[go: up one dir, main page]

CN103112854A - Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method - Google Patents

Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method Download PDF

Info

Publication number
CN103112854A
CN103112854A CN2013100386799A CN201310038679A CN103112854A CN 103112854 A CN103112854 A CN 103112854A CN 2013100386799 A CN2013100386799 A CN 2013100386799A CN 201310038679 A CN201310038679 A CN 201310038679A CN 103112854 A CN103112854 A CN 103112854A
Authority
CN
China
Prior art keywords
carbide
porous graphite
graphite carbon
carbon
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100386799A
Other languages
Chinese (zh)
Other versions
CN103112854B (en
Inventor
付宏刚
穆光
王蕾
尹婕
于鹏
田国徽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201310038679.9A priority Critical patent/CN103112854B/en
Publication of CN103112854A publication Critical patent/CN103112854A/en
Application granted granted Critical
Publication of CN103112854B publication Critical patent/CN103112854B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一步法合成碳化物/多孔石墨碳纳米复合物的方法,它涉及一种合成碳化物/多孔石墨碳纳米复合物的方法。本发明是要解决了现有技术在制备碳化物/多孔石墨碳纳米复合物存在碳化物粒子尺寸较大、分布不均匀易团聚和比表面积小的问题。本发明的方法如下:一、将碳源和过渡金属盐类溶于溶剂中;二、加入造孔剂和石墨化催化剂;三、高温碳化;四、酸处理后干燥即可。本发明具有合成方法简单、合成的碳化物粒子尺寸较小、分布均匀并且具有较大的比表面积、对环境污染小、成本低、所需合成设备简单的优点,使之易于实现商业化。本发明应用于能量存储和转换领域。

Figure 201310038679

The invention discloses a method for synthesizing carbide/porous graphite carbon nanocomposite in one step, which relates to a method for synthesizing carbide/porous graphite carbon nanocomposite. The invention aims to solve the problems in the prior art in the preparation of the carbide/porous graphite carbon nanocomposite that the carbide particle size is large, the distribution is uneven, easy to agglomerate and the specific surface area is small. The method of the present invention is as follows: 1. dissolving the carbon source and transition metal salts in a solvent; 2. adding a pore-forming agent and a graphitization catalyst; 3. high-temperature carbonization; 4. drying after acid treatment. The invention has the advantages of simple synthesis method, small particle size of the synthesized carbide, uniform distribution and large specific surface area, little environmental pollution, low cost and simple synthesis equipment required, making it easy to realize commercialization. The invention applies to the field of energy storage and conversion.

Figure 201310038679

Description

一步法合成碳化物/多孔石墨碳纳米复合物的方法Method for one-step synthesis of carbide/porous graphitic carbon nanocomposites

技术领域technical field

本发明涉及一种合成碳化物/多孔石墨碳纳米复合物的方法。The invention relates to a method for synthesizing carbide/porous graphite carbon nanocomposite.

背景技术Background technique

目前,化石燃料能源储存量在日益的减少,并且其在燃烧的时候释放大量的有害气体,因此,人们开始高度关注新的能源的开发来解决能源和环境的问题,近年来,人们发现直接甲醇燃料电池是一种潜在可代替化石燃料的一种新能源,但是由于其阴极和阳极所用的催化剂为贵金属催化剂,现在多数以Pt基为主,众所周知,贵金属Pt的价格昂贵,储存量少,所以将其用于催化剂使之成本较高,以至于无法实现商业化,随后人们发现过渡金属碳化物(钨、钼、钒)具有类铂的性质,将其用于催化剂材料可以降低Pt的用量,使得催化剂成本的降低,从而使直接甲醇燃料电池商业化成为现实。但是,目前制备碳化物(钨、钼、钒)/多孔石墨碳纳米复合物主要采用的方法:先将碳源与分子筛混合煅烧后,制备出多孔石墨化碳并且除出造孔剂,然后再将钨源(钼源或钒源)的前驱体吸附在多孔石墨碳的表面,经过微波、高温焙烧后制得碳化物(钨、钼、钒)与多孔石墨碳的复合体,然而这种制备方法合成工艺复杂,并且制得的碳化钨(钼、钒)在石墨碳上的分布不均匀易团聚,粒子尺寸较大,比表面积小,从而影响其甲醇电氧化性能,很难在商业中得到应用。At present, the energy storage capacity of fossil fuels is decreasing day by day, and they release a large amount of harmful gases when they are burned. Therefore, people have begun to pay great attention to the development of new energy sources to solve energy and environmental problems. In recent years, it has been found that direct methanol Fuel cells are a new energy source that can potentially replace fossil fuels. However, because the catalysts used in the cathode and anode are noble metal catalysts, most of them are based on Pt. Its use in catalysts made it too expensive to be commercialized, and then it was found that transition metal carbides (tungsten, molybdenum, vanadium) have platinum-like properties, and their use in catalyst materials can reduce the amount of Pt used. The reduction of the cost of the catalyst makes the commercialization of the direct methanol fuel cell a reality. However, at present, the main method for preparing carbide (tungsten, molybdenum, vanadium)/porous graphitic carbon nanocomposites is: first mix and calcinate the carbon source and molecular sieve, prepare porous graphitized carbon and remove the pore-forming agent, and then The precursor of tungsten source (molybdenum source or vanadium source) is adsorbed on the surface of porous graphite carbon, and after microwave and high-temperature roasting, a composite of carbide (tungsten, molybdenum, vanadium) and porous graphite carbon is prepared. However, this preparation The synthesis process of the method is complex, and the distribution of the prepared tungsten carbide (molybdenum, vanadium) on the graphite carbon is uneven and easy to agglomerate, the particle size is large, and the specific surface area is small, thereby affecting its methanol electrooxidation performance, and it is difficult to obtain in commerce. application.

