CN103113892B - A kind of tungstate rare earth light conversion material, preparation method and application - Google Patents
A kind of tungstate rare earth light conversion material, preparation method and application Download PDFInfo
- Publication number
- CN103113892B CN103113892B CN201310081421.7A CN201310081421A CN103113892B CN 103113892 B CN103113892 B CN 103113892B CN 201310081421 A CN201310081421 A CN 201310081421A CN 103113892 B CN103113892 B CN 103113892B
- Authority
- CN
- China
- Prior art keywords
- ion
- tungstate
- compound
- rare earth
- light conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种发光材料、制备方法及其应用,特别涉及一种钨酸盐稀土光转换材料、制备方法及其应用,属于发光材料技术领域。 The invention relates to a luminescent material, a preparation method and an application thereof, in particular to a tungstate rare earth light conversion material, a preparation method and an application thereof, and belongs to the technical field of luminescent materials.
背景技术 Background technique
在当代社会经济,大量耗用化石能源对生态环境的影响日益突出,能源问题逐渐成为制约国际社会经济发展的瓶颈,因此迫切需要开发和应用新能源与可再生能源。太阳能作为一种取之不尽用之不竭并且可再生的清洁能源,受到各界的广泛关注。其中,发展最为突出的是硅太阳能电池领域,被认为是当今世界上最有发展前景的新能源技术。 In contemporary society and economy, the impact of massive consumption of fossil energy on the ecological environment has become increasingly prominent, and energy issues have gradually become a bottleneck restricting the development of the international society and economy. Therefore, it is urgent to develop and apply new and renewable energy. As an inexhaustible and renewable clean energy, solar energy has attracted widespread attention from all walks of life. Among them, the most prominent development is the field of silicon solar cells, which is considered to be the most promising new energy technology in the world today.
晶体硅的禁带宽度约为1.12ev,相当于1100nm,硅太阳能电池对入射光的有效响应频谱范围为400~1100nm,只有处于该波段的入射光才对硅电池的光电转换有贡献,剩余的能量会被转化为热量而散失,因而无法将自然的太阳光能量完全吸收转换,造成极大的浪费。目前,市场上供应的晶体硅太阳能电池通过改善材料的处理工艺只能使电池的最高光转换率达到25%,因此为了进一步提高太阳光的利用率,仅靠改进工艺是远远不够的,可通过调整太阳能光谱,使可见光转化为能被太阳能电池高效吸收的红外光,从而有效改善太阳能电池效率。 The bandgap width of crystalline silicon is about 1.12ev, which is equivalent to 1100nm. The effective response spectrum range of silicon solar cells to incident light is 400-1100nm. Only the incident light in this band contributes to the photoelectric conversion of silicon cells, and the rest The energy will be converted into heat and dissipated, so the natural sunlight energy cannot be completely absorbed and converted, resulting in great waste. At present, the crystalline silicon solar cells available on the market can only achieve a maximum light conversion rate of 25% by improving the material treatment process. By adjusting the solar spectrum, visible light is converted into infrared light that can be efficiently absorbed by solar cells, thereby effectively improving the efficiency of solar cells.
利用下转换发光材料吸收紫外光发射近红外光,可以拓宽太阳能电池的光谱响应范围。目前,研究较多的硅基太阳能电池用稀土光转换材料主要采取掺入三价稀土离子(如:Tb3+,Pr3+,Er3+等)做敏化剂的方法来改进其在紫外至可见光区的吸收,如荷兰乌德勒支大学的A.Meijerink为代表的发光材料研究专家通过设计Tb3+-Yb3+、Pr3+-Yb3+和Tm3+-Yb3+等稀土离子产生量子裁剪发光(PhysicalReviewB:CondensedMatterandMaterialsPhysics,2005,71(1),014119/1-014119/11),在近红外量子剪裁发光领域做出了许多开创性的工作;李开宇等人也成功制备了Pr3+、Yb3+共掺杂的YPO4粉体,实现了在450nm光激发下的下转换近红外发光(发光学报,2012年5月,33卷,第5期)。然而这些敏化离子虽然在紫外至可见区有吸收,但其吸收均是线状的,且吸收强度比较弱。 The spectral response range of solar cells can be broadened by using down-conversion luminescent materials to absorb ultraviolet light and emit near-infrared light. At present, the rare earth light conversion materials for silicon-based solar cells that have been studied more mainly adopt the method of doping trivalent rare earth ions (such as: Tb 3+ , Pr 3+ , Er 3+ , etc.) The absorption to the visible light region, such as the luminescent material research experts represented by A.Meijerink of Utrecht University in the Netherlands, designed Tb 3+ -Yb 3+ , Pr 3+ -Yb 3+ and Tm 3+ -Yb 3+ , etc. Rare earth ions produce quantum tailoring luminescence (PhysicalReviewB: CondensedMatterandMaterialsPhysics, 2005, 71(1), 014119/1-014119/11), and have made many pioneering works in the field of near-infrared quantum tailoring luminescence; Li Kaiyu and others have also successfully prepared The YPO 4 powder co-doped with Pr 3+ and Yb 3+ realizes down-conversion near-infrared luminescence under 450nm light excitation (Luminescence Journal, May 2012, Volume 33, Issue 5). However, although these sensitizing ions have absorption in the ultraviolet to visible region, their absorption is linear and the absorption intensity is relatively weak.
