[go: up one dir, main page]

CN103106464B - Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark - Google Patents

Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark Download PDF

Info

Publication number
CN103106464B
CN103106464B CN201310023427.9A CN201310023427A CN103106464B CN 103106464 B CN103106464 B CN 103106464B CN 201310023427 A CN201310023427 A CN 201310023427A CN 103106464 B CN103106464 B CN 103106464B
Authority
CN
China
Prior art keywords
binary
counterfeiting information
trademark
variable
encryption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310023427.9A
Other languages
Chinese (zh)
Other versions
CN103106464A (en
Inventor
张明鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Graphic Communication
Original Assignee
Beijing Institute of Graphic Communication
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Graphic Communication filed Critical Beijing Institute of Graphic Communication
Priority to CN201310023427.9A priority Critical patent/CN103106464B/en
Publication of CN103106464A publication Critical patent/CN103106464A/en
Application granted granted Critical
Publication of CN103106464B publication Critical patent/CN103106464B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Printing Methods (AREA)

Abstract

一种单参数变量递变三元变量循环加密防伪信息存储商标,该商标可将二进制防伪信息通过三元变量循环加密和信道编码生成二进制调制信号,并通过循环查表法调制方式将防伪信息以调幅网点导电性能的有序改变嵌入在整个商标页面中,可在商标识别时从任意一个碎片里识别防伪信息,可以用于各种防伪的商标中。

A trademark for storage of anti-counterfeiting information with single-parameter variable gradient ternary variable cyclic encryption. The trademark can generate binary modulation signals through binary anti-counterfeiting information through ternary variable cyclic encryption and channel coding, and the anti-counterfeiting information can be converted into The orderly change of the conductive properties of AM dots is embedded in the entire trademark page, which can identify anti-counterfeiting information from any fragment during trademark recognition, and can be used in various anti-counterfeiting trademarks.

Description

单参数变量递变三元变量循环加密防伪信息存储商标Single-parameter variable gradient ternary variable cyclic encryption anti-counterfeiting information storage trademark

技术领域:Technical field:

本发明涉及一种防伪商标,特别是一种单参数变量递变三元变量循环加密防伪信息存储商标,该商标可将二进制加密防伪信息保存在商标页面上实现商标的防伪,该商标可以用于各种商品的防伪中。The present invention relates to an anti-counterfeiting trademark, in particular to a single-parameter variable gradient ternary variable cyclically encrypted anti-counterfeiting information storage trademark. The trademark can store the binary encrypted anti-counterfeiting information on the trademark page to realize the anti-counterfeiting of the trademark. The trademark can be used for Anti-counterfeiting of various commodities.

背景技术:Background technique:

防伪商标,又称防伪标签、防伪标识、防伪标志、防伪标贴,是一种鉴别真伪、防止假冒的证明性标贴物,是商品流通过程中人们用于区别商品来源的真假、区分商品品质优劣的标志。商标防伪关系到商家、客户和市场安全,关系到保护商家及客户的利益。我国的商标进行了大胆地创新,采用了激光防伪、核微孔防伪、隐形图文防伪、磁性油墨防伪、缩微文字防伪、标记分布防伪、光雕防伪等,但防伪与造假的斗争是高科技的较量,再先进的防伪技术都有一定的时效性,所以,必须不断提升商标防伪技术,才能在防伪与造假中永远处于领先地位,这也是保护商家和客户的利益维系商品流通安全的根本保证。Anti-counterfeiting trademarks, also known as anti-counterfeiting labels, anti-counterfeiting marks, anti-counterfeiting marks, and anti-counterfeiting labels, are a kind of probative label to identify authenticity and prevent counterfeiting. A sign of product quality. Trademark anti-counterfeiting is related to the safety of merchants, customers and the market, and is related to the protection of the interests of merchants and customers. my country's trademarks have undergone bold innovations, using laser anti-counterfeiting, nuclear micropore anti-counterfeiting, invisible graphic anti-counterfeiting, magnetic ink anti-counterfeiting, microtext anti-counterfeiting, mark distribution anti-counterfeiting, light carving anti-counterfeiting, etc., but the struggle between anti-counterfeiting and counterfeiting is a high-tech No matter how advanced the anti-counterfeiting technology is, it has a certain timeliness. Therefore, it is necessary to continuously improve the trademark anti-counterfeiting technology in order to always be in the leading position in anti-counterfeiting and counterfeiting. This is also the fundamental guarantee for protecting the interests of merchants and customers and maintaining the safety of commodity circulation. .

发明内容:Invention content:

为了提高商标防伪的可靠性和安全性,本发明针对现有商标防伪存在的不足对现有商标防伪技术进行了改进,提出了一种防伪信息存储商标,该商标通过对商标印制中调幅网点导电性能的改变,将加密防伪信息以二进制加密信号形式嵌入在整个商标页面上,可在商标识别时从任意一个碎片里识别加密防伪信息,因此具有很强隐蔽性和抗碎性。In order to improve the reliability and safety of trademark anti-counterfeiting, the present invention improves the existing trademark anti-counterfeiting technology for the shortcomings of existing trademark anti-counterfeiting, and proposes a kind of anti-counterfeiting information storage trademark. With the change of electrical conductivity, the encrypted anti-counterfeiting information is embedded on the entire trademark page in the form of binary encrypted signals, and the encrypted anti-counterfeiting information can be identified from any fragment during trademark recognition, so it has strong concealment and anti-shattering.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

防伪信息存储商标,由商标页纸、印制在商标页纸上的调幅网点、印制在商标页纸上的行扫描线、印制在商标页纸上的列扫描线构成,商标页纸上的图像和文字由调幅网点构成,The anti-counterfeiting information storage trademark is composed of a trademark sheet, AM dots printed on the trademark sheet, row scanning lines printed on the trademark sheet, and column scanning lines printed on the trademark sheet. The images and texts are composed of AM dots,

根据存储的二进制加密防伪信息,商标页纸上的一部分调幅网点由导电油墨印制而成,商标页纸上的另一部分调幅网点由绝缘油墨印制而成,商标页纸上的行扫描线和列扫描线均由透明导电油墨印制而成,According to the stored binary encrypted anti-counterfeiting information, a part of the AM dots on the trademark page is printed with conductive ink, another part of the AM dots on the trademark page is printed with insulating ink, and the row scanning lines and Column scan lines are printed with transparent conductive ink,

印制在商标页纸上的行扫描线有N条,印制在商标页纸上的列扫描线有M条,印制在商标页纸上的调幅网点在商标纸面上被分为N行M列,调幅网点在商标页纸纸面上整齐呈矩阵排列,让i取1到N,让j取1到M,商标页纸上的第j条列扫描线与商标页纸上的第j列的各个调幅网点的底表面电连接,商标页纸上的第i条行扫描线与商标页纸上的第i行的各个调幅网点的上表面电连接,There are N row scanning lines printed on the trademark page, M column scanning lines printed on the trademark page, and the amplitude modulation dots printed on the trademark page are divided into N lines on the trademark paper M columns, the amplitude modulation dots are neatly arranged in a matrix on the trademark page, let i range from 1 to N, let j range from 1 to M, the jth column scanning line on the trademark page is the same as the jth column on the trademark page The bottom surface of each amplitude modulation network point of the column is electrically connected, and the i-th row scanning line on the trademark page is electrically connected with the upper surface of each amplitude modulation network point of the i-th row on the trademark page,

当需要将商标页面存储的二进制信息读出时,将商标页纸上的第1条到第N条行扫描线依次置为高电平,When the binary information stored on the trademark page needs to be read out, the first to Nth line scan lines on the trademark page are set to high level in turn,

