CN103113602A - Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film - Google Patents
Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film Download PDFInfo
- Publication number
- CN103113602A CN103113602A CN2013100201701A CN201310020170A CN103113602A CN 103113602 A CN103113602 A CN 103113602A CN 2013100201701 A CN2013100201701 A CN 2013100201701A CN 201310020170 A CN201310020170 A CN 201310020170A CN 103113602 A CN103113602 A CN 103113602A
- Authority
- CN
- China
- Prior art keywords
- pvdf
- phase
- crystallization
- crystal
- cylindrulite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002033 PVDF binder Substances 0.000 title abstract description 35
- 239000010409 thin film Substances 0.000 title description 5
- 239000013078 crystal Substances 0.000 claims abstract description 81
- 238000002425 crystallisation Methods 0.000 claims abstract description 41
- 230000008025 crystallization Effects 0.000 claims abstract description 37
- 229920009405 Polyvinylidenefluoride (PVDF) Film Polymers 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims abstract description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000012512 characterization method Methods 0.000 claims description 8
- 238000002329 infrared spectrum Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims 8
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims 4
- 238000010438 heat treatment Methods 0.000 claims 4
- 238000009413 insulation Methods 0.000 claims 4
- 238000001907 polarising light microscopy Methods 0.000 claims 4
- 230000008698 shear stress Effects 0.000 claims 4
- 238000010008 shearing Methods 0.000 claims 4
- 230000035882 stress Effects 0.000 claims 4
- 239000000155 melt Substances 0.000 abstract description 14
- -1 polymethylsiloxane Polymers 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 17
- 230000006911 nucleation Effects 0.000 description 7
- 238000010899 nucleation Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- BAAVRTJSLCSMNM-CMOCDZPBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]pentanedioic acid Chemical compound C([C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 BAAVRTJSLCSMNM-CMOCDZPBSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 108010032276 tyrosyl-glutamyl-tyrosyl-glutamic acid Proteins 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法,步骤为:1)首先把聚偏氟乙烯PVDF的溶液浇铸薄膜加热保温消除热历史,将聚偏氟乙烯PVDF薄膜以50℃/min的速率迅速降温到160~170℃;2)利用聚甲基硅氧烷板施加压力给熔体施加剪切应力,在160~170℃下静置,发现在160~163℃下结晶晶型为α晶型,在该温度域下退火可发生α晶型相向γ晶型相的转变;在164~167℃下结晶晶核为α晶核,168~170℃结晶晶型为γ晶型;用偏光显微镜、扫描电镜和红外光谱仪仪器表征剪切应力场中熔体的结晶过程和结晶完成后的晶体结构,具有工艺简单,简便易行,解决了等温结晶无法得到纯γ相PVDF薄膜的问题,可制备高纯度、高取向度并具有优异热力学性能的γ相PVDF薄膜。A method for preparing a highly oriented γ-phase polyvinylidene fluoride PVDF film, the steps are: 1) Firstly, heat and keep the solution-cast film of polyvinylidene fluoride PVDF to eliminate the heat history, and heat the polyvinylidene fluoride PVDF film at 50°C/min Rapidly cool down to 160-170°C; 2) Use a polymethylsiloxane plate to apply pressure to the melt to apply shear stress, stand at 160-170°C, and find that the crystallization form is α at 160-163°C Crystal form, annealing in this temperature range can change from α-crystal phase to γ-crystal phase; at 164-167°C, the crystal nucleus is α-crystal nucleus, and at 168-170°C, the crystallization form is γ-crystal form; Microscope, scanning electron microscope and infrared spectrometer are used to characterize the crystallization process of the melt in the shear stress field and the crystal structure after the crystallization is completed. The process is simple and easy, and it solves the problem that the pure γ-phase PVDF film cannot be obtained by isothermal crystallization. Preparation of γ-phase PVDF film with high purity, high degree of orientation and excellent thermodynamic properties.