发明内容 Contents of the invention
本发明的目的在于克服现有技术存在的不足,提供一种制备工艺简单,生产成本低,在250~450nm波长范围内具有强吸收,并发射出900~1100nm高强度的近红外光的钨酸盐稀土光转换材料、制备方法及其应用。 The purpose of the present invention is to overcome the deficiencies in the prior art and provide a tungstate with simple preparation process, low production cost, strong absorption in the wavelength range of 250-450nm, and high-intensity near-infrared light emission of 900-1100nm Rare earth light conversion materials, preparation methods and applications.
为实现上述目的,本发明采用的技术方案是提供一种钨酸盐稀土光转换材料,它的化学通式为M5R1-xYbx(WO4)4,其中,R为稀土铒离子Er3+、铕离子Eu3+、镧离子La3+、钇离子Y3+、铈离子Ce3+、铥离子Tm3+、镨离子Pr3+、钕离子Nd3+、钐离子Sm3+、钆离子Gd3+、铽离子Tb3+、镝离子Dy3+、钬离子Ho3+、镥离子Lu3+中的一种;M为碱土金属离子钠离子Na+、锂离子Li+和钾离子K+中的一种;x为Yb3+掺杂的摩尔百分数,0.0001≤x<1.0;所述光转换材料在250~450nm的紫外光激发下,发射出900~1100nm的近红外光。 In order to achieve the above object, the technical solution adopted by the present invention is to provide a tungstate rare earth light conversion material, its chemical formula is M 5 R 1-x Yb x (WO 4 ) 4 , wherein, R is a rare earth erbium ion Er 3+ , europium ion Eu 3+ , lanthanum ion La 3+ , yttrium ion Y 3+ , cerium ion Ce 3+ , thulium ion Tm 3+ , praseodymium ion Pr 3+ , neodymium ion Nd 3+ , samarium ion Sm 3 + , one of gadolinium ion Gd 3+ , terbium ion Tb 3+ , dysprosium ion Dy 3+ , holmium ion Ho 3+ , lutetium ion Lu 3+ ; M is alkaline earth metal ion sodium ion Na + , lithium ion Li + and one of potassium ions K + ; x is the mole percentage of Yb 3+ doping, 0.0001≤x<1.0; the photo-conversion material emits near-infrared light of 900-1100nm under the excitation of 250-450nm ultraviolet light Light.
本发明技术方案还提供一种制备如上所述的钨酸盐稀土光转换材料的方法,即采用高温固相法,具体包括如下步骤: The technical solution of the present invention also provides a method for preparing the above-mentioned tungstate rare earth light conversion material, that is, using a high-temperature solid-phase method, which specifically includes the following steps:
1、按化学式M5R1-xYbx(WO4)4中各元素的化学计量比,其中0.0001≤x<1.0,分别称取含有镱离子Yb3+的化合物、含有离子R的化合物、含有离子M的化合物、含有钨离子W6+的化合物,研磨并混合均匀,得到混合物;所述的离子R为稀土铒离子Er3+、铕离子Eu3+、镧离子La3+、钇离子Y3+、铈离子Ce3+、铥离子Tm3+、镨离子Pr3+、钕离子Nd3+、钐离子Sm3+、钆离子Gd3+、铽离子Tb3+、镝离子Dy3+、钬离子Ho3+、镥离子Lu3+中的一种;所述的离子M为碱土金属离子钠离子Na+、锂离子Li+和钾离子K+中的一种; 1. According to the stoichiometric ratio of each element in the chemical formula M 5 R 1-x Yb x (WO 4 ) 4 , where 0.0001≤x<1.0, weigh the compound containing ytterbium ion Yb 3+ , the compound containing ion R, Compounds containing ions M and compounds containing tungsten ions W 6+ are ground and mixed uniformly to obtain a mixture; the ions R are rare earth erbium ions Er 3+ , europium ions Eu 3+ , lanthanum ions La 3+ , yttrium ions Y 3+ , cerium ion Ce 3+ , thulium ion Tm 3+ , praseodymium ion Pr 3+ , neodymium ion Nd 3+ , samarium ion Sm 3+ , gadolinium ion Gd 3+ , terbium ion Tb 3+ , dysprosium ion Dy 3 + , one of holmium ion Ho 3+ , lutetium ion Lu 3+ ; the ion M is one of alkaline earth metal ion sodium ion Na + , lithium ion Li + and potassium ion K + ;
2、将步骤1得到的混合物在空气气氛下煅烧1~2次;煅烧温度为200~500℃,煅烧时间为1~10小时; 2. Calcining the mixture obtained in step 1 in an air atmosphere for 1 to 2 times; the calcination temperature is 200-500°C, and the calcination time is 1-10 hours;
3、将得到的混合物自然冷却,研磨并混合均匀后,在空气气氛中煅烧,煅烧温度为500~850℃,煅烧时间为1~10小时,自然冷却到室温,得到一种钨酸盐稀土光转换材料。 3. Cool the obtained mixture naturally, grind and mix it evenly, then calcinate in the air atmosphere, the calcining temperature is 500-850°C, the calcining time is 1-10 hours, and naturally cool to room temperature to obtain a tungstate rare earth light Convert material.