当商标页纸上的第1条行扫描线置为高电平时,商标页纸上的第1行存储的二进制信息以0、1代码形式从第1条列扫描线到第M条列扫描线输出,商标页纸上的第1行由导电油墨印制而成的调幅网点输出二进制信息1,商标页纸上的第1行由绝缘油墨印制而成的调幅网点输出二进制信息0,对商标页纸上的其它行可重复上述读出过程,When the first row scanning line on the trademark page is set to high level, the binary information stored in the first row on the trademark page is from the first column scanning line to the M column scanning line in the form of 0 and 1 codes Output, the first line on the trademark page is printed with conductive ink and outputs binary information 1, and the first line on the trademark page is printed with insulating ink. Output binary information 0, for the trademark The other lines on the page can repeat the above readout process,

为了实现商标防伪信息的加密存储,首先对图像防伪信息和文字防伪信息进行数字化处理,利用图像防伪信息和文字防伪信息生成8位一组的二进制防伪信息表,为防止加密过程中产生信息溢出,将二进制防伪信息表中的每一个8位一组二进制防伪信息扩展为32位一组二进制防伪信息,生成高24位全为0的32位一组二进制防伪信息表,将32位一组二进制防伪信息表中的第i组32位二进制防伪信息记作Ni,将32位一组二进制加密防伪信息表中的第i组32位二进制加密防伪信息记作Hi,i为大于0的正整数,二进制加密参数记作C,加密参数C为1≦C≦256的二进制正整数,二进制加密变量分别记作q、j、d、e、f、g、h、r和p,加密变量q、j、d、e、f、g、h、r和p为1到256的二进制正整数,二进制算符控制变量记作k,二进制算符控制变量k为0≦k≦7的二进制整数,算符采用+、-、×、三种算符,二进制算符控制变量k=0时分别定义为-、+、×、+、×、-、×、+,二进制算符控制变量k=1时 分别定义为+、×、+、+、-、×、+、×,二进制算符控制变量k=2时 分别定义为-、×、+、+、×、-、+、-,二进制算符控制变量k=3时分别定义为-、×、+、-、×、-、+、×,二进制算符控制变量k=4时分别定义为+、×、-、×、+、-、+、×,二进制算符控制变量k=5时分别定义为×、+、×、-、+、+、-、×,二进制算符控制变量k=6时分别定义为×、+、+、-、×、+、+、×,二进制算符控制变量k=7时分别定义为+、×、×、-、+、-、-、×,二进制算符控制变量k=0时三元变量循环加密运算定义为 H i = ( N i + q ) K 1 ( C + j ) K 2 ( N i + j ) K 3 ( C + j ) K 4 ( N i + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) , 二进制算符控制变量k=1时三元变量循环加密运算定义为 H i = ( C + d ) K 1 ( N i + j ) K 2 ( C + d ) K 3 ( N i + d ) K 4 ( C + d ) K 5 ( N i + e ) k 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , 二进制算符控制变量k=2时三元变量循环加密运算定义为 H i = ( C + e ) K 1 ( C + e ) K 2 ( N i + d ) K 3 ( C + e ) K 4 ( N i + e ) K 5 ( C + e ) K 6 ( N i + f ) K 7 ( C + e ) K 8 ( C + e ) , 二进制算符控制变量k=3时三元变量循环加密运算定义为 H i = ( C + f ) K 1 ( C + f ) K 2 ( C + f ) K 3 ( N i + e ) K 4 ( C + f ) K 5 ( N i + f ) K 6 ( C + f ) K 7 ( N i + g ) K 8 ( C + f ) , 二进制算符控制变量k=4时三元变量循环加密运算定义为 H i = ( C + g ) K 1 ( C + g ) K 2 ( C + g ) K 3 ( C + g ) K 4 ( N i + f ) K 5 ( C + g ) K 6 ( N i + g ) K 7 ( C + g ) K 8 ( N i + h ) , 二进制算符控制变量k=5时三元变量循环加密运算定义为 H i = ( N i + r ) K 1 ( C + h ) K 2 ( C + h ) K 3 ( C + h ) K 4 ( C + h ) K 5 ( N i + g ) K 6 ( C + h ) K 7 ( N i + h ) K 8 ( C + h ) , 二进制算符控制变量k=6时三元变量循环加密运算定义为 H i = ( C + r ) K 1 ( N i + p ) K 2 ( C + r ) K 3 ( C + r ) K 4 ( C + r ) K 5 ( C + r ) K 6 ( N i + h ) K 7 ( C + r ) K 8 ( N i + r ) , 二进制算符控制变量k=7时三元变量循环加密运算定义为 H i = ( N i + p ) K 1 ( C + p ) K 2 ( N i + q ) K 3 ( C + p ) K 4 ( C + p ) K 5 ( C + p ) K 6 ( C + p ) K 7 ( N i + r ) K 8 ( C + p ) , 设定加密参数C的初值,设定加密变量q、j、d、e、f、g、h、r和p的初值,设定二进制算符控制变量k的初值为k=0,设定32位一组二进制防伪信息表中32位二进制防伪信息Ni的位置控制变量i=1,设定32位一组二进制加密防伪信息表中32位二进制加密防伪信息Hi的位置控制变量i=1,对N1进行 H 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) k 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) 三元变量循环加密运算,其中k=0,生成32位一组的二进制加密防伪信息表中的第一组二进制加密防伪信息H1,对N1进行 H 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) k 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) 三元变量循环加密运算的同时进行i+1、q+1、j+1、d+1、e+1、f+1、g+1、h+1、r+1、p+1和k+1运算,使下一个三元变量循环加密运算指向 H 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) ,其中k=1,生成32位一组的二进制加密防伪信息表中的第二组二进制加密防伪信息H2,对N2进行 H 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) 三元变量循环加密运算的同时进行i+1、q+1、j+1、d+1、e+1、f+1、g+1、h+1、r+1、p+1和k+1运算,使下一个三元变量循环加密运算指向 H 3 = ( C + e ) K 1 ( C + e ) K 2 ( N 3 + d ) K 3 ( C + e ) K 4 ( N 3 + e ) K 5 ( C + e ) K 6 ( N 3 + f ) K 7 ( C + e ) K 8 ( C + e ) , 其中k=2,生成32位一组的二进制加密防伪信息表中的第三组二进制加密防伪信息H3,上述加密运算一直进行下去直到二进制防伪信息表中的最后一组32位二进制防伪信息,通过对32位一组二进制防伪信息表中的每一组32位二进制防伪信息Ni进行三元变量循环加密运算,生成与32位一组二进制防伪信息表对应的32位一组二进制加密防伪信息表,对商标印刷中调幅网点进行数字化处理,将调幅网点设置为两种,其中由绝缘油墨印制而成的调幅网点定义为数字0、由导电油墨印制而成的调幅网点定义为数字1,在商标印刷过程中利用生成的32位一组的二进制加密防伪信息通过循环查表法调制商标页面上的调幅网点的印制过程,通过选择绝缘油墨和导电油墨印制调幅网点使商标页面上的调幅网点有规律的按照上述两种调幅网点的导电性能进行变化,调制后商标页面上相邻32个调幅网点构成一组32位二进制信息,使得商标页面上通过调幅网点导电性能的变化携带防伪信息,并使该防伪信息嵌入在整个商标页面网点中,实现商标防伪,通过在商标页面中非显见地嵌入可提取的防伪信息,能够为真商标提供有效证明,同时具有较强的抗伪造能力。In order to realize the encrypted storage of trademark anti-counterfeiting information, the image anti-counterfeiting information and text anti-counterfeiting information are first digitized, and an 8-bit binary anti-counterfeiting information table is generated by using the image anti-counterfeiting information and text anti-counterfeiting information. In order to prevent information overflow during the encryption process, Expand each 8-bit group of binary anti-counterfeiting information in the binary anti-counterfeiting information table into a 32-bit group of binary anti-counterfeiting information, generate a 32-bit group of binary anti-counterfeiting information table in which the upper 24 bits are all 0, and convert a 32-bit group of binary anti-counterfeiting information into a 32-bit group of binary anti-counterfeiting information The i-th group of 32-bit binary anti-counterfeiting information in the information table is denoted as N i , and the i-th group of 32-bit binary encrypted anti-counterfeiting information in the 32-bit binary encrypted anti-counterfeiting information table is denoted as H i , i is a positive integer greater than 0 , the binary encryption parameter is denoted as C, the encryption parameter C is a binary positive integer of 1≦C≦256, the binary encryption variables are respectively denoted as q, j, d, e, f, g, h, r, and p, and the encryption variables q, j, d, e, f, g, h, r, and p are binary positive integers from 1 to 256, and the binary operator control variable is denoted as k, and the binary operator control variable k is a binary integer of 0≦k≦7. symbol Using +, -, ×, three operators, binary operator control variable k = 0 They are respectively defined as -, +, ×, +, ×, -, ×, +, when the binary operator control variable k=1 They are respectively defined as +, ×, +, +, -, ×, +, ×, when the binary operator control variable k=2 They are respectively defined as -, ×, +, +, ×, -, +, -, when the binary operator control variable k=3 Defined as -, ×, +, -, ×, -, +, × respectively, when the binary operator control variable k=4 They are respectively defined as +, ×, -, ×, +, -, +, ×, when the binary operator control variable k=5 Respectively defined as ×, +, ×, -, +, +, -, ×, binary operator control variable k = 6 They are respectively defined as ×, +, +, -, ×, +, +, ×, when the binary operator control variable k=7 They are respectively defined as +, ×, ×, -, +, -, -, ×. When the binary operator control variable k=0, the ternary variable cyclic encryption operation is defined as h i = ( N i + q ) K 1 ( C + j ) K 2 ( N i + j ) K 3 ( C + j ) K 4 ( N i + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) , When the binary operator control variable k=1, the ternary variable circular encryption operation is defined as h i = ( C + d ) K 1 ( N i + j ) K 2 ( C + d ) K 3 ( N i + d ) K 4 ( C + d ) K 5 ( N i + e ) k 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , When the binary operator control variable k=2, the ternary variable circular encryption operation is defined as h i = ( C + e ) K 1 ( C + e ) K 2 ( N i + d ) K 3 ( C + e ) K 4 ( N i + e ) K 5 ( C + e ) K 6 ( N i + f ) K 7 ( C + e ) K 8 ( C + e ) , When the binary operator control variable k=3, the ternary variable circular encryption operation is defined as h i = ( C + f ) K 1 ( C + f ) K 2 ( C + f ) K 3 ( N i + e ) K 4 ( C + f ) K 5 ( N i + f ) K 6 ( C + f ) K 7 ( N i + g ) K 8 ( C + f ) , When the binary operator control variable k=4, the ternary variable circular encryption operation is defined as h i = ( C + g ) K 1 ( C + g ) K 2 ( C + g ) K 3 ( C + g ) K 4 ( N i + f ) K 5 ( C + g ) K 6 ( N i + g ) K 7 ( C + g ) K 8 ( N i + h ) , When the binary operator control variable k=5, the ternary variable circular encryption operation is defined as h i = ( N i + r ) K 1 ( C + h ) K 2 ( C + h ) K 3 ( C + h ) K 4 ( C + h ) K 5 ( N i + g ) K 6 ( C + h ) K 7 ( N i + h ) K 8 ( C + h ) , When the binary operator control variable k=6, the ternary variable circular encryption operation is defined as h i = ( C + r ) K 1 ( N i + p ) K 2 ( C + r ) K 3 ( C + r ) K 4 ( C + r ) K 5 ( C + r ) K 6 ( N i + h ) K 7 ( C + r ) K 8 ( N i + r ) , When the binary operator control variable k=7, the ternary variable circular encryption operation is defined as h i = ( N i + p ) K 1 ( C + p ) K 2 ( N i + q ) K 3 ( C + p ) K 4 ( C + p ) K 5 ( C + p ) K 6 ( C + p ) K 7 ( N i + r ) K 8 ( C + p ) , Set the initial value of encryption parameter C, set the initial value of encryption variable q, j, d, e, f, g, h, r and p, set the initial value of binary operator control variable k as k=0, Set the position control variable i=1 of 32 binary anti-counterfeiting information N i in a group of binary anti-counterfeiting information tables of 32 bits, set the position control variable of 32 binary encryption anti-counterfeiting information H i in a group of binary encryption anti-counterfeiting information tables of 32 bits i=1, carry out on N 1 h 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) k 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) The ternary variable cyclic encryption operation, wherein k=0, generates the first group of binary encryption anti-counterfeiting information H 1 in the binary encryption anti-counterfeiting information table of a group of 32 bits, and performs N 1 h 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) k 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) Simultaneously perform i+1, q+1, j+1, d+1, e+1, f+1, g+1, h+1, r+1, p+1 and k while ternary variable cyclic encryption operation +1 operation, so that the next ternary variable loop encryption operation points to h 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , where k=1, generate the second group of binary encryption anti-counterfeiting information H 2 in the binary encryption anti-counterfeiting information table of a group of 32 bits, carry out N 2 h 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) Simultaneously perform i+1, q+1, j+1, d+1, e+1, f+1, g+1, h+1, r+1, p+1 and k while ternary variable cyclic encryption operation +1 operation, so that the next ternary variable loop encryption operation points to h 3 = ( C + e ) K 1 ( C + e ) K 2 ( N 3 + d ) K 3 ( C + e ) K 4 ( N 3 + e ) K 5 ( C + e ) K 6 ( N 3 + f ) K 7 ( C + e ) K 8 ( C + e ) , Wherein k=2, generate the third group of binary encrypted anti-counterfeiting information H 3 in the binary encrypted anti-counterfeiting information table of 32 bits, and the above-mentioned encryption operation continues until the last group of 32 binary anti-counterfeiting information in the binary anti-counterfeiting information table, By performing a ternary variable cyclic encryption operation on each group of 32-bit binary anti-counterfeiting information N i in the 32-bit binary anti-counterfeiting information table, a 32-bit binary encrypted anti-counterfeiting information corresponding to the 32-bit binary anti-counterfeiting information table is generated Table, digitize the AM dots in trademark printing, and set the AM dots into two types, where the AM dots printed with insulating ink are defined as number 0, and the AM dots printed with conductive ink are defined as number 1 In the trademark printing process, the generated 32-bit binary encrypted anti-counterfeiting information is used to modulate the printing process of the AM dots on the trademark page through the circular look-up method, and the AM dots are printed on the trademark page by selecting insulating ink and conductive ink. The AM dots of the AM network regularly change according to the conductive properties of the above two AM dots. After modulation, 32 adjacent AM dots on the trademark page form a set of 32-bit binary information, so that the change in the conductivity of the AM dots on the trademark page carries anti-counterfeiting information. information, and embed the anti-counterfeiting information in the entire trademark page network to realize trademark anti-counterfeiting. By non-obviously embedding extractable anti-counterfeiting information in the trademark page, it can provide effective proof for the real trademark and has strong anti-counterfeiting ability .

