶。As a method for producing spherical airgel, there has been proposed a method of mixing an acid and an alkali metal silicate using a mixing nozzle, spraying it, and gelling it in a droplet state (Patent Document 4). The particle size of the airgel produced by this method is determined by the size of the liquid droplets produced through the nozzle, so the particle size is about several hundred micrometers to several millimeters. On the other hand, in order to be used as a core material of the above-mentioned vacuum heat insulating material or as an additive for paint, spherical aerogels having an average particle diameter of about 1 to 20 μm are desirable. However, it is extremely difficult to obtain such micron-order fine spherical aerogels by the above-mentioned spraying method.
因此,本发明的课题在于提供一种高效地制造气凝胶的方法,该气凝胶的绝热性优异,平均粒径为1~20μm左右,形状为球状。另外,提供一种绝热性优异、粒径为1~20μm左右、形状为球状的气凝胶。Therefore, an object of the present invention is to provide a method for efficiently producing an airgel having excellent thermal insulation properties, an average particle diameter of about 1 to 20 μm, and a spherical shape. In addition, there is provided an aerogel having excellent thermal insulation properties, a particle diameter of about 1 to 20 μm, and a spherical shape.
用于解决问题的方案solutions to problems
本发明人等为了解决上述课题,反复进行了深入研究,结果发现,形成水性硅溶胶,使水性硅溶胶在与该水性硅溶胶的溶剂不混合的其它溶剂中分散而使其形成W/O乳液,然后,使水性硅溶胶凝胶化,将硅凝胶的溶剂置换为有机溶剂,对硅凝胶表面进行疏水化处理,使其干燥,从而可以解决上述课题,完成了本发明。In order to solve the above problems, the inventors of the present invention have repeatedly conducted intensive studies, and as a result, found that a water-based silica sol is formed, and the water-based silica sol is dispersed in another solvent that does not mix with the solvent of the aqueous silica sol to form a W/O emulsion. , and then by gelling the aqueous silica sol, replacing the solvent of the silica gel with an organic solvent, hydrophobizing the surface of the silica gel, and drying it, the above-mentioned problems can be solved, and the present invention has been completed.
本发明的第一方式是一种气凝胶的制造方法,其特征在于,其依次具有以下工序:(1)制备水性硅溶胶的工序,(2)使该水性硅溶胶在疏水性溶剂中分散而使其形成W/O型乳液的工序,(3)使硅溶胶凝胶化将W/O型乳液转换为凝胶体的分散液的工序,(4)将凝胶体中的水分置换为20℃时的表面张力为30mN/m以下的溶剂的工序,(5)将凝胶体用疏水剂处理的工序,以及(6)去除所述置换后的溶剂的工序,上述疏水剂为能够与存在于二氧化硅表面的硅烷醇基反应并将该硅烷醇基转换为用下述式(2)表示的基团的疏水剂,A first aspect of the present invention is a method for producing an airgel, which comprises the following steps in sequence: (1) a step of preparing an aqueous silica sol, and (2) dispersing the aqueous silica sol in a hydrophobic solvent And make it form the process of W/O type emulsion, (3) make the silica sol gelation process that W/O type emulsion is converted into the dispersion liquid of gel body, (4) replace the moisture in the gel body with The process of using a solvent having a surface tension of 30 mN/m or less at 20°C, (5) the process of treating the gel with a hydrophobic agent, and (6) the process of removing the substituted solvent. The above-mentioned hydrophobic agent is compatible with A hydrophobizing agent that reacts with silanol groups present on the surface of silica and converts the silanol groups into groups represented by the following formula (2),
所述硅烷醇基为:≡Si-OH (1)The silanol group is: ≡Si-OH (1)
式(1)中,符号“≡”表示Si原子剩余的三个键,In formula (1), the symbol "≡" represents the remaining three bonds of the Si atom,
(≡Si-O-)(4-n)SiRn (2)(≡Si-O-) (4-n) SiR n (2)
式(2)中,n为1以上且3以下的整数;R表示烃基,在n为2以上的情况下,多个R可以相同也可以相互不同。In formula (2), n is an integer of 1 to 3; R represents a hydrocarbon group, and when n is 2 or more, a plurality of R may be the same or different from each other.
在本发明中,“疏水性溶剂”是指能够形成W/O型乳液的溶剂。“W/O型乳液”是指在疏水性溶剂中分散有水滴的乳液。In the present invention, "hydrophobic solvent" refers to a solvent capable of forming a W/O type emulsion. "W/O type emulsion" refers to an emulsion in which water droplets are dispersed in a hydrophobic solvent.
在本发明的第一方式中,优选通过在W/O型乳液中添加碱,由此进行硅溶胶的凝胶化。In the first aspect of the present invention, it is preferable to gel the silica sol by adding an alkali to the W/O emulsion.
在本发明的第一方式中,优选所制备的水性硅溶胶的浓度以将硅含量换算为SiO2含量的值计为20g/L以上且160g/L以下。In the first aspect of the present invention, the concentration of the prepared aqueous silica sol is preferably 20 g/L or more and 160 g/L or less in terms of silicon content converted to SiO 2 content.
本发明的第二方式是一种气凝胶,其特征在于,通过BET法得到的比表面积为400m2/g以上且1000m2/g以下,通过BJH法得到的细孔容积为3ml/g以上且8ml/g以下,通过BJH法得到的细孔半径的峰值为10nm以上且30nm以下,通过图像分析法求出的平均粒径为1μm以上且20μm以下,通过图像分析法求出的平均圆形度为0.8以上。A second aspect of the present invention is an airgel characterized in that the specific surface area obtained by the BET method is 400 m 2 /g or more and 1000 m 2 /g or less, and the pore volume obtained by the BJH method is 3 ml/g or more. And 8ml/g or less, the peak value of the pore radius obtained by the BJH method is 10 nm to 30 nm, the average particle diameter obtained by the image analysis method is 1 μm to 20 μm, and the average circular shape obtained by the image analysis method The degree is 0.8 or more.
在本发明中,“通过BET法得到的比表面积”是指,将作为测定对象的样品在1kPa以下的真空下以200℃的温度干燥3小时以上,然后,测定液氮温度下仅氮气吸附侧的吸附等温线,通过BET法分析该吸附等温线而求出的值。此时分析中所使用的压力范围是相对压力在0.1~0.25的范围。“通过BJH法得到的细孔容积”是指,通过BJH法(Barrett,E.P.;Joyner,L.G.;Halenda,P.P.,J.Am.Chem.Soc.73,373(1951))分析与上述同样取得的吸附侧的吸附等温线而得到的、源自细孔半径为1nm以上且100nm以下的孔的细孔容积。“通过BJH法得到的细孔半径的峰值”是指细孔分布曲线(体积分布曲线)中取得最大的峰值的细孔半径的值,所述细孔分布曲线是以通过BJH法分析与上述同样取得的吸附侧的吸附等温线而得到的、由细孔半径的对数得到的累积细孔容积的微分为纵轴并以细孔半径为横轴作图而得到的。In the present invention, "the specific surface area obtained by the BET method" means that the sample to be measured is dried at a temperature of 200°C for 3 hours or more under a vacuum of 1 kPa or less, and then, only the nitrogen adsorption side at the liquid nitrogen temperature is measured. The adsorption isotherm is a value obtained by analyzing the adsorption isotherm by the BET method. The pressure range used in the analysis at this time is a range in which the relative pressure is 0.1 to 0.25. "The pore volume obtained by the BJH method" refers to the adsorption side obtained by the BJH method (Barrett, E.P.; Joyner, L.G.; Halenda, P.P., J. Am. Chem. Soc. 73, 373 (1951)) analysis in the same manner as above. The pore volume derived from pores with a pore radius of not less than 1 nm and not more than 100 nm obtained from the adsorption isotherm. The "peak value of the pore radius obtained by the BJH method" refers to the value of the pore radius at which the largest peak is obtained in the pore distribution curve (volume distribution curve) analyzed by the BJH method in the same manner as above. The obtained adsorption isotherm on the adsorption side is obtained by plotting the differential of the cumulative pore volume obtained from the logarithm of the pore radius on the vertical axis and the pore radius on the horizontal axis.
此外,在本发明中,“通过图像分析法求出的平均粒径”是指,使用扫描电子显微镜(SEM)对2000个以上气凝胶颗粒通过二次电子检测以倍率1000倍观察的SEM图像进行图像分析而得到的圆当量直径的算数平均值。关于各气凝胶颗粒,“圆当量直径”是指具有与该气凝胶颗粒在图像中所占的面积(投影面积)相等的面积的圆的直径。此外,“通过图像分析法求出的平均圆形度”是指,使用SEM同样对2000个以上气凝胶颗粒以1000倍的倍率观察的SEM图像进行图像分析而得到的圆形度的算数平均值。关于各气凝胶颗粒,“圆形度”是指通过下述式(3)而求出的值。In addition, in the present invention, the "average particle diameter obtained by image analysis method" refers to an SEM image of more than 2,000 airgel particles observed by secondary electron detection at a magnification of 1,000 times using a scanning electron microscope (SEM). Arithmetic mean value of equivalent circle diameter obtained by image analysis. Regarding each airgel particle, the "circle-equivalent diameter" refers to the diameter of a circle having an area equal to the area (projected area) occupied by the airgel particle in an image. In addition, the "average circularity obtained by the image analysis method" refers to the arithmetic mean of the circularity obtained by image analysis of SEM images of 2000 or more airgel particles observed at a magnification of 1000 times using the same SEM. value. Regarding each airgel particle, the "circularity" refers to a value obtained by the following formula (3).
在式(3)中,C表示圆形度。S表示该气凝胶颗粒在图像中所占的面积(投影面积)。L表示图像中的该气凝胶颗粒的外周的长度(周长)。In formula (3), C represents circularity. S represents the area occupied by the airgel particles in the image (projected area). L represents the length (perimeter) of the outer periphery of the airgel particle in the image.
本发明的第二方式中的气凝胶优选利用疏水剂进行了疏水化处理。The airgel in the second aspect of the present invention is preferably hydrophobized with a hydrophobizing agent.
发明的效果The effect of the invention
根据本发明的第一方式的气凝胶的制造方法,由于在W/O型乳液的液滴中使硅溶胶凝胶化,因此能够高效地制造绝热性优异、适用于真空绝热材料的芯材等各种填充用途和各种添加用途的、具有1~20μm左右的平均粒径的球状气凝胶。此外,能够制造本发明的第二方式的气凝胶。According to the airgel production method of the first aspect of the present invention, since the silica sol is gelled in the W/O type emulsion droplets, it is possible to efficiently produce a core material that is excellent in heat insulation and suitable for vacuum heat insulation materials Spherical aerogels having an average particle diameter of about 1 to 20 μm for various filling applications and various additive applications. In addition, the airgel of the second aspect of the present invention can be produced.
本发明的第二方式的气凝胶,由于其绝热性优异、粒径为1~20μm、且具有高球形度,该气凝胶的流动性、填充性优异,因而在真空绝热材料的芯材、各种填充用途、添加用途、或化妆品用途等中非常有用。The airgel according to the second aspect of the present invention has excellent thermal insulation properties, a particle size of 1 to 20 μm, and a high degree of sphericity. The airgel has excellent fluidity and filling properties, so it is used as a core material for vacuum insulation materials. , various filling applications, additive applications, or cosmetic applications, etc. are very useful.
附图说明Description of drawings
图1为说明本发明的气凝胶的制造方法的流程图。FIG. 1 is a flowchart illustrating a method for producing an airgel of the present invention.
图2为由实施例2制造的本发明的球状气凝胶的SEM图像。FIG. 2 is an SEM image of the spherical airgel of the present invention manufactured in Example 2. FIG.
图3为由比较例1制造的气凝胶的SEM图像。FIG. 3 is an SEM image of the airgel produced in Comparative Example 1. FIG.
具体实施方式Detailed ways
<1.气凝胶的制造方法><1. Manufacturing method of airgel>
对于本发明的第一方式的气凝胶的制造方法进行说明。图1为说明本发明的气凝胶的制造方法S10的流程图。如图1所示,气凝胶的制造方法S10依次具有以下六道工序。The method for producing the airgel according to the first aspect of the present invention will be described. FIG. 1 is a flow chart illustrating the manufacturing method S10 of the airgel of the present invention. As shown in FIG. 1 , the manufacturing method S10 of the airgel has the following six processes in sequence.
(1)制备水性硅溶胶的工序(硅溶胶制备工序S1);(1) The process of preparing aqueous silica sol (silica sol preparation process S1);
(2)使该水性硅溶胶在疏水性溶剂中分散而使其形成W/O乳液的工序(乳液形成工序S2);(2) A step of dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion (emulsion forming step S2);
(3)使硅溶胶凝胶化将W/O型乳液转换为凝胶体的分散液的工序(凝胶化工序S3);(3) A step of gelling the silica sol to convert the W/O emulsion into a gel dispersion (gelling step S3);
(4)将凝胶体中的水分置换为20℃时的表面张力为30mN/m以下的溶剂的工序(溶剂置换工序S4);(4) A step of replacing water in the gel with a solvent having a surface tension of 30 mN/m or less at 20° C. (solvent replacement step S4);
(5)将凝胶体用疏水剂进行疏水化处理的工序(疏水化处理工序S5);以及(5) The step of hydrophobizing the gel with a hydrophobizing agent (hydrophobizing treatment step S5); and
(6)去除上述置换后的溶剂的工序(干燥工序S6)。(6) A step of removing the above-mentioned substituted solvent (drying step S6).
以下对各工序依次进行说明。Each step will be described in order below.
(硅溶胶制备工序S1)(Silica sol preparation process S1)
硅溶胶制备工序S1(以下有时仅称为“S1”)适当选择水性硅溶胶的公知的制备方法来实施即可。作为代表性的水性硅溶胶的制备方法,可列举出:作为原料使用硅酸碱金属盐等的方法;水解四甲氧基硅烷、四乙氧基硅烷等烷氧基硅烷的方法。在这些方法中,从原料廉价的观点出发可优选采用使用硅酸碱金属盐的方法。作为该硅酸碱金属盐,可列举出硅酸钾、硅酸钠等,组成式以下述式(4)表示。The silica sol preparation process S1 (it may only be called "S1" hereafter) may select suitably the well-known preparation method of aqueous silica sol, and may implement. As a typical preparation method of an aqueous silica sol, the method of using an alkali metal silicate etc. as a raw material, and the method of hydrolyzing alkoxysilanes, such as tetramethoxysilane and tetraethoxysilane, are mentioned. Among these methods, a method using an alkali metal silicate is preferably employed from the viewpoint of inexpensive raw materials. Potassium silicate, sodium silicate, etc. are mentioned as this silicate alkali metal salt, and a composition formula is represented by following formula (4).
m(M2O)·n(siO2) (4)m(M 2 O)·n(siO 2 ) (4)
[式(4)中,m和n分别独立地表示正整数,M表示碱金属元素。][In the formula (4), m and n each independently represent a positive integer, and M represents an alkali metal element. ]
在上述制备硅溶胶的原料中特别优选容易获得的硅酸钠。Sodium silicate, which is readily available, is particularly preferred among the above-mentioned raw materials for preparing silica sol.