发明内容Contents of the invention

本发明是要解决现有技术制备碳化物/多孔石墨碳纳米的复合物存在碳化钨分布不均匀,粒子尺寸较大,比表面积小的问题;而提供了一步法合成碳化物/多孔石墨碳纳米复合物的方法。The present invention aims to solve the problem of uneven distribution of tungsten carbide, larger particle size and small specific surface area in the compound of carbide/porous graphite carbon nanometer prepared in the prior art; and provides a one-step synthesis of carbide/porous graphite carbon nanometer Composite method.

本发明一步法合成碳化物/多孔石墨碳纳米复合物的方法,是由下述步骤完成的:一、将质量比为10∶2的碳源和过渡金属盐类溶于溶剂中,然后加入造孔剂,再加入石墨化催化剂,干燥,得到前驱体;其中碳源和溶剂的质量体积比为1∶(5~30),碳源和造孔剂的质量体积比为1∶(1~10),碳源与石墨催化剂的质量比为1∶(0.5~5),其中过渡金属盐类为钨源、钼源或钒源;二、在惰性气体保护的条件下,由室温升至500~1100℃,升温速度为2~20℃/min,然后对步骤一的前驱体进行热处理0.5~10h,得到预产物;三、将步骤二得到的预产物研磨,再进行酸处理,然后用蒸馏水洗涤至pH为6~8,再在60~120℃条件下烘干干燥4~12h,得到碳化物/多孔石墨碳纳米复合物,即完成一步法合成碳化物/多孔石墨碳纳米复合物的方法。The method for the present invention's one-step synthetic carbide/porous graphite carbon nanocomposite is completed by the following steps: one, the carbon source and the transition metal salts are dissolved in a solvent with a mass ratio of 10:2, and then added Pore agent, add graphitization catalyst again, dry, obtain precursor; Wherein the mass volume ratio of carbon source and solvent is 1: (5~30), the mass volume ratio of carbon source and pore forming agent is 1: (1~10 ), the mass ratio of carbon source to graphite catalyst is 1: (0.5~5), wherein the transition metal salts are tungsten source, molybdenum source or vanadium source; 2. Under the condition of inert gas protection, the temperature rises from room temperature to 500 ~1100°C, the heating rate is 2~20°C/min, and then heat-treat the precursor in step 1 for 0.5~10 hours to obtain the pre-product; 3, grind the pre-product obtained in step 2, then acid-treat, and then use distilled water Wash until the pH is 6-8, and then dry at 60-120°C for 4-12 hours to obtain a carbide/porous graphite carbon nanocomposite, which is a one-step method for synthesizing a carbide/porous graphite carbon nanocomposite .

本发明的工艺简单,碳化物在石墨碳上分布均匀,粒子尺寸小,并且由于本发明的碳源来源广泛且价廉,降低了生产成本,并且对环境污染小,所需设备简单,易于实现商业化。本发明的产品具有类铂催化剂性质,同时还可以耐一氧化碳中毒,因此可以作为直接甲醇燃料电池的电极材料。The process of the present invention is simple, the carbides are evenly distributed on the graphite carbon, and the particle size is small, and because the carbon source of the present invention has a wide range of sources and is cheap, the production cost is reduced, and the environmental pollution is small, the required equipment is simple, and it is easy to implement commercialize. The product of the invention has platinum-like catalyst properties, and can resist carbon monoxide poisoning simultaneously, so it can be used as an electrode material for a direct methanol fuel cell.

附图说明Description of drawings

图1是试验制备的碳化钨/多孔石墨碳纳米复合物的纯相碳化钨纳米粒子的低倍透射电子显微镜照片;Fig. 1 is the low magnification transmission electron micrograph of the pure phase tungsten carbide nanoparticles of the tungsten carbide/porous graphite carbon nanocomposite prepared by the test;

图2是试验制备的碳化钨/多孔石墨碳纳米复合物的纯相碳化钨纳米粒子的高倍透射电子显微镜照片;Fig. 2 is the high-magnification transmission electron micrograph of the pure phase tungsten carbide nanoparticles of the tungsten carbide/porous graphite carbon nanocomposite prepared by the test;

图3是试验制备的碳化钨/多孔石墨碳纳米复合物负载10%Pt和市售Pt/C的循环伏安图;其中a和c为市售石墨碳负载Pt的循环伏安图,b和d为试验制备的碳化钨/多孔石墨碳纳米复合物负载10%Pt的循环伏安图。Fig. 3 is the cyclic voltammogram of experimentally prepared tungsten carbide/porous graphite carbon nanocomposites loaded with 10%Pt and commercially available Pt/C; wherein a and c are the cyclic voltammograms of commercially available graphite carbon loaded Pt, b and d is the cyclic voltammogram of the experimentally prepared tungsten carbide/porous graphite carbon nanocomposite loaded with 10% Pt.