为解决上述的技术问题,首先对图像防伪信息和文字防伪信息进行数字化处理,生成8位一组的二进制防伪信息表,将二进制防伪信息表中的每一组8位一组二进制防伪信息扩展为32位一组二进制防伪信息,生成高24位全为0的32位一组二进制防伪信息表,对32位一组二进制防伪信息表中的每一组32位二进制防伪信息进行三元变量循环加密运算,生成32位一组的二进制加密防伪信息表,利用二进制加密防伪信息表中的32位二进制加密防伪信息经过信道编码,生成具有检错和纠错功能的32位一组的二进制调制信号,信道编码可以采用循环编码、卷积编码或Turbo编码多种形式,将商标页面原始连续调图像信号经过栅格化处理(RIP)和混合加网输出半色调混合加网图像信号,其中包括调幅网点和调频网点图像信号,利用生成的32位一组二进制调制信号采用循环查表法调制方式调制混合加网图像信号中调幅网点的导电性能,使调幅网点的导电性能按照绝缘油墨调幅网点和导电油墨调幅网点有规律的发生改变,使混合加网图像信号中相邻32个调幅网点通过导电性能的改变携带32位二进制防伪信息,从而生成在整个商标页面网点中嵌入防伪信息的混合加网图像信号,实现商标的防伪。In order to solve the above-mentioned technical problems, at first the image anti-counterfeiting information and text anti-counterfeiting information are digitized to generate an 8-bit binary anti-counterfeiting information table, and each group of 8-bit binary anti-counterfeiting information in the binary anti-counterfeiting information table is expanded into 32-bit binary anti-counterfeiting information, generate a 32-bit binary anti-counterfeiting information table whose upper 24 bits are all 0, and perform ternary variable cyclic encryption on each group of 32-bit binary anti-counterfeiting information in the 32-bit binary anti-counterfeiting information table Operation, generate a 32-bit binary encrypted anti-counterfeiting information table, use the 32-bit binary encrypted anti-counterfeiting information in the binary encrypted anti-counterfeiting information table to undergo channel coding to generate a 32-bit binary modulation signal with error detection and error correction functions, Channel coding can adopt various forms of cyclic coding, convolutional coding or Turbo coding, and the original continuous tone image signal of the trademark page will be processed by rasterization (RIP) and mixed screening to output a halftone mixed screening image signal, including AM dots and FM dot image signal, use the generated 32-bit binary modulation signal to modulate the conductivity of the AM dot in the mixed screen image signal by means of a cyclic look-up table modulation method, so that the conductivity of the AM dot is in accordance with the insulating ink AM dot and conductive ink The amplitude modulation dots change regularly, so that 32 adjacent AM dots in the mixed screened image signal carry 32-bit binary anti-counterfeiting information through the change of conductivity, thus generating a mixed screened image signal with anti-counterfeiting information embedded in the entire trademark page dots , Realize the anti-counterfeiting of trademarks.