在使用硅酸钠等硅酸碱金属盐作为用于制备本发明的水性硅溶胶的原料的情况下,可通过用盐酸、硫酸等无机酸中和的方法、或者使用将抗衡离子变为氢离子(H+)的阳离子交换树脂(以下有时称为“酸型阳离子交换树脂”)的方法,将硅酸碱金属盐中的碱金属原子置换为氢原子,从而制备硅溶胶。In the case of using alkali metal silicate such as sodium silicate as the raw material for preparing the aqueous silica sol of the present invention, it can be neutralized with inorganic acids such as hydrochloric acid and sulfuric acid, or the counter ion can be changed into hydrogen ion by using (H + ) cation exchange resin (hereinafter sometimes referred to as "acid type cation exchange resin"), the silica sol is prepared by replacing the alkali metal atoms in the alkali metal silicate salt with hydrogen atoms.
作为上述通过使用酸进行中和而制备硅溶胶的方法,可列举出:在酸的水溶液中边搅拌该水溶液边添加硅酸碱金属盐的水溶液的方法;利用在配管内使酸的水溶液与硅酸碱金属盐的水溶液碰撞混合的方法(例如参照日本特公平4-54619号公报)。所使用的酸的量,以氢离子相对于硅酸碱金属盐的碱金属成分的摩尔比计优选设为1.05~1.2。将酸的量设定在该范围内时,制备出的硅溶胶的pH处于1~3左右。As the above-mentioned method of preparing silica sol by neutralizing with an acid, there may be mentioned: a method of adding an aqueous solution of an alkali metal silicate salt in an aqueous acid solution while stirring the aqueous solution; A method of collision-mixing an aqueous solution of an acid-alkali metal salt (for example, refer to Japanese Patent Application Publication No. 4-54619). The amount of the acid to be used is preferably 1.05 to 1.2 in terms of the molar ratio of hydrogen ions to the alkali metal component of the alkali metal silicate. When the amount of the acid is set within this range, the pH of the prepared silica sol is about 1-3.
此外,使用酸型阳离子交换树脂制备硅溶胶的方法也可根据公知的方法来进行。例如可列举出:使适宜浓度的硅酸碱金属盐的水溶液通过填充了酸型阳离子交换树脂的填充层的方法;或者,在硅酸碱金属盐的水溶液中添加酸型阳离子交换树脂并混合,使碱金属离子化学吸附到阳离子交换树脂而从溶液中去除,然后进行过滤等分离酸型阳离子交换树脂的方法等。此时,所使用的酸型阳离子交换树脂的量,需要设为能够将溶液中含有的碱金属交换的量以上。In addition, the method of preparing a silica sol using an acid-type cation exchange resin can also be performed according to a known method. For example, a method in which an aqueous solution of an alkali metal silicate salt of an appropriate concentration is passed through a packed layer filled with an acid-type cation exchange resin; or, an acid-type cation-exchange resin is added to an aqueous solution of an alkali metal silicate and mixed, A method in which an alkali metal ion is chemically adsorbed to a cation exchange resin to remove it from a solution, and then the acid type cation exchange resin is separated by filtration or the like. In this case, the amount of the acid-type cation exchange resin to be used needs to be greater than or equal to the amount capable of exchanging the alkali metal contained in the solution.
作为上述酸型阳离子交换树脂,可以没有特别限制地使用公知的离子交换树脂。例如为苯乙烯系、丙烯酸(酯)系、甲基丙烯酸(酯)系等离子交换树脂,可使用具有磺酸基、羧基作为离子交换基的树脂。其中,可优选使用具有磺酸基的所谓强酸型的阳离子交换树脂。As the acid-type cation exchange resin, known ion exchange resins can be used without particular limitation. For example, ion-exchange resins such as styrene-based, acrylic (ester)-based, and methacrylic (ester)-based resins can be used, and resins having sulfonic acid groups and carboxyl groups as ion-exchange groups can be used. Among them, a so-called strong acid type cation exchange resin having a sulfonic acid group can be preferably used.
需要说明的是,上述酸型阳离子交换树脂可在用于碱金属的交换后通过公知的方法例如使其与硫酸、盐酸接触而进行再生处理。再生所使用的酸的量,通常相对于离子交换树脂的交换容量使用2~10倍的量。It should be noted that the above-mentioned acid-type cation exchange resin can be regenerated by contacting with sulfuric acid or hydrochloric acid by a known method after being used for alkali metal exchange. The amount of acid used for regeneration is usually 2 to 10 times the exchange capacity of the ion exchange resin.
从凝胶化在较短的时间内完成、此外抑制干燥时的收缩以充分进行气凝胶的骨架结构的形成、容易得到大的细孔容量的观点出发,通过上述方法制备出的水性硅溶胶的浓度以二氧化硅成分的浓度(SiO2换算浓度)计优选为20g/L以上,更优选为40g/L以上,特别优选为50g/L以上。另一方面,从将气凝胶的密度相对减小、减少因二氧化硅骨架本身所产生的热传导(固体传导)而容易得到良好的绝热性能的观点出发,优选为160g/L以下,更优选为120g/L以下,特别优选为100g/L以下。通过将水性硅溶胶的浓度设为上述下限值以上,从而容易使气凝胶的根据BJH法得到的细孔容积成为3mL/g以上,此外容易使气凝胶的根据BJH法得到的细孔半径的峰值成为10nm以上。此外,通过将水性硅凝胶的浓度设为上述上限值以下,从而容易使气凝胶的根据BJH法得到的细孔容积成为8mL/g以下,此外容易使气凝胶的根据BJH法得到的细孔半径的峰值成为30nm以下。From the point of view that gelation is completed in a short period of time, shrinkage during drying is suppressed to fully form the skeleton structure of the airgel, and a large pore volume is easily obtained, the aqueous silica sol prepared by the above method The concentration of the silica component is preferably 20 g/L or more, more preferably 40 g/L or more, and particularly preferably 50 g/L or more in terms of the concentration of the silica component (SiO 2 conversion concentration). On the other hand, from the viewpoint of relatively reducing the density of the airgel, reducing the heat conduction (solid conduction) generated by the silica skeleton itself, and easily obtaining good thermal insulation performance, it is preferably 160 g/L or less, more preferably It is 120 g/L or less, particularly preferably 100 g/L or less. By making the concentration of the aqueous silica sol more than the above-mentioned lower limit value, it is easy to make the pore volume of the airgel obtained by the BJH method 3 mL/g or more, and it is easy to make the pore volume of the airgel obtained by the BJH method The peak value of the radius is 10 nm or more. In addition, by making the concentration of the aqueous silicone gel below the above-mentioned upper limit, it is easy to make the pore volume of the airgel according to the BJH method 8 mL/g or less, and it is easy to make the volume of the airgel according to the BJH method to be 8 mL/g or less. The peak value of the pore radius is 30 nm or less.
(乳液形成工序S2)(Emulsion forming step S2)
乳液形成工序S2(以下有时仅称为“S2”)是使由S1得到的水性硅溶胶在疏水性溶剂中分散而形成W/O乳液的工序。即,将上述水性硅溶胶作为分散质、疏水性溶剂作为分散介质,使其形成乳液。通过形成这样的W/O乳液,作为分散质的硅溶胶因表面张力等成为球状,因而,通过使以该球状形状在疏水性溶剂中分散的硅溶胶凝胶化,从而可得到球状的凝胶体。这样一来,经过形成W/O乳液的乳液形成工序S2,从而可制造具有0.8以上的高圆形度的气凝胶。Emulsion forming step S2 (hereinafter sometimes simply referred to as "S2") is a step of dispersing the aqueous silica sol obtained in S1 in a hydrophobic solvent to form a W/O emulsion. That is, an emulsion is formed by using the above-mentioned aqueous silica sol as a dispersoid and a hydrophobic solvent as a dispersion medium. By forming such a W/O emulsion, the silica sol as a dispersant becomes spherical due to surface tension etc., and therefore, by gelling the silica sol dispersed in a hydrophobic solvent in this spherical shape, a spherical gel can be obtained body. In this way, through the emulsion forming step S2 of forming a W/O emulsion, an airgel having a high circularity of 0.8 or more can be produced.
作为该疏水性溶剂,只要是具有可与水性硅溶胶形成W/O乳液的程度的疏水性的溶剂即可。作为这样的溶剂,例如可使用烃类、卤代烃类等有机溶剂。更具体而言,可列举出己烷、庚烷、辛烷、壬烷、癸烷、二氯甲烷、氯仿、四氯化碳、二氯丙烷等。其中,可以特别优选使用具有适度粘度的己烷。需要说明的是,根据需要也可混合多种溶剂而使用。此外,只要是可与水性硅溶胶形成W/O乳液的范围内,也可并用低级醇类等亲水性溶剂(作为混合溶剂使用)。As the hydrophobic solvent, any solvent may be used as long as it has hydrophobicity to the extent that it can form a W/O emulsion with the aqueous silica sol. As such a solvent, for example, organic solvents such as hydrocarbons and halogenated hydrocarbons can be used. More specifically, hexane, heptane, octane, nonane, decane, dichloromethane, chloroform, carbon tetrachloride, dichloropropane, etc. are mentioned. Among them, hexane having a moderate viscosity can be particularly preferably used. In addition, you may mix and use several types of solvents as needed. In addition, hydrophilic solvents such as lower alcohols may be used in combination (used as a mixed solvent) as long as a W/O emulsion can be formed with the aqueous silica sol.
所使用的疏水性溶剂的量,只要是乳液成为W/O型程度的量就没有特别限定。其中,一般而言,以疏水性溶剂相对于水性硅溶胶1体积份为1~10体积份左右的量来使用。The amount of the hydrophobic solvent to be used is not particularly limited as long as the emulsion becomes W/O type. However, generally, the hydrophobic solvent is used in an amount of about 1 to 10 parts by volume relative to 1 part by volume of the aqueous silica sol.
本发明中,在形成上述的W/O乳液时,优选添加表面活性剂。作为使用的表面活性剂,可使用阴离子系表面活性剂、阳离子系表面活性剂和非离子系表面活性剂中的任一种。这些表面活性剂中,从容易形成W/O乳液的观点出发,优选非离子系表面活性剂。在本发明中,硅溶胶是水性的,因此可优选使用表示表面活性剂的亲水性及疏水性程度的值的HLB值为3以上且5以下的表面活性剂。需要说明的是,在本发明中“HLB值”是指根据格里菲法得到的HLB值。如上述那样,在本发明中,气凝胶颗粒的形状基本取决于W/O乳液的液滴的形状。通过使用具有上述范围内的HLB值的表面活性剂,容易使W/O乳液稳定地存在,因而,容易将气凝胶的粒径制成1μm以上且20μm以下,此外容易将气凝胶粒径分布更均匀。作为可优选使用的表面活性剂的具体例子,可列举出失水山梨醇单油酸酯、失水山梨醇单硬脂酸酯、失水山梨醇倍半油酸酯等。In the present invention, it is preferable to add a surfactant when forming the above-mentioned W/O emulsion. As the surfactant to be used, any of anionic surfactants, cationic surfactants, and nonionic surfactants can be used. Among these surfactants, nonionic surfactants are preferable from the viewpoint of easily forming a W/O emulsion. In the present invention, since the silica sol is aqueous, a surfactant having an HLB value of 3 or more and 5 or less, which represents the degree of hydrophilicity and hydrophobicity of the surfactant, can be preferably used. In addition, in this invention, "HLB value" means the HLB value obtained by Griffey's method. As described above, in the present invention, the shape of the airgel particles basically depends on the shape of the droplets of the W/O emulsion. By using a surfactant having an HLB value within the above-mentioned range, it is easy to make the W/O emulsion exist stably, therefore, it is easy to make the particle diameter of the airgel 1 μm or more and 20 μm or less, and it is easy to make the airgel particle diameter more evenly distributed. Specific examples of the surfactant that can be preferably used include sorbitan monooleate, sorbitan monostearate, sorbitan sesquioleate, and the like.
表面活性剂的使用量与形成W/O乳液时通常的量相比没有变化。具体而言,可优选采用相对于100ml水性硅溶胶为0.05g以上且10g以下的范围。表面活性剂的使用量多时,W/O乳液的液滴容易变得更微细,相反表面活性剂的使用量少时,W/O乳液的液滴容易变得更大。因而,通过增减表面活性剂的使用量,可以调整气凝胶的平均粒径。The amount of surfactant used was not changed from the usual amount when forming a W/O emulsion. Specifically, it is preferable to adopt the range of 0.05 g or more and 10 g or less with respect to 100 ml of aqueous silica sol. When the usage-amount of surfactant is large, the liquid droplet of W/O emulsion tends to become finer, and conversely, when the usage-amount of surfactant is small, the liquid droplet of W/O emulsion tends to become larger. Therefore, the average particle diameter of the airgel can be adjusted by increasing or decreasing the amount of surfactant used.
作为在形成W/O乳液时使水性硅溶胶在疏水性溶剂中分散的方法,可采用W/O乳液的公知的形成方法。从工业制造的容易性等观点出发,优选通过机械乳化形成乳液,具体而言,可例示出使用混合器、均化器等的方法。可优选使用均化器的方法。优选调整分散强度及时间,使分散的硅溶胶液滴的平均粒径的值处于本发明的气凝胶的平均粒径范围内,即1μm~20μm的范围内。其原因是,W/O乳液中的硅溶胶液滴的平均粒径与气凝胶的平均粒径存在大致对应关系。同时,通过这样充分减小乳液中的硅溶胶液滴的粒径,硅溶胶液滴的形状不易被扰乱,因此更容易得到具有更高圆形度的球状的气凝胶。As a method of dispersing the aqueous silica sol in a hydrophobic solvent when forming a W/O emulsion, a known method for forming a W/O emulsion can be employed. From the viewpoint of easiness of industrial production, etc., it is preferable to form an emulsion by mechanical emulsification. Specifically, a method using a mixer, a homogenizer, or the like can be exemplified. A method using a homogenizer may be preferred. It is preferable to adjust the dispersion intensity and time so that the average particle diameter of the dispersed silica sol droplets falls within the average particle diameter range of the airgel of the present invention, that is, within the range of 1 μm to 20 μm. The reason is that the average particle diameter of the silica sol droplets in the W/O emulsion roughly corresponds to the average particle diameter of the aerogel. At the same time, by sufficiently reducing the particle size of the silica sol droplets in the emulsion in this way, the shape of the silica sol droplets is less likely to be disturbed, so it is easier to obtain spherical aerogels with higher circularity.