本发明的一个优选方案是:采用高温固相法时,步骤2的煅烧温度为250~450℃,煅烧时间为2~9小时;步骤3的煅烧温度为550~800℃,煅烧时间为2~9小时。 A preferred scheme of the present invention is: when using the high-temperature solid-phase method, the calcination temperature of step 2 is 250-450°C, and the calcination time is 2-9 hours; the calcination temperature of step 3 is 550-800°C, and the calcination time is 2-9 hours. 9 hours.
本发明技术方案还包括另一种制备如上所述的钨酸盐稀土光转换材料的方法,即采用化学合成法,具体包括如下步骤: The technical solution of the present invention also includes another method for preparing the above-mentioned tungstate rare earth light conversion material, that is, using a chemical synthesis method, which specifically includes the following steps:
1、按化学式M5R1-xYbx(WO4)4中各元素的化学计量比,其中0.0001≤x<1.0,称取含有镱离子Yb3+的化合物、含有离子R的化合物、含有离子M的化合物,将它们分别溶解于稀硝酸溶液中,得到各种透明溶液;按各反应物质量的0.5~2.0wt%分别添加络合剂柠檬酸或草酸,在50~80℃的温度条件下搅拌;所述的离子R为稀土铒离子Er3+、铕离子Eu3+、镧离子La3+、钇离子Y3+、铈离子Ce3+、铥离子Tm3+、镨离子Pr3+、钕离子Nd3+、钐离子Sm3+、钆离子Gd3+、铽离子Tb3+、镝离子Dy3+、钬离子Ho3+、镥离子Lu3+中的一种;所述的离子M为碱土金属离子钠离子Na+、锂离子Li+和钾离子K+中的一种; 1. According to the stoichiometric ratio of each element in the chemical formula M 5 R 1-x Yb x (WO 4 ) 4 , wherein 0.0001≤x<1.0, weigh the compound containing ytterbium ion Yb 3+ , the compound containing ion R, the compound containing Compounds of ion M are dissolved in dilute nitric acid solution to obtain various transparent solutions; complexing agent citric acid or oxalic acid is added according to 0.5-2.0wt% of the mass of each reactant, and the temperature is 50-80°C The ion R is rare earth erbium ion Er 3+ , europium ion Eu 3+ , lanthanum ion La 3+ , yttrium ion Y 3+ , cerium ion Ce 3+ , thulium ion Tm 3+ , and praseodymium ion Pr 3 + , one of neodymium ions Nd 3+ , samarium ions Sm 3+ , gadolinium ions Gd 3+ , terbium ions Tb 3+ , dysprosium ions Dy 3+ , holmium ions Ho 3+ , and lutetium ions Lu 3+ ; The ion M is one of alkaline earth metal ion sodium ion Na + , lithium ion Li + and potassium ion K + ;
2、按化学式M5R1-xYbx(WO4)4中各元素的化学计量比,其中0.0001≤x<1.0,称取含有钨离子W6+的化合物,溶解于去离子水或乙醇溶液中,按反应物质量的0.5~2.0wt%添加络合剂柠檬酸或草酸,在50~80℃的温度条件下搅拌; 2. According to the stoichiometric ratio of each element in the chemical formula M 5 R 1-x Yb x (WO 4 ) 4 , where 0.0001≤x<1.0, weigh the compound containing tungsten ion W 6+ and dissolve it in deionized water or ethanol In the solution, add complexing agent citric acid or oxalic acid according to 0.5-2.0wt% of the reactant mass, and stir at a temperature of 50-80°C;
3、将步骤1和2得到的各种溶液缓慢混合,在50~80℃的温度条件下搅拌1~2小时后,静置,烘干,得到蓬松的前驱体; 3. Slowly mix the various solutions obtained in steps 1 and 2, stir at a temperature of 50-80°C for 1-2 hours, let stand, and dry to obtain a fluffy precursor;
4、将前驱体置于马弗炉中煅烧,温度为550~800℃,时间为2~15小时,自然冷却到室温,得到一种钨酸盐稀土光转换材料。 4. The precursor is calcined in a muffle furnace at a temperature of 550-800° C. for 2-15 hours, and naturally cooled to room temperature to obtain a tungstate rare earth light conversion material.
本发明所述的含有离子R的化合物为R的氧化物、氟化物、硝酸盐中的一种;含有镱离子Yb3+的化合物为氧化镱、硝酸镱中的一种;含有离子M的化合物为M的氧化物、氟化物、碳酸盐、硫酸盐、硝酸盐中的一种;含有钨离子W6+的化合物为氧化钨、钨酸铵中的一种。 The compound containing ion R described in the present invention is one of oxides, fluorides, and nitrates of R; the compound containing ytterbium ion Yb 3+ is one of ytterbium oxide and ytterbium nitrate; the compound containing ion M It is one of the oxides, fluorides, carbonates, sulfates, and nitrates of M; the compound containing tungsten ions W 6+ is one of tungsten oxide and ammonium tungstate.