具体实施方式Detailed ways

具体实施方式一:本实施方式一步法合成碳化物/多孔石墨碳纳米复合物的方法,是由下述步骤完成的:一、将质量比为10∶2的碳源和过渡金属盐类溶于溶剂中,然后加入造孔剂,再加入石墨化催化剂,干燥,得到前驱体;其中碳源和溶剂的质量体积比为1∶(5~30),碳源和造孔剂的质量体积比为1∶(1~10),碳源与石墨催化剂的质量比为1∶(0.5~5),其中过渡金属盐类为钨源、钼源或钒源;二、在惰性气体保护的条件下,由室温升至500~1100℃,升温速度为2~20℃/min,然后对步骤一的前驱体进行热处理0.5~10h,得到预产物;三、将步骤二得到的预产物研磨,再进行酸处理,然后用蒸馏水洗涤至pH为6~8,再在60~120℃条件下烘干干燥4~12h,得到碳化物/多孔石墨碳纳米复合物,即完成一步法合成碳化物/多孔石墨碳纳米复合物的方法。Specific embodiment one: the method for synthesizing carbide/porous graphite carbon nanocomposites in one step in this embodiment is completed by the following steps: one, the carbon source and transition metal salts are dissolved in the mass ratio of 10:2 In solvent, then add pore forming agent, then add graphitization catalyst, dry, obtain precursor; Wherein the mass volume ratio of carbon source and solvent is 1: (5~30), the mass volume ratio of carbon source and pore forming agent is 1: (1 ~ 10), the mass ratio of carbon source and graphite catalyst is 1: (0.5 ~ 5), wherein the transition metal salts are tungsten source, molybdenum source or vanadium source; 2. Under the condition of inert gas protection, From room temperature to 500-1100°C, the temperature rise rate is 2-20°C/min, and then heat-treat the precursor in step 1 for 0.5-10 hours to obtain the pre-product; 3. Grind the pre-product obtained in step 2, and then carry out Acid treatment, and then washed with distilled water until the pH is 6-8, and then dried at 60-120°C for 4-12 hours to obtain carbide/porous graphite carbon nanocomposites, that is, to complete the one-step synthesis of carbide/porous graphite carbon nanocomposites approach.

本实施方式的工艺简单,碳化物在石墨碳上分布均匀,粒子尺寸小,并且由于本实施方式的碳源来源广泛且价廉,降低了生产成本,并且对环境污染小,所需设备简单,易于实现商业化。本实施方式的产品具有类铂催化剂性质,同时还可以耐一氧化碳中毒,因此可以作为直接甲醇燃料电池的电极材料。The process of this embodiment is simple, the carbides are evenly distributed on the graphite carbon, and the particle size is small, and because the carbon source of this embodiment has a wide range of sources and is cheap, the production cost is reduced, and the environmental pollution is small, and the required equipment is simple. Ease of commercialization. The product of this embodiment has platinum-like catalyst properties and can also resist carbon monoxide poisoning, so it can be used as an electrode material for a direct methanol fuel cell.

具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中的碳源为农作物的提取物、高分子聚合物或贝壳提取物,其中农作物的提取物为葡萄糖、蔗糖、柠檬酸、蔗糖、果糖、麦芽糖、草酸、酒石酸或淀粉;高分子聚合物为聚苯乙烯、聚丙烯酰胺、聚糠醇、聚亚胺、聚氨酯、聚氨基葡萄糖、聚乙烯酸甲酯和聚苯胺中的一种或其中几种按任意比混合的混合物;贝壳提取物为壳聚糖或甲壳素。其它步骤及参数与具体实施方式一相同。Specific embodiment two: the difference between this embodiment and specific embodiment one is: the carbon source in step one is the extract of crops, high molecular polymer or shell extract, wherein the extract of crops is glucose, sucrose, citric acid , sucrose, fructose, maltose, oxalic acid, tartaric acid or starch; the polymer is one of polystyrene, polyacrylamide, polyfurfuryl alcohol, polyimide, polyurethane, polyglucosamine, polyvinyl acid methyl ester and polyaniline or a mixture of several of them in any ratio; the shell extract is chitosan or chitin. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中的钨源为H2W6O19、H3PW12O40、H3SiW12O40、H4W10O32、(NH4)6W7O24、Na2WO4、Na2W6O19、WCl6、Na3PW12O40、Na3SiW12O40、Na4W10O32、K2W6O19、K3PW12O40、K3SiW12O40或K4W10O32;钼源为H2Mo6O19、H3PMo12O40、H3SiMo12O40、H4Mo10O32、(NH4)6Mo7O24、Na2MoO4、Na2Mo6O19、Na3PMo12O40、Na3SiMo12O40、Na4Mo10O32、K2Mo6O19、K3PMo12O40、K3SiMo12O40或K4Mo10O32;钒源为:HVO3、H3VO4、H4V2O7、H3V3O9、NaVO3,NH4VO3,Na3VO4或(NH4)2V6O16。其它步骤及参数与具体实施方式一或二相同。Embodiment 3: The difference between this embodiment and Embodiment 1 or 2 is that the tungsten source in step 1 is H 2 W 6 O 19 , H 3 PW 12 O 40 , H 3 SiW 12 O 40 , H 4 W 10 O 32 , (NH 4 ) 6 W 7 O 24 , Na 2 WO 4 , Na 2 W 6 O 19 , WCl 6 , Na 3 PW 12 O 40 , Na 3 SiW 12 O 40 , Na 4 W 10 O 32 , K 2 W 6 O 19 , K 3 PW 12 O 40 , K 3 SiW 12 O 40 or K 4 W 10 O 32 ; molybdenum sources are H 2 Mo 6 O 19 , H 3 PMo 12 O 40 , H 3 SiMo 12 O 40 , H 4 Mo 10 O 32 , (NH 4 ) 6 Mo 7 O 24 , Na 2 MoO 4 , Na 2 Mo 6 O 19 , Na 3 PMo 12 O 40 , Na 3 SiMo 12 O 40 , Na 4 Mo 10 O 32 , K 2 Mo 6 O 19 , K 3 PMo 12 O 40 , K 3 SiMo 12 O 40 or K 4 Mo 10 O 32 ; vanadium source: HVO 3 , H 3 VO 4 , H 4 V 2 O 7 , H 3 V 3 O 9 , NaVO 3 , NH 4 VO 3 , Na 3 VO 4 or (NH 4 ) 2 V 6 O 16 . Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2.

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中的溶剂为水、甲醇、乙醇和异丙醇中的一种或其中几种按任意比混合的混合物。其它步骤及参数与具体实施方一至三之一相同。Embodiment 4: This embodiment differs from Embodiment 1 to Embodiment 3 in that: the solvent in step 1 is one of water, methanol, ethanol and isopropanol or a mixture of several of them mixed in any ratio. Other steps and parameters are the same as those in the specific embodiment 1 to 3.