(凝胶化工序S3)(Gelation step S3)
凝胶化工序S3(以下有时仅称为“S3”)接着上述S2的W/O乳液的形成,是在水性硅溶胶的液滴分散于疏水性溶剂中的状态下使水性硅溶胶凝胶化的工序。该凝胶化可以使用公知的方法进行。例如,通过加热至高温的方法、或者调整硅溶胶的pH为弱酸性或碱性的方法,可使凝胶化容易发生。从能够迅速且以低能量成本凝胶化的观点出发,优选通过pH调整而使凝胶化发生。Gelation step S3 (hereinafter sometimes simply referred to as "S3") follows the formation of the W/O emulsion in S2 above, and gels the aqueous silica sol in a state in which droplets of the aqueous silica sol are dispersed in a hydrophobic solvent. process. This gelation can be performed using a known method. For example, gelation can be easily generated by heating to a high temperature or adjusting the pH of the silica sol to be weakly acidic or alkaline. From the viewpoint of enabling rapid gelation at low energy costs, it is preferable to cause gelation by pH adjustment.
就这样的pH调整而言,可通过一边利用如上述的混合器等进行搅拌而维持W/O乳液形成状态一边将碱添加到该乳液中,从而容易地进行pH调整。作为所述碱的具体例子,可列举出:氨;四甲基氢氧化铵(TMAH)等四烷基氢氧化铵类;三甲胺等胺类;氢氧化钠等氢氧化碱类;碳酸钠、碳酸氢钠等碱金属碳酸盐类;及碱金属硅酸盐等。需要说明的是,通过碱金属硅酸盐进行pH调整时,本发明中所述的水性硅溶胶的浓度是指在水性硅溶胶的制备(S1)中使用的二氧化硅源与源自pH调整中使用的碱金属硅酸盐的二氧化硅成分的总浓度。需要说明的是,上述搅拌的强度只要是使W/O乳液和碱发生混合的程度的强度即可。Such pH adjustment can be easily performed by adding a base to the emulsion while maintaining the W/O emulsion formation state by stirring with the above-mentioned mixer or the like. Specific examples of the base include ammonia; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH); amines such as trimethylamine; alkali hydroxides such as sodium hydroxide; Alkali metal carbonates such as sodium bicarbonate; and alkali metal silicates, etc. It should be noted that when the pH is adjusted by an alkali metal silicate, the concentration of the aqueous silica sol described in the present invention refers to the difference between the silica source used in the preparation (S1) of the aqueous silica sol and the concentration derived from the pH adjustment. The total concentration of the silica component of the alkali metal silicate used. In addition, the intensity|strength of the said stirring should just be the intensity|strength of the grade which mixes W/O emulsion and alkali.
在这些碱中,从不混入金属元素、不需要水洗操作的观点出发,优选使用氨、四烷基氢氧化铵类或胺类,特别优选氨。在使用氨时,可以以气体的形式吹入W/O乳液中,也可以以氨水的形式添加。其中,从容易pH微调的观点出发,更优选以氨水的形式添加。Among these bases, ammonia, tetraalkylammonium hydroxides, or amines are preferably used, and ammonia is particularly preferred, from the viewpoint of not mixing metal elements and requiring no washing operation. When ammonia is used, it can be blown into the W/O emulsion in the form of gas, or it can be added in the form of ammonia water. Among these, it is more preferable to add in the form of ammonia water from the viewpoint of easy pH adjustment.
此外,使用碱金属硅酸盐来调整pH的方法,具有在制备上述水性硅溶胶时在使用相同的碱金属硅酸盐的情况下不需要另外的碱用的设备的优点。In addition, the method of adjusting the pH using an alkali metal silicate has the advantage that no separate equipment for alkali is required when the same alkali metal silicate is used in the preparation of the above-mentioned aqueous silica sol.
需要说明的是,凝胶化工序中的pH调整优选通过预先测定成为目标的pH的碱量并且将该量的碱加入W/O乳液中来进行。成为目标的pH的碱量的测定是取出一定量的用于W/O乳液的溶胶,边利用pH计测定pH边加入用于凝胶化的碱,测定成为目标的pH的碱量,由此来进行的。It should be noted that the pH adjustment in the gelation step is preferably performed by measuring the amount of alkali at the target pH in advance and adding the amount of alkali to the W/O emulsion. The measurement of the alkali amount at the target pH is to take out a certain amount of sol for W/O emulsion, add the alkali for gelation while measuring the pH with a pH meter, and measure the alkali amount at the target pH. to carry out.
上述凝胶化所需要的时间也取决于温度、水性硅溶胶的浓度,例如,在温度50℃、硅溶胶中的二氧化硅浓度为80g/L的体系中将pH调整为5时,从pH调整起数分钟后发生凝胶化,可得到凝胶体在疏水性溶剂中分散了的分散液。需要说明的是,在本发明中,“凝胶体”是也包括该二氧化硅骨架内所含有的液体成分的概念,不仅是指这样的凝胶化而生成的二氧化硅骨架。The time required for the above-mentioned gelation also depends on the temperature and the concentration of the aqueous silica sol. For example, when the pH is adjusted to 5 in a system with a temperature of 50° C. and a silica concentration of 80 g/L in the silica sol, from pH Gelation occurs several minutes after conditioning, and a dispersion liquid in which the gel is dispersed in a hydrophobic solvent can be obtained. It should be noted that, in the present invention, "gel" is a concept including the liquid component contained in the silica skeleton, and does not only refer to the silica skeleton produced by such gelation.
此外,凝胶化后由于分散质从液体状变为固体状,因此体系并不是W/O乳液,而是固体(凝胶体)在疏水性溶剂中分散而成的分散液(悬浮液)。In addition, since the dispersoid changes from liquid to solid after gelation, the system is not a W/O emulsion, but a dispersion (suspension) in which a solid (gel) is dispersed in a hydrophobic solvent.
(溶剂置换工序S4)(Solvent replacement step S4)
溶剂置换工序S4(以下有时仅称为“S4”)为将通过经由上述S1至S3而得到的凝胶体中的水分置换为20℃时的表面张力(γ)为30mN/m以下的溶剂的工序(以下有时仅称为“溶剂置换”,此外有时将最终凝胶体中存在的溶剂称为“最终溶剂”)。在表面张力大的溶剂在凝胶体中存在的状态下,干燥时容易发生干燥收缩,因此在非临界干燥下不能得到气凝胶。The solvent replacement step S4 (hereinafter sometimes simply referred to as "S4") is to replace the water in the gel obtained through the above S1 to S3 with a solvent whose surface tension (γ) at 20°C is 30 mN/m or less. Step (hereinafter sometimes simply referred to as "solvent replacement", and the solvent present in the final gel may be referred to as "final solvent"). When a solvent with a high surface tension is present in the gel, drying shrinkage tends to occur during drying, and therefore an airgel cannot be obtained by non-critical drying.
(溶剂置换前的分离清洗工序S4-1)(Separation and cleaning step S4-1 before solvent replacement)
在S4中置换为最终溶剂前,作为前处理从分散液中分离凝胶体(或包含凝胶体的水相)进行清洗。Before replacing with the final solvent in S4, the gel (or the aqueous phase containing the gel) is separated from the dispersion liquid and washed as a pretreatment.
作为凝胶体的分离方法,可采用公知的从分散液回收固体成分的分离方法。具体而言,可选择添加盐、施加离心力、添加酸、过滤、改变体积比(添加水或疏水性溶剂)等其中一种或组合多种来实施。优选使用添加盐和/或改变体积比。例如,通过将一定量的盐水加入到分散液中,可分离为疏水性溶剂相与包含凝胶体的水相。可通过公知的分液方法、例如倾析等将该疏水性溶剂相与水相进行分离,回收水相,清洗该水相中含有的凝胶体。As the separation method of the gel, a known separation method for recovering the solid content from the dispersion can be used. Specifically, adding salt, applying centrifugal force, adding acid, filtering, changing the volume ratio (adding water or a hydrophobic solvent), etc. can be selected to implement one or a combination of several. Preference is given to using the addition of salt and/or changing the volume ratio. For example, by adding a certain amount of saline to the dispersion, it can be separated into a hydrophobic solvent phase and an aqueous phase containing a gel. The hydrophobic solvent phase and the water phase can be separated by a known liquid separation method such as decantation, the water phase can be recovered, and the gel contained in the water phase can be washed.
通过清洗凝胶体,可以去除源自原料、pH调整中使用的成分的碱金属(的盐)等杂质成分。优选凝胶体的清洗进行至清洗液的电导率为500μS/cm以下、优选为200μS/cm以下。By washing the gel, impurities such as alkali metals (salts) derived from raw materials and components used for pH adjustment can be removed. Preferably, the washing of the gel is performed until the electrical conductivity of the washing liquid is 500 μS/cm or less, preferably 200 μS/cm or less.
凝胶体的清洗操作可以通过通常公知的粉粒体的水洗方法来进行。例如可列举出如下方法:在凝胶体中加入一定量的水放置一定时间后抽出清洗水并重复该操作的方法;将凝胶体投入到漏斗、柱等中并在其中通过一定量的水的方法等。在使用柱进行清洗时,出于提高效率的目的,可通过加压至0.2MPa~1.0MPa左右而使流速增大来进行清洗。The washing operation of the gel can be carried out by a generally known method of washing powder and granular bodies with water. For example, the following methods can be mentioned: the method of adding a certain amount of water to the gel, leaving it for a certain period of time, drawing out the washing water and repeating the operation; putting the gel into a funnel, column, etc., and passing a certain amount of water therein method etc. When washing is performed using a column, for the purpose of improving efficiency, the washing can be performed by increasing the flow rate by increasing the pressure to about 0.2 MPa to 1.0 MPa.
(溶剂置换的主工序S4-2)(Main process S4-2 of solvent replacement)
如上所述,在本发明的气凝胶的制造方法中,需要进行溶剂置换。该溶剂置换是为了不使通过上述方法得到的凝胶体在后述的干燥工序中干燥时发生干燥收缩,而将凝胶体所含的水置换为表面张力小的溶剂(最终溶剂)。As described above, in the method for producing the airgel of the present invention, it is necessary to perform solvent replacement. This solvent substitution is to replace the water contained in the gel with a solvent having a low surface tension (final solvent) so that the gel obtained by the above method does not shrink during drying in the drying step described later.
作为最终溶剂,也可采用甲醇、乙醇等的具有羟基的化合物。然而,如果使用这样的具有羟基或硫醇基、氨基等容易发生亲核取代反应的官能团的溶剂、或者具有羧基等酸性基团的溶剂,则存在在后述的疏水化处理工序中疏水化处理的反应效率下降而需要大量的疏水剂的情况、或者直到反应结束为止均需要高温和长时间的情况,在经济上有不少缺点。As the final solvent, a compound having a hydroxyl group such as methanol or ethanol can also be used. However, if such a solvent having functional groups such as hydroxyl groups, thiol groups, and amino groups that are prone to nucleophilic substitution reactions, or a solvent having acidic groups such as carboxyl groups is used, there will be a possibility of hydrophobization treatment in the hydrophobization treatment step described later. In the case where a large amount of water-repellent is required because the reaction efficiency is lowered, or when a high temperature and a long time are required until the reaction is completed, there are many economic disadvantages.
因此,作为最终溶剂,优选采用不具有上述那样的反应性高的官能团的溶剂。然而,不具有上述那样的官能团的溶剂一般与水的相互溶解度极低。因此,一般很难将凝胶体中含有的水直接置换为最终溶剂。因而,通常该溶剂置换包括预置换,以两个阶段来进行。作为预置换中所使用的溶剂的选择基准,可列举相对于水、以及最终溶剂二者具有高相互溶解性。作为预置换中所使用的溶剂的具体例子,可使用甲醇、乙醇、异丙醇、丙酮等可与水以任意比例混合的所谓亲水性有机溶剂,优选使用甲醇或乙醇。Therefore, it is preferable to use a solvent that does not have the above-mentioned highly reactive functional group as the final solvent. However, solvents that do not have the above-mentioned functional groups generally have extremely low mutual solubility with water. Therefore, it is generally difficult to directly replace the water contained in the gel with the final solvent. Therefore, usually the solvent replacement includes pre-replacement and is performed in two stages. As a criterion for selecting the solvent used in the preliminary replacement, high mutual solubility in both water and the final solvent can be cited. Specific examples of the solvent used in the pre-displacement include methanol, ethanol, isopropanol, acetone, and other so-called hydrophilic organic solvents that can be mixed with water in any proportion, and methanol or ethanol is preferably used.
通过预置换将凝胶体中的液体成分置换为亲水性有机溶剂后,将该亲水性有机溶剂置换为表面张力小的溶剂(最终溶剂)。最终溶剂的表面张力(γ)如上所述,在20℃下必须为30mN/m以下,优选为25mN/m以下,特别优选为20mN/m以下。After the liquid component in the gel is replaced with a hydrophilic organic solvent by preliminary replacement, the hydrophilic organic solvent is replaced with a solvent having a low surface tension (final solvent). The surface tension (γ) of the final solvent must be 30 mN/m or less at 20° C., preferably 25 mN/m or less, particularly preferably 20 mN/m or less, as described above.