Description
技术领域 technical field
本发明属于聚偏氟乙烯PVDF薄膜制备技术领域,具体涉及一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法。 The invention belongs to the technical field of polyvinylidene fluoride PVDF film preparation, and in particular relates to a method for preparing highly oriented γ-phase polyvinylidene fluoride PVDF film.
背景技术 Background technique
聚偏氟乙烯PVDF兼备通用树脂和氟树脂的特性,除具有良好的耐高温性、耐化学腐蚀性、耐氧化性、耐射线辐射性、耐候性能外,还具有压电性、介电性、热电性等特殊性能,是目前含氟塑料膜中产量名列第二位的产品。 Polyvinylidene fluoride PVDF combines the characteristics of general-purpose resins and fluororesins. In addition to good high temperature resistance, chemical corrosion resistance, oxidation resistance, radiation resistance, and weather resistance, it also has piezoelectricity, dielectricity, Special properties such as pyroelectricity are currently the second largest products in the output of fluorine-containing plastic films.
PVDF多样化的使用性能与其复杂多变的晶型结构(α、β、γ、δ和ε相等)有密切关系,并且各种晶型晶体之间可在一定条件下相互转变。但是,人普遍关注的是α、β、γ三种晶型。由熔融结晶得到的α晶型属单斜晶系,分子链为TGTG'构象,由于分子链偶极子极性相反不显极性使得该晶型的PVDF只能作为普通塑料使用。β晶型属正交晶系,分子链为全反式TTT构象,极性的锯齿链构象使得该晶型的PVDF显示较强电性能。PVDF的另一重要晶型为γ晶型,其分子链为TTTGTTTG'构象,该晶型的晶体与β晶体一样也具有铁电效应,作为热释电材料在高新技术领域具有很大的应用价值。 The diverse performance of PVDF is closely related to its complex and variable crystal structure (α, β, γ, δ, and ε are equal), and various crystal forms can be transformed into each other under certain conditions. However, people generally pay attention to the three crystal forms of α, β, and γ. The α crystal form obtained by melt crystallization belongs to the monoclinic crystal system, and the molecular chain is in the TGTG' conformation. Since the dipole polarity of the molecular chain is opposite and does not show polarity, PVDF of this crystal form can only be used as an ordinary plastic. The β crystal form belongs to the orthorhombic crystal system, the molecular chain is an all-trans TTT conformation, and the polar zigzag chain conformation makes the PVDF of this crystal form show strong electrical properties. Another important crystal form of PVDF is the γ crystal form, and its molecular chain is in the TTTGTTTG' conformation. The crystal of this crystal form has the same ferroelectric effect as the β crystal, and has great application value in the high-tech field as a pyroelectric material. .
但是,γ晶相需要较小的过冷度才能得到,通过熔融高温结晶或高温退火方法,即使在很小的过冷度下由于较低的成核与生长速率,也得不到大量的γ晶相,且α晶相也大量存在;通过阳极氧化铝模板溶液浸润法成功制备出了γ型的PVDF纳米阵列晶须的方法,由于技术要求高,价格昂贵,使用价值不大;而添加少量的诸如KBr等成核剂获得的γ薄膜,结晶度与熔点较低。还有一些如微压印技术等制备γ薄膜方法也存在上述方法的缺点。基于此,本发明旨在探讨简便易行且高γ相含量PVDF薄膜的制备方法。 However, the γ crystal phase needs a small degree of undercooling to be obtained. Through melting high-temperature crystallization or high-temperature annealing methods, even at a small degree of undercooling due to the low nucleation and growth rates, a large amount of γ cannot be obtained. crystalline phase, and α crystalline phase also exists in large quantities; the method of successfully preparing γ-type PVDF nanoarray whiskers by anodized alumina template solution infiltration method, due to high technical requirements, high price, and little use value; and adding a small amount The gamma films obtained by nucleating agents such as KBr have low crystallinity and melting point. There are also some methods for preparing gamma thin films, such as micro-imprinting technology, which also have the disadvantages of the above-mentioned methods. Based on this, the present invention aims to explore a simple and easy preparation method of PVDF film with high γ phase content.