在提取防伪信息时,首先采集商标页面网点导电性能信号,经过对调幅网点的导电性能的识别,分辨调幅网点的导电性,提取调幅网点的导电性能信息,解调商标页面调幅网点的导电性能信息,输出32位一组的二进制调制信号,对解调输出的32位一组的二进制调制信号进行信道解码,信道解码后生成二进制解密防伪信息表,将二进制解密防伪信息表中的第i组32位二进制信息记作MiWhen extracting anti-counterfeiting information, firstly collect the conduction performance signal of the trademark page outlets, identify the conductivity of the AM outlets, distinguish the conductivity of the AM outlets, extract the conductivity information of the AM outlets, and demodulate the conductivity information of the AM outlets on the trademark page , output a 32-bit binary modulation signal, channel decode the demodulated 32-bit binary modulation signal, generate a binary decryption anti-counterfeiting information table after channel decoding, and decode the i-th group 32 in the binary decryption anti-counterfeiting information table Bit binary information is denoted as M i .

将二进制解密防伪信息表中32位二进制信息Mi的位置控制变量i的初值设定为i=1,设定加密参数C的初值为加密时的初值,设定加密变量q、j、d、e、f、g、h、r和p的初值为加密时的初值,二进制算符控制变量k的初值设定为k=0,通过三元变量循环加密过程可知,二进制算符控制变量k=0时解密运算为 M i = ( N i + q ) K 1 ( c + j ) k 2 ( N i + j ) k 3 ( c + j ) k 4 ( N i + d ) k 5 ( c + j ) k 6 ( c + j ) k 7 ( c + j ) k 8 ( c + j ) , 二进制算符控制变量k=1时解密运算为 M i = ( c + d ) k 1 ( N i + j ) k 2 ( c + d ) k 3 ( N i + d ) k 4 ( c + d ) k 5 ( N i + e ) k 6 ( c + d ) k 7 ( c + d ) k 8 ( c + d ) , 二进制算符控制变量k=2时解密运算为 M i = ( c + e ) k 1 ( c + e ) k 2 ( N i + d ) k 3 ( c + e ) k 4 ( N i + e ) k 5 ( c + e ) k 6 ( N i + f ) k 7 ( c + e ) k 8 ( c + e ) , 二进制算符控制变量k=3时解密运算为 M i = ( c + f ) k 1 ( c + f ) k 2 ( c + f ) k 3 ( N i + e ) k 4 ( c + f ) k 5 ( N i + f ) k 6 ( c + f ) k 7 ( N i + g ) k 8 ( c + f ) , 二进制算符控制变量k=4时解密运算为 M i = ( c + g ) k 1 ( c + g ) k 2 ( c + g ) k 3 ( c + g ) k 4 ( N i + f ) k 5 ( c + g ) k 6 ( N i + g ) k 7 ( c + g ) k 8 ( N i + h ) , 二进制算符控制变量k=5时解密运算为 M i = ( N i + r ) k 1 ( c + h ) k 2 ( c + h ) k 3 ( c + h ) k 4 ( c + h ) k 5 ( N i + g ) k 6 ( c + h ) k 7 ( N i + h ) k 8 ( c + h ) , 二进制算符控制变量k=6时解密运算为 M i = ( c + r ) k 1 ( N i + p ) k 2 ( c + r ) k 3 ( c + r ) k 4 ( c + r ) k 5 ( c + r ) k 6 ( N i + h ) k 7 ( c + r ) k 8 ( N i + r ) , 二进制算符控制变量k=7时解密运算为 M i = ( N i + p ) k 1 ( c + p ) k 2 ( N i + q ) k 3 ( c + p ) k 4 ( c + p ) k 5 ( c + p ) k 6 ( c + p ) k 7 ( N i + r ) k 8 ( c + p ) , 从二进制解密防伪信息表中第一组M1开始,对二进制解密防伪信息表中的每一组32位二进制信息Mi进行相应的解密运算,解出二进制防伪信息Ni,生成高24位全为0的32位一组二进制防伪信息表,去掉高24位,恢复生成8位一组的二进制防伪信息表,恢复防伪信号并输出防伪信息。The initial value of the position control variable i of the 32-bit binary information M i in the binary decryption anti-counterfeiting information table is set as i=1, the initial value of the encryption parameter C is set as the initial value during encryption, and the encryption variables q, j are set , d, e, f, g, h, r, and p are initially encrypted, and the initial value of the binary operator control variable k is set to k=0. It can be seen through the ternary variable cyclic encryption process that the binary When the operator control variable k=0, the decryption operation is m i = ( N i + q ) K 1 ( c + j ) k 2 ( N i + j ) k 3 ( c + j ) k 4 ( N i + d ) k 5 ( c + j ) k 6 ( c + j ) k 7 ( c + j ) k 8 ( c + j ) , When the binary operator control variable k=1, the decryption operation is m i = ( c + d ) k 1 ( N i + j ) k 2 ( c + d ) k 3 ( N i + d ) k 4 ( c + d ) k 5 ( N i + e ) k 6 ( c + d ) k 7 ( c + d ) k 8 ( c + d ) , When the binary operator control variable k=2, the decryption operation is m i = ( c + e ) k 1 ( c + e ) k 2 ( N i + d ) k 3 ( c + e ) k 4 ( N i + e ) k 5 ( c + e ) k 6 ( N i + f ) k 7 ( c + e ) k 8 ( c + e ) , When the binary operator control variable k=3, the decryption operation is m i = ( c + f ) k 1 ( c + f ) k 2 ( c + f ) k 3 ( N i + e ) k 4 ( c + f ) k 5 ( N i + f ) k 6 ( c + f ) k 7 ( N i + g ) k 8 ( c + f ) , When the binary operator control variable k=4, the decryption operation is m i = ( c + g ) k 1 ( c + g ) k 2 ( c + g ) k 3 ( c + g ) k 4 ( N i + f ) k 5 ( c + g ) k 6 ( N i + g ) k 7 ( c + g ) k 8 ( N i + h ) , When the binary operator control variable k=5, the decryption operation is m i = ( N i + r ) k 1 ( c + h ) k 2 ( c + h ) k 3 ( c + h ) k 4 ( c + h ) k 5 ( N i + g ) k 6 ( c + h ) k 7 ( N i + h ) k 8 ( c + h ) , When the binary operator control variable k=6, the decryption operation is m i = ( c + r ) k 1 ( N i + p ) k 2 ( c + r ) k 3 ( c + r ) k 4 ( c + r ) k 5 ( c + r ) k 6 ( N i + h ) k 7 ( c + r ) k 8 ( N i + r ) , When the binary operator control variable k=7, the decryption operation is m i = ( N i + p ) k 1 ( c + p ) k 2 ( N i + q ) k 3 ( c + p ) k 4 ( c + p ) k 5 ( c + p ) k 6 ( c + p ) k 7 ( N i + r ) k 8 ( c + p ) , Starting from the first group M 1 in the binary decryption anti-counterfeiting information table, corresponding decryption operation is performed on each group of 32-bit binary information M i in the binary decryption anti-counterfeiting information table, and the binary anti-counterfeiting information N i is solved to generate the upper 24-bit full The 32-bit binary anti-counterfeiting information table is 0, and the upper 24 bits are removed to restore and generate an 8-bit binary anti-counterfeiting information table, restore the anti-counterfeiting signal and output the anti-counterfeiting information.