以下具体例示出这样的最终溶剂(括号内为20℃时的表面张力,单位为[10-3N/m]):戊烷(15.5)、己烷(18.4)、庚烷(20.2)、辛烷(21.7)、2-甲基戊烷(17.4)、3-甲基戊烷(18.1)、2-甲基己烷(19.3)、环戊烷(22.6)、环己烷(25.2)、1-戊烯(16.0)等脂肪族烃类;苯(28.9)、甲苯(28.5)、间二甲苯(28.7)、对二甲苯(28.3)等芳香族烃类;二氯甲烷(27.9)、氯仿(27.2)、四氯化碳(26.9)、1-氯丙烷(21.8)、2-氯丙烷(18.1)等卤代烃类;乙醚(17.1)、丙醚(20.5)、异丙醚(17.7)、丁基乙基醚(20.8)、1,2-二甲氧基乙烷(24.6)等醚类;丙酮(23.3)、甲乙酮(24.6)、甲基丙基酮(25.1)、二乙基酮(25.3)等酮类;醋酸甲酯(24.8)、醋酸乙酯(23.8)、醋酸丙酯(24.3)、醋酸异丙酯(21.2)、醋酸异丁酯(23.7)、丁酸乙酯(24.6)等酯类。The following specific examples show such final solvents (the surface tension at 20°C in parentheses, the unit is [10 -3 N/m]): pentane (15.5), hexane (18.4), heptane (20.2), octane Alkane (21.7), 2-methylpentane (17.4), 3-methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1 -Aliphatic hydrocarbons such as pentene (16.0); aromatic hydrocarbons such as benzene (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform ( 27.2), carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1) and other halogenated hydrocarbons; ether (17.1), propyl ether (20.5), isopropyl ether (17.7), Butyl ethyl ether (20.8), 1,2-dimethoxyethane (24.6) and other ethers; acetone (23.3), methyl ethyl ketone (24.6), methyl propyl ketone (25.1), diethyl ketone ( 25.3) and other ketones; methyl acetate (24.8), ethyl acetate (23.8), propyl acetate (24.3), isopropyl acetate (21.2), isobutyl acetate (23.7), ethyl butyrate (24.6) and other esters.
在上述例示出的溶剂中,从表面张力小以及毒性低等观点出发,优选脂肪族烃类,最优选己烷。Among the solvents exemplified above, aliphatic hydrocarbons are preferable, and hexane is most preferable from the viewpoint of low surface tension and low toxicity.
此外,在上述溶剂中,若采用丙酮、甲乙酮、1,2-二甲氧基乙烷等与水的混合性高的溶剂,则出现不需要上述预置换这样的优点。In addition, among the above-mentioned solvents, if a solvent having a high miscibility with water, such as acetone, methyl ethyl ketone, or 1,2-dimethoxyethane, is used, there is an advantage that the above-mentioned pre-replacement is unnecessary.
进而,从在后述的干燥工序中容易干燥的观点出发,优选在常压下的沸点为100℃以下的溶剂。Furthermore, from the viewpoint of being easy to dry in a drying step described later, a solvent having a boiling point of 100° C. or lower under normal pressure is preferable.
预置换可使用公知的方法进行。例如可列举出:在凝胶体中加入一定量的溶剂放置一定时间后抽出溶剂并重复该操作的方法;将凝胶体投入到柱中并在其中通过一定量的溶剂的方法等。从节约用于置换的溶剂方面来看,优选使用柱的方法。并且,在使用柱进行置换的情况下,出于提高效率的目的,可通过加压至0.2~1.0MPa左右而使流速增大来进行置换。Pre-substitution can be performed using known methods. For example, a method of adding a certain amount of solvent to the gel and leaving it for a certain period of time to extract the solvent and repeat the operation; a method of putting the gel into a column and passing a certain amount of solvent through it; and the like. A method using a column is preferable from the viewpoint of saving the solvent used for the replacement. In addition, in the case of using a column for replacement, the replacement can be performed by increasing the flow rate by increasing the pressure to about 0.2 to 1.0 MPa for the purpose of improving efficiency.
作为在预置换中使用的溶剂的量,优选为可将凝胶体中的水分充分置换的量。作为置换后的凝胶体中的含水率,优选相对于二氧化硅成分为10质量%以下。采用上述使用柱的方法时,通过使用相对于凝胶体在柱内所占的体积为3~10倍量、优选为5~10倍量的溶剂,可以达成上述含水率。The amount of the solvent used in the pre-substitution is preferably an amount capable of sufficiently replacing the moisture in the gel. The water content in the substituted gel is preferably 10% by mass or less relative to the silica component. In the above-mentioned method using a column, the above water content can be achieved by using an amount of solvent that is 3 to 10 times, preferably 5 to 10 times, the volume of the gel in the column.
此外,当然根据需要在预置换与置换为上述最终溶剂之间也可进行进一步的溶剂置换。In addition, of course, a further solvent replacement may be performed between the preliminary replacement and the replacement with the above-mentioned final solvent as required.
对于将亲水性有机溶剂用最终溶剂置换的溶剂置换(最终置换),也可用与预置换相同的方法来进行,以可将预置换中使用的溶剂(或在预置换与最终置换之间进行的进一步的置换中使用的溶剂)充分置换的量来进行。在采用使用柱的方法时,通过使用相对于凝胶体在柱内所占的体积为3~10倍量、优选为5~10倍量的溶剂,可以达成上述充分的置换。For the solvent replacement (final replacement) in which the hydrophilic organic solvent is replaced with the final solvent, it can also be carried out in the same way as the preliminary replacement, so that the solvent used in the preliminary replacement (or between the preliminary replacement and the final replacement) can be replaced. The solvent used in the further substitution) is carried out in an amount sufficient for substitution. When the method using a column is employed, the above-mentioned sufficient replacement can be achieved by using an amount of solvent that is 3 to 10 times, preferably 5 to 10 times, the volume of the gel in the column.
在通过最终溶剂将凝胶体中的液体成分置换完成后的时刻,由于在凝胶体中的二氧化硅骨架表面上存在大量的硅烷醇基(Si-OH基)而处于容易吸水的状态,为了直到接下来的表面疏水化处理工序的期间都不与大气长时间地接触,因而优选维持将凝胶体的全部量浸渍于最终溶剂中的状态。At the moment after the replacement of the liquid components in the gel by the final solvent is completed, due to the presence of a large number of silanol groups (Si-OH groups) on the surface of the silica skeleton in the gel, it is in a state that is easy to absorb water, In order not to contact the air for a long time until the next surface hydrophobization treatment step, it is preferable to maintain the state where the entire amount of the gel is immersed in the final solvent.
需要说明的是,从节约溶剂所需费用的方面出发,用于上述的预置换、最终置换等溶剂置换的溶剂优选在回收、进行蒸馏等精制后重复使用。It should be noted that, from the aspect of saving the cost of the solvent, the solvent used for the above-mentioned pre-replacement, final replacement and other solvent replacements is preferably recycled and reused after purification such as distillation.
(疏水化处理工序S5)(hydrophobization treatment step S5)
疏水化处理工序S5(以下有时仅称为“S5”)为在将溶剂置换为最终溶剂后进行疏水化处理的工序。作为用于疏水化处理的处理剂,使用能够与存在于二氧化硅表面的硅烷醇基:The hydrophobization treatment step S5 (hereinafter sometimes simply referred to as "S5") is a step of performing a hydrophobization treatment after replacing the solvent with the final solvent. As a treatment agent for hydrophobization treatment, a silanol group capable of interacting with silanol groups present on the surface of silica is used:
≡Si-OH (1)≡Si-OH (1)
反应并将其转换为(≡Si-O-)(4-n)SiRn (2)的疏水剂。Hydrophobic agent that reacts and converts it into (≡Si-O-) (4-n) SiR n (2).
[式(1)中,符号“≡”为表示Si原子剩余的三个键(化合价)的符号,并不是指Si形成了三键。][In the formula (1), the symbol "≡" is a symbol representing the remaining three bonds (valence) of the Si atom, and does not mean that Si forms a triple bond. ]
[式(2)中,n为1~3的整数,R为烃基,在n为2以上的情况下,多个R可以相同也可以相互不同。][In formula (2), n is an integer of 1 to 3, R is a hydrocarbon group, and when n is 2 or more, a plurality of R may be the same or different from each other. ]
通过使用这样的疏水剂进行疏水化处理,将二氧化硅表面的硅烷醇基用疏水性的甲硅烷基进行封端而失活,所以可抑制表面硅烷醇基相互间的脱水缩合反应。因此,即使在低于临界点的条件下进行干燥也可抑制干燥收缩,所以可以得到具有60%以上的孔隙率及3ml/g以上的细孔容积的气凝胶。此外,使气凝胶的比表面积为400m2/g以上变得容易。By performing the hydrophobizing treatment using such a hydrophobizing agent, the silanol groups on the surface of the silica are capped with hydrophobic silyl groups and deactivated, so that the dehydration condensation reaction between the surface silanol groups can be suppressed. Therefore, drying shrinkage can be suppressed even if drying is carried out under conditions below the critical point, so an aerogel having a porosity of 60% or more and a pore volume of 3 ml/g or more can be obtained. In addition, it becomes easy to set the specific surface area of the airgel at 400 m 2 /g or more.
作为这样的疏水剂,已知有以下通式(5)~(7)所示的化合物。As such a hydrophobic agent, compounds represented by the following general formulas (5) to (7) are known.
RnSiX(4-n) (5)R n SiX (4-n) (5)
[式(5)中,n表示1~3的整数;R表示烃基;X表示在与具有羟基的化合物的反应中与Si原子的键能够断裂并从分子脱离的基团(离去基团)。在R和X均为多个的情况下也可以为各自不同的基团。][In the formula (5), n represents an integer of 1 to 3; R represents a hydrocarbon group; X represents a group (leaving group) that can be broken with the bond of the Si atom and separated from the molecule in the reaction with a compound having a hydroxyl group . When both R and X are plural, different groups may be used. ]
[式(6)中,R1表示亚烷基;R2和R3分别独立地表示烃基;R4和R5分别独立地表示氢原子或烃基。][In formula (6), R 1 represents an alkylene group; R 2 and R 3 independently represent a hydrocarbon group; R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group. ]
[式(7)中,R6和R7分别独立地表示烃基,m表示3~6的整数。在R6和R7均为多个的情况下可以为各自不同的基团。][In formula (7), R 6 and R 7 each independently represent a hydrocarbon group, and m represents an integer of 3-6. When both R 6 and R 7 are plural, they may be different groups. ]
在上述式(5)中,R为烃基,优选碳原子数为1~10的烃基,更优选碳原子数为1~4的烃基,特别优选为甲基。In the above formula (5), R is a hydrocarbon group, preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms, and particularly preferably a methyl group.
作为以X表示的离去基团,可例示出:氯、溴等卤原子;甲氧基、乙氧基等烷氧基;以-NH-SiR3表示的基团(式中,R与式(5)中的R含义相同)等。Examples of the leaving group represented by X include halogen atoms such as chlorine and bromine; alkoxy groups such as methoxy and ethoxy; groups represented by -NH- SiR (wherein R and the formula R in (5) has the same meaning), etc.
在具体例示以上述式(5)所示的疏水剂时,可列举出:三甲基氯硅烷、二甲基二氯硅烷、甲基三氯硅烷、三甲氧基单甲基硅烷、三乙氧基单甲基硅烷、六甲基二硅氮烷等。从反应性良好的观点出发,特别优选三甲基氯硅烷、二甲基二氯硅烷、甲基三氯硅烷和/或六甲基二硅氮烷。When specifically exemplifying the hydrophobic agent represented by the above formula (5), trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethoxymonomethylsilane, triethoxy Monomethylsilane, Hexamethyldisilazane, etc. From the viewpoint of good reactivity, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane and/or hexamethyldisilazane are particularly preferable.
与二氧化硅骨架上的硅烷醇基结合的数根据离去基团X的数(4-n)而变化。例如,n若为2,则发生如下结合。The number bonded to the silanol group on the silica skeleton varies depending on the number (4-n) of the leaving group X. For example, when n is 2, the following combination occurs.
(≡Si-O-)2SiR2 (8)(≡Si-O-) 2 SiR 2 (8)
此外,n若为3,则发生如下结合。In addition, when n is 3, the following combination occurs.
≡Si-O-SiR3 (9)≡Si-O-SiR 3 (9)
这样,硅烷醇基被甲硅烷基化,从而实现疏水化处理。In this way, the silanol groups are silylated, thereby achieving hydrophobization treatment.
在上述式(6)中,R1为亚烷基,优选碳原子数为2~8的亚烷基,特别优选碳原子数为2~3的亚烷基。In the above formula (6), R 1 is an alkylene group, preferably an alkylene group having 2 to 8 carbon atoms, particularly preferably an alkylene group having 2 to 3 carbon atoms.
在上述式(6)中,R2和R3分别独立地为烃基,作为优选的基团,可列举出与式(5)中的R相同的基团。R4表示氢原子或烃基,在R4为烃基时,作为优选的基团,可列举出与式(5)中的R相同的基团。在使用以此式(6)所示的化合物(环状硅氮烷)来处理凝胶体的情况下,Si-N键因与硅烷醇基的反应而断裂,因此在凝胶体中的二氧化硅骨架表面上发生如下结合。In the above formula (6), R 2 and R 3 are each independently a hydrocarbon group, and preferred groups include the same groups as R in the formula (5). R 4 represents a hydrogen atom or a hydrocarbon group, and when R 4 is a hydrocarbon group, preferred groups include the same groups as R in formula (5). In the case of treating the gel with a compound (cyclic silazane) represented by this formula (6), the Si-N bond is broken due to the reaction with the silanol group, so the two The bonding occurs on the surface of the silica skeleton as follows.
(≡Si-O-)2SiR2R3 (10)(≡Si-O-) 2 SiR 2 R 3 (10)
这样,使用上述式(6)的环状硅氮烷类,硅烷醇基也被甲硅烷基化,实现疏水化处理。In this way, by using the cyclic silazanes of the above formula (6), the silanol groups are also silylated to achieve hydrophobization treatment.
在具体例示以上述式(6)所示的环状硅氮烷类时,可列举出六甲基环三硅氮烷、八甲基环四硅氮烷等。As specific examples of the cyclic silazanes represented by the formula (6), hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, and the like are exemplified.
在上述式(7)中,R6和R7分别独立地为烃基,作为优选的基团,可列举出与式(5)中的R相同的基团。m表示3~6的整数。使用以该式(7)所示的化合物(环状硅氧烷)来处理凝胶体的情况下,在凝胶体中的二氧化硅骨架表面上发生如下结合。In the above formula (7), R 6 and R 7 are each independently a hydrocarbon group, and preferred groups include the same groups as R in the formula (5). m represents the integer of 3-6. When the gel is treated with the compound represented by the formula (7) (cyclic siloxane), the following bonding occurs on the surface of the silica skeleton in the gel.
(≡Si-O-)2SiR6R7 (11)(≡Si-O-) 2 SiR 6 R 7 (11)
这样,使用上述式(7)的环状硅氧烷类,硅烷醇基也被甲硅烷基化,实现疏水化处理。In this way, using the cyclic siloxanes of the above formula (7), the silanol groups are also silylated to achieve hydrophobization treatment.
在具体例示以上述式(7)所示的环状硅氧烷类时,可列举出六甲基环三硅氧烷、八甲基环四硅氧烷、十甲基环五硅氧烷等。Specific examples of cyclic siloxanes represented by the above formula (7) include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, etc. .