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中的造孔剂为正硅酸乙酯、硅胶、SBA-n分子筛、CMK-n分子筛、MCM-22分子筛、Beta分子筛、USY分子筛、BEA/MOR共结晶分子筛、MFI/MOR共结晶分子筛、PS球、沸石、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、聚丙二醇与环氧乙烷的加聚物、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基硫酸钠、乙酸钙、草酸钙、碳酸钙、碳酸铵或碳酸氢铵。其它步骤及参数与具体实施方一至四之一相同。Specific embodiment five: this embodiment is different from one of specific embodiments one to four in that: the pore-forming agent in step one is tetraethyl orthosilicate, silica gel, SBA-n molecular sieve, CMK-n molecular sieve, MCM-22 molecular sieve , Beta molecular sieve, USY molecular sieve, BEA/MOR co-crystal molecular sieve, MFI/MOR co-crystal molecular sieve, PS ball, zeolite, polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, polypropylene glycol Addition polymer with ethylene oxide, polymethylmethacrylate, polyvinylpyrrolidone, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium lauryl sulfate, Calcium acetate, calcium oxalate, calcium carbonate, ammonium carbonate, or ammonium bicarbonate. Other steps and parameters are the same as one of the specific embodiments 1 to 4.

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤一中的石墨化催化剂为氯化镍、硝酸镍、硫酸镍、乙酸镍、氯化铁、氯化亚铁、硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、铁氰化钾、亚铁氰化钾、三草酸合铁酸钾、氯化钴、硝酸钴、硫酸钴和乙酸钴中的一种或其中几种按任意比混合的混合物。其它步骤及参数与具体实施方一至五之一相同。Specific embodiment six: this embodiment is different from one of specific embodiments one to five: the graphitization catalyst in step one is nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, ferric chloride, ferrous chloride, One of ferric nitrate, ferrous nitrate, ferric sulfate, ferrous sulfate, potassium ferricyanide, potassium ferrocyanide, potassium ferrioxalate, cobalt chloride, cobalt nitrate, cobalt sulfate and cobalt acetate Several mixtures mixed in any ratio. Other steps and parameters are the same as those of Embodiments 1 to 5.

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中的惰性气体为氮气、氩气和氦气中的一种或其中几种按任意比混合的混合物。其它步骤及参数与具体实施方一至六之一相同。Embodiment 7: This embodiment differs from Embodiment 1 to Embodiment 6 in that the inert gas in step 2 is one of nitrogen, argon and helium or a mixture of several of them mixed in any ratio. The other steps and parameters are the same as those of Embodiments 1 to 6.

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中热处理气氛为氮气、氩气、氦气、甲烷、乙烯、二氧化碳或一氧化碳,气体流量为10~200mL/min。其它步骤及参数与具体实施方一至七之一相同。Embodiment 8: The difference between this embodiment and one of Embodiments 1 to 7 is that the heat treatment atmosphere in step 2 is nitrogen, argon, helium, methane, ethylene, carbon dioxide or carbon monoxide, and the gas flow rate is 10-200 mL/min . Other steps and parameters are the same as one of the specific embodiments 1 to 7.

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三中酸处理的方法为:在浓度为0.5~5mol/L的氢氧化钠溶液中处理4~48h后,再在浓度为11.9mol/L的盐酸或者14mol/L的硝酸溶液中在70~140℃条件下回流中6~12h。其它步骤及参数与具体实施方一至八之一相同。Specific embodiment nine: the difference between this embodiment and one of the specific embodiments one to eight is: the method of acid treatment in step three is: after the concentration is 0.5 ~ 5mol/L sodium hydroxide solution for 4 ~ 48h, then Reflux in 11.9mol/L hydrochloric acid or 14mol/L nitric acid solution at 70-140°C for 6-12 hours. Other steps and parameters are the same as those in Embodiments 1 to 8.

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三中酸处理的方法为:在20~40℃条件下,在质量浓度为10~15%氢氟酸中搅拌6~72h。其它步骤及参数与具体实施方一至九之一相同。Embodiment 10: This embodiment is different from Embodiment 1 to Embodiment 9 in that the method of acid treatment in step 3 is: stirring in hydrofluoric acid with a mass concentration of 10-15% at 20-40°C 6~72h. Other steps and parameters are the same as those of Embodiments 1 to 9.

具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是:步骤二中的升温速度为5℃/min。其它步骤及参数与具体实施方一至十之一相同。Embodiment 11: The difference between this embodiment and Embodiments 1 to 10 is that the heating rate in step 2 is 5° C./min. Other steps and parameters are the same as those in Embodiments 1 to 11.

具体实施方式十二:本实施方式与具体实施方式一至十一之一不同的是:步骤二中由室温升至1000℃。其它步骤及参数与具体实施方式一至十一之一相同。Embodiment 12: This embodiment is different from Embodiment 1 to Embodiment 11 in that: in step 2, the room temperature is raised to 1000°C. Other steps and parameters are the same as those in Embodiments 1 to 11.

通过以下试验验证本发明的有益效果:Prove the beneficial effect of the present invention by following test:

试验:本试验一步法合成碳化物/多孔石墨碳纳米复合物的方法,是由下述步骤完成的:一、将2g葡萄糖和0.4g钨酸钠溶于30水中,然后加4mL的正硅酸乙酯,再加入2g的氯化镍,干燥,得到前驱体;二、在惰性气体保护的条件下,由室温升至1000℃,升温速度为5℃/min,然后对步骤一的前驱体进行热处理2h,得到预产物;三、将步骤二得到的预产物研磨,再加到120mL质量浓度为15%的醋酸中,在25℃条件下搅拌4h,用蒸馏水洗涤至洗液的pH为7,然后在100℃条件下烘干干燥8h,得到碳化钨/多孔石墨碳纳米复合物,即完成一步法合成碳化物/多孔石墨碳纳米复合物的方法。Test: The method for synthesizing carbide/porous graphite carbon nanocomposites in one step in this test is completed by the following steps: 1. Dissolve 2g of glucose and 0.4g of sodium tungstate in 30°C water, and then add 4mL of orthosilicic acid Ethyl ester, then add 2g of nickel chloride, dry to obtain the precursor; 2. Under the condition of inert gas protection, the temperature rises from room temperature to 1000 ° C, and the heating rate is 5 ° C / min, and then the precursor of step 1 Carry out heat treatment for 2 hours to obtain the pre-product; 3. Grind the pre-product obtained in step 2, add it to 120 mL of acetic acid with a mass concentration of 15%, stir at 25°C for 4 hours, and wash with distilled water until the pH of the washing solution is 7 , and then dried at 100° C. for 8 hours to obtain a tungsten carbide/porous graphite carbon nanocomposite, that is, a one-step method for synthesizing the carbide/porous graphite carbon nanocomposite.

本试验制备的碳化钨/多孔石墨碳纳米复合物透射电子显微镜照片如图1和图2所示,从图中可以明显的看出,碳化钨纳米粒子均匀分散到石墨片上,碳化钨的粒径为10nm左右,具有多孔结构,从而进一步证明了产品为碳化钨/多孔石墨碳的复合物使其在催化一些重要的化学反应方面,比如说甲醇电氧化,敏化太阳能电池的对电极,水解制氢,氨分解、氧化反应以及烃类转化和合成反应等,展现了良好的催化性能。将试验1制备的碳化钨多孔石墨碳纳米复合物负载10%的Pt,图3为负载了10%Pt的的碳化钨多孔石墨碳纳米复合物和市售Pt/C用于甲醇燃料电池催化剂的循环伏安图,从图中我们可以看出,负载了10%Pt的的碳化钨/多孔石墨碳纳米复合物具有较高的峰电流,并能有效的抑制了一氧化碳中毒现象,说明负载了10%Pt的的碳化钨/多孔石墨碳纳米复合物具有较好的甲醇电氧化催化性能。The transmission electron microscope photos of the tungsten carbide/porous graphite carbon nanocomposites prepared in this test are shown in Fig. It is about 10nm and has a porous structure, which further proves that the product is a composite of tungsten carbide/porous graphite carbon, so that it can catalyze some important chemical reactions, such as methanol electrooxidation, sensitization of the counter electrode of solar cells, and hydrolysis. Hydrogen, ammonia decomposition, oxidation reactions, and hydrocarbon conversion and synthesis reactions, etc., have shown good catalytic performance. The tungsten carbide porous graphite carbon nanocomposite prepared in Experiment 1 was loaded with 10% Pt, and Fig. 3 is the tungsten carbide porous graphite carbon nanocomposite loaded with 10% Pt and the commercially available Pt/C catalyst for methanol fuel cell Cyclic voltammogram, we can see from the figure that the tungsten carbide/porous graphite carbon nanocomposite loaded with 10% Pt has a higher peak current, and can effectively inhibit the phenomenon of carbon monoxide poisoning, indicating that loaded with 10 %Pt tungsten carbide/porous graphitic carbon nanocomposites have better catalytic performance for methanol electrooxidation.

Claims (10)