本发明所述的钨酸盐稀土光转换材料,在250~450nm波长范围内具有强吸收,且发射出900~1100nm范围内高强度的近红外光,可用于硅基太阳能电池的光转换材料。 The tungstate rare earth light conversion material described in the invention has strong absorption in the wavelength range of 250-450nm, and emits high-intensity near-infrared light in the range of 900-1100nm, and can be used as a light conversion material for silicon-based solar cells.
本发明的原理是:利用Yb3+离子的红外发射,其1000nm发射正好位于硅太阳能电池对入射光的最佳响应区间,进而通过离子间共合作能量转移,吸收一个250~450nm短波光子,发射两个575nm、1000nm长波光子,实现紫外光的高效利用,同时可以减弱硅基太阳能电池的热效应,因此可以作为潜在的提高硅基太阳能电池效率的材料。 The principle of the present invention is: using the infrared emission of Yb 3+ ions, its 1000nm emission is just in the best response range of the silicon solar cell to the incident light, and then absorbs a 250-450nm short-wave photon through the co-operation energy transfer between the ions, and emits Two 575nm and 1000nm long-wavelength photons realize the efficient utilization of ultraviolet light and at the same time reduce the thermal effect of silicon-based solar cells, so they can be used as potential materials for improving the efficiency of silicon-based solar cells.
与现有技术相比,本发明具有如下有益效果: Compared with the prior art, the present invention has the following beneficial effects:
1、本发明的钨酸盐稀土光转换材料,使用的钨酸盐基质材料无毒,无任何污染,对环境友好,并且制备过程中无需还原性气氛保护,因此对于设备的要求较低。 1. The tungstate rare earth light conversion material of the present invention uses a tungstate matrix material that is non-toxic, free from any pollution, and environmentally friendly, and does not require a reducing atmosphere protection during the preparation process, so the requirements for equipment are relatively low.
2、本发明的钨酸盐稀土光转换材料,发射主峰位于900~1100nm,其能量与硅的禁带宽度完美相匹配,可有效提高硅基太阳能电池的光电转换效率,是潜在的硅基太阳能电池用稀土光转换材料。 2. The tungstate rare earth light conversion material of the present invention has a main emission peak at 900-1100nm, and its energy perfectly matches the forbidden band width of silicon, which can effectively improve the photoelectric conversion efficiency of silicon-based solar cells, and is a potential silicon-based solar energy Rare earth light conversion materials for batteries.
3、本发明的紫外光转换发射近红外光材料,在紫外区(250~450nm)具有很强的吸收,可以提高太阳能的利用率,同时减弱太阳能电池的热效应。 3. The ultraviolet light conversion and emission near-infrared light material of the present invention has strong absorption in the ultraviolet region (250-450nm), which can improve the utilization rate of solar energy and at the same time reduce the thermal effect of solar cells.
附图说明 Description of drawings
图1是本发明实施例1制备样品Na5Dy0.65Yb0.35(WO4)4的X射线粉末衍射图谱; Fig. 1 is the X-ray powder diffraction pattern of the sample Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4 prepared in Example 1 of the present invention;
图2是本发明实施例1制备样品Na5Dy0.65Yb0.35(WO4)4在1000nm波长监控下的激发光谱图; Fig. 2 is the excitation spectrum of the sample Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4 prepared in Example 1 of the present invention monitored at a wavelength of 1000 nm;
图3是本发明实施例1制备样品Na5Dy0.65Yb0.35(WO4)4在355nm波长激发下的荧光光谱图; Fig. 3 is a fluorescence spectrum diagram of the sample Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4 prepared in Example 1 of the present invention under excitation at a wavelength of 355 nm;
图4是本发明实施例1制备样品Na5Dy0.65Yb0.35(WO4)4在1000nm波长监控下的发光衰减曲线。 Fig. 4 is the luminescence attenuation curve of the sample Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4 prepared in Example 1 of the present invention monitored at a wavelength of 1000 nm.
具体实施方式 detailed description
下面结合附图和实施例对本发明作进一步描述。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例1: Example 1:
制备Na5Dy0.65Yb0.35(WO4)4 Preparation of Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4
根据化学式Na5Dy0.65Yb0.35(WO4)4中各元素的化学计量比,分别称取碳酸钠Na2CO3:1.33克,氧化镝Dy2O3:0.61克,氧化镱Yb2O3:0.35克,钨酸铵(NH4)10W12O41:5.07克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛第一次煅烧,温度为250℃,煅烧时间4小时,然后冷至室温,取出样品。在第一次煅烧的原料之后,再次把混合料充分混合研磨均匀,在空气气氛之中,650℃下第二次烧结,烧结时间是8小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula Na 5 Dy 0.65 Yb 0.35 (WO 4 ) 4 , weigh sodium carbonate Na 2 CO 3 : 1.33 grams, dysprosium oxide Dy 2 O 3 : 0.61 grams, ytterbium oxide Yb 2 O 3 : 0.35 g, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 g, ground in an agate mortar and mixed evenly, then select the air atmosphere for the first calcination, the temperature is 250 ° C, the calcination time is 4 hours, and then Cool to room temperature and remove the sample. After the first calcination of the raw materials, the mixture is fully mixed and ground evenly again, and the second sintering is carried out at 650°C in the air atmosphere. The sintering time is 8 hours, cooled to room temperature, taken out and fully ground to obtain powder. Tungstate Rare Earth Photoconversion Materials.