作为在疏水化处理时使用的处理剂的量,根据处理剂的种类而异,例如在使用二甲基二氯硅烷作为处理剂时,优选相对于二氧化硅的干燥重量100重量份为50重量份以上且150重量份以下的量。The amount of the treatment agent used in the hydrophobization treatment varies depending on the type of treatment agent. For example, when dimethyldichlorosilane is used as the treatment agent, it is preferably 50 parts by weight relative to 100 parts by weight of the dry weight of silica. part or more and 150 parts by weight or less.
对于疏水化处理的处理条件,根据所使用的疏水剂的种类适当选择用疏水剂在有机溶剂中处理二氧化硅表面的公知方法的条件即可。列举出一个例子,可列举出如下方法:调整最终溶剂的量,使得溶剂置换处理(S4)后的凝胶体在最终溶剂中通过搅拌能够成为分散液(悬浮液)的程度的浓度,向其中加入疏水化处理剂,充分地搅拌,使疏水剂扩散至整个体系,然后使其反应一定时间,从而来进行。例如,在使用二甲基二氯硅烷作为疏水化处理剂、处理温度为50℃的情况下,通过保持约12小时以上,可使反应基本完全结束。As for the treatment conditions of the hydrophobizing treatment, the conditions of a known method of treating the surface of silica with a hydrophobizing agent in an organic solvent may be appropriately selected according to the type of the hydrophobizing agent used. To cite an example, the following method can be enumerated: adjusting the amount of the final solvent so that the gel after the solvent replacement treatment (S4) can become a dispersion (suspension) in the final solvent by stirring. Add the hydrophobizing treatment agent, stir well, make the hydrophobizing agent spread to the whole system, and then let it react for a certain period of time, so as to proceed. For example, in the case of using dimethyldichlorosilane as the hydrophobizing treatment agent and the treatment temperature is 50° C., the reaction can be substantially completely completed by holding for about 12 hours or more.
如上述例子那样操作,即使在结束反应后,也有可能残留有未反应的疏水剂,因此优选在接下来的干燥工序前清洗凝胶体而去除未反应的疏水剂。该清洗去除可通过将凝胶体过滤,并利用与最终溶剂相同或虽不同但满足上述最终溶剂的必要条件的溶剂对经过过滤后的固体成分清洗一次至数次来进行。As in the above example, even after the reaction is completed, unreacted hydrophobic agent may remain. Therefore, it is preferable to wash the gel before the next drying process to remove the unreacted hydrophobic agent. This washing removal can be performed by filtering the gel, and washing the filtered solid content once to several times with a solvent that is the same as or different from the final solvent but satisfies the requirements of the final solvent.
(干燥工序S6)(Drying process S6)
干燥工序S6(以下有时仅称为“S6”)为在上述S5的疏水化处理后去除(干燥)最终溶剂的工序。通过经由S6,可得到最终的气凝胶。干燥时的温度优选为所使用的最终溶剂的沸点以上且为源自存在于二氧化硅表面的疏水剂的甲硅烷基的分解温度及解离温度以下,通常为室温至200℃左右。关于压力,优选在常压至减压下进行。Drying step S6 (hereinafter sometimes simply referred to as "S6") is a step of removing (drying) the final solvent after the hydrophobizing treatment in S5. By passing through S6, the final airgel can be obtained. The drying temperature is preferably not less than the boiling point of the final solvent used and not more than the decomposition temperature and dissociation temperature of the silyl group derived from the hydrophobic agent present on the surface of the silica, usually from room temperature to about 200°C. As for the pressure, it is preferably performed under normal pressure to reduced pressure.
另外,在上述S4至S5中使用的最终溶剂的沸点高(挥发性低)的情况下,也可在置换为更低沸点的溶剂后进行干燥。当然,在这种情况的置换中使用的溶剂必须为满足上述最终溶剂的条件的溶剂、即表面张力小的溶剂。In addition, when the final solvent used in S4 to S5 above has a high boiling point (low volatility), drying may be performed after replacing with a lower boiling point solvent. Of course, the solvent used for the substitution in this case must be a solvent that satisfies the above-mentioned conditions for the final solvent, that is, a solvent with low surface tension.
(物性和用途)(Physical and usage)
这样操作而得到的气凝胶,其颗粒形状为球状,并且通常通过使用扫描电子显微镜(SEM)的图像分析法求出的平均粒径为1μm以上且20μm以下,通常BET比表面积为400m2/g以上、根据情况为600m2/g以上。另外,孔隙率显示为60%以上、多数情况下为70%以上、根据情况为80%以上的值。另外,根据BJH法得到的细孔容量通常为4ml/g以上、多数情况下为5ml/g以上。另外,根据BJH法得到的细孔半径的峰值通常为10nm以上且30nm以下。The airgel obtained in this way has a spherical particle shape, and usually has an average particle diameter of 1 μm or more and 20 μm or less as determined by an image analysis method using a scanning electron microscope (SEM), and usually has a BET specific surface area of 400 m 2 / g or more, or 600 m 2 /g or more in some cases. In addition, the porosity shows a value of 60% or more, 70% or more in many cases, and sometimes 80% or more. In addition, the pore volume obtained by the BJH method is usually 4 ml/g or more, and often 5 ml/g or more. In addition, the peak value of the pore radius obtained by the BJH method is usually not less than 10 nm and not more than 30 nm.
需要说明的是,在本发明中,颗粒为“球状”是指通过使用扫描电子显微镜(SEM)的图像分析法求出的平均圆形度为0.8以上。圆形度特别优选为0.85以上。此外,通过上述本发明的气凝胶的制造方法而得到的气凝胶颗粒通常通过倍率为1000倍下的SEM观察而得到的颗粒图像不具有角部。In addition, in this invention, particle|grains being "spherical" means that the average circularity obtained by the image analysis method using the scanning electron microscope (SEM) is 0.8 or more. The circularity is particularly preferably 0.85 or more. In addition, the airgel particles obtained by the method for producing the airgel of the present invention generally have no corners in the particle image obtained by SEM observation at a magnification of 1000 times.
具有上述物性的球状气凝胶,利用其性质可作为绝热材料、真空绝热材料的芯材、涂料用添加剂、化妆品、防粘连剂等加以利用。Spherical aerogels having the above physical properties can be utilized as heat insulating materials, core materials of vacuum heat insulating materials, additives for paints, cosmetics, anti-blocking agents, etc. by utilizing their properties.
在本发明的上述说明中,虽然例示了在凝胶化工序S3后不熟化而进行溶剂置换工序S4的方式的气凝胶的制造方法S10,但本发明并不限定于该方式。也可以是接着凝胶化工序进一步具备使凝胶体熟化的熟化工序的方式的气凝胶的制造方法。最终得到的气凝胶的比表面积依赖于该熟化时的pH、温度和时间而变化。pH越高温度越高、此外时间越长,气凝胶的比表面积越减少。而另一方面,由于气凝胶的骨架结构变强,因此存在抑制干燥收缩、提高细孔容积的效果。因此,根据制造的球状气凝胶的用途与在该用途中需要的物性值等适当决定条件即可。In the above description of the present invention, the airgel manufacturing method S10 in which the solvent replacement step S4 is performed without aging after the gelation step S3 was exemplified, but the present invention is not limited to this embodiment. The method for producing an airgel may be a method of further including an aging step of aging the gel body following the gelation step. The specific surface area of the finally obtained airgel changes depending on the pH, temperature and time during the aging. The higher the pH, the higher the temperature, and the longer the time, the more the specific surface area of the aerogel decreases. On the other hand, since the skeleton structure of the airgel becomes stronger, there is an effect of suppressing drying shrinkage and increasing the pore volume. Therefore, the conditions may be appropriately determined according to the application of the spherical airgel to be produced, the physical property values required for the application, and the like.
作为熟化温度的范围,优选为30℃以上且80℃以下。熟化温度高至超过该范围时,为了使温度上升需要的热量变得极高,熟化温度低至偏离该范围时,为了得到熟化的效果所需时间变长。此外,熟化时间的长度没有特别限定,可考虑熟化的上述作用来适当决定。其中作为优选的范围,可例示时间长度为0.5小时以上且24小时以下。The aging temperature range is preferably 30°C or higher and 80°C or lower. When the aging temperature is higher than this range, the amount of heat required to raise the temperature becomes extremely high, and when the aging temperature is lower than this range, the time required to obtain the effect of aging becomes longer. In addition, the length of the aging time is not particularly limited, and can be appropriately determined in consideration of the above-mentioned effects of aging. Among them, as a preferable range, the length of time can be exemplified as 0.5 hours or more and 24 hours or less.
在本发明的上述说明中,虽然例示了在溶剂置换工序S4中从凝胶体的分散液中分离水相之后进行凝胶体的清洗的方式的气凝胶的制造方法S10,但本发明并不限定于该方式。也可以是不从凝胶体的分散液中分离水相而直接进行该分散液中的凝胶的清洗的方式的气凝胶的制造方法。其中,在不分离水相而直接清洗凝胶体时,在凝胶体分散到疏水性溶剂而形成的悬浮液状态下由于水相之间的接触小,因此清洗所需的劳动力变得极高。因此,从减少清洗所需时间和成本的观点出发,优选如上所述从凝胶体的分散液中分离水相之后进行凝胶体的清洗。In the above description of the present invention, although the method for producing airgel S10 in which the aqueous phase is separated from the dispersion of the gel in the solvent replacement step S4 is exemplified and then the gel is cleaned, the present invention does not include It is not limited to this form. The airgel production method may be a method of directly washing the gel in the dispersion without separating the aqueous phase from the dispersion of the gel. Among them, when the gel is directly washed without separating the water phase, the labor required for washing becomes extremely high because the contact between the water phases is small in the suspension state formed by dispersing the gel in a hydrophobic solvent. . Therefore, from the viewpoint of reducing the time and cost required for washing, it is preferable to wash the gel after separating the aqueous phase from the dispersion liquid of the gel as described above.
在本发明的上述说明中,例示了在溶剂置换工序S4中在进行水相的分离和凝胶体的清洗之后进行溶剂置换的方式的气凝胶的制造方法S10,但本发明并不限定于该方式。也可以是不清洗凝胶体而直接进行溶剂置换的方式的气凝胶的制造方法。其中,从减少碱金属盐等杂质的量、可制造纯度高的气凝胶的观点出发,优选如上所述进行凝胶体的清洗之后进行溶剂置换。In the above description of the present invention, the method for producing the airgel S10 in which the solvent is replaced after the separation of the aqueous phase and the washing of the gel in the solvent replacement step S4 has been exemplified, but the present invention is not limited to the way. The method for producing the aerogel may be a method of directly performing solvent replacement without washing the gel body. Among them, from the viewpoint of reducing the amount of impurities such as alkali metal salts and producing high-purity airgel, it is preferable to perform solvent replacement after washing the gel body as described above.
<2.气凝胶><2. Airgel>
对于本发明的第二方式的气凝胶进行说明。The airgel according to the second aspect of the present invention will be described.
本发明的气凝胶,其通过BET法得到的比表面积为400m2/g以上,特别优选为600m2/g以上。此外,通过BET法得到的比表面积为1000m2/g以下,优选为800m2/g以下。比表面积越大,表示构成气凝胶的二氧化硅的一次粒径越小,由于能够以更少量来形成气凝胶的骨架结构,因此使绝热性上升,是优选的。通过使BET比表面积为上述下限值以上,可得到充分的绝热性能。另外,BET比表面积超过1000m2/g,则难以得到大的气凝胶。The airgel of the present invention has a specific surface area obtained by the BET method of not less than 400 m 2 /g, particularly preferably not less than 600 m 2 /g. In addition, the specific surface area obtained by the BET method is 1000 m 2 /g or less, preferably 800 m 2 /g or less. The larger the specific surface area, the smaller the primary particle size of the silica constituting the airgel, and it is preferable to improve the thermal insulation property because the skeleton structure of the airgel can be formed in a smaller amount. Sufficient thermal insulation performance can be acquired by making a BET specific surface area more than the said lower limit. In addition, when the BET specific surface area exceeds 1000 m 2 /g, it is difficult to obtain a large airgel.
本发明的气凝胶通过BJH法得到的细孔容积为3ml/g以上,特别优选为4ml/g以上。另外,通过BJH法得到的细孔容积为8ml/g以下,优选为6ml/g以下。通过使细孔容积为3ml/g以上,可得到充分的绝热性能。另外,难以获得具有细孔容积超过8ml/g的大的细孔容积的气凝胶。The airgel of the present invention has a pore volume obtained by the BJH method of 3 ml/g or more, particularly preferably 4 ml/g or more. In addition, the pore volume obtained by the BJH method is 8 ml/g or less, preferably 6 ml/g or less. Sufficient thermal insulation performance can be obtained by making the pore volume 3 ml/g or more. In addition, it is difficult to obtain an aerogel having a large pore volume exceeding 8 ml/g.
本发明的气凝胶的细孔半径的峰值在同样的利用BJH法的分析中处于10nm以上且30nm以下的范围。气体分子的平均自由程在0℃、100kPa下为100nm左右,与此相对,本发明的气凝胶的细孔直径的峰值比该大小更小,因此可有效地抑制由气体分子之间的碰撞导致的热传导。通过BJH法得到的细孔半径峰值低于10nm时,气凝胶的密度变大,所以由固体传导导致的热传导增大,绝热性能降低。另外,通过BJH法得到的细孔半径峰值大至超过30nm时,难以有效地抑制气体分子的热传导,绝热性能降低。The peak of the pore radius of the airgel of the present invention is in the range of 10 nm to 30 nm in the same analysis by the BJH method. The mean free path of gas molecules is about 100nm at 0°C and 100kPa. On the other hand, the peak of the pore diameter of the airgel of the present invention is smaller than this size, so the collision between gas molecules can be effectively suppressed. resulting in heat conduction. When the pore radius peak obtained by the BJH method is less than 10 nm, the density of the airgel increases, so the heat conduction by solid conduction increases and the thermal insulation performance decreases. In addition, when the pore radius peak obtained by the BJH method is as large as exceeding 30 nm, it becomes difficult to effectively suppress heat conduction of gas molecules, and the thermal insulation performance decreases.
本发明的气凝胶的通过图像分析法求出的平均粒径为1μm以上且20μm以下。通过使平均粒径在该范围内,填充气凝胶颗粒时,可以在颗粒间形成恰当大小的空隙。因此,例如作为真空绝热材料的芯材使用时等可发挥优异的绝热性能。The airgel of the present invention has an average particle diameter determined by an image analysis method of not less than 1 μm and not more than 20 μm. When the average particle diameter is within this range, voids of an appropriate size can be formed between the particles when filling the airgel particles. Therefore, for example, when used as a core material of a vacuum heat insulating material, excellent heat insulating performance can be exhibited.