1.一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于一步法合成碳化物/多孔石墨碳纳米复合物的方法是由下述步骤完成的:一、将质量比为10∶2的碳源和过渡金属盐类溶于溶剂中,然后加入造孔剂,再加入石墨化催化剂,干燥,得到前驱体;其中碳源和溶剂的质量体积比为1∶(5~30),碳源和造孔剂的质量体积比为1∶(1~10),碳源与石墨催化剂的质量比为1∶(0.5~5),其中过渡金属盐类为钨源、钼源或钒源;二、在惰性气体保护的条件下,由室温升至500~1100℃,升温速度为2~20℃/min,然后对步骤一的前驱体进行热处理0.5~10h,得到预产物;三、将步骤二得到的预产物研磨,再进行酸处理,然后用蒸馏水洗涤至pH为6~8,再在60~120℃条件下烘干干燥4~12h,得到碳化物/多孔石墨碳纳米复合物,即完成一步法合成碳化物/多孔石墨碳纳米复合物的方法。1. the method for one-step synthetic carbide/porous graphite carbon nanocomposite is characterized in that the method for one-step synthetic carbide/porous graphite carbon nanocomposite is accomplished by following steps: one, mass ratio is 10: The carbon source and transition metal salts of 2 are dissolved in a solvent, then add a pore-forming agent, then add a graphitization catalyst, and dry to obtain a precursor; wherein the mass-volume ratio of the carbon source and the solvent is 1: (5-30), The mass volume ratio of carbon source and pore forming agent is 1: (1-10), the mass ratio of carbon source and graphite catalyst is 1: (0.5-5), and the transition metal salts are tungsten source, molybdenum source or vanadium source ; 2. Under the condition of inert gas protection, the temperature is raised from room temperature to 500-1100 °C at a heating rate of 2-20 °C/min, and then the precursor in step 1 is heat-treated for 0.5-10 hours to obtain a pre-product; 3. Grinding the pre-product obtained in step 2, then acid treatment, then washing with distilled water until the pH is 6-8, and then drying at 60-120°C for 4-12 hours to obtain carbide/porous graphite carbon nanocomposites , that is, a method for one-step synthesis of carbide/porous graphitic carbon nanocomposites. 2.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤一中的碳源为农作物的提取物、高分子聚合物或贝壳提取物,其中农作物的提取物为葡萄糖、蔗糖、柠檬酸、蔗糖、果糖、麦芽糖、草酸、酒石酸或淀粉;高分子聚合物为聚苯乙烯、聚丙烯酰胺、聚糠醇、聚亚胺、聚氨酯、聚氨基葡萄糖、聚乙烯酸甲酯和聚苯胺中的一种或其中几种按任意比混合的混合物;贝壳提取物为壳聚糖或甲壳素。2. the method for one-step synthetic carbide/porous graphite carbon nanocomposite according to claim 1, is characterized in that the carbon source in step 1 is the extract of crops, polymer or shell extract, wherein crops The extract is glucose, sucrose, citric acid, sucrose, fructose, maltose, oxalic acid, tartaric acid or starch; the polymer is polystyrene, polyacrylamide, polyfurfuryl alcohol, polyimide, polyurethane, polyglucosamine, poly One of methyl acrylate and polyaniline or a mixture of several of them mixed in any ratio; the shell extract is chitosan or chitin. 3.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤一中的钨源为H2W6O19、H3PW12O40、H3SiW12O40、H4W10O32、(NH4)6W7O24、Na2WO4、Na2W6O19、WCl6、Na3PW12O40、Na3SiW12O40、Na4W10O32、K2W6O19、K3PW12O40、K3SiW12O40或K4W10O32;钼源为H2Mo6O19、H3PMo12O40、H3SiMo12O40、H4Mo10O32、(NH4)6Mo7O24、Na2MoO4、Na2Mo6O19、Na3PMo12O40、Na3SiMo12O40、Na4Mo10O32、K2Mo6O19、K3PMo12O40、K3SiMo12O40或K4Mo10O32;钒源为:HVO3、H3VO4、H4V2O7、H3V3O9、NaVO3,NH4VO3,Na3VO4或(NH4)2V6O163. The method for one-step synthesis of carbide/porous graphitic carbon nanocomposites according to claim 1, characterized in that the tungsten source in step one is H 2 W 6 O 19 , H 3 PW 12 O 40 , H 3 SiW 12 O 40 , H 4 W 10 O 32 , (NH 4 ) 6 W 7 O 24 , Na 2 WO 4 , Na 2 W 6 O 19 , WCl 6 , Na 3 PW 12 O 40 , Na 3 SiW 12 O 40 , Na 4 W 10 O 32 , K 2 W 6 O 19 , K 3 PW 12 O 40 , K 3 SiW 12 O 40 or K 4 W 10 O 32 ; molybdenum sources are H 2 Mo 6 O 19 , H 3 PMo 12 O 40 , H 3 SiMo 12 O 40 , H 4 Mo 10 O 32 , (NH 4 ) 6 Mo 7 O 24 , Na 2 MoO 4 , Na 2 Mo 6 O 19 , Na 3 PMo 12 O 40 , Na 3 SiMo 12 O 40 , Na 4 Mo 10 O 32 , K 2 Mo 6 O 19 , K 3 PMo 12 O 40 , K 3 SiMo 12 O 40 or K 4 Mo 10 O 32 ; vanadium sources are: HVO 3 , H 3 VO 4 , H 4 V 2 O 7 , H 3 V 3 O 9 , NaVO 3 , NH 4 VO 3 , Na 3 VO 4 or (NH 4 ) 2 V 6 O 16 . 4.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤一中的溶剂为水、甲醇、乙醇和异丙醇中的一种或其中几种按任意比混合的混合物。4. the method for one-step synthetic carbide/porous graphite carbon nanocomposite according to claim 1, is characterized in that the solvent in step 1 is one or several of them in water, methyl alcohol, ethanol and Virahol A mixture mixed in any ratio. 5.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤一中的造孔剂为正硅酸乙酯、硅胶、SBA-n分子筛、CMK-n分子筛、MCM-22分子筛、Beta分子筛、USY分子筛、BEA/MOR共结晶分子筛、MFI/MOR共结晶分子筛、PS球、沸石、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、聚丙二醇与环氧乙烷的加聚物、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基硫酸钠、乙酸钙、草酸钙、碳酸钙、碳酸铵或碳酸氢铵。5. the method for one-step synthetic carbide/porous graphitic carbon nanocomposite according to claim 1, is characterized in that the pore-forming agent in the step 1 is tetraethyl orthosilicate, silica gel, SBA-n molecular sieve, CMK- n molecular sieve, MCM-22 molecular sieve, Beta molecular sieve, USY molecular sieve, BEA/MOR co-crystal molecular sieve, MFI/MOR co-crystal molecular sieve, PS ball, zeolite, polyethylene oxide-polypropylene oxide-polyethylene oxide three Block copolymer, addition polymer of polypropylene glycol and ethylene oxide, polymethylmethacrylate, polyvinylpyrrolidone, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, Sodium Lauryl Sulfate, Calcium Acetate, Calcium Oxalate, Calcium Carbonate, Ammonium Carbonate or Ammonium Bicarbonate. 6.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤一中的石墨化催化剂为氯化镍、硝酸镍、硫酸镍、乙酸镍、氯化铁、氯化亚铁、硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、铁氰化钾、亚铁氰化钾、三草酸合铁酸钾、氯化钴、硝酸钴、硫酸钴和乙酸钴中的一种或其中几种按任意比混合的混合物。6. the method for one-step synthetic carbide/porous graphite carbon nanocomposite according to claim 1, is characterized in that the graphitization catalyst in step one is nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, chloride Iron, ferrous chloride, ferric nitrate, ferrous nitrate, ferric sulfate, ferrous sulfate, potassium ferricyanide, potassium ferrocyanide, potassium ferrite trioxalate, cobalt chloride, cobalt nitrate, cobalt sulfate, and acetic acid One of cobalt or a mixture of several of them mixed in any ratio. 7.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤二中的惰性气体为氮气、氩气和氦气中的一种或其中几种按任意比混合的混合物。7. the method for one-step synthetic carbide/porous graphite carbon nanocomposite according to claim 1, is characterized in that the inert gas in step 2 is one or wherein several in nitrogen, argon and helium Mixtures in any ratio. 8.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤二中热处理气氛为氮气、氩气、氦气、甲烷、乙烯、二氧化碳或一氧化碳,气体流量为10~200mL/min。8. the method for one-step synthetic carbide/porous graphite carbon nanocomposite according to claim 1, is characterized in that heat treatment atmosphere is nitrogen, argon, helium, methane, ethylene, carbon dioxide or carbon monoxide in the step 2, gas The flow rate is 10-200mL/min. 9.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤三中酸处理的方法为:在浓度为0.5~5mol/L的氢氧化钠溶液中处理4~48h后,再在浓度为11.9mol/L盐酸或者14mol/L的硝酸溶液中在70~140℃条件下回流中6~12h。9. The method for one-step synthesis of carbide/porous graphite carbon nanocomposites according to claim 1, characterized in that the acid treatment method in step 3 is: in a sodium hydroxide solution with a concentration of 0.5~5mol/L After treating for 4-48 hours, reflux in 11.9 mol/L hydrochloric acid or 14 mol/L nitric acid solution at 70-140°C for 6-12 hours. 10.根据权利要求1所述的一步法合成碳化物/多孔石墨碳纳米复合物的方法,其特征在于步骤三中酸处理的方法为:在20~40℃条件下,在质量浓度为10~15%氢氟酸中搅拌6~72h。10. The method for one-step synthesis of carbide/porous graphite carbon nanocomposites according to claim 1, characterized in that the method of acid treatment in step 3 is: under the condition of 20~40°C, at a mass concentration of 10~ Stir in 15% hydrofluoric acid for 6-72 hours.
CN201310038679.9A 2013-01-31 2013-01-31 Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method Expired - Fee Related CN103112854B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310038679.9A CN103112854B (en) 2013-01-31 2013-01-31 Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310038679.9A CN103112854B (en) 2013-01-31 2013-01-31 Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method