参见附图1,它是本实施例技术方案制备样品的X射线粉末衍射图谱,衍射峰的位置和相对强度表明,结晶物质都是Na5Dy(WO4)4纯相,没有任何其它的杂质物相存在。 Referring to accompanying drawing 1, it is the X-ray powder diffraction spectrum of the sample prepared by the technical scheme of this embodiment, the position and relative intensity of the diffraction peaks show that the crystalline substance is all Na 5 Dy(WO 4 ) 4 pure phase, without any other impurities Phases exist.
参见附图2,它是按本实施例技术方案制备的样品在1000nm波长监控下的激发光谱;参见附图3,它是按本实施例技术方案制备的样品在355nm波长激发下的发射光谱图,由图可知,发射光谱出现900~1100nm波段的近红外发光,所制得材料有效的将紫外光转换为近红外发光;参见附图4,它是按本实施例技术方案制备的样品在1000nm波长监控下的发光衰减曲线,计算可得衰减时间为0.034ns。 Referring to accompanying drawing 2, it is the excitation spectrum under 1000nm wavelength monitoring of the sample prepared according to the technical scheme of this embodiment; See accompanying drawing 3, it is the emission spectrum figure under the excitation of 355nm wavelength of the sample prepared according to the technical scheme of this embodiment , as can be seen from the figure, the emission spectrum appears near-infrared luminescence in the 900-1100nm band, and the prepared material effectively converts ultraviolet light into near-infrared luminescence; see accompanying drawing 4, which is the sample prepared according to the technical scheme of this embodiment at 1000nm Luminescence decay curve under wavelength monitoring, the calculated decay time is 0.034ns.
实施例2: Example 2:
制备Na5Lu0.65Yb0.35(WO4)4 Preparation of Na 5 Lu 0.65 Yb 0.35 (WO 4 ) 4
根据化学式Na5Lu0.65Yb0.35(WO4)4中各元素的化学计量比,分别称取碳酸钠Na2CO3:1.33克,氧化镥Lu2O3:0.65克,氧化镱Yb2O3:0.35克,钨酸铵(NH4)10W12O41:5.07克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛第一次煅烧,温度为350℃,煅烧时间2小时,然后冷至室温,取出样品。在第一次煅烧的原料之后,再次把混合料充分混合研磨均匀,在空气气氛之中,600℃下第二次烧结,烧结时间是7小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula Na 5 Lu 0.65 Yb 0.35 (WO 4 ) 4 , weigh sodium carbonate Na 2 CO 3 : 1.33 grams, lutetium oxide Lu 2 O 3 : 0.65 grams, ytterbium oxide Yb 2 O 3 : 0.35 g, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 g, ground in an agate mortar and mixed evenly, and then calcined for the first time in an air atmosphere at a temperature of 350°C for 2 hours, and then Cool to room temperature and remove the sample. After the first calcination of the raw materials, the mixture is fully mixed and ground evenly again, and the second sintering is carried out at 600°C in an air atmosphere. The sintering time is 7 hours, cooled to room temperature, taken out and fully ground to obtain powder Tungstate Rare Earth Photoconversion Materials.
本实施例技术方案制备样品的X射线粉末衍射图谱与附图1一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of accompanying drawing 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
实施例3: Example 3:
制备Li5Gd0.7Yb0.3(WO4)4 Preparation of Li 5 Gd 0.7 Yb 0.3 (WO 4 ) 4
根据化学式Li5Gd0.7Yb0.3(WO4)4中各元素的化学计量比,分别称取碳酸锂Li2CO3:0.93克,氧化钆Gd2O3:0.54克,氧化镱Yb2O3:0.29克,钨酸铵(NH4)10W12O41:5.07克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛第一次煅烧,温度为300℃,煅烧时间5小时,然后冷至室温,取出样品。在第一次煅烧的原料之后,再次把混合料充分混合研磨均匀,在空气气氛之中,550℃下第二次烧结,烧结时间是9小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula Li 5 Gd 0.7 Yb 0.3 (WO 4 ) 4 , weigh lithium carbonate Li 2 CO 3 : 0.93 g, gadolinium oxide Gd 2 O 3 : 0.54 g, ytterbium oxide Yb 2 O 3 : 0.29 g, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 g, ground in an agate mortar and mixed evenly, then choose the air atmosphere for the first calcination, the temperature is 300 ° C, the calcination time is 5 hours, and then Cool to room temperature and remove the sample. After the first calcination of the raw materials, the mixture is fully mixed and ground evenly again, and the second sintering is carried out at 550°C in an air atmosphere. The sintering time is 9 hours, cooled to room temperature, taken out and fully ground to obtain powder. Tungstate Rare Earth Photoconversion Materials.