附图说明Description of drawings

下面结合附图对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.

图1是本发明的整体结构图。Fig. 1 is the overall structure diagram of the present invention.

图2是本发明的A—A剖视图。Fig. 2 is A-A sectional view of the present invention.

图3加载防伪信息流程图。Figure 3 is a flow chart of loading anti-counterfeiting information.

图4提取防伪信息流程图。Figure 4 is a flow chart of extracting anti-counterfeiting information.

具体实施方式Detailed ways

如图1和图2中,加密防伪信息存储商标,由商标页纸7-1、印制在商标页纸7-1上的调幅网点6-1到6-150、印制在商标页纸7-1上的行扫描线1-1到1-15、印制在商标页纸7-1上的列扫描线2-1到2-10构成,商标页纸7-1上的图像和文字由调幅网点6-1到6-150构成,根据存储二进制加密防伪信息,商标页纸7-1上的一部分调幅网点由导电油墨印制而成,商标页纸7-1上的另一部分调幅网点由绝缘油墨印制而成,商标页纸7-1上的行扫描线1-1到1-15和列扫描线2-1到2-10由透明导电油墨印制而成,As shown in Fig. 1 and Fig. 2, the encrypted anti-counterfeiting information stores the trademark, which is printed on the trademark page 7-1, the amplitude modulation network point 6-1 to 6-150 printed on the trademark page 7-1, and printed on the trademark page 7 Row scan lines 1-1 to 1-15 on -1 and column scan lines 2-1 to 2-10 printed on the trademark page 7-1 constitute images and text on the trademark page 7-1. The AM dots 6-1 to 6-150 are composed of binary encrypted anti-counterfeiting information, a part of the AM dots on the trademark page 7-1 is printed with conductive ink, and another part of the AM dots on the trademark page 7-1 is made of Printed with insulating ink, the row scan lines 1-1 to 1-15 and column scan lines 2-1 to 2-10 on the trademark page 7-1 are printed with transparent conductive ink,

图1中,商标页纸7-1上的深色调幅网点由导电油墨印制而成,商标页纸7-1上的浅色调幅网点由绝缘油墨印制而成,In Figure 1, the dark-colored dots on the trademark page 7-1 are printed with conductive ink, and the light-colored dots on the trademark page 7-1 are printed with insulating ink.

印制在商标页纸7-1上的调幅网点在商标纸面上被分为15行10列,调幅网点6-1到6-150在商标页纸7-1上整齐呈矩阵排列,让i取1到15,让j取1到10,商标页纸7-1上的第j条列扫描线与商标页纸7-1上的第j列的各个调幅网点的底表面电连接,商标页纸7-1上的第i条行扫描线与商标页纸7-1上的第i行的各个调幅网点的上表面电连接,The AM dots printed on the trademark page 7-1 are divided into 15 rows and 10 columns on the trademark paper, and the AM dots 6-1 to 6-150 are neatly arranged in a matrix on the trademark page 7-1, so that i Take 1 to 15, let j take 1 to 10, the j column scanning line on the trademark page 7-1 is electrically connected with the bottom surface of each amplitude modulation network point of the j column on the trademark page 7-1, the trademark page The i-th row scanning line on the paper 7-1 is electrically connected to the upper surface of each amplitude modulation network point of the i-th row on the trademark page 7-1,

当需要将商标页面存储的二进制加密防伪信息读出时,将商标页纸7-1上的第1条行扫描线到第15条行扫描线依次置为高电平,When the binary encrypted anti-counterfeiting information stored on the trademark page needs to be read out, the first row scanning line to the fifteenth row scanning line on the trademark page 7-1 are set to high level in turn,

当商标页纸7-1上的第1条行扫描线1-1置为高电平时,商标页纸7-1上的第1行存储的二进制加密防伪信息以0、1代码形式从第1条列扫描线到第10条列扫描线输出,商标页纸7-1上的第1行由导电油墨印制而成调幅网点输出二进制信息1,商标页纸7-1上的第1行由绝缘油墨印制而成调幅网点输出二进制信息0,因此第1行读出的二进制加密防伪信息1100001000,对商标页纸7-1上的其它行可重复上述读出过程。When the first row scanning line 1-1 on the trademark page 7-1 was set to high level, the binary encrypted anti-counterfeiting information stored in the first row on the trademark page 7-1 was from the first line in the code form of 0 and 1. The first column scanning line to the 10th column scanning line output, the first line on the trademark page 7-1 is printed by conductive ink and the amplitude modulation dot output binary information 1, the first line on the trademark page 7-1 is printed by Insulating ink is printed to form amplitude modulation dots to output binary information 0, so the binary encrypted anti-counterfeiting information 1100001000 read in the first row can repeat the above-mentioned readout process for other rows on the trademark page 7-1.

在加载防伪信息流程图3中,原始防伪信息(图像、文字)经数字化处理,生成8位一组的二进制防伪信息表,将二进制防伪信息表中的8位一组二进制信息扩展为32位一组二进制信息,生成高24位全为0的32位一组二进制防伪信息表,32位一组二进制防伪信息表中的第i组32位二进制信息记作Ni,i为大于0的正整数,从32位一组二进制防伪信息表中的第一组32位二进制加密防伪信息N1开始,对32位一组二进制防伪信息表中的每一组32位二进制防伪信息Ni进行三元变量循环加密运算,生成与32位一组二进制防伪信息表对应的32位一组二进制加密防伪信息表,对商标印刷中调幅网点进行数字化处理,将调幅网点设置为两种,其中由绝缘油墨印制而成的调幅网点定义为数字0、由导电油墨印制而成的调幅网点定义为数字1,在商标印刷过程中利用生成的32位一组的二进制加密防伪信息通过循环查表法调制商标页面上的调幅网点的印制过程,通过选择绝缘油墨和导电油墨印制调幅网点使商标页面上的调幅网点有规律的按照上述两种调幅网点的导电性能进行变化,调制后商标页面上相邻32个调幅网点构成一组32位二进制信息,使得商标页面上通过调幅网点导电性能的变化携带防伪信息,并使该防伪信息嵌入在整个商标页面网点中,实现商标防伪印刷,通过在商标页面中非显见地嵌入可提取的防伪信息,实现商标防伪。In flow chart 3 of loading anti-counterfeiting information, the original anti-counterfeiting information (image, text) is digitized to generate an 8-bit binary anti-counterfeiting information table, and the 8-bit binary information in the binary anti-counterfeiting information table is expanded to 32-bit one Group binary information, generate a 32-bit binary anti-counterfeiting information table whose upper 24 bits are all 0, the i-th group of 32-bit binary information in the 32-bit binary anti-counterfeiting information table is recorded as N i , i is a positive integer greater than 0 , starting from the first group of 32-bit binary encrypted anti-counterfeiting information N 1 in the 32-bit group of binary anti-counterfeiting information table, perform a ternary variable on each group of 32-bit binary anti-counterfeiting information N i in the 32-bit group of binary anti-counterfeiting information table Cyclic encryption operation to generate a 32-bit binary encrypted anti-counterfeiting information table corresponding to a 32-bit binary anti-counterfeiting information table, digitize the AM dots in trademark printing, set the AM dots to two types, and print them with insulating ink The resulting AM dot is defined as number 0, and the AM dot printed by conductive ink is defined as number 1. During the trademark printing process, the generated 32-bit binary encrypted anti-counterfeiting information is used to modulate the trademark page through the circular look-up table method. In the printing process of the AM dots on the screen, the AM dots on the trademark page are regularly changed according to the conductivity of the above two AM dots by selecting insulating ink and conductive ink to print the AM dots. After modulation, the adjacent 32 AM dots on the trademark page A group of 32-bit binary information is composed of three AM outlets, so that the anti-counterfeiting information can be carried on the trademark page through the change of the conductivity of the AM outlets, and the anti-counterfeiting information can be embedded in the entire trademark page outlets to realize the anti-counterfeiting printing of the trademark. Visibly embed extractable anti-counterfeiting information to achieve trademark anti-counterfeiting.