Publications (2)

Publication Number Publication Date
CN103112854A true CN103112854A (en) 2013-05-22
CN103112854B CN103112854B (en) 2015-04-08

Family

ID=48411263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310038679.9A Expired - Fee Related CN103112854B (en) 2013-01-31 2013-01-31 Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method

Country Status (1)

Country Link
CN (1) CN103112854B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303912A (en) * 2013-07-05 2013-09-18 黑龙江大学 Preparation method of high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial
CN103332687A (en) * 2013-07-11 2013-10-02 黑龙江大学 Method for preparing boron and nitrogen codoped graphitized nano carbon by taking biomass as carbon source
CN104709896A (en) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 Graphite complex and preparation method thereof
CN104835654A (en) * 2015-05-29 2015-08-12 青岛大学 3D nitrogen-doped graphene/molybdenum disulfide compound and preparation method thereof
CN105081333A (en) * 2014-05-20 2015-11-25 中国科学院宁波材料技术与工程研究所 Graphite-metal heat conduction composite material and preparation method thereof
CN106823014A (en) * 2016-12-29 2017-06-13 复旦大学附属中山医院 Implantable biodegradable microporous alumina retort stand
CN108232160A (en) * 2018-01-05 2018-06-29 武汉大学 A kind of method for preparing porous metals-carbon complex
CN109321211A (en) * 2018-10-19 2019-02-12 福州大学 A kind of graphitized hierarchical porous carbon composite phase change energy storage material and preparation method thereof
CN109546166A (en) * 2019-01-25 2019-03-29 辽宁科技大学 A kind of Pt/ metal carbides/carbon nanomaterial catalyst and preparation method thereof
CN109864342A (en) * 2019-04-11 2019-06-11 滁州卷烟材料厂 The composite filter tip addition material of heavy metal in a kind of reduction cigarette smoke
CN110523992A (en) * 2019-09-16 2019-12-03 陕西理工大学 Preparation method of single tungsten carbide component cemented carbide material
CN111447821A (en) * 2020-05-18 2020-07-24 哈尔滨工业大学 A kind of preparation method of carbide/carbon nanocomposite
CN113130809A (en) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 Composite electrode and preparation method thereof, and quantum dot light-emitting diode
CN113209833A (en) * 2021-04-25 2021-08-06 湖南万脉医疗科技有限公司 Corrosion-resistant mixed matrix molecular sieve membrane and preparation method thereof
CN114702026A (en) * 2022-05-17 2022-07-05 太原科技大学 A method for preparing hollow porous graphitized carbon microspheres by mechanical grinding
CN115353092A (en) * 2022-09-01 2022-11-18 愉悦家纺有限公司 Porous electrode carbon material, and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148257A (en) * 2007-09-04 2008-03-26 江苏工业学院 Preparation method of nano WC powder synthesized in situ by porous carbonaceous material
CN101445234A (en) * 2009-01-06 2009-06-03 黑龙江大学 A preparation method of graphitized carbon nano material
CN101456552A (en) * 2009-01-06 2009-06-17 黑龙江大学 In-situ synchronous synthesizing method of tungsten carbide/graphitic carbon nano complexes
US20110109048A1 (en) * 2008-03-18 2011-05-12 Michael Zinnabold Method and device for producing a dispersion-hardened object that contains carbide nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148257A (en) * 2007-09-04 2008-03-26 江苏工业学院 Preparation method of nano WC powder synthesized in situ by porous carbonaceous material
US20110109048A1 (en) * 2008-03-18 2011-05-12 Michael Zinnabold Method and device for producing a dispersion-hardened object that contains carbide nanoparticles
CN101445234A (en) * 2009-01-06 2009-06-03 黑龙江大学 A preparation method of graphitized carbon nano material
CN101456552A (en) * 2009-01-06 2009-06-17 黑龙江大学 In-situ synchronous synthesizing method of tungsten carbide/graphitic carbon nano complexes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303912B (en) * 2013-07-05 2015-10-21 黑龙江大学 A kind of preparation method of high specific surface area porous N doping graphitization nano carbon material
CN103303912A (en) * 2013-07-05 2013-09-18 黑龙江大学 Preparation method of high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial
CN103332687A (en) * 2013-07-11 2013-10-02 黑龙江大学 Method for preparing boron and nitrogen codoped graphitized nano carbon by taking biomass as carbon source
CN103332687B (en) * 2013-07-11 2015-12-02 黑龙江大学 A kind of take biomass as the method that carbon source prepares the nitrogen co-doped graphitization nano carbon of boron
CN104709896A (en) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 Graphite complex and preparation method thereof
CN105081333A (en) * 2014-05-20 2015-11-25 中国科学院宁波材料技术与工程研究所 Graphite-metal heat conduction composite material and preparation method thereof
CN104835654A (en) * 2015-05-29 2015-08-12 青岛大学 3D nitrogen-doped graphene/molybdenum disulfide compound and preparation method thereof
CN106823014A (en) * 2016-12-29 2017-06-13 复旦大学附属中山医院 Implantable biodegradable microporous alumina retort stand
CN108232160B (en) * 2018-01-05 2020-06-23 武汉大学 Method for preparing porous metal-carbon composite
CN108232160A (en) * 2018-01-05 2018-06-29 武汉大学 A kind of method for preparing porous metals-carbon complex
CN109321211A (en) * 2018-10-19 2019-02-12 福州大学 A kind of graphitized hierarchical porous carbon composite phase change energy storage material and preparation method thereof
CN109546166A (en) * 2019-01-25 2019-03-29 辽宁科技大学 A kind of Pt/ metal carbides/carbon nanomaterial catalyst and preparation method thereof
CN109864342A (en) * 2019-04-11 2019-06-11 滁州卷烟材料厂 The composite filter tip addition material of heavy metal in a kind of reduction cigarette smoke
CN110523992A (en) * 2019-09-16 2019-12-03 陕西理工大学 Preparation method of single tungsten carbide component cemented carbide material
CN113130809A (en) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 Composite electrode and preparation method thereof, and quantum dot light-emitting diode
CN113130809B (en) * 2019-12-30 2022-06-07 Tcl科技集团股份有限公司 Composite electrode and preparation method thereof, and quantum dot light-emitting diode
CN111447821A (en) * 2020-05-18 2020-07-24 哈尔滨工业大学 A kind of preparation method of carbide/carbon nanocomposite
CN111447821B (en) * 2020-05-18 2022-06-21 哈尔滨工业大学 Preparation method of carbide/carbon nano composite material
CN113209833A (en) * 2021-04-25 2021-08-06 湖南万脉医疗科技有限公司 Corrosion-resistant mixed matrix molecular sieve membrane and preparation method thereof
CN114702026A (en) * 2022-05-17 2022-07-05 太原科技大学 A method for preparing hollow porous graphitized carbon microspheres by mechanical grinding
CN115353092A (en) * 2022-09-01 2022-11-18 愉悦家纺有限公司 Porous electrode carbon material, and preparation method and application thereof