本实施例技术方案制备样品的X射线粉末衍射图谱与实施例1中制备的样品一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of the sample prepared in Example 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
实施例4: Example 4:
制备K5Y0.8Yb0.2(WO4)4 Preparation of K 5 Y 0.8 Yb 0.2 (WO 4 ) 4
根据化学式K5Y0.8Yb0.2(WO4)4中各元素的化学计量比,分别称取碳酸钾K2CO3:1.73克,氧化钇Y2O3:0.45克,硝酸镱Yb(NO3)3:0.36克,钨酸铵(NH4)10W12O41:5.07克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛第一次煅烧,温度为400℃,煅烧时间9小时,然后冷至室温,取出样品。在第一次煅烧的原料之后,再次把混合料充分混合研磨均匀,在空气气氛之中,700℃下第二次烧结,烧结时间是8小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula K 5 Y 0.8 Yb 0.2 (WO 4 ) 4 , respectively weigh potassium carbonate K 2 CO 3 : 1.73 grams, yttrium oxide Y 2 O 3 : 0.45 grams, ytterbium nitrate Yb (NO 3 ) 3 : 0.36 g, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 g, ground in an agate mortar and mixed evenly, then select the air atmosphere for the first calcination, the temperature is 400 ℃, and the calcination time is 9 hours , then cooled to room temperature, and the samples were taken out. After the first calcination of the raw materials, the mixture is fully mixed and ground evenly again, and the second sintering is carried out at 700°C in the air atmosphere. The sintering time is 8 hours, cooled to room temperature, taken out and fully ground to obtain powder Tungstate Rare Earth Photoconversion Materials.
本实施例技术方案制备样品的X射线粉末衍射图谱与实施例1中制备的样品一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of the sample prepared in Example 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
实施例5: Example 5:
制备K5La0.85Yb0.15(WO4)4 Preparation of K 5 La 0.85 Yb 0.15 (WO 4 ) 4
根据化学式K5La0.85Yb0.15(WO4)4中各元素的化学计量比,分别称取碳酸钾K2CO3:1.73克,氧化镧La2O3:0.69克,氧化镱Yb2O3:0.15克,氧化钨WO3:4.637克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛第一次煅烧,温度为450℃,煅烧时间5小时,然后冷至室温,取出样品。在第一次煅烧的原料之后,再次把混合料充分混合研磨均匀,在空气气氛之中,800℃下第二次烧结,烧结时间是7小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula K 5 La 0.85 Yb 0.15 (WO 4 ) 4 , we weigh potassium carbonate K 2 CO 3 : 1.73 grams, lanthanum oxide La 2 O 3 : 0.69 grams, ytterbium oxide Yb 2 O 3 : 0.15 g, tungsten oxide WO 3 : 4.637 g, ground in an agate mortar and mixed evenly, then calcined for the first time in an air atmosphere at a temperature of 450°C for 5 hours, then cooled to room temperature, and took out the sample. After the first calcination of the raw materials, the mixture is fully mixed and ground evenly again, and the second sintering is carried out at 800°C in an air atmosphere. The sintering time is 7 hours, cooled to room temperature, taken out and fully ground to obtain powder. Tungstate Rare Earth Photoconversion Materials.
本实施例技术方案制备样品的X射线粉末衍射图谱与实施例1中制备的样品一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of the sample prepared in Example 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
实施例6: Embodiment 6:
制备Na5Gd0.9Yb0.1(WO4)4 Preparation of Na 5 Gd 0.9 Yb 0.1 (WO 4 ) 4
根据化学式Na5Gd0.9Yb0.1(WO4)4中各元素的化学计量比,分别称取碳酸钠Na2CO3:1.33克,氧化钆Gd2O3:0.82克,氧化镱Yb2O3:0.098克,钨酸铵(NH4)10W12O41:5.07克,将称取的碳酸钠Na2CO3、氧化钆Gd2O3和氧化镱Yb2O3分别溶于稀硝酸溶液中,将称取的钨酸铵(NH4)10W12O41溶解于去离子水或乙醇溶液中,在各溶液中再分别加入以上各药品质量2.0wt%的柠檬酸,于80℃搅拌;然后将上述溶液缓慢混合且不断地搅拌2小时;静置,烘干,得到蓬松的前躯体;将前躯体置于马弗炉中煅烧,烧结温度为800℃,煅烧时间为2小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula Na 5 Gd 0.9 Yb 0.1 (WO 4 ) 4 , weigh sodium carbonate Na 2 CO 3 : 1.33 grams, gadolinium oxide Gd 2 O 3 : 0.82 grams, ytterbium oxide Yb 2 O 3 : 0.098 grams, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 grams, the weighed sodium carbonate Na 2 CO 3 , gadolinium oxide Gd 2 O 3 and ytterbium oxide Yb 2 O 3 were dissolved in dilute nitric acid solution Dissolve the weighed ammonium tungstate (NH 4 ) 10 W 12 O 41 in deionized water or ethanol solution, and then add 2.0wt% citric acid of the above-mentioned medicines to each solution, and stir at 80°C ; Then slowly mix the above solution and stir continuously for 2 hours; let it stand and dry to obtain a fluffy precursor; place the precursor in a muffle furnace for calcination, the sintering temperature is 800 ° C, the calcination time is 2 hours, and cool to room temperature, taken out and fully ground to obtain a powdery tungstate rare earth light conversion material.