在提取防伪信息流程图4中,在提取防伪信息时,首先采集商标页面网点图像的导电性能信号,经过对调幅网点的导电性能识别,分辨调幅网点的导电性能,提取调幅网点的导电性能信息,解调商标页面调幅网点的导电性能信息,输出32位一组的二进制调制信号,对解调输出的32位一组的二进制调制信号进行信道解码,信道解码后生成二进制解密防伪信息表。In the flow chart 4 of extracting anti-counterfeiting information, when extracting anti-counterfeiting information, first collect the conductivity signal of the website image of the trademark page, through the identification of the conductivity of the AM website, distinguish the conductivity of the AM website, and extract the conductivity information of the AM website, Demodulate the conductivity information of the amplitude modulation network on the trademark page, output a 32-bit binary modulation signal, and perform channel decoding on the demodulated 32-bit binary modulation signal, and generate a binary decryption anti-counterfeiting information table after channel decoding.

将解码后生成的二进制解密防伪信息表中32位二进制信息Mi的位置控制变量i的初值设定为i=1,设定加密参数的初值为加密时的初值,设定加密变量的初值为加密时的初值,二进制算符控制变量k的初值设定为k=0,从生成的二进制解密防伪信息表中第一组M1开始,对二进制解密防伪信息表中的每一组32位二进制信息Mi进行解密运算,解出二进制防伪信息Ni,生成高24位全为0的32位一组二进制防伪信息表,去掉高24位,恢复生成8位一组的二进制防伪信息表,恢复防伪信号并输出防伪信息。The initial value of the position control variable i of the 32-bit binary information M i in the binary decryption anti-counterfeiting information table generated after decoding is set as i=1, the initial value of the encryption parameter is set as the initial value when encrypting, and the encryption variable is set The initial value of the initial value when encrypting, the initial value of the binary operator control variable k is set as k=0, from the first group M 1 in the binary decryption anti-counterfeiting information table of generation, to the binary decryption anti-counterfeiting information table Each group of 32-bit binary information M i is decrypted, and the binary anti-counterfeiting information N i is solved to generate a 32-bit binary anti-counterfeiting information table whose upper 24 bits are all 0, remove the upper 24 bits, and restore and generate an 8-bit group of anti-counterfeiting information. The binary anti-counterfeiting information table recovers the anti-counterfeiting signal and outputs the anti-counterfeiting information.

Claims (1)