Also Published As

Publication number Publication date
CN103112854B (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN103112854B (en) Method for synthesizing carbide/porous graphitized carbon nano compound through one-step method
CN110013881B (en) Preparation method of atomically dispersed metal and nitrogen co-doped carbon-based oxygen reduction catalyst
CN104289242B (en) Preparation method for the high graphitization degree carbon base catalyst of fuel battery negative pole
CN106159287B (en) A kind of composite type fuel cell cathode catalyst NGPC/NCNTs and preparation method thereof
CN107658474B (en) Nitrogen-sulfur co-doped porous carbon microsphere and preparation method, use and oxygen reduction electrode
CN103252250B (en) Preparation method and application of nitrogen and iron modified carbon material
CN104269566A (en) Preparation method and application of nitrogen-doped porous carbon nano sheet composite material
CN103682379B (en) A kind of fuel cell metal-doped nitrogenous carbon base catalyst and application thereof
CN108927185B (en) Oxygen reduction catalyst based on heteroatom-doped carbon nanotube-supported iron phosphide nanoparticles and preparation method thereof
CN112652780B (en) Fe/Fe 3 Preparation method of C nano-particle loaded porous nitrogen-doped carbon-based oxygen reduction catalyst
CN112827504B (en) Method for preparing pyridine-type or pyrrole-type iron-nitrogen site catalyst, product and use thereof
CN108336374B (en) A high-performance ternary Fe-Co-Ni co-doped nitrogen-containing carbon material and its preparation method and application
CN105148991A (en) Nitrogen/sulphur/chlorine co-doped multistage hole carbon catalyst and preparation method thereof
CN103191727A (en) Preparation method of high-stability and high-activity carbon-supported Pt-based catalyst for fuel cell
CN105720276A (en) Method for preparing high-performance carbon catalyst
CN108847494A (en) A kind of transition metal/the sulphur can be used for fuel cell electro-catalyst/nitrogen co-doped carbon composite and preparation method thereof
CN108878914A (en) Oxygen reduction catalyst agent and preparation method thereof based on nitrogen-doped graphene aeroge
CN104138759B (en) A kind of fuel cell non-precious metal catalyst and application thereof
CN105148960B (en) Oxygen reduction catalyst B doping Fe3The preparation method of C/ crystalline state carbon
CN102614915A (en) Preparation method for base metal oxygen reduction catalyst
CN115770589B (en) Ultra-small stable platinum cobalt nanoparticle catalyst, preparation method thereof and application thereof in selective hydrogenation
CN102522571A (en) Preparation method of proton-exchanging membrane fuel-cell catalyst composite carrier
CN113644284B (en) A carbon material-loaded fluorine-doped niobium carbide nanocomposite material and its preparation method and application
CN102856562A (en) Carbon nanotube doped carbon gel catalyst for fuel cell and its application
CN113130924B (en) A metal-air battery catalyst, its preparation method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20160131

EXPY Termination of patent right or utility model