发明内容 Contents of the invention
为了克服上述现有技术的不足,本发明的目的是提供一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法。 In order to overcome the deficiencies of the above-mentioned prior art, the object of the present invention is to provide a method for preparing a highly oriented γ-phase polyvinylidene fluoride PVDF film.
为了实现上述目的,本发明采用的技术方案是:一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法,包括有以下步骤: In order to achieve the above object, the technical solution adopted in the present invention is: a method for preparing a highly oriented γ-phase polyvinylidene fluoride PVDF film, comprising the following steps:
1)首先把聚偏氟乙烯PVDF的溶液浇铸薄膜加热到195~205℃保温10min消除热历史,随后将聚偏氟乙烯PVDF薄膜以50 ℃/min的速率迅速降温到160~170℃; 1) First, heat the solution-cast film of polyvinylidene fluoride to 195-205°C for 10 minutes to eliminate the heat history, and then rapidly cool the polyvinylidene fluoride PVDF film to 160-170°C at a rate of 50°C/min;
2)利用聚甲基硅氧烷板施加104~105Pa压力以0.4~2.0m/s的剪切速率给熔体施加剪切应力,在160~170℃下静置48~168h,在偏光显微镜下观察剪切应力场中熔体的结晶过程和结晶完成后的晶体结构,发现在160~163℃下结晶晶型为α晶型,经过该温度域下退火可发生α晶型相向γ晶型相的转变;在164~167℃下结晶晶核为α晶核,在该温度域下多余的能量促使α晶型在生长的同时发生着向γ晶型的相转变,且相变速度大于α晶型生长速度,当相变前沿追上生长前沿,α晶型停止生长,继而开始生长γ晶型;168~170℃结晶晶型为γ晶型; 2) Use a polymethylsiloxane plate to apply a pressure of 10 4 to 10 5 Pa to apply a shear stress to the melt at a shear rate of 0.4 to 2.0 m/s, and stand at 160 to 170 °C for 48 to 168 hours, and then Observe the crystallization process of the melt in the shear stress field and the crystal structure after crystallization under a polarizing microscope. It is found that the crystallization form is α-crystal form at 160-163°C, and the α-crystal form phase to γ-form can occur after annealing in this temperature range. The transformation of the crystal form; at 164-167°C, the crystal nucleus is the α crystal nucleus. In this temperature range, the excess energy promotes the phase transformation of the α crystal form to the γ crystal form while growing, and the phase change speed Greater than the growth rate of the α crystal form, when the phase transition front catches up with the growth front, the α crystal form stops growing, and then begins to grow the γ crystal form; the crystalline form at 168-170°C is the γ crystal form;
3)对结晶后的柱晶采用红外光谱FTIR、扫描电子显微镜SEM、透射电子显微镜TEM、差示扫描量热仪DSC等表征手段分析PVDF柱晶的晶体结构和形貌,以验证柱晶的晶型。 3) Analyze the crystal structure and morphology of the columnar crystals after crystallization by infrared spectrum FTIR, scanning electron microscope SEM, transmission electron microscope TEM, differential scanning calorimeter DSC and other characterization methods to verify the crystallization of the columnar crystals. type.