1.一种将防伪信息通过加密运算和信道编码生成二进制调制信号,并通过循环查表调制方式将防伪信息嵌入在整个页面中的单参数变量递变三元变量循环加密防伪信息存储商标,其特征是:防伪信息存储商标,由商标页纸、印制在商标页纸上的调幅网点、印制在商标页纸上的行扫描线、印制在商标页纸上的列扫描线构成,根据存储的二进制加密防伪信息,商标页纸上的一部分调幅网点由导电油墨印制而成,商标页纸上的另一部分调幅网点由绝缘油墨印制而成,商标页纸上的行扫描线和列扫描线均由透明导电油墨印制而成,1. A kind of anti-counterfeiting information is generated through encryption operation and channel coding binary modulation signal, and the anti-counterfeiting information is embedded in the whole page through cyclic look-up modulation mode, a single-parameter variable gradient ternary variable cyclically encrypted anti-counterfeiting information storage trademark, its The feature is: the anti-counterfeiting information storage trademark is composed of a trademark page, AM dots printed on the trademark page, row scanning lines printed on the trademark page, and column scanning lines printed on the trademark page. Stored binary encrypted anti-counterfeiting information, part of the AM dots on the trademark page is printed with conductive ink, another part of the AM dots on the trademark page is printed with insulating ink, the row scanning line and column on the trademark page Scanning lines are printed with transparent conductive ink, 为了实现商标防伪信息的加密存储,首先对图像防伪信息和文字防伪信息进行数字化处理,利用图像防伪信息和文字防伪信息生成8位一组的二进制防伪信息表,为防止加密过程中产生信息溢出,将二进制防伪信息表中的每一个8位一组二进制防伪信息扩展为32位一组二进制防伪信息,生成高24位全为0的32位一组二进制防伪信息表,将32位一组二进制防伪信息表中的第i组32位二进制防伪信息记作Ni,将32位一组二进制加密防伪信息表中的第i组32位二进制加密防伪信息记作Hi,i为大于0的正整数,二进制加密参数记作C,加密参数C为1≦C≦256的二进制正整数,二进制加密变量分别记作q、j、d、e、f、g、h、r和p,加密变量q、j、d、e、f、g、h、r和p为1到256的二进制正整数,二进制算符控制变量记作k,二进制算符控制变量k为0≦k≦7的二进制整数,算符采用+、-、×、三种算符,二进制算符控制变量k=0时分别定义为-、+、×、+、×、-、×、+,二进制算符控制变量k=1时 分别定义为+、×、+、+、-、×、+、×,二进制算符控制变量k=2时 分别定义为-、×、+、+、×、-、+、-,二进制算符控制变量k=3时分别定义为-、×、+、-、×、-、+、×,二进制算符控制变量k=4时分别定义为+、×、-、×、+、-、+、×,二进制算符控制变量k=5时分别定义为×、+、×、-、+、+、-、×,二进制算符控制变量k=6时分别定义为×、+、+、-、×、+、+、×,二进制算符控制变量k=7时分别定义为+、×、×、-、+、-、-、×,二进制算符控制变量k=0时三元变量循环加密运算定义为 H i = ( N i + q ) K 1 ( C + j ) K 2 ( N i + j ) K 3 ( C + j ) k 4 ( N i + d ) K 5 ( C + j ) K 6 ( C + j ) k 7 ( C + j ) K 8 ( C + j ) , 二进制算符控制变量k=1时三元变量循环加密运算定义为 H i = ( C + d ) K 1 ( N i + j ) K 2 ( C + d ) K 3 ( N i + d ) K 4 ( C + d ) K 5 ( N i + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , 二进制算符控制变量k=2时三元变量循环加密运算定义为 H i = ( C + e ) K 1 ( C + e ) K 2 ( N i + d ) K 3 ( C + e ) K 4 ( N i + e ) K 5 ( C + e ) K 6 ( N i + f ) K 7 ( C + e ) K 8 ( C + e ) , 二进制算符控制变量k=3时三元变量循环加密运算定义为 H i = ( C + f ) K 1 ( C + f ) K 2 ( C + f ) K 3 ( N i + e ) K 4 ( C + f ) K 5 ( N i + f ) K 6 ( C + f ) K 7 ( N i + g ) K 8 ( C + f ) , 二进制算符控制变量k=4时三元变量循环加密运算定义为 H i = ( C + g ) K 1 ( C + g ) K 2 ( C + g ) K 3 ( C + g ) K 4 ( N i + f ) K 5 ( C + g ) K 6 ( N i + g ) K 7 ( C + g ) K 8 ( N i + h ) , 二进制算符控制变量k=5时三元变量循环加密运算定义为 H i = ( N i + r ) K 1 ( C + h ) K 2 ( C + h ) K 3 ( C + h ) K 4 ( C + h ) K 5 ( N i + g ) K 6 ( C + h ) K 7 ( N i + h ) K 8 ( C + h ) , 二进制算符控制变量k=6时三元变量循环加密运算定义为 H i = ( C + r ) K 1 ( N i + p ) K 2 ( C + r ) K 3 ( C + r ) K 4 ( C + r ) K 5 ( C + r ) K 6 ( N i + h ) K 7 ( C + r ) K 8 ( N i + r ) , 二进制算符控制变量k=7时三元变量循环加密运算定义为 H i = ( N i + p ) K 1 ( C + p ) K 2 ( N i + q ) K 3 ( C + p ) K 4 ( C + p ) K 5 ( C + p ) K 6 ( C + p ) K 7 ( N i + r ) K 8 ( C + p ) , 设定加密参数C的初值,设定加密变量q、j、d、e、f、g、h、r和p的初值,设定二进制算符控制变量k的初值为k=0,设定32位一组二进制防伪信息表中32位二进制防伪信息NI的位置控制变量i=1,设定32位一组二进制加密防伪信息表中32位二进制加密防伪信息Hi的位置控制变量i=1,对N1进行 H 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) 三元变量循环加密运算,其中k=0,生成32位一组的二进制加密防伪信息表中的第一组二进制加密防伪信息H1,对N1进行 H 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) 三元变量循环加密运算的同时进行i+1、q+1、j+1、d+1、e+1、f+1、g+1、h+1、r+1、p+1和k+1运算,使下一个三元变量循环加密运算指向 H 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) ,其中k=1,生成32位一组的二进制加密防伪信息表中的第二组二进制加密防伪信息H2,对N2进行 H 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) 三元变量循环加密运算的同时进行i+1、q+1、j+1、d+1、e+1、f+1、g+1、h+1、r+1、p+1和k+1运算,使下一个三元变量循环加密运算指向 H 3 = ( C + e ) K 1 ( C + e ) K 2 ( N 3 + d ) K 3 ( C + e ) K 4 ( N 3 + e ) K 5 ( C + e ) K 6 ( N 3 + f ) K 7 ( C + e ) K 8 ( C + e ) , 其中k=2,生成32位一组的二进制加密防伪信息表中的第三组二进制加密防伪信息H3,上述加密运算一直进行下去直到二进制防伪信息表中的最后一组32位二进制防伪信息,通过对32位一组二进制防伪信息表中的每一组32位二进制防伪信息Ni进行三元变量循环加密运算,生成与32位一组二进制防伪信息表对应的32位一组二进制加密防伪信息表,对商标印刷中调幅网点进行数字化处理,将调幅网点设置为两种,其中由绝缘油墨印制而成的调幅网点定义为数字0、由导电油墨印制而成的调幅网点定义为数字1,在商标印刷过程中利用生成的32位一组的二进制加密防伪信息通过循环查表法调制商标页面上的调幅网点的印制过程,通过选择绝缘油墨和导电油墨印制调幅网点使商标页面上的调幅网点有规律的按照上述两种调幅网点的导电性能进行变化,调制后商标页面上相邻32个调幅网点构成一组32位二进制信息,使得商标页面上通过调幅网点导电性能的变化携带防伪信息,并使该防伪信息嵌入在整个商标页面网点中,实现商标防伪。In order to realize the encrypted storage of trademark anti-counterfeiting information, the image anti-counterfeiting information and text anti-counterfeiting information are first digitized, and an 8-bit binary anti-counterfeiting information table is generated by using the image anti-counterfeiting information and text anti-counterfeiting information. In order to prevent information overflow during the encryption process, Expand each 8-bit group of binary anti-counterfeiting information in the binary anti-counterfeiting information table into a 32-bit group of binary anti-counterfeiting information, generate a 32-bit group of binary anti-counterfeiting information table in which the upper 24 bits are all 0, and convert a 32-bit group of binary anti-counterfeiting information into a 32-bit group of binary anti-counterfeiting information The i-th group of 32-bit binary anti-counterfeiting information in the information table is denoted as N i , and the i-th group of 32-bit binary encrypted anti-counterfeiting information in the 32-bit binary encrypted anti-counterfeiting information table is denoted as H i , i is a positive integer greater than 0 , the binary encryption parameter is denoted as C, the encryption parameter C is a binary positive integer of 1≦C≦256, the binary encryption variables are respectively denoted as q, j, d, e, f, g, h, r, and p, and the encryption variables q, j, d, e, f, g, h, r, and p are binary positive integers from 1 to 256, and the binary operator control variable is denoted as k, and the binary operator control variable k is a binary integer of 0≦k≦7. symbol Using +, -, ×, three operators, binary operator control variable k = 0 They are respectively defined as -, +, ×, +, ×, -, ×, +, when the binary operator control variable k=1 They are respectively defined as +, ×, +, +, -, ×, +, ×, when the binary operator control variable k=2 They are respectively defined as -, ×, +, +, ×, -, +, -, when the binary operator control variable k=3 Defined as -, ×, +, -, ×, -, +, × respectively, when the binary operator control variable k=4 They are respectively defined as +, ×, -, ×, +, -, +, ×, when the binary operator control variable k=5 Respectively defined as ×, +, ×, -, +, +, -, ×, binary operator control variable k = 6 They are respectively defined as ×, +, +, -, ×, +, +, ×, when the binary operator control variable k=7 They are respectively defined as +, ×, ×, -, +, -, -, ×. When the binary operator control variable k=0, the ternary variable cyclic encryption operation is defined as h i = ( N i + q ) K 1 ( C + j ) K 2 ( N i + j ) K 3 ( C + j ) k 4 ( N i + d ) K 5 ( C + j ) K 6 ( C + j ) k 7 ( C + j ) K 8 ( C + j ) , When the binary operator control variable k=1, the ternary variable circular encryption operation is defined as h i = ( C + d ) K 1 ( N i + j ) K 2 ( C + d ) K 3 ( N i + d ) K 4 ( C + d ) K 5 ( N i + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , When the binary operator control variable k=2, the ternary variable circular encryption operation is defined as h i = ( C + e ) K 1 ( C + e ) K 2 ( N i + d ) K 3 ( C + e ) K 4 ( N i + e ) K 5 ( C + e ) K 6 ( N i + f ) K 7 ( C + e ) K 8 ( C + e ) , When the binary operator control variable k=3, the ternary variable circular encryption operation is defined as h i = ( C + f ) K 1 ( C + f ) K 2 ( C + f ) K 3 ( N i + e ) K 4 ( C + f ) K 5 ( N i + f ) K 6 ( C + f ) K 7 ( N i + g ) K 8 ( C + f ) , When the binary operator control variable k=4, the ternary variable circular encryption operation is defined as h i = ( C + g ) K 1 ( C + g ) K 2 ( C + g ) K 3 ( C + g ) K 4 ( N i + f ) K 5 ( C + g ) K 6 ( N i + g ) K 7 ( C + g ) K 8 ( N i + h ) , When the binary operator control variable k=5, the ternary variable circular encryption operation is defined as h i = ( N i + r ) K 1 ( C + h ) K 2 ( C + h ) K 3 ( C + h ) K 4 ( C + h ) K 5 ( N i + g ) K 6 ( C + h ) K 7 ( N i + h ) K 8 ( C + h ) , When the binary operator control variable k=6, the ternary variable circular encryption operation is defined as h i = ( C + r ) K 1 ( N i + p ) K 2 ( C + r ) K 3 ( C + r ) K 4 ( C + r ) K 5 ( C + r ) K 6 ( N i + h ) K 7 ( C + r ) K 8 ( N i + r ) , When the binary operator control variable k=7, the ternary variable circular encryption operation is defined as h i = ( N i + p ) K 1 ( C + p ) K 2 ( N i + q ) K 3 ( C + p ) K 4 ( C + p ) K 5 ( C + p ) K 6 ( C + p ) K 7 ( N i + r ) K 8 ( C + p ) , Set the initial value of encryption parameter C, set the initial value of encryption variable q, j, d, e, f, g, h, r and p, set the initial value of binary operator control variable k as k=0, Set the position control variable i=1 of 32 binary anti-counterfeiting information N I in a group of binary anti-counterfeiting information tables of 32 bits, set the position control variable of 32 binary encryption anti-counterfeiting information H i in a group of binary encryption anti-counterfeiting information tables of 32 bits i=1, carry out on N 1 h 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) The ternary variable cyclic encryption operation, wherein k=0, generates the first group of binary encryption anti-counterfeiting information H 1 in the binary encryption anti-counterfeiting information table of a group of 32 bits, and performs N 1 h 1 = ( N 1 + q ) K 1 ( C + j ) K 2 ( N 1 + j ) K 3 ( C + j ) K 4 ( N 1 + d ) K 5 ( C + j ) K 6 ( C + j ) K 7 ( C + j ) K 8 ( C + j ) Simultaneously perform i+1, q+1, j+1, d+1, e+1, f+1, g+1, h+1, r+1, p+1 and k while ternary variable cyclic encryption operation +1 operation, so that the next ternary variable loop encryption operation points to h 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) , where k=1, generate the second group of binary encryption anti-counterfeiting information H 2 in the binary encryption anti-counterfeiting information table of a group of 32 bits, carry out N 2 h 2 = ( C + d ) K 1 ( N 2 + j ) K 2 ( C + d ) K 3 ( N 2 + d ) K 4 ( C + d ) K 5 ( N 2 + e ) K 6 ( C + d ) K 7 ( C + d ) K 8 ( C + d ) Simultaneously perform i+1, q+1, j+1, d+1, e+1, f+1, g+1, h+1, r+1, p+1 and k while ternary variable cyclic encryption operation +1 operation, so that the next ternary variable loop encryption operation points to h 3 = ( C + e ) K 1 ( C + e ) K 2 ( N 3 + d ) K 3 ( C + e ) K 4 ( N 3 + e ) K 5 ( C + e ) K 6 ( N 3 + f ) K 7 ( C + e ) K 8 ( C + e ) , Wherein k=2, generate the third group of binary encrypted anti-counterfeiting information H 3 in the binary encrypted anti-counterfeiting information table of 32 bits, and the above-mentioned encryption operation continues until the last group of 32 binary anti-counterfeiting information in the binary anti-counterfeiting information table, By performing a ternary variable cyclic encryption operation on each group of 32-bit binary anti-counterfeiting information N i in the 32-bit binary anti-counterfeiting information table, a 32-bit binary encrypted anti-counterfeiting information corresponding to the 32-bit binary anti-counterfeiting information table is generated Table, digitize the AM dots in trademark printing, and set the AM dots into two types, where the AM dots printed with insulating ink are defined as number 0, and the AM dots printed with conductive ink are defined as number 1 In the trademark printing process, the generated 32-bit binary encrypted anti-counterfeiting information is used to modulate the printing process of the AM dots on the trademark page through the circular look-up method, and the AM dots are printed on the trademark page by selecting insulating ink and conductive ink. The AM dots of the AM network regularly change according to the conductive properties of the above two AM dots. After modulation, 32 adjacent AM dots on the trademark page form a set of 32-bit binary information, so that the change in the conductivity of the AM dots on the trademark page carries anti-counterfeiting information. information, and embed the anti-counterfeiting information in the entire trademark page network to realize trademark anti-counterfeiting.
CN201310023427.9A 2013-01-22 2013-01-22 Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark Expired - Fee Related CN103106464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310023427.9A CN103106464B (en) 2013-01-22 2013-01-22 Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310023427.9A CN103106464B (en) 2013-01-22 2013-01-22 Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark

Publications (2)

Publication Number Publication Date
CN103106464A CN103106464A (en) 2013-05-15
CN103106464B true CN103106464B (en) 2015-07-15

Family

ID=48314310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310023427.9A Expired - Fee Related CN103106464B (en) 2013-01-22 2013-01-22 Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark

Country Status (1)

Country Link
CN (1) CN103106464B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790420A (en) * 2005-12-01 2006-06-21 北京北大方正电子有限公司 Method and apparatus for embedding and detecting digital watermark in text file
CN101699845A (en) * 2009-10-20 2010-04-28 北京印刷学院 Encryption counterfeit printing technology of frequency modulated halftone dot space position for pseudo random signal modulation printed matter
CN102831453A (en) * 2011-06-14 2012-12-19 北京印刷学院 Page storage for printing electronic book pages

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023160B2 (en) * 2008-09-10 2011-09-20 Xerox Corporation Encoding message data in a cover contone image via halftone dot orientation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790420A (en) * 2005-12-01 2006-06-21 北京北大方正电子有限公司 Method and apparatus for embedding and detecting digital watermark in text file
CN101699845A (en) * 2009-10-20 2010-04-28 北京印刷学院 Encryption counterfeit printing technology of frequency modulated halftone dot space position for pseudo random signal modulation printed matter
CN102831453A (en) * 2011-06-14 2012-12-19 北京印刷学院 Page storage for printing electronic book pages

Also Published As

Publication number Publication date
CN103106464A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
CN103106442B (en) Single variable parameter transmutation multi-element encryption anti-fake information storage trademark
CN103106427A (en) Single parameter multiple-encryption anti-counterfeiting information storage trademark
CN103106430B (en) One-parameter double-variant multi-variant encryption anti-fake information storage brand
CN103106464B (en) Single parameter variable transmutation ternary variable circulation encryption anti-counterfeiting information storage trademark
CN103106466B (en) Single parameter variable transmutation binary variable circulation encryption anti-counterfeiting information storage trademark
CN103106522B (en) Multi-variable-parameter gradient binary-variant circulating encryption anti-fake information storage brand
CN103106517B (en) Parameter alternation ternary encryption anti-counterfeiting information storage trade mark
CN103106471B (en) Single parameter variable transmutation ternary anti-fake information storage trademark
CN103116792B (en) One-parameter double variant ternary variable circulation anti-fake information storage trademark
CN103116775B (en) One-parameter double variant binary variable circulation encryption anti-fake information storage trademark
CN103116788B (en) Multi-parameter binary variable cycle encryption anti-counterfeiting information storage trademark
CN103106437B (en) One-parameter variation transmutation multivariable anti-fake information storage trademark
CN103116793B (en) Multivariable multi-parameter gradient binary circulation encryption anti-fake information storage trademark
CN103106485B (en) One-parameter double-variant unary circulation anti-fake information storage trademark
CN103106450B (en) Single parameter multivariable unitary circulation anti-fake information storage trademark
CN103106501B (en) Multiparameter transmutation multivariable multielement encryption anti-fake information storage trademark
CN103106481B (en) One-parameter double-variant binary circulating encryption anti-fake information storage brand
CN103136564B (en) Multi-parametric-vargradient gradient polynary circulation anti-fake information storage trademark
CN103136565B (en) Multi-variable multi-parameter gradient ternary circulating encryption anti-fake information storage brand
CN103116779B (en) One-parameter variation transmutation multivariable circulation encryption anti-fake information storage trademark
CN103106499B (en) Parametric variation multi-layer gradient multi-encryption anti-fake information storage trademark
CN103116777B (en) One-parameter multivariate multivariable circulation encryption anti-fake information storage trademark
CN103106491B (en) Single parameter variable transmutation ternary circulation anti-fake information storage trademark
CN103106478B (en) Single variable parameter transmutation ternary circulation anti-fake information storage trademark
CN103106498B (en) Multiparameter multivariable multielement encryption anti-fake information storage trademark

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20160122

EXPY Termination of patent right or utility model