本实施例技术方案制备样品的X射线粉末衍射图谱与实施例1中制备的样品一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of the sample prepared in Example 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
实施例7: Embodiment 7:
制备K5Tm0.95Yb0.05(WO4)4 Preparation of K 5 Tm 0.95 Yb 0.05 (WO 4 ) 4
根据化学式K5Tm0.95Yb0.05(WO4)4中各元素的化学计量比,分别称取碳酸钾K2CO3:1.73克,氧化铥Tm2O3:0.92克,氧化镱Yb2O3:0.049克,钨酸铵(NH4)10W12O41:5.07克,将称取的碳酸钾K2CO3、氧化铥Tm2O3和氧化镱Yb2O3分别溶于稀硝酸溶液中,将称取的钨酸铵(NH4)10W12O41溶解于去离子水或乙醇溶液中,在各溶液中再分别加入以上各药品质量的0.5wt%的草酸,于50℃搅拌;然后将上述溶液缓慢混合且不断地搅拌1小时;静置,烘干,得到蓬松的前躯体;将前躯体置于马弗炉中煅烧,烧结温度为550℃,煅烧时间为15小时,冷却至室温,取出后并充分研磨即得到粉末状钨酸盐稀土光转换材料。 According to the stoichiometric ratio of each element in the chemical formula K 5 Tm 0.95 Yb 0.05 (WO 4 ) 4 , respectively weigh potassium carbonate K 2 CO 3 : 1.73 grams, thulium oxide Tm 2 O 3 : 0.92 grams, ytterbium oxide Yb 2 O 3 : 0.049 grams, ammonium tungstate (NH 4 ) 10 W 12 O 41 : 5.07 grams, the weighed potassium carbonate K 2 CO 3 , thulium oxide Tm 2 O 3 and ytterbium oxide Yb 2 O 3 were dissolved in dilute nitric acid solution Dissolve the weighed ammonium tungstate (NH 4 ) 10 W 12 O 41 in deionized water or ethanol solution, add 0.5wt% oxalic acid of the above drug quality to each solution, and stir at 50°C ; then slowly mix the above solution and stir continuously for 1 hour; let it stand and dry to obtain a fluffy precursor; place the precursor in a muffle furnace for calcination, the sintering temperature is 550 ° C, the calcination time is 15 hours, and cool to room temperature, taken out and fully ground to obtain a powdery tungstate rare earth light conversion material.
本实施例技术方案制备样品的X射线粉末衍射图谱与实施例1中制备的样品一致。其激发光谱和发射光谱分别与附图2和附图3相似,衰减时间与实施例1中制备的样品一致。 The X-ray powder diffraction pattern of the sample prepared by the technical scheme of this embodiment is consistent with that of the sample prepared in Example 1. Its excitation spectrum and emission spectrum are similar to accompanying drawings 2 and 3 respectively, and the decay time is consistent with the sample prepared in Example 1.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310081421.7A CN103113892B (en) | 2013-03-14 | 2013-03-14 | A kind of tungstate rare earth light conversion material, preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310081421.7A CN103113892B (en) | 2013-03-14 | 2013-03-14 | A kind of tungstate rare earth light conversion material, preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103113892A CN103113892A (en) | 2013-05-22 |
CN103113892B true CN103113892B (en) | 2016-02-03 |
Family
ID=48412312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310081421.7A Expired - Fee Related CN103113892B (en) | 2013-03-14 | 2013-03-14 | A kind of tungstate rare earth light conversion material, preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103113892B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108193274A (en) * | 2017-11-29 | 2018-06-22 | 宁波大学 | A kind of double tungstates scintillation crystal and preparation method thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103361050A (en) * | 2013-06-17 | 2013-10-23 | 青岛农业大学 | A kind of Sb3+ activated LED green phosphor and preparation method thereof |
CN104277850A (en) * | 2014-09-01 | 2015-01-14 | 陕西科技大学 | Yellow fluorescent powder for white LED (light-emitting diode) and preparation method of yellow fluorescent powder |
CN104560038A (en) * | 2014-12-10 | 2015-04-29 | 浙江工业大学 | Double tungstate based red fluorescent powder and preparation method thereof |
CN105664920A (en) * | 2016-01-30 | 2016-06-15 | 苏州大学 | Cs2W3O10 (cesium tungstate) powder, preparation method and application thereof |
CN108927140B (en) * | 2018-04-04 | 2020-11-06 | 山东大学 | Rare earth doped bismuth vanadate material with up-conversion single red light emission and photocatalysis dual-function characteristics and preparation method and application thereof |
CN110878426A (en) * | 2019-11-28 | 2020-03-13 | 中国科学院上海硅酸盐研究所 | A kind of cerium ion doped sodium gadolinium tungstate crystal and preparation method and application thereof |
CN111117617B (en) * | 2019-12-31 | 2021-07-06 | 同济大学 | A kind of tungstate-based up-conversion luminescence temperature sensing material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2437101A1 (en) * | 2001-01-31 | 2002-08-08 | Fundacio Urv Universitat Rovira I Virgili | Potasium ytterbium double wolframate single crystal, optionally doped, procedure for its production and applications |
CN102181287A (en) * | 2011-03-24 | 2011-09-14 | 哈尔滨工业大学 | Ytterbium and thulium double-doped calcium tungstate polycrystalline powder blue upconversion material and preparation method thereof |
-
2013