本发明的有益效果是: The beneficial effects of the present invention are:
PVDF在剪切应力场中可以生成高取向度、高成核密度的柱晶。研究表明,在应力场中,熔体的成核速率显著提高。因此,当温度到接近PVDF熔点温度时,由于剪切应力场的作用,PVDF的成核速率、成核密度显著提高,其生长速率也小幅增加。当剪切密度足够高,即使过冷度很小的情况下,也能在很短的时间就能得到PVDF的柱晶薄膜。然后,将不同过冷度下结晶完成后的薄膜通过红外光谱FTIR、扫描电子显微镜SEM、透射电子显微镜TEM、差示扫描量热仪DSC表征手段研究晶体表面的形态、结构及性能,以验证柱晶的晶型。本专利最大的优点是工艺简单易行,薄膜内晶体熔点高,制备的PVDF薄膜的γ柱晶含量基本达到100%,解决了等温结晶无法得到纯γ相PVDF薄膜的问题。 PVDF can generate columnar crystals with high degree of orientation and high nucleation density in the shear stress field. Studies have shown that in the stress field, the nucleation rate of the melt is significantly increased. Therefore, when the temperature is close to the melting point of PVDF, due to the effect of the shear stress field, the nucleation rate and nucleation density of PVDF are significantly increased, and its growth rate is also slightly increased. When the shear density is high enough, PVDF columnar crystal thin films can be obtained in a short time even if the degree of undercooling is small. Then, the morphology, structure and performance of the crystal surface were studied by FTIR, scanning electron microscope SEM, transmission electron microscope TEM, and differential scanning calorimeter DSC characterization methods of the films crystallized at different degrees of supercooling to verify the column crystal form. The biggest advantage of this patent is that the process is simple and easy to implement, the crystal melting point in the film is high, and the γ-column crystal content of the prepared PVDF film basically reaches 100%, which solves the problem that the pure γ-phase PVDF film cannot be obtained by isothermal crystallization.
具体实施方式:Detailed ways:
下面结合具体实施例对本发明作进一步详细说明。 Below in conjunction with specific embodiment the present invention is described in further detail.
实施例一Embodiment one
一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法,包括有以下步骤: A method for preparing highly oriented γ-phase polyvinylidene fluoride PVDF film, comprising the following steps:
1)首先把聚偏氟乙烯PVDF的溶液浇铸薄膜加热到200℃保温10min消除热历史,随后将聚偏氟乙烯PVDF薄膜以50 ℃/min的速率迅速降温到170℃; 1) First, heat the polyvinylidene fluoride PVDF solution-cast film to 200°C for 10 minutes to eliminate the heat history, and then rapidly cool the polyvinylidene fluoride PVDF film to 170°C at a rate of 50°C/min;
2)利用聚甲基硅氧烷板施加105Pa压力以1.5m/s的剪切速率给熔体施加剪切应力,在170℃下静置96h,即可得到γ相PVDF薄膜,在偏光显微镜下观察剪切应力场中熔体的结晶过程和结晶完成后的晶体结构; 2) Use a polymethylsiloxane plate to apply a pressure of 10 5 Pa to the melt at a shear rate of 1.5m/s to apply a shear stress to the melt, and stand at 170°C for 96 hours to obtain a γ-phase PVDF film. Observe the crystallization process of the melt in the shear stress field and the crystal structure after crystallization under a microscope;
3)对结晶后的柱晶采用红外光谱FTIR、扫描电子显微镜SEM、透射电子显微镜TEM、差示扫描量热仪DSC等表征手段分析PVDF柱晶的晶体结构和形貌,以验证柱晶的晶型。 3) Analyze the crystal structure and morphology of the columnar crystals after crystallization by infrared spectrum FTIR, scanning electron microscope SEM, transmission electron microscope TEM, differential scanning calorimeter DSC and other characterization methods to verify the crystallization of the columnar crystals. type.
结果表明,在170℃结晶96h的柱晶为γ晶型,得到γ晶型的PVDF薄膜。 The results showed that the columnar crystals crystallized at 170℃ for 96h were in the γ crystal form, and a γ crystal PVDF thin film was obtained.