本发明的气凝胶的通过图像分析法求出的平均圆形度为0.8以上,优选为0.85以上。通过使平均圆形度为上述下限值以上,可有效地减小气凝胶颗粒之间的接触点的面积,所以在作为真空绝热材料的芯材使用时等可获得良好的绝热性能。The average circularity of the airgel of the present invention determined by the image analysis method is 0.8 or more, preferably 0.85 or more. By making the average circularity equal to or greater than the above lower limit, the area of contact points between airgel particles can be effectively reduced, so that when used as a core material of a vacuum heat insulating material, etc., good heat insulating performance can be obtained.
具有上述物性的本发明的气凝胶优选利用疏水剂进行疏水化处理。这样的疏水性气凝胶例如可通过上述本发明的第一方式的气凝胶的制造方法而高效地制造。The airgel of the present invention having the above physical properties is preferably hydrophobized with a hydrophobizing agent. Such a hydrophobic airgel can be efficiently produced, for example, by the method for producing an airgel according to the first aspect of the present invention.
实施例Example
以下,基于实施例和比较例对本发明进行进一步详述。但是,本发明并不仅限定于这些实施例。以下,BET比表面积、通过BJH法得到的细孔容积、通过BJH法得到的细孔分布的测定是利用BEL Japan Company制造的BELSORP-max来进行的。热传导率的测定是利用EKO Instruments Co.,Ltd.制造的HC-074-200来进行的。另外,堆积密度的测定是依照JIS R1628所记载的方法(定质量法)来进行的。此外,平均粒径和平均圆形度的测定是使用利用二次电子检测模式以1000倍的倍率测定出的SEM图像并对2000个颗粒进行图像分析而得到的值。平均圆形度是对上述方法中所观察的2000个颗粒中的每一个通过上述式(3)求出各自的圆形度并将它们的值进行算数平均而得到的值。此外,平均粒径是利用相同的方法对2000个颗粒进行SEM观察并对各个颗粒的图像在SEM图像中所占的面积求出具有相同面积的圆的直径(圆当量直径)并将它们进行算数平均而得到的值。Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. However, the present invention is not limited to these Examples. Hereinafter, the BET specific surface area, the pore volume obtained by the BJH method, and the pore distribution obtained by the BJH method were measured using BELSORP-max manufactured by BEL Japan Company. The measurement of thermal conductivity was performed using HC-074-200 manufactured by EKO Instruments Co., Ltd. In addition, the bulk density was measured in accordance with the method described in JIS R1628 (constant mass method). In addition, the measurement of the average particle diameter and the average circularity is the value obtained by analyzing the image of 2000 particles using the SEM image measured by 1000 times magnification in the secondary electron detection mode. The average circularity is a value obtained by calculating the respective circularities by the above formula (3) for each of the 2000 particles observed by the above-mentioned method and arithmetically averaging the values. In addition, the average particle diameter is obtained by SEM observation of 2,000 particles using the same method, and calculating the diameter of a circle having the same area (circle-equivalent diameter) from the area occupied by the image of each particle in the SEM image. average value obtained.
<实施例1~7和比较例1~2><Examples 1 to 7 and Comparative Examples 1 to 2>
(实施例1)(Example 1)
稀释3号硅酸钠(JIS K1408)的溶液,调整为SiO2:80g/L、Na2O:27g/L的浓度。使该稀释后的硅酸钠的溶液通过预先用硫酸处理为H+型的离子交换树脂(Rohm and Haas Company制造的Amberlyst IR-120B),制备500mL的硅溶胶。该硅溶胶的pH为2.8。A solution of No. 3 sodium silicate (JIS K1408) was diluted to adjust the concentrations of SiO 2 : 80 g/L and Na 2 O: 27 g/L. This diluted sodium silicate solution was passed through an ion exchange resin (Amberlyst IR-120B manufactured by Rohm and Haas Company) previously treated with sulfuric acid to form an H + form, to prepare 500 mL of silica sol. The pH of this silica sol was 2.8.
取出100ml的该硅溶胶,边用pH计测定pH边加入0.1%的氨水,测定pH变为6时的氨水的量。在剩余的400ml的硅溶胶中加入600mL的己烷,添加0.8g的失水山梨醇单油酸酯,使用均化器(IKA制造的T25BS1),在11000转/分钟的条件下搅拌4分钟,形成W/O乳液。边用混合器搅拌该乳液边加入为上述预先测定的量的4倍量的0.1%的氨水,调整为溶胶中的pH变为6。在该状态下边搅拌边将液温调整为50℃,进行24小时熟化。然后,添加400ml的水,分离水层,得到凝胶体的水分散液。100 ml of this silica sol was taken out, and 0.1% ammonia water was added while measuring the pH with a pH meter, and the amount of ammonia water at which the pH became 6 was measured. Add 600 mL of hexane to the remaining 400 ml of silica sol, add 0.8 g of sorbitan monooleate, and use a homogenizer (T25BS1 manufactured by IKA) to stir for 4 minutes at 11,000 rpm. A W/O emulsion is formed. While stirring the emulsion with a mixer, 0.1% aqueous ammonia was added in an amount four times the previously measured amount to adjust the pH of the sol to 6. Stirring in this state, the liquid temperature was adjusted to 50 degreeC, and aging was performed for 24 hours. Then, 400 ml of water was added, and the water layer was separated to obtain an aqueous dispersion of a gel.
将该分散液装入柱中,利用2L的乙醇进行溶剂置换,然后,利用1.2L的己烷进行溶剂置换。将凝胶体转移到烧杯,追加加入己烷,从而使总体积为800ml,添加40g的三甲基氯硅烷。然后,在50℃下保持24小时。This dispersion was put into a column, and the solvent was replaced with 2 L of ethanol, and then, with 1.2 L of hexane. The gel was transferred to a beaker, hexane was additionally added to make the total volume 800 ml, and 40 g of trimethylchlorosilane was added. Then, it kept at 50 degreeC for 24 hours.
通过抽滤将疏水化处理后的凝胶体过滤,利用800ml的己烷进行清洗。在常压下,边使氮气流通边进行凝胶体的干燥。干燥的温度、时间为40℃下3小时、50℃下2小时、150℃下12小时。干燥后所得到的气凝胶为43g。在表1中示出这样操作而得到的气凝胶的物性。The hydrophobized gel was filtered by suction filtration, and washed with 800 ml of hexane. The gel was dried under normal pressure while flowing nitrogen gas. The drying temperature and time were 3 hours at 40°C, 2 hours at 50°C, and 12 hours at 150°C. The airgel obtained after drying was 43 g. Table 1 shows the physical properties of the airgel thus obtained.
(实施例2)(Example 2)
用水稀释3号硅酸钠(JIS K1408)的溶液,调整为SiO2:150g/L、Na2O:51g/L的浓度。另外,准备好浓度调整为103g/L的硫酸。在设硅酸钠的溶液为1.08L/分钟、硫酸为0.99L/分钟的条件下,使各溶液以流速10m/s以上在如日本特公平4-54619号公报所记载的具有Y字型的配管内碰撞混合,从而制备硅溶胶。所得到的硅溶胶的pH为2.9。A solution of No. 3 sodium silicate (JIS K1408) was diluted with water to adjust the concentrations of SiO 2 : 150 g/L and Na 2 O: 51 g/L. In addition, prepare sulfuric acid whose concentration is adjusted to 103 g/L. Under the condition that the solution of sodium silicate is 1.08L/min and the sulfuric acid is 0.99L/min, each solution has a Y-shape as described in Japanese Patent Publication No. 4-54619 with a flow velocity of 10m/s or more. The silica sol was prepared by colliding and mixing in the pipe. The obtained silica sol had a pH of 2.9.
对于100ml的该硅溶胶,边用pH计测定pH边加入5%的氨水,测定pH变为6的5%氨水的量。接着,在400ml的该硅溶胶中加入600mL的己烷,添加1.6g失水山梨醇单油酸酯,使用均化器(IKA制造的T25BS1),在11000转/分钟的条件下搅拌4分钟,形成W/O乳液。用光学显微镜(倍率400倍)观察此时的乳液中形成的W相,测定1000个颗粒的粒径(具有与颗粒在光学显微镜图像的视野中所占的面积相同的面积的圆的直径),求出算数平均,结果为8μm,标准偏差为1.8μm。边用混合器搅拌该乳液边加入为上述测定的量的4倍量的5%的氨水,调整为溶胶中的pH变为6。在该状态下继续搅拌5分钟后,添加400ml的水,分离水层,得到凝胶体的水分散液。To 100 ml of this silica sol, 5% ammonia water was added while measuring the pH with a pH meter, and the amount of 5% ammonia water at which the pH became 6 was measured. Next, 600 mL of hexane was added to 400 ml of this silica sol, 1.6 g of sorbitan monooleate was added, and the mixture was stirred for 4 minutes at 11,000 rpm using a homogenizer (T25BS1 manufactured by IKA). A W/O emulsion is formed. Observe the W phase formed in the emulsion at this time with an optical microscope (magnification 400 times), and measure the particle diameter (diameter of a circle having the same area as the area occupied by the particle in the field of view of the optical microscope image) of 1000 particles, When the arithmetic mean was calculated, it was 8 μm, and the standard deviation was 1.8 μm. While stirring the emulsion with a mixer, 5% aqueous ammonia was added in an amount four times the amount measured above to adjust the pH of the sol to 6. After stirring was continued for 5 minutes in this state, 400 ml of water was added, and the water layer was separated to obtain an aqueous dispersion of a gel.
将该分散液装入直径7.5cm的柱中,利用2L的离子交换水进行清洗。需要说明的是,最后从柱中排出的清洗水的电导率为42μS/cm。然后,利用2L的乙醇进行溶剂置换,然后,利用1.2L的己烷进行溶剂置换。将凝胶体转移到烧杯,追加加入己烷,从而使总体积为800ml,添加40g三甲基氯硅烷。然后,在50℃下保持24小时,进行疏水化处理。This dispersion was put into a column with a diameter of 7.5 cm, and washed with 2 L of ion-exchanged water. It should be noted that the conductivity of the washing water discharged from the column at the end was 42 μS/cm. Then, the solvent was replaced with 2 L of ethanol, and then, the solvent was replaced with 1.2 L of hexane. The gel was transferred to a beaker, hexane was additionally added to make the total volume 800 ml, and 40 g of trimethylchlorosilane was added. Then, it kept at 50 degreeC for 24 hours, and performed the hydrophobization treatment.
通过抽滤将疏水化处理后的凝胶过滤,利用800ml的己烷进行清洗。在常压下,边使氮气流通边进行凝胶的干燥。干燥的温度、时间为40℃下3小时,然后50℃下2小时,再然后150℃下12小时。干燥后所得到的气凝胶为43g。在表1中示出这样操作而得到的气凝胶的物性。此外,在图2中示出该气凝胶的倍率1000倍下的SEM图像(二次电子检测模式)。The hydrophobized gel was filtered by suction filtration, and washed with 800 ml of hexane. The gel was dried under normal pressure while flowing nitrogen gas. The drying temperature and time were 3 hours at 40°C, 2 hours at 50°C, and 12 hours at 150°C. The airgel obtained after drying was 43 g. Table 1 shows the physical properties of the airgel thus obtained. In addition, an SEM image (secondary electron detection mode) of the airgel at a magnification of 1000 times is shown in FIG. 2 .
(实施例3)(Example 3)
稀释3号硅酸钠(JIS K1408)的溶液,调整为SiO2:75g/L、Na2O:25.5g/L的浓度,并且使用浓度调整为51.5g/L的硫酸制备硅溶胶,除此以外,在与实施例2相同的条件下得到气凝胶。干燥后所得到的气凝胶为20g。在表1中示出所得到的气凝胶的物性。Dilute the solution of No. 3 sodium silicate (JIS K1408) to adjust the concentration of SiO 2 : 75g/L, Na 2 O : 25.5g/L, and prepare silica sol with sulfuric acid whose concentration is adjusted to 51.5g/L. Except that, an aerogel was obtained under the same conditions as in Example 2. The airgel obtained after drying was 20 g. Table 1 shows the physical properties of the obtained airgel.
(实施例4)(Example 4)
在表面疏水化处理工序中,将40g的三甲基氯硅烷变更为12g的二甲基二氯硅烷,除此以外,在与实施例2相同的条件下得到气凝胶。在表1中示出所得到的气凝胶的物性。In the surface hydrophobization treatment step, an airgel was obtained under the same conditions as in Example 2 except that 40 g of trimethylchlorosilane was changed to 12 g of dimethyldichlorosilane. Table 1 shows the physical properties of the obtained airgel.
(实施例5)(Example 5)
在表面疏水化处理工序中,将使用的疏水剂从40g的三甲基氯硅烷变更为14g的甲基三氯硅烷,除此以外,在与实施例2相同的条件下得到气凝胶。在表1中示出所得到的气凝胶的物性。In the surface hydrophobization treatment step, an airgel was obtained under the same conditions as in Example 2 except that the hydrophobizing agent used was changed from 40 g of trimethylchlorosilane to 14 g of methyltrichlorosilane. Table 1 shows the physical properties of the obtained airgel.
(实施例6)(Example 6)
将形成W/O乳液时的均化器的条件设为以11000转/分钟的条件进行1分钟,除此以外,在与实施例2相同的条件下得到气凝胶。在表1中示出所得到的气凝胶的物性。An airgel was obtained under the same conditions as in Example 2 except that the condition of the homogenizer at the time of forming the W/O emulsion was 11,000 rpm for 1 minute. Table 1 shows the physical properties of the obtained airgel.
(比较例1)(comparative example 1)
通过与实施例2相同的方法,制备400ml的硅溶胶。使该硅溶胶不经过W/O乳液化的工序(不加入己烷),直接在硅溶胶中加入5%的氨水,将pH调整为6。不足1分钟溶胶发生了凝胶化。通过将凝胶体适度地捣碎,边粉碎边使其通过2mm的筛子。By the same method as in Example 2, 400 ml of silica sol was prepared. The silica sol was not subjected to the W/O emulsification process (without adding hexane), and 5% ammonia water was directly added to the silica sol to adjust the pH to 6. The sol gelled in less than 1 minute. The gel was crushed moderately, and passed through a 2 mm sieve while crushing.