- 2013-03-14 CN CN201310081421.7A patent/CN103113892B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2437101A1 (en) * | 2001-01-31 | 2002-08-08 | Fundacio Urv Universitat Rovira I Virgili | Potasium ytterbium double wolframate single crystal, optionally doped, procedure for its production and applications |
CN102181287A (en) * | 2011-03-24 | 2011-09-14 | 哈尔滨工业大学 | Ytterbium and thulium double-doped calcium tungstate polycrystalline powder blue upconversion material and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
Cooperative processes in KYb(WO4)2 crystal doped with Eu3+ and Tb3+ ions;W. Strek等;《Journal of Luminescence》;20001231;第87-89卷;999-1001 * |
Luminescent layers for enhanced silicon solar cell performance: Down-conversion;B.S. Richards;《Solar Energy Materials & Solar Cells》;20061231;第90卷;1189–1207 * |
Synthesis and luminescence properties of Yb3+ and Er3+ doped KLa(WO4)2 nanoparticles;Meng Chen等;《Journal of Solid State Chemistry》;20101231;第183卷;2161–2165 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108193274A (en) * | 2017-11-29 | 2018-06-22 | 宁波大学 | A kind of double tungstates scintillation crystal and preparation method thereof |
CN108193274B (en) * | 2017-11-29 | 2020-06-16 | 宁波大学 | Compound tungstate scintillation crystal and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103113892A (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103113892B (en) | A kind of tungstate rare earth light conversion material, preparation method and application | |
CN103421511B (en) | Bismuth oxyhalide light-emitting material with doped rare earth ions and preparation method thereof | |
CN103215038B (en) | A kind ofly under ultraviolet excitation, realize near-infrared luminous molybdate material, preparation method and application | |
Zhang et al. | Efficient near-infrared quantum cutting by Ce3+-Yb3+ couple in GdBO3 phosphors | |
CN111423881A (en) | Cr (chromium)3+Doped near-infrared luminescent material and preparation method thereof | |
CN103224790B (en) | Material for conversion of ultraviolet light and emission of near-infrared light and its preparation method and use | |
CN103275716B (en) | Erbium-ytterbium co-doped tungstate upconversion luminescent material, preparation method and application of material | |
CN104673314B (en) | Vanadate-based down-conversion luminescent material and preparation method thereof | |
CN103756679B (en) | Upconversion material capable of being excited by wide-spectrum incoherent light as well as preparation method of upconversion material | |
CN102417815A (en) | A kind of rare earth tungstate phosphor matrix and its preparation method and application | |
CN102504819B (en) | A kind of preparation method of YVO4-based up-conversion luminescent microspheres | |
CN104789220B (en) | Material capable of realizing ultraviolet light conversion and near infrared light emission and preparation method and application thereof | |
CN103849401B (en) | Eu 3+ion doping gadolinium fluoride/controllable luminous powder, preparation method thereof of gadolinium fluoride sodium crystalline phase | |
CN104673308B (en) | Material for realizing near-infrared luminescence under ultraviolet excitation and preparation method thereof | |
CN107312539B (en) | Yb (Yb)3+Ion-activated near-infrared luminescent vanadium silicate material and preparation method and application thereof | |
CN101962545B (en) | Alkaline earth molybdate rare earth light conversion material and preparation method thereof | |
CN102424750A (en) | Tungstate near-infrared quantum cutting material and preparation method and application thereof | |
CN105255496B (en) | A kind of up-conversion luminescent material and preparation method thereof | |
CN102585811B (en) | Fluoroaluminate near-infrared quantum cutting material, and preparation method and application thereof | |
CN103421508B (en) | Fluorescent powder for solar cell and preparation method thereof | |
CN106675561A (en) | Molybdenum vanadate inorganic material and preparation method and application thereof | |
CN103849388A (en) | High-efficiency ytterbium-doped molybdenum/tungstate light conversion material, and preparation method and applications thereof | |
CN106753376A (en) | A kind of near-infrared luminous cerium Yb co-doped yttrium aluminium garnet fluorescent material | |
CN111484848A (en) | Near-infrared luminescent material and preparation method thereof | |
CN108192600A (en) | A kind of Eu-Nd-Yb codopes strontium aluminate efficient wide-spectrum quantum-cutting luminescent material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: Suzhou City, Jiangsu province 215137 Xiangcheng District Ji Road No. 8 Patentee after: Soochow University Address before: 215123 Suzhou City, Suzhou Province Industrial Park, No. love road, No. 199 Patentee before: Soochow University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160203 Termination date: 20190314 |