实施例二Embodiment two
一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法,包括有以下步骤: A method for preparing highly oriented γ-phase polyvinylidene fluoride PVDF film, comprising the following steps:
1)首先把聚偏氟乙烯PVDF的溶液浇铸薄膜加热到205℃保温10min消除热历史,随后将聚偏氟乙烯PVDF薄膜以50 ℃/min的速率迅速降温到165℃; 1) First, heat the solution-cast film of polyvinylidene fluoride to 205°C for 10 minutes to eliminate the heat history, and then rapidly cool the polyvinylidene fluoride PVDF film to 165°C at a rate of 50°C/min;
2)利用聚甲基硅氧烷板施加105Pa压力以2.0m/s的剪切速率给熔体施加剪切应力,在165℃下静置72h,即可得到γ相PVDF薄膜,在偏光显微镜下观察剪切应力场中熔体的结晶过程和结晶完成后的晶体结构; 2) Use a polymethylsiloxane plate to apply a pressure of 10 5 Pa to the melt at a shear rate of 2.0m/s to apply a shear stress to the melt, and stand at 165°C for 72 hours to obtain a γ-phase PVDF film. Observe the crystallization process of the melt in the shear stress field and the crystal structure after crystallization under a microscope;
3)对结晶后的柱晶采用红外光谱FTIR、扫描电子显微镜SEM、透射电子显微镜TEM、差示扫描量热仪DSC表征手段分析PVDF柱晶的晶体结构和形貌,以验证柱晶的晶型。 3) Analyze the crystal structure and morphology of PVDF columnar crystals by means of FTIR infrared spectroscopy, scanning electron microscope SEM, transmission electron microscope TEM, and differential scanning calorimeter DSC to verify the crystal form of columnar crystals after crystallization .
结果表明,在165℃结晶成核为α晶核,在α晶体生长时同时发生α向γ晶型的相变。当相变速率超过生长速率,α晶型停止生长,而γ晶型开始生长。结晶72h,得到全γ相的PVDF薄膜。 The results show that the crystal nucleation at 165℃ is α crystal nuclei, and the phase transformation from α to γ crystal form occurs simultaneously when the α crystal grows. When the phase transition rate exceeds the growth rate, the α crystal form stops growing and the γ crystal form begins to grow. After crystallization for 72 hours, PVDF film with full γ phase was obtained.
实施例三Embodiment Three
一种制备高取向γ相聚偏氟乙烯PVDF薄膜的方法,包括有以下步骤: A method for preparing highly oriented γ-phase polyvinylidene fluoride PVDF film, comprising the following steps:
1)首先把聚偏氟乙烯PVDF的溶液浇铸薄膜加热到195℃保温10min消除热历史,随后将聚偏氟乙烯PVDF薄膜以50 ℃/min的速率迅速降温到160℃; 1) First, heat the polyvinylidene fluoride PVDF solution-cast film to 195°C for 10 minutes to eliminate the heat history, and then rapidly cool the polyvinylidene fluoride PVDF film to 160°C at a rate of 50°C/min;
2)利用聚甲基硅氧烷板施加105Pa压力以0.6m/s的剪切速率给熔体施加剪切应力,在160℃下静置48h,即可得到α相PVDF薄膜,结晶2天后继续在160℃温度下退火120h后,得到α相相变后的γ相薄膜,在偏光显微镜下观察剪切应力场中熔体的结晶过程和结晶完成后的晶体结构; 2) Use a polymethylsiloxane plate to apply a pressure of 10 5 Pa to the melt at a shear rate of 0.6m/s to apply a shear stress to the melt, and stand at 160°C for 48 hours to obtain an α-phase PVDF film with a crystallization of 2 After continuing to anneal at 160°C for 120 hours, a γ-phase thin film after α phase transition was obtained, and the crystallization process of the melt in the shear stress field and the crystal structure after crystallization were observed under a polarizing microscope;
3)对结晶后的柱晶采用红外光谱FTIR、扫描电子显微镜SEM、透射电子显微镜TEM、差示扫描量热仪DSC等表征手段分析PVDF柱晶的晶体结构和形貌,以验证柱晶的晶型。 3) Analyze the crystal structure and morphology of the columnar crystals after crystallization by infrared spectrum FTIR, scanning electron microscope SEM, transmission electron microscope TEM, differential scanning calorimeter DSC and other characterization methods to verify the crystallization of the columnar crystals. type.