将粉碎后的凝胶体装入柱中,利用2L的离子交换水进行清洗。最后从柱中排出的清洗水的电导率为54μS/cm。然后,利用2L的乙醇进行溶剂置换,然后,利用1.2L的己烷进行溶剂置换。分离凝胶之后在凝胶中追加加入己烷,从而使总体积为800ml,添加40g的三甲基氯硅烷。然后,在50℃下保持24小时。The pulverized gel was put into a column, and washed with 2 L of ion-exchanged water. The conductivity of the rinse water finally discharged from the column was 54 μS/cm. Then, the solvent was replaced with 2 L of ethanol, and then, the solvent was replaced with 1.2 L of hexane. After the gel was separated, hexane was additionally added to the gel so that the total volume would be 800 ml, and 40 g of trimethylchlorosilane was added. Then, it kept at 50 degreeC for 24 hours.
通过抽滤将疏水化处理后的凝胶过滤,利用800ml的己烷进行清洗。在常压下,边使氮气流通边进行凝胶的干燥。干燥的温度、时间为40℃下3小时,然后50℃下2小时,再然后为150℃下12小时。所得到的干燥凝胶的量为42g。The hydrophobized gel was filtered by suction filtration, and washed with 800 ml of hexane. The gel was dried under normal pressure while flowing nitrogen gas. The drying temperature and time were 3 hours at 40°C, 2 hours at 50°C, and 12 hours at 150°C. The amount of the obtained dried gel was 42 g.
利用咖啡研磨机将干燥后的凝胶粉碎,调整为粒径10μm~150μm左右的范围。在表1中示出这样操作而得到的气凝胶的物性(需要说明的是,利用图像分析法求出的平均粒径为22μm。另外,比较例1的图像分析中使用倍率为100倍的SEM图像)。此外,在图3中示出该气凝胶的倍率为100倍下的SEM图像(二次电子检测模式)。The dried gel was pulverized with a coffee grinder to adjust the particle diameter to a range of about 10 μm to 150 μm. The physical properties of the airgel obtained in this way are shown in Table 1 (it should be noted that the average particle diameter obtained by image analysis method is 22 μm. In addition, in the image analysis of Comparative Example 1, a magnification of 100 times was used SEM image). In addition, an SEM image (secondary electron detection mode) of the airgel at a magnification of 100 times is shown in FIG. 3 .
(比较例2)(comparative example 2)
不进行疏水化处理而直接进行干燥处理,除此以外,与实施例2同样地操作,尝试制作气凝胶。在表1中示出所得到的干燥凝胶的物性。An attempt was made to produce an airgel in the same manner as in Example 2, except that the drying treatment was not carried out without the hydrophobization treatment. Table 1 shows the physical properties of the obtained dried gel.
[表1][Table 1]
<评价结果><Evaluation results>
(实施例1~6)(Embodiments 1-6)
如表1所示,在实施例1~6中,可制作出具有0.8以上的高平均圆形度的平均粒径为1μm~20μm的气凝胶。这些气凝胶均是BET比表面积在400m2/g~1000m2/g的范围内,通过BJH法得到的细孔容积在3ml/g~8ml/g的范围内,通过BJH法得到的细孔半径的峰值在10nm~30nm的范围内。此外,如图2所示,1000倍下的SEM观察中,气凝胶颗粒基本为球状,不具有角部。As shown in Table 1, in Examples 1 to 6, aerogels having a high average circularity of 0.8 or more and an average particle diameter of 1 μm to 20 μm were produced. These aerogels have a BET specific surface area in the range of 400m 2 /g to 1000m 2 /g, a pore volume obtained by the BJH method in the range of 3ml/g to 8ml/g, and a pore volume obtained by the BJH method. The peak value of the radius is in the range of 10 nm to 30 nm. In addition, as shown in FIG. 2 , in SEM observation at 1000 magnifications, the airgel particles are basically spherical and have no corners.
(实施例2)(Example 2)
如表1所示,实施例2的气凝胶颗粒的平均粒径为8μm,这与上述测定的W/O乳液的液滴的平均粒径(8μm)一致。因此,可以说W/O乳液的液滴的形状决定最终的气凝胶颗粒的形状。由该结果可知,通过控制W/O乳液的液滴直径,可自由地控制最终所得到的气凝胶的平均粒径。As shown in Table 1, the average particle diameter of the airgel particles in Example 2 is 8 μm, which is consistent with the average particle diameter (8 μm) of the droplets of the W/O emulsion measured above. Therefore, it can be said that the shape of the droplets of the W/O emulsion determines the shape of the final airgel particles. From this result, it can be seen that by controlling the droplet diameter of the W/O emulsion, the average particle diameter of the finally obtained airgel can be freely controlled.
(实施例3)(Example 3)
将硅溶胶的二氧化硅浓度设为实施例2的1/2的实施例3的气凝胶,其堆积密度为实施例2的气凝胶的约1/3。如此,通过调整硅溶胶的二氧化硅浓度,可调整气凝胶的堆积密度。The bulk density of the airgel of Example 3 in which the silica concentration of the silica sol was 1/2 of that of Example 2 was about 1/3 of that of the airgel of Example 2. In this way, by adjusting the silica concentration of the silica sol, the bulk density of the airgel can be adjusted.
(比较例1)(comparative example 1)
不形成W/O乳液而直接凝胶化,经破碎了的比较例1的气凝胶难以将平均粒径控制在1μm~20μm的范围。此外,由于是破碎型,因此如图2的SEM图像所示,气凝胶颗粒的形状完全不是球状。需要说明的是,堆积密度与实施例2相比,显示约40%的减小。认为这是因颗粒的形状如上所述完全不是球状,故与球状颗粒时相比填充变疏。The airgel of Comparative Example 1 which was crushed and directly gelled without forming a W/O emulsion was difficult to control the average particle diameter in the range of 1 μm to 20 μm. In addition, since it is a fragmented type, as shown in the SEM image of Fig. 2, the shape of the airgel particles is not spherical at all. In addition, compared with Example 2, bulk density showed about 40% reduction. This is considered to be because the shape of the particles is not spherical at all as described above, and thus the packing becomes looser than that of the spherical particles.
(比较例2)(comparative example 2)
不进行疏水化处理而进行干燥处理的比较例2的凝胶,其细孔容量不足3mL/g,与实施例2的气凝胶相比,显示出约60%的显著减小。此外,平均粒径比实施例2的气凝胶颗粒小25%。进而,热传导率增大为实施例2的气凝胶的180%。此外,堆积密度增大为实施例2的气凝胶的约150%。可以认为细孔容量的显著减小是由于:二氧化硅表面的硅烷醇基未以疏水性甲硅烷基来封端,因此引起硅烷醇基相互之间的脱水缩合反应而引起二氧化硅干燥收缩,结果,能够通过BJH法测定的1nm~100nm半径的细孔大部分被破坏。此外可以认为,妨碍对流的细孔也因此减少,密度也因收缩而增大,因此未能抑制对流对热传导的贡献及固体传导对热传导的贡献,从而热传导率增大。The gel of Comparative Example 2, which was dried without hydrophobizing treatment, had a pore volume of less than 3 mL/g, which was significantly reduced by about 60% compared with the aerogel of Example 2. In addition, the average particle size is 25% smaller than the airgel particles of Example 2. Furthermore, the thermal conductivity increased to 180% of that of the airgel of Example 2. In addition, the bulk density increased to about 150% of that of the aerogel of Example 2. It can be considered that the significant reduction in pore capacity is due to the fact that the silanol groups on the surface of the silica are not terminated with hydrophobic silyl groups, thus causing the dehydration condensation reaction between the silanol groups to cause silica drying shrinkage , As a result, most of the pores with a radius of 1 nm to 100 nm that can be measured by the BJH method were destroyed. In addition, it is considered that the pores that hinder convection are also reduced, and the density is also increased due to shrinkage. Therefore, the contribution of convection to heat conduction and the contribution of solid conduction to heat conduction cannot be suppressed, and the thermal conductivity increases.
产业上的可利用性Industrial availability
本发明的气凝胶作为真空绝热材料的芯材等填充剂、绝热涂料用等添加剂可适当使用。此外,本发明的气凝胶的制造方法可在制造这样的气凝胶时适当使用。The airgel of the present invention can be suitably used as a filler such as a core material of a vacuum heat insulating material, or as an additive for a heat insulating coating. In addition, the method for producing an airgel of the present invention can be suitably used for producing such an airgel.
Claims (5)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010238693 | 2010-10-25 | ||
JP2010-238693 | 2010-10-25 | ||
JP2010-282581 | 2010-12-20 | ||
JP2010282581 | 2010-12-20 | ||
JP2011-184319 | 2011-08-26 | ||
JP2011184320 | 2011-08-26 | ||
JP2011184319 | 2011-08-26 | ||
JP2011-184320 | 2011-08-26 | ||
PCT/JP2011/074447 WO2012057086A1 (en) | 2010-10-25 | 2011-10-24 | Aerogel and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103118979A true CN103118979A (en) | 2013-05-22 |
CN103118979B CN103118979B (en) | 2016-04-06 |
Family
ID=45993794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180045564.1A Active CN103118979B (en) | 2010-10-25 | 2011-10-24 | Aerogel and manufacture method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US9216909B2 (en) |
EP (1) | EP2634144A4 (en) |
JP (1) | JP4960534B1 (en) |
KR (1) | KR101774783B1 (en) |
CN (1) | CN103118979B (en) |
TW (1) | TWI516447B (en) |
WO (1) | WO2012057086A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105236929A (en) * | 2014-07-09 | 2016-01-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | SiO2 airgel with bactericidal function and preparation method thereof |
CN105236418A (en) * | 2014-07-09 | 2016-01-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Magnetic silica aerogel and normal pressure dry preparation method therefor |
CN105271260A (en) * | 2014-06-11 | 2016-01-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing hydrophobic silica aerogel through normal-pressure drying process |
CN106082243A (en) * | 2016-06-12 | 2016-11-09 | 伊科纳诺(北京)科技发展有限公司 | A kind of normal pressure fast preparation method of hydrophobic silica aerogel powder body |
CN107206342A (en) * | 2014-11-20 | 2017-09-26 | 巴斯夫欧洲公司 | The method for preparing porous, inorganic powder |
CN107709236A (en) * | 2015-07-01 | 2018-02-16 | 松下知识产权经营株式会社 | Aeroge, the manufacture method using the component of the aeroge and the aeroge |
CN108025919A (en) * | 2016-03-24 | 2018-05-11 | 株式会社Lg化学 | The preparation system of aerosil |
CN109790035A (en) * | 2017-05-18 | 2019-05-21 | 株式会社Lg化学 | Silicon carbide powder and preparation method thereof |
CN111302348A (en) * | 2020-04-08 | 2020-06-19 | 天津纳科世纪新材料有限公司 | Normal pressure preparation method of silicon dioxide aerogel spherical particles |
US10919772B2 (en) | 2015-11-03 | 2021-02-16 | Lg Chem, Ltd. | Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby |
US10941897B2 (en) | 2015-02-13 | 2021-03-09 | Lg Chem, Ltd. | Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same |
CN113060739A (en) * | 2021-03-19 | 2021-07-02 | 中建材科创新技术研究院(山东)有限公司 | Silica aerogel microsphere and preparation method and application thereof |
US11279622B2 (en) | 2016-09-12 | 2022-03-22 | Lg Chem, Ltd. | Method for producing silica aerogel and silica aerogel produced thereby |
JP7248375B1 (en) | 2022-01-20 | 2023-03-29 | 中建材科創新技術研究院(山東)有限公司 | High-temperature airgel heat-retaining paint, production equipment and method of use thereof |
CN116102020A (en) * | 2023-02-01 | 2023-05-12 | 湖南奥飞新材料有限公司 | Preparation method of silica aerogel and silica aerogel |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013130938A1 (en) * | 2012-03-01 | 2013-09-06 | Dow Corning Corporation | Method of forming particles from an oil-in-water emulsion |
JP6124662B2 (en) * | 2012-10-03 | 2017-05-10 | 株式会社トクヤマ | Spherical metal oxide powder and production method thereof |
CN103964449B (en) * | 2013-02-06 | 2015-08-19 | 中国科学院上海硅酸盐研究所 | Constant pressure and dry technology is utilized to prepare the method for silica aerogel microballoon fast |
JP6196462B2 (en) * | 2013-04-11 | 2017-09-13 | 株式会社トクヤマ | Porous spherical metal oxide |
JP6247067B2 (en) * | 2013-09-27 | 2017-12-13 | 株式会社トクヤマ | Silicone filler and silicone composition |
CN103496707A (en) * | 2013-10-09 | 2014-01-08 | 同济大学 | Low-cost preparation method of silica aerogel under pure water system |
CN103523789B (en) * | 2013-10-11 | 2015-05-27 | 余煜玺 | Preparation method of silica aerosil microballoon |
CN103864081B (en) * | 2014-03-10 | 2015-07-15 | 福建正盛无机材料股份有限公司 | Preparation method of silicon dioxide aerogel for heat insulation |
WO2015186615A1 (en) * | 2014-06-02 | 2015-12-10 | 株式会社トクヤマ | Light diffusion agent, and light-diffusing composition using same |
JP6258131B2 (en) * | 2014-06-06 | 2018-01-10 | 株式会社トクヤマ | Hydrophobic airgel powder, production method thereof, and filler using the same |
US10377637B2 (en) | 2014-11-11 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Aerogel and manufacturing method thereof |
KR101933208B1 (en) | 2014-12-23 | 2018-12-31 | 주식회사 엘지화학 | Aqueous Aerogel Dispersions And Method Of Preparing The Same |
DE102015207944A1 (en) | 2015-04-29 | 2016-11-03 | Wacker Chemie Ag | Process for the preparation of organically modified aerogels |
TW201641544A (en) * | 2015-05-27 | 2016-12-01 | Univ Kun Shan | Aerogel granule and preparation method thereof |
EP3345968A4 (en) * | 2015-09-01 | 2019-05-01 | Hitachi Chemical Company, Ltd. | Sol composition and aerogel |
JP6758809B2 (en) * | 2015-09-29 | 2020-09-23 | 日東電工株式会社 | A method for producing a porous gel-containing liquid, a method for producing a porous gel-containing liquid, a method for producing a high void layer, a method for producing a high porosity porous body, and a method for producing a laminated film roll. |
KR101801448B1 (en) * | 2015-11-11 | 2017-11-28 | 연세대학교 산학협력단 | Negative active material for lithum ion battery and a method for manufacturing the same |
JP6653429B2 (en) * | 2016-02-15 | 2020-02-26 | パナソニックIpマネジメント株式会社 | Hydrophobizing treatment method and sheet-like member manufacturing method using the same |