结果表明,在160℃结晶成核为α晶核,结晶48h后在该温度下退火120h天,得到α相变后的γ相PVDF薄膜,本实施例所得γ相PVDF薄膜的熔融温度比实施例1和2所得γ相PVDF薄膜的熔融温度高8~12℃左右。 The results show that crystal nucleation at 160°C is α crystal nuclei, annealing at this temperature for 120 hours after crystallization for 48 hours, and a γ phase PVDF film after α phase transformation is obtained. The melting temperature of the γ phase PVDF film obtained in this example is higher than that in the example The melting temperature of the γ-phase PVDF film obtained in 1 and 2 is about 8-12°C higher.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100201701A CN103113602A (en) | 2013-01-21 | 2013-01-21 | Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100201701A CN103113602A (en) | 2013-01-21 | 2013-01-21 | Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103113602A true CN103113602A (en) | 2013-05-22 |
Family
ID=48412026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100201701A Pending CN103113602A (en) | 2013-01-21 | 2013-01-21 | Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103113602A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103497459A (en) * | 2013-08-23 | 2014-01-08 | 陕西科技大学 | Preparation method of polyvinylidene fluoride micrometer bulb tube |
CN104877152A (en) * | 2015-05-08 | 2015-09-02 | 陕西科技大学 | Method for preparing copper-based nanometer zinc oxide-polyvinylidene fluoride composite material |
CN105540535A (en) * | 2015-12-29 | 2016-05-04 | 陕西科技大学 | Method for preparing multi-scale high-gamma-phase polyvinylidene fluoride hollow nanowires |
CN106009426A (en) * | 2016-05-26 | 2016-10-12 | 陕西科技大学 | A preparation method of MgCl2-doped ring-banded gamma-phase polyvinylidene fluoride-based composite film |
US9543322B2 (en) | 2014-09-09 | 2017-01-10 | Sabic Global Technologies B.V. | Methods for producing a thin film ferroelectric device using a two-step temperature process on an organic polymeric ferroelectric precursor material stacked between two conductive materials |
CN109694486A (en) * | 2018-11-20 | 2019-04-30 | 北京化工大学 | The preparation method of 100% γ phase PVDF thin film |
CN111205496A (en) * | 2020-02-28 | 2020-05-29 | 北京化工大学 | A kind of preparation method of polyvinylidene fluoride γ-type crystal |
CN112708154A (en) * | 2021-01-08 | 2021-04-27 | 陕西科技大学 | Nucleation method for improving polyvinylidene fluoride gamma phase |
CN113248762A (en) * | 2021-06-03 | 2021-08-13 | 陕西科技大学 | Method for rapidly preparing gamma-phase polyvinylidene fluoride film |
CN115028871A (en) * | 2022-06-22 | 2022-09-09 | 陕西科技大学 | Method for preparing oriented gamma-phase polyvinylidene fluoride film |
-
2013
- 2013-01-21 CN CN2013100201701A patent/CN103113602A/en active Pending
Non-Patent Citations (2)
Title |
---|
LOVINGER, A.J.: ""Crystallization and morphology of melt-solidified poly(vinylidene fluoride)"", 《JOURNAL OF POLYMER SCIENCE, POLYMER PHYSICS EDITION》 * |
张军英等: ""聚偏氟乙烯结晶过程的研究"", 《化工新型材料》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103497459A (en) * | 2013-08-23 | 2014-01-08 | 陕西科技大学 | Preparation method of polyvinylidene fluoride micrometer bulb tube |
US9543322B2 (en) | 2014-09-09 | 2017-01-10 | Sabic Global Technologies B.V. | Methods for producing a thin film ferroelectric device using a two-step temperature process on an organic polymeric ferroelectric precursor material stacked between two conductive materials |
CN104877152B (en) * | 2015-05-08 | 2017-07-07 | 陕西科技大学 | A kind of method for preparing copper-based nano zinc oxide polyvinylidene fluoride composite material |
CN104877152A (en) * | 2015-05-08 | 2015-09-02 | 陕西科技大学 | Method for preparing copper-based nanometer zinc oxide-polyvinylidene fluoride composite material |
CN105540535A (en) * | 2015-12-29 | 2016-05-04 | 陕西科技大学 | Method for preparing multi-scale high-gamma-phase polyvinylidene fluoride hollow nanowires |
CN105540535B (en) * | 2015-12-29 | 2017-01-25 | 陕西科技大学 | A method for preparing multi-scale high-γ-phase polyvinylidene fluoride hollow nanowires |
CN106009426A (en) * | 2016-05-26 | 2016-10-12 | 陕西科技大学 | A preparation method of MgCl2-doped ring-banded gamma-phase polyvinylidene fluoride-based composite film |
CN109694486A (en) * | 2018-11-20 | 2019-04-30 | 北京化工大学 | The preparation method of 100% γ phase PVDF thin film |
CN109694486B (en) * | 2018-11-20 | 2022-10-14 | 北京化工大学 | Preparation method of 100% gamma-phase PVDF film |
CN111205496A (en) * | 2020-02-28 | 2020-05-29 | 北京化工大学 | A kind of preparation method of polyvinylidene fluoride γ-type crystal |
CN112708154A (en) * | 2021-01-08 | 2021-04-27 | 陕西科技大学 | Nucleation method for improving polyvinylidene fluoride gamma phase |
CN112708154B (en) * | 2021-01-08 | 2022-06-07 | 陕西科技大学 | A nucleation method for improving polyvinylidene fluoride gamma phase |
CN113248762A (en) * | 2021-06-03 | 2021-08-13 | 陕西科技大学 | Method for rapidly preparing gamma-phase polyvinylidene fluoride film |
CN115028871A (en) * | 2022-06-22 | 2022-09-09 | 陕西科技大学 | Method for preparing oriented gamma-phase polyvinylidene fluoride film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103113602A (en) | Method for preparing high-oriented gamma phase polyvinylidene fluoride PVDF thin film | |
Zhang et al. | Crystal transitions of Nylon 11 under drawing and annealing | |
CN107354506B (en) | A kind of method for preparing ultra-flat copper single crystal thin film | |
CN104829976A (en) | Method for manufacturing composite dielectric materials from polyvinylidene fluoride and end carboxyl multi-walled carbon nano-tubes | |
Segawa et al. | Low-temperature crystallization of oriented ZnO film using seed layers prepared by sol–gel method | |
CN102875938A (en) | Polar crystal-form polyvinylidene fluoride and preparation method of composite thereof | |
CN105540535B (en) | A method for preparing multi-scale high-γ-phase polyvinylidene fluoride hollow nanowires | |
CN103820767B (en) | A kind of pre-treating technology improving polysilicon membrane quality | |
CN102320670A (en) | Method for prepararing lanthanum nickelate conductive metal oxide film material | |
Xu et al. | Effects of porous nano-structure on the metal–insulator transition in VO2 films | |
CN113248762A (en) | Method for rapidly preparing gamma-phase polyvinylidene fluoride film | |
CN104425705A (en) | Polarization method of polyvinylidene fluoride thin film | |
CN109706525A (en) | A kind of bismuth-based topological insulator material and preparation method thereof | |
CN107200858A (en) | A kind of preparation method of high temperature resistant Kynoar dielectric film | |
CN103922735A (en) | Preparation method of low-temperature crystalized BZT-BCT piezoelectric film | |
CN102709182A (en) | Method for assisting nickel chloride to induce crystallization of amorphous silicon thin film in two-step annealing | |
CN117844022A (en) | Rapid preparation method of PVDF film with high gamma phase content | |
CN104630875A (en) | Novel environment-friendly and energy-saving growth method of large-sized blocky information storage ferroelectric single crystals | |
Chauhan et al. | Synthesis and characterization of ambient-processed all-inorganic perovskite CsPbBr2Cl micro-crystals and rods | |
Li et al. | W-doped VO2 (M) with tunable phase transition temperature | |
CN101710502A (en) | Method for preparing YBCO coated conductor precursor film | |
Lan et al. | Preparation and properties of ZnO thin films deposited by sol-gel technique | |
CN112745517A (en) | Preparation method of polyvinylidene fluoride film | |
CN105442035B (en) | A method of from Sn-Al alloy surface controllable preparation monocrystalline stannum nanowire/micro wire | |
CN108892172A (en) | A kind of VO of high latent heat of phase change2Raw powder's production technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130522 |