KR101962207B1 (en) | 2016-02-17 | 2019-03-27 | 주식회사 엘지화학 | Composite sheet preparation method and apparatus comprising aerogel sheet |
KR101962206B1 (en) | 2016-02-19 | 2019-03-27 | 주식회사 엘지화학 | Composite sheet preparation method and apparatus comprising aerogel sheet |
KR101955314B1 (en) * | 2016-03-28 | 2019-03-08 | 주식회사 엘지화학 | Method of preparing for spherical silica aerogel granules and spherical silica aerogel granules prepared thereby |
JP6166440B2 (en) * | 2016-08-26 | 2017-07-19 | 株式会社トクヤマ | Aerogel and matting agent comprising said airgel |
JP6907321B2 (en) | 2016-12-31 | 2021-07-21 | ティリウム・カンパニー・リミテッド | Method for Producing Micron Diameter Spherical Silica Airgel |
JP2018168206A (en) * | 2017-03-29 | 2018-11-01 | 住友理工株式会社 | Resin composition and method for producing the same |
JP6916650B2 (en) * | 2017-04-21 | 2021-08-11 | 株式会社トクヤマ | Silica airgel powder and its manufacturing method |
EP3636282A4 (en) * | 2017-05-19 | 2020-11-04 | Tokuyama Corporation | CARRIERS OF A PHARMACEUTICAL INGREDIENT AND METHOD OF MANUFACTURING THEREOF |
JP7119292B2 (en) * | 2017-06-06 | 2022-08-17 | 昭和電工マテリアルズ株式会社 | Package containing airgel and method for manufacturing package containing airgel |
WO2020072527A1 (en) * | 2018-10-01 | 2020-04-09 | Field Andrew Howard | Re-pulpable insulated paper products and methods of making and using the same |
WO2020084670A1 (en) * | 2018-10-22 | 2020-04-30 | 日立化成株式会社 | Aerogel particles, dispersion body, and coating film |
JP7223557B2 (en) * | 2018-11-13 | 2023-02-16 | 住友理工株式会社 | Thermal insulation structure and manufacturing method thereof |
US10781289B2 (en) | 2018-11-30 | 2020-09-22 | National Cheng Kung University | Aerogel particles and method of making the same |
WO2020125956A1 (en) | 2018-12-18 | 2020-06-25 | Wacker Chemie Ag | Method for producing rounded gel particles |
KR102103901B1 (en) * | 2019-05-17 | 2020-04-24 | 주식회사 엘지화학 | Silica aerogel manufacturing system |
EP3909913A1 (en) * | 2020-05-13 | 2021-11-17 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Additive manufacturing of silica aerogel objects |
EP4054978A1 (en) | 2019-11-08 | 2022-09-14 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Additive manufacturing of silica aerogel objects |
TWI726638B (en) | 2020-03-02 | 2021-05-01 | 趙國昇 | Preparation method of silica aerogel |
JP2021155298A (en) * | 2020-03-27 | 2021-10-07 | 積水化成品工業株式会社 | Porous structure inclusion particles, their manufacturing methods and their uses |
US11203004B1 (en) | 2020-08-25 | 2021-12-21 | Ford Global Technologies, Llc | Systems and methods for aerogel preparation via vacuum-assisted solvent exchange and ambient pressure drying |
JPWO2022154014A1 (en) | 2021-01-14 | 2022-07-21 | ||
JP7625258B2 (en) | 2021-04-23 | 2025-02-03 | 株式会社ジェイトップライン | Transparent window insulation film |
CN115504493B (en) * | 2022-11-07 | 2023-11-28 | 神华准能资源综合开发有限公司 | Method for preparing alumina aerogel from crystallized aluminum chloride |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0537851A1 (en) * | 1991-10-17 | 1993-04-21 | ENICHEM S.p.A. | High-porosity silica xerogels and their preparation process |
EP0653378A1 (en) * | 1993-11-04 | 1995-05-17 | ENIRICERCHE S.p.A. | Process for preparing porous spherical silica xerogels |
US5565142A (en) * | 1992-04-01 | 1996-10-15 | Deshpande; Ravindra | Preparation of high porosity xerogels by chemical surface modification. |
CN1181053A (en) * | 1995-01-27 | 1998-05-06 | 赫彻斯特股份公司 | Preparation method and application of modified airgel |
US5795556A (en) * | 1993-12-14 | 1998-08-18 | Hoechst Ag | Xerogels and process for their preparation |
CN1715182A (en) * | 2005-05-30 | 2006-01-04 | 同济大学 | A kind of preparation method of micron SiO2 airgel pellet |
CN101538046A (en) * | 2009-03-10 | 2009-09-23 | 大连工业大学 | Method for simultaneously preparing SiO2 aerogel and zeolite by utilizing fly ash |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4402927A (en) * | 1980-04-22 | 1983-09-06 | Dardel Guy Von | Silica aerogel |
JPS61227915A (en) | 1985-04-01 | 1986-10-11 | Tokuyama Soda Co Ltd | Silica gel manufacturing method |
JPS63258642A (en) | 1987-04-15 | 1988-10-26 | Agency Of Ind Science & Technol | Hollow inorganic powder and grain materials and preparation of same |
JPH0628721B2 (en) | 1989-07-12 | 1994-04-20 | 三菱マテリアル株式会社 | Method for manufacturing ceramic hollow spheres |
JPH0454619A (en) | 1990-06-25 | 1992-02-21 | Toshiba Corp | Personal computer |
WO1993016125A1 (en) | 1992-02-18 | 1993-08-19 | Matsushita Electric Works, Ltd. | Process for producing hydrophobic aerogel |
JPH0640714A (en) | 1992-07-21 | 1994-02-15 | Shionogi & Co Ltd | High-oil-absorptive porous silica, production thereof and carrier |
DE4342548A1 (en) | 1993-12-14 | 1995-06-22 | Hoechst Ag | Xerogels, processes for their manufacture and their use |
US6197270B1 (en) * | 1996-12-20 | 2001-03-06 | Matsushita Electric Works, Ltd. | Process for producing aerogel |
JP3339394B2 (en) | 1996-12-24 | 2002-10-28 | 松下電工株式会社 | Manufacturing method of hydrophobic airgel |
DE19722738A1 (en) | 1997-05-30 | 1998-12-03 | Hoechst Ag | Process for the production of essentially spherical lyogels and aerogels |
JP3973305B2 (en) | 1998-11-02 | 2007-09-12 | 旭硝子エスアイテック株式会社 | High oil absorption silica gel and method for producing the same |
JP2000225767A (en) * | 1999-02-05 | 2000-08-15 | Asahi Glass Co Ltd | Recording sheet |
JP2001070741A (en) | 1999-09-08 | 2001-03-21 | Mizusawa Ind Chem Ltd | Humidity control agent |
JP2001080915A (en) * | 1999-09-09 | 2001-03-27 | Matsushita Electric Ind Co Ltd | Production of porous body |
KR100785521B1 (en) * | 2006-07-03 | 2007-12-13 | 한국생산기술연구원 | Method for preparing surface modified airgel and surface modified airgel prepared therefrom |
JP5256404B2 (en) * | 2007-03-30 | 2013-08-07 | 宮崎県 | Method for producing fine silica gel spherical particles |
CN101318659A (en) | 2008-07-04 | 2008-12-10 | 绍兴纳诺气凝胶新材料研发中心有限公司 | Method for preparing silicon dioxide silica aerogel composite material by drying in atmosphere pressure |
CN101844771A (en) | 2010-06-14 | 2010-09-29 | 大连理工大学 | Method for preparing super-hydrophobic silica aerogel at normal pressure |
CN103476707B (en) * | 2011-04-28 | 2016-05-25 | 株式会社德山 | Metal oxide powder and manufacture method thereof |
-
2011
- 2011-10-24 WO PCT/JP2011/074447 patent/WO2012057086A1/en active Application Filing
- 2011-10-24 CN CN201180045564.1A patent/CN103118979B/en active Active
- 2011-10-24 JP JP2011554328A patent/JP4960534B1/en active Active
- 2011-10-24 US US13/825,187 patent/US9216909B2/en active Active
- 2011-10-24 EP EP11836219.3A patent/EP2634144A4/en active Pending
- 2011-10-24 KR KR1020137003216A patent/KR101774783B1/en active Active
- 2011-10-25 TW TW100138646A patent/TWI516447B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0537851A1 (en) * | 1991-10-17 | 1993-04-21 | ENICHEM S.p.A. | High-porosity silica xerogels and their preparation process |
US5565142A (en) * | 1992-04-01 | 1996-10-15 | Deshpande; Ravindra | Preparation of high porosity xerogels by chemical surface modification. |
EP0653378A1 (en) * | 1993-11-04 | 1995-05-17 | ENIRICERCHE S.p.A. | Process for preparing porous spherical silica xerogels |
US5795556A (en) * | 1993-12-14 | 1998-08-18 | Hoechst Ag | Xerogels and process for their preparation |
CN1181053A (en) * | 1995-01-27 | 1998-05-06 | 赫彻斯特股份公司 | Preparation method and application of modified airgel |
CN1715182A (en) * | 2005-05-30 | 2006-01-04 | 同济大学 | A kind of preparation method of micron SiO2 airgel pellet |
CN101538046A (en) * | 2009-03-10 | 2009-09-23 | 大连工业大学 | Method for simultaneously preparing SiO2 aerogel and zeolite by utilizing fly ash |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105271260A (en) * | 2014-06-11 | 2016-01-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing hydrophobic silica aerogel through normal-pressure drying process |
CN105236418A (en) * | 2014-07-09 | 2016-01-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Magnetic silica aerogel and normal pressure dry preparation method therefor |
CN105236929A (en) * | 2014-07-09 | 2016-01-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | SiO2 airgel with bactericidal function and preparation method thereof |
CN107206342B (en) * | 2014-11-20 | 2020-10-09 | 巴斯夫欧洲公司 | Method for preparing porous inorganic powder |
CN107206342A (en) * | 2014-11-20 | 2017-09-26 | 巴斯夫欧洲公司 | The method for preparing porous, inorganic powder |
US10941897B2 (en) | 2015-02-13 | 2021-03-09 | Lg Chem, Ltd. | Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same |
CN107709236A (en) * | 2015-07-01 | 2018-02-16 | 松下知识产权经营株式会社 | Aeroge, the manufacture method using the component of the aeroge and the aeroge |
US10919772B2 (en) | 2015-11-03 | 2021-02-16 | Lg Chem, Ltd. | Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby |
US11505657B2 (en) | 2016-03-24 | 2022-11-22 | Lg Chem, Ltd. | System and rotating blade unit for preparing silica aerogel |
CN108025919A (en) * | 2016-03-24 | 2018-05-11 | 株式会社Lg化学 | The preparation system of aerosil |
CN106082243A (en) * | 2016-06-12 | 2016-11-09 | 伊科纳诺(北京)科技发展有限公司 | A kind of normal pressure fast preparation method of hydrophobic silica aerogel powder body |
US11279622B2 (en) | 2016-09-12 | 2022-03-22 | Lg Chem, Ltd. | Method for producing silica aerogel and silica aerogel produced thereby |
US11220434B2 (en) | 2017-05-18 | 2022-01-11 | Lg Chem, Ltd. | Silicon carbide powder and method of preparing the same using a hydrophobic spherical silica aerogel |
CN109790035B (en) * | 2017-05-18 | 2022-04-15 | 株式会社Lg化学 | Silicon carbide powder and method for producing same |
CN109790035A (en) * | 2017-05-18 | 2019-05-21 | 株式会社Lg化学 | Silicon carbide powder and preparation method thereof |
CN111302348A (en) * | 2020-04-08 | 2020-06-19 | 天津纳科世纪新材料有限公司 | Normal pressure preparation method of silicon dioxide aerogel spherical particles |
CN113060739A (en) * | 2021-03-19 | 2021-07-02 | 中建材科创新技术研究院(山东)有限公司 | Silica aerogel microsphere and preparation method and application thereof |
JP7248375B1 (en) | 2022-01-20 | 2023-03-29 | 中建材科創新技術研究院(山東)有限公司 | High-temperature airgel heat-retaining paint, production equipment and method of use thereof |
JP2023106336A (en) * | 2022-01-20 | 2023-08-01 | 中建材科創新技術研究院(山東)有限公司 | High-temperature aerogel heat insulating coating, manufacturing device and use thereof |
CN116102020A (en) * | 2023-02-01 | 2023-05-12 | 湖南奥飞新材料有限公司 | Preparation method of silica aerogel and silica aerogel |
CN116102020B (en) * | 2023-02-01 | 2024-05-17 | 湖南奥飞新材料有限公司 | Preparation method of silica aerogel and silica aerogel |
Also Published As
Publication number | Publication date |
---|---|
US9216909B2 (en) | 2015-12-22 |
US20130189521A1 (en) | 2013-07-25 |
EP2634144A4 (en) | 2014-08-20 |
CN103118979B (en) | 2016-04-06 |
JPWO2012057086A1 (en) | 2014-05-12 |
WO2012057086A1 (en) | 2012-05-03 |
TWI516447B (en) | 2016-01-11 |
KR20130128365A (en) | 2013-11-26 |
EP2634144A1 (en) | 2013-09-04 |
JP4960534B1 (en) | 2012-06-27 |
TW201223868A (en) | 2012-06-16 |
KR101774783B1 (en) | 2017-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103118979B (en) | Aerogel and manufacture method thereof | |
EP2703348B1 (en) | Metal oxide powder and method for producing same | |
JP6124662B2 (en) | Spherical metal oxide powder and production method thereof | |
JP6196462B2 (en) | Porous spherical metal oxide | |
JP6545821B2 (en) | Method of producing organically modified airgel | |
JP5132193B2 (en) | Porous silica particles and method for producing the same | |
JP6932572B2 (en) | Spherical silica airgel, its manufacturing method, and its use | |
JP2010138021A (en) | Porous silica particle and producing method of the same | |
US20240067529A1 (en) | Porous spherical silica and method of producing the same | |
JP6518343B2 (en) | Method of producing organically modified airgel | |
JP6966247B2 (en) | Spherical silica airgel, its manufacturing method, and its use | |
JP7455666B2 (en) | Porous metal oxide powder and method for producing the same | |
JP6055362B2 (en) | Method for producing porous spherical metal oxide | |
JP7660414B2 (en) | Method for producing spherical silica aerogel | |
JP2022153859A (en) | Method for producing spherical silica airgel | |
JP2023158792A (en) | Method for producing a pasty composition containing water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |