[go: up one dir, main page]

CN103097550B - 用于分离结合至任何类型的目的核酸序列的蛋白质的方法 - Google Patents

用于分离结合至任何类型的目的核酸序列的蛋白质的方法 Download PDF

Info

Publication number
CN103097550B
CN103097550B CN201180034252.0A CN201180034252A CN103097550B CN 103097550 B CN103097550 B CN 103097550B CN 201180034252 A CN201180034252 A CN 201180034252A CN 103097550 B CN103097550 B CN 103097550B
Authority
CN
China
Prior art keywords
nucleic acid
sequence
tft
tfo
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180034252.0A
Other languages
English (en)
Other versions
CN103097550A (zh
Inventor
R·富克斯
S·福基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M R Fuchs
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43467009&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103097550(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CN103097550A publication Critical patent/CN103097550A/zh
Application granted granted Critical
Publication of CN103097550B publication Critical patent/CN103097550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6875Nucleoproteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了用于分离和鉴定结合于任何类型的目标核酸序列(目的序列:SoI),有利地结合于任何类型的目标DNA序列(特别是在活细胞或试管中的染色体DNA或RNA或附加型DNA的情况下)的蛋白质的新型方法。在本发明的背景下,活细胞包括含有核酸材料(需要分析其所结合的蛋白质)的任何生物,例如病毒、细菌、细胞。本发明基于位于SoI附近的特定核酸序列标签,有利地能够形成三股螺旋的特定双链DNA(称为形成三螺旋的标签序列(TFT序列))的使用。

Description

用于分离结合至任何类型的目的核酸序列的蛋白质的方法
真核生物DNA在染色体的情况下被许多蛋白质复合物结合和解释(interpreted)。
调控特定基因座的全套蛋白质的描述对于理解基因表达和调控是至关重要的。
细胞代谢,例如基因组维持、基因表达、程序化细胞增殖等借助于受密切调控的蛋白质(所述蛋白质携带翻译后修饰并且作为蛋白质网络的一部分)的特定组合在染色质中进行归档(索引)。
尽管进行了大量的表征努力,但染色体仍然是未得到充分表征的细胞器官(Kornberg和Lorch,2007).
理解籍以将转录历史编码和存储在染色质中的方式是个巨大的挑战,其目前因缺乏方便的分离染色质的特定片段(在下文中称为目的染色质(CoI))和分析它们的蛋白质含量(作为生长状况、细胞周期、细胞类型等的函数)的方法而受到限制。
术语“目的染色质”片段是指,特定核酸序列(即给定的基因)与所有结合的蛋白质之间的复合物。
鉴于基因组例如人基因组(3x109bp)的巨大尺寸,此类特定核蛋白片段的分离是个特别费劲的任务。
为了分离与单个人基因(3kb的理论平均尺寸)相关的染色质片段,人们将需要从106个片段中分离出1个片段。
存在对简化CoI片段的分离的方法的需要。
在过去的25年中,已寻求各种染色质分离策略来建立基因座特异性蛋白质组成。
虽然每一个策略都实现了靶区域的富集,但没有一个策略以足以允许鉴定结合的因子的量和纯度提供材料。
Déjardin和Kingston(Cell136,175-186,2009年1月9日)描述了基于Watson-Crick杂交的分离含端粒染色质片段的方法。
但该技术仅可用于这样的端粒片段,其包含能够通过Watson-Crick碱基配对与互补寡核苷酸探针杂交的单链区域(3'-悬突)。
端粒是个例外,因为(1)它们天然包含具有已知序列(从而可与互补探针形成Watson-Crick碱基对)的单链DNA,(2)它们是过表达的(over-represented),因为每个细胞存在92个端粒。
因此,所描述的技术不是通用的,并且不允许分离在染色体末端以外(即染色体中的任何地方)的核蛋白片段(其更有利地不依赖于目的片段的核酸序列)。
存在对这样的方法的需要,其允许分离位于染色体(有利地染色质片段)中的任何地方的目的核蛋白片段,且更有利地不依赖于目的片段的核酸序列。
本发明的目的之一是提出这样的方法。
本发明提供了用于分离和鉴定结合于任何类型的目标核酸序列(目的序列:SoI),有利地结合于任何类型的目标DNA序列(特别是在活细胞或试管中的染色体DNA或RNA或附加型DNA的情况下)的蛋白质的新型方法。
在本发明的背景下,活细胞包括含有核酸材料(需要分析其所结合的蛋白质)的任何生物,例如病毒、细菌、细胞。
本发明基于位于SoI附近的特定核酸序列标签,有利地能够形成三股螺旋的特定双链DNA(称为形成三螺旋的标签序列(TFT序列))的使用。
本发明适用于上文中定义的任何类型的活细胞中的任何来源的核酸(SoI),因为可将预定长度的短的形成三螺旋的标签(TFT)引入所述目的序列(SoI)和与其结合的蛋白的附近。
有利地,本发明适用于任何来源的DNA(染色体、附加型、病毒等)。
根据本发明,TFT序列可以在细胞中作为附加型DNA的部分或整合在研究的目标核酸序列附近。
根据本发明,TFT序列可与称为形成三螺旋的寡核苷酸(TFO)的特定寡核苷酸探针形成以三股螺旋的形式存在的稳定复合物。
无论TFT序列的最终形式是什么(附加型或整合的),其可以为单一序列(asinglesequence)或重复序列的形式。当其为重复序列的形式时,重复序列可连续地或间隔地头对头或头对尾地排列。
因此根据本发明,所述方法的第一步骤是,在其复合的蛋白质有待分析的SoI附近引入TFT序列。
当将TFT引入SoI的附近时,可通过使用TFO探针从无关核酸片段的复杂混合物中纯化SoI及其结合的蛋白质。
因此,本发明的第一目的涉及,用于分离结合至任何类型的目标核酸序列(目的序列:SoI)的蛋白质的新方法,其中
-在第一步骤中,将形成三螺旋的标签(TFT)引入活细胞的所述核酸序列中,并培养所述活细胞;
-在第二步骤中,收集步骤1中获得的细胞,在允许形成核酸三螺旋的条件下将其与特异于引入的TFT的分子探针(TFO探针)混合;
-在第三步骤中,分离第二步骤中形成的核酸三螺旋,并分析结合的蛋白质。
根据本发明,目标核酸序列(SoI)用于命名将利用本发明的方法分离的核苷酸序列。使用该表述,而无需预先判断该序列是否是预先已知的。
根据本发明,所述方法可用于原核或真核细胞。
根据本发明,目标核酸序列(SoI)可以是DNA(脱氧核糖核苷酸)或RNA(核糖核苷酸),有利地DNA,更有利地基因组核酸(DNA或RNA),优选基因组DNA或附加型DNA。
根据本发明的第一步骤,TFT可以是双链线性或环状核酸(包含TFT的核酸),优选双链线性或环状DNA的一部分。
在本发明的第一实施方案中,包含TFT的核酸可以以附加体的形式维持在细胞中。根据该实施方案,包含TFT的核酸可以是环状核酸,优选除TFT序列外还包含病毒原点的质粒。
在本发明的第二实施方案中,可将包含TFT的核酸随机地或以定向方式(其被引入靠近预定的SoI)引入所述核酸序列。当随机进行包含TFT的核酸的插入时,能够分析未知的SoI。为此,包含TFT的核酸可以是任何类型的DNA,其有利地还包含用作检测具有所述整合的DNA的细胞的标志物的报道序列。
当通过同源或位点特异性重组以定向方式进行包含TFT的核酸的插入时,能够分析已知的SoI和结合在其上的蛋白质。包含TFT的核酸将插入在已知的目的核酸序列的区域内,其侧翼序列是已知的,允许将包含TFT的核酸特异性引入在待分析的已知SoI的附近。在该实施方案中,包含TFT的核酸优选为除TFT序列外还包含已知的侧翼序列(其允许质粒与目的核酸之间的同源重组)的质粒。有利地,所述质粒还包含用作用于检测具有所述整合的DNA的细胞的标志物的序列。
根据本发明的第一步骤,可通过任何已知的方法将包含形成三螺旋的标签的核酸(含TFT的核酸)引入所述活细胞,所述方法例如磷酸钙法(Graham,F.L.和VanDerEb.,A.J.,1973,Virology52:456-467)、DEAE葡聚糖法(Farber,F.,等人,1975,Biochem.Biophys.Acta.,390:298-311;Pagano,J.S.,1970,Prog.Med.Virol.12:1-48)、多鸟氨酸法(Farber,F.,等人,1975,Biochem.Biophys.Acta.,390:298-311)、DNA显微注射法(Cappechi,M.R.,1980,Cell.22:479-488)、聚乙二醇(PEG)/二甲基亚砜(DMSO)法(Jonak,Z.L.,等人,1984,Hybridoma3:107-118)、胰蛋白酶/EDTA/甘油(Chu,G.J.和Sharp,P.A.,1981,Gene13:197-202)、渗透冲击法(osmoticshockmethod)(Okada,G.Y.,和Rechsteiner,M.,1982,Cell29:33-41)、脂质体融合法(Poste,G.,等人,1976,Methods.Cell.Biol.,14:33-71;Fraley,R.等人,1980,J.Biol.Chem.255;10431-10435;Wong,T.K.,等人,1980,Gene10;87-94)、红细胞影介导的方法(Furusawa,M.,等人,1976,Methods.Cell.Biol.,14:73-80;Straus,S.和Raskas,H.,1980,J.Gen.Virol.48:241-245;Godfrey,W.,等人,1983,Proc.Natl.Acad.Sci.U.S.A.80:2267-2271)、细菌原生质体融合法(Chu,G.J.和Sharp,P.A.,1981,Gene13:197-202;Sandri-Goldin,R.M.,等人,1981,Mol.Cell.Biol.1:743-752;Oi,V.T.,和Morrison,S.L.,1986,Biotechniques4:214-221)、重组仙台病毒包膜法(Loyter,A.,等人,1984,Ciba.Found.Symp.,103:163-180)、激光束穿孔法(Tsukakoshi,M.,等人,1984,Appl.Phys.B.,35:2284-2289;Tao,W.,等人,1987,Proc.Natl.Acad.Sci.U.S.A.84:4180-4184)、电穿孔法(Neumann,E.,等人,1982;EMBO.J.,1:841-845;Potter,H.,等人,1984,Proc.Natl.Acad.Sci.U.S.A.81:7161-7165)、钨微粒轰击法(Klein,T.M.,等人,1987,Nature327:70-73)、逆转录病毒载体法(Jaenisch,R.,1976,Proc.Natl.Acad.Sci.U.S.A.,73:1260-1264:Jahner,D.和Jaenish,R.,1980,Nature287:456-458)。
根据本发明的优选实施方案(即,包含TFT的核酸整合在核酸序列中),技术例如同源重组或位点特异性重组的使用是优选的。此类技术在本领域内是公知的。根据本发明,由SorrellDA和KolbAF.,("Targetedmodificationofmammaliangenomes"BiotechnolAdv.2005Nov;23(7-8):431-69)描述的技术是优选的。
根据本发明的第一步骤,可按照任何已知的培养方法培养活细胞,只要所述方法适合于所使用的活细胞即可。本领域技术人员可容易地发现适合于其所研究的细胞的良好培养条件。
根据本发明,TFT序列必须被特异于其的分子探针识别,并且必须与称为形成三螺旋的寡核苷酸(TFO)的所述特异性分子探针以三股螺旋的形式形成稳定的复合物。
一般来说,根据本发明,在第一步骤中,形成三螺旋的标签(TFT)可以是可用作标签的任何核酸序列,条件是其序列是已知的并且可制备互补特异性分子探针。
在本发明的另一个优选实施方案中,TFT序列可以是通常不存在于SoI所存在的核酸序列中的序列。
已对TFT的特异性进行了许多研究。根据这些研究,结构要求影响TFO的设计,并且已导致具有TFO(其为识别TFT的特异性分子探针)的特异性头部的独特结合性质的不同亚型的分类。
形成三螺旋的寡核苷酸(TFO)结合在寡聚嘧啶-寡聚嘌呤序列的大沟中,从而允许双链DNA的特异性靶向。
已知DNA在大部分时间下作为通过Watson-Crick碱基配对方案:A/T、G/C保持在一起的反向平行链所形成的双链体存在。
但还已知,在一条链中包含多聚嘌呤(poly-Pu)片段(Poly-Purinetracks)(且在互补链中包含多聚嘧啶(poly-Py)片段)的DNA双链体能够通过Hoogsteen碱基对与poly-Py或poly-Pu寡核苷酸形成三螺旋。
因此在本发明的另一个优选实施方案中,TFT序列可以是多聚嘧啶-多聚嘌呤序列,即,可被多聚嘧啶TFO或多聚嘌呤TFO通过Hoogsteen碱基对识别的序列。
优选,TFT序列可以是能够被多聚嘧啶TFO通过Hoogsteen碱基对识别的多聚嘧啶-多聚嘌呤序列。
在最优选的实施方案中,TFT序列可以是通常不存在于SoI所存在的核酸序列中的多聚嘧啶-多聚嘌呤序列。
根据本发明,TFT序列可具有10至50个碱基对,优选15至35个碱基对,非常优选约20个碱基对的长度。
根据本发明方法的第二步骤,收集步骤2中获得的所述细胞,并将其在允许核酸三螺旋形成的条件下与特异于引入的TFT的分子探针(TFO探针)混合。
根据本发明的第二步骤,可按照任何已知的方法例如Molecularcloning:alaboratorymanual;(JosephSambrook,DavidWilliamRussell,ColdSpringHarborPress,ColdSpringHarbor,NewYork,2001)中描述的方法收集细胞。优选地,通过刮取和离心收集细胞。
在该步骤上,由于收集的细胞通常形成或多或少的致密团(compactcluster),因此,在添加TFO探针之前值得添加碎裂(fragmentation)步骤。这样,可使用许多机械(剪切法)、酶促或超声技术。根据本发明,超声处理法是优选的。
该碎裂步骤可促进在TFO探针与TFT序列之间形成三螺旋的随后步骤。
根据本发明的第二步骤,在收集,最终碎裂后,必须以促进TFO识别TFT序列的方式将细胞与TFO探针接触。根据本发明方法的步骤2,可使用导致TFO探针与TFT序列之间形成三螺旋的任何方法。
在本发明的该第二步骤的一个优选实施方案中,TFO对TFT序列的识别可通过在将细胞的细胞核与TFO混合之前纯化或分离所述细胞核来促进。应当理解,纯化或分离细胞核是指,所述收集的细胞经历处理,例如它们的核酸和蛋白质或真核细胞的细胞核至少部分地从它们的细胞环境中分离。本领域技术人员知晓许多获得这样的结果的技术。此类技术详尽地描述于生物学和/或分子生物学的文献中。
根据本发明,可裂解收集的细胞,随后可纯化或分离核酸和蛋白质或真核细胞的细胞核。获得该结果的优选方法之一可以是Molecularcloning:alaboratorymanual(SambrookJ.和RussellD.,ColdSpringHarborLaboratoryPress,U.S.;第3版(2000年12月5日))中描述的方法。
根据本发明,TFO探针可以是单独的或与提高其效率的其它元件组合的、与插入的TFT序列互补的任何核酸序列。
已报导,可通过TFO探针的下列修饰来实现三螺旋的稳定形成和所选择的靶位点(形成三螺旋的标签位点)的高识别特异性:
1-与正常核苷酸混合的锁核酸(LNA)核苷酸的引入:锁核酸(LNA)包含具有2'-O,4'-C-亚甲基连接的核糖核苷酸。最近已描述,包含LNA的TFO实现非常显著的三螺旋稳定化。更确切地说,先前的工作已显示,TFO序列中交替的LNA和正常核苷酸适合于三螺旋形成。因此根据本发明,TFO可优选地包含与正常核苷酸混合的锁核酸(LNA)核苷酸(AlexeiA.等人,(1998)."LNA(锁核酸):Synthesisoftheadenine,cytosine,guanine,5-methylcytosine,thymineanduracilbicyclonucleosidemonomers,oligomerisation,andunprecedentednucleicacidrecognition".Tetrahedron54(14):3607-30;SatoshiObika等人(1998)."Stabilityandstructuralfeaturesoftheduplexescontainingnucleosideanalogueswithacross-linkedN-typeconformation,2'-O,4'-C-methyleneribonucleosides".TetrahedronLett.39(30):5401-4)。
2-在TFO的3'或5'-末端上用作嵌入剂的由任何芳香环结构组成的化合物的添加。此类芳香环结构可以是例如补骨脂素,吖啶,溴乙啶,黄连素,原黄素,道诺霉素,多柔比星,沙立度胺,奎纳克林或邻二氮菲。
3-用5-甲基胞嘧啶替代胞嘧啶。
因此根据本发明的一个优选实施方案,TFO可以是包含与正常核苷酸混合的锁核酸(LNA)核苷酸的核酸序列。
在本发明的另一个优选的实施方案,TFO可在其3'或5'-末端包含由任何芳香环结构组成的化合物,例如嵌入剂例如补骨脂素,吖啶,溴乙啶,黄连素,原黄素,道诺霉素,多柔比星,沙立度胺,奎纳克林或邻二氮菲,优选补骨脂素。优选地,所述化合物可以是光活化化合物,最优选光活化嵌入剂。一旦化合物嵌入双链TFT核酸,这将允许使用光子发射源将所述化合物与核酸共价连接。这将加强TFO/TFT复合物的强度,从而有利于在最终的纯化步骤中回收蛋白质/核酸复合物。
在本发明的另一个优选实施方案中,在TFO中,胞嘧啶可用5-甲基胞嘧啶替代。
在本发明的一个非常优选的实施方案中,TFO可以是包含与正常核苷酸混合的锁核酸(LNA)核苷酸的核酸序列,其可在其3'或5'-末端包含芳香环结构,例如嵌入剂,并且其中胞嘧啶可用5-甲基胞嘧啶替代。
在本发明的另一个实施方案中,TFO探针可包含上述特异性头部(LNA和正常核苷酸,即探针,在其3'或5'-末端之一上具有芳香环结构),且在其相对的末端(3'或5')上通过接头连接于可被相应捕获钩(capturehook)特异性捕获的捕获柄(capturehandle)。
根据本发明,所述接头可以是任何类型的已知的间隔子,优选可具有1至300个碳原子,优选100至200,最优选110至130个碳原子的长度的碳间隔子。
根据本发明,捕获装置(捕获柄/相应捕获钩)可以是任何强相互作用分子对,例如任何类型的显示亲和力相互作用的材料,例如组氨酸-金属、抗原-抗体(例如,FLAG-抗FLAG)、特定寡核苷酸-特定寡核苷酸结合蛋白(例如,lacO-LacI)等的组合。
在具体的实施方案中,捕获柄可以是可结合另一种化合物(用作钩)的化合物。优选的钩可以是链霉抗生物素蛋白或等同物例如抗生物素蛋白或Neutravidin,优选的捕获柄可以是生物素或等同物例如脱硫生物素。
根据非常优选的实施方案,TFO探针从其5'末端可设计为,嵌入剂(补骨脂素)-TFO序列-间隔子-捕获柄。
图1显示了此类TFO探针的实例。
在本发明方法的第二步骤中,必须形成核苷酸三螺旋结构。根据本发明,可使用允许这样的形成的任何条件。根据本发明,可使用的优选方法之一是Brunet等人(NucleicAcidResearch,2005,第33卷,N°13,4223-4234)中描述的方法。
根据本发明方法的第三步骤,可按照任何已知的方法分离在第二步骤中形成的核酸三螺旋。优选的方法可以是其中特异于捕获柄的钩用于结合捕获柄的方法。此类方法可以例如是,满足该条件的组氨酸-金属、抗原-抗体(例如FLAG-抗FLAG)、特定寡核苷酸-特定寡核苷酸结合蛋白(例如,lacO-LacI)的组合。
根据其中捕获柄为生物素或等同物的本发明的一个优选实施方案,钩可以是链霉抗生物素蛋白。
为了帮助纯化捕获的三螺旋,可将钩固定在柱子或珠粒例如磁珠上。磁珠的使用是按照本发明使用的优选纯化方法。此类方法描述于许多参考资料例如Déjardin和Kingston(Cell136,175-186,2009年1月9日)中。
根据本发明的特定替代形式,可将结合于核酸的蛋白质的交联步骤添加至所述方法中。可紧在步骤1之后、收集步骤之前添加该交联步骤,或可紧在收集细胞之后、紧在添加TFO探针之前添加该交联步骤。
该步骤可以是重要的,因为在交联过程中,围绕核酸的蛋白质在它们之间以及它们与所述核酸之间交联。
根据本发明,可使用本领域已知的允许蛋白质-蛋白质和/或蛋白-核酸交联的任何方法,例如对于蛋白质-DNA交联:UV光交联、甲醛交联技术、六价铬,和对于蛋白质-蛋白质交联(用于进一步分析,与蛋白质-DNA交联组合):二甲基己二酸(DMA);二琥珀酰亚胺基辛二酸酯(D88);二硫代双[琥珀酰亚胺基丙酸酯](D8P);乙二醇双[琥珀酰亚胺基琥珀酸酯](EG8)。
优选地,可按照由OrlandoV等人(Methods.1997Feb;11(2):205-14)描述的方法使用体内甲醛交联技术。
值得注意的是,如果蛋白质之间或蛋白质与核酸之间的相互作用足够强以至不必进行额外的交联步骤,则交联步骤可以不是必需的。
根据本发明的另一个特定替代形式,为了优化方法,可将细胞裂解步骤添加至方法中。根据所选择的本发明的实施方案(具有或不具有交联步骤),可在本发明方法中在不同时间上添加该细胞裂解步骤。
当根据方法不进行交联步骤时,可在方法的第二步骤中在收集细胞后添加该细胞裂解步骤。
当根据方法进行交联步骤时,可在交联步骤之前或之后(优选之前),没有差别地(indifferently)添加该细胞裂解步骤。
无论所使用的方法的实施方案(具有或不具有交联步骤),可按照任何已知的方式,优选按照下列参考资料中描述的方法进行细胞裂解步骤,("AssociationofRNApolymerasewithtranscribedregionsinEscherichiacoli",WadeJT和StruhlK.;ProcNatlAcadSciUSA.2004Dec21;101(51):17777-82或"CockaynesyndromeAandBproteinsdifferentiallyregulaterecruitmentofchromatinremodelingandrepairfactorstostalledRNApolymeraseIIinvivo",MolCell.2006Aug;23(4):471-82)。
本发明还涉及,本发明的方法用于制备核苷酸-蛋白质复合物的用途。
本发明还涉及用于实施本发明方法的试剂盒,所述试剂盒包含至少一种待引入在活细胞的核酸序列中的SoI附近的TFT,所述TFT如先前在本文中所述,至少一种交联化合物,至少一种特异于TFT序列的分子探针(TFO探针),所述TFO探针如先前在本文中所述,以及由可结合TFO的捕获柄的化合物构成的钩。
在阅读下列与所附图解中显示的附图相关的实施例和说明后,本发明将变得更易于理解,并且其详细内容将变得更加清楚明显,其中:
图1:显示一种可能的TFO探针(TFO-1)的实例:特异性头部由包含分别以小写和大写字母表示的LNA和DNA残基的混合物的修饰的22-聚体寡核苷酸形成。大写C代表5-甲基胞嘧啶残基;在寡核苷酸的5'-末端移植了补骨脂素残基。其3'-末端利用连接于由124个原子的线性链组成的间隔子的脱硫生物素残基(捕获柄)进行修饰。
图2:显示了包含形成三螺旋的标签(TFT)序列的质粒的构建:pAS03来源于pcDNA3.1(+)CAT(Invitrogen)。pAS03.1通过插入TFT-1序列而从pAS03衍生。pAS03.2通过插入额外的TFT-1序列而从pAS03.1衍生。pAS04通过插入第三TFT-1序列而从pAS03.2衍生。红色的TFT-1序列通过Hoogsteen键与TFO-1探针形成三螺旋。pUCori:大肠杆菌中的高拷贝数目复制起点。SV40ori:表达SV40大T抗原的灵长类动物细胞中的复制起点。Ap:氨苄青霉素抗性基因。Neo:新霉素抗性基因。CAT:氯霉素抗性基因,PCMV:人巨细胞病毒立即早期启动子/增强子。
图3:显示在实施例3中获得的通过TFO-1进行的体外质粒分离的结果。对于每一种质粒(pAS03、pAS03.1、pAS03.2、pAS04),将600ng(≈140fmol)与8pmol的TFO-1(最终0.4μM)混合,搅拌24小时。将150μg的C1添加至混合物中,搅拌18小时。将混合物置于磁力座上,收集C1-结合的级分。将收集的C1洗涤2次,通过煮沸释放捕获在C1上的质粒。
通过琼脂糖凝胶电泳分析回收的样品。与输入相比,质粒回收的估值为:pAS03,<1%;pAS03.1,53%;pAS03.2,60%;pAS04,67%。在大肠杆菌中扩增并纯化本实验中使用的质粒。CC:闭合环状。OC:开环。二聚体:二聚化的质粒。
图4:显示在不同的缓冲条件下通过TFO-1体外进行的质粒分离。将各自400ng(≈93fmol)的质粒(pAS03,pAS04)与8pmol的TFO-1(最终0.4μM)混合,搅拌11小时。将150μg的C1添加至混合物中,搅拌2小时。将混合物置于磁力座上,取出上清液(该上清液称为未结合的级分)。
将收集的C1级分洗涤2次,通过煮沸释放捕获在C1上的质粒。通过琼脂糖凝胶电泳分析回收的样品。如果质粒被充分回收,则未结合的级分(UB,泳道2-5,12-15)和从C1洗脱的质粒(热洗脱,泳道6-9,16-19)分别荷载有15ng和20ng当量的质粒。
泳道(1,11)和泳道(10,20)分别荷载有15ng和5ng的pAS04作为对照。缓冲液A由12.5mMTris-HCl(7.6),75mMNaCl,0.5%NP-40,0,5%脱氧胆酸钠,0,05%SDS,0.1mMEDTA,0.5mMEGTA,0.1%肌氨酰组成,且具有/不具有10mMMgCl2。缓冲液B由25mMTris-HCl(7.6),150mMNaCl,1%NP-40,1%脱氧胆酸钠,0.1%SDS,0.1mMEDTA,0.5mMEGTA,0.1%肌氨酰组成,且具有/不具有10mMMgCl2
图5:显示了质粒和结合至从大肠杆菌回收的质粒的蛋白质的分离。将DH1/pAS03或DH1/pAS04菌株培养至OD600=0.4。通过甲醛处理(最终3%)交联细胞30分钟,破裂细胞,用RNA酶A进行处理。通过离心将可溶性级分(sup-1)与不溶性级分分离。重悬浮不溶性级分,对其进行超声处理以进一步溶解材料(sup-2)。将组合的可溶性级分(sup-1+sup-2)与C1混合以除去可不依赖于TFO-1的存在而结合C1珠粒的蛋白质。将回收的上清液用作TFO法的输入。将混合物的等分试样(7x107个细胞当量,来自OD600=0.4时的1.75ml培养物)与12.5pmol的TFO-1(最终0.25μM)混合,搅拌18小时。将200μg的C1添加至混合物中,搅拌2小时。将混合物置于磁力座上,取出上清液(该上清液称为未结合的级分(UB))。将收集的C1洗涤6次,通过添加包含10mM生物素的缓冲液来释放捕获在C1上的质粒(该洗脱的样品称为洗脱级分(E))。
A)通过加热使回收的样品(UB和E)解交联(RCL),或不进行解交联,并通过琼脂糖凝胶电泳分析3.3%(UB)和10%(E)的样品。
B)将0.1%(UB)和20%(E)的样品解交联,并通过银染然后SDS-PAGE来进行分析。
图6:显示了从人细胞系回收的质粒的分离。将上清液与缀合有链霉抗生物素蛋白的珠粒混合以除去存在于人细胞中的固有地生物素化的蛋白质。
将回收的上清液(S)用作TFO法的输入。将含有≈3μg的总DNA(质粒DNA:≈4.5ng)的S的等分试样与2.5pmol的TFO-1(最终0.25μM)混合,搅拌16小时。将40μg的C1添加至混合物中,搅拌16小时。将收集的C1洗涤7次,通过添加包含10mM生物素的缓冲液来释放捕获在C1上的质粒(该洗脱的样品称为洗脱级分(E))。在PCR分析之前,通过加热和除去其中的蛋白质来处理所有样品以解交联。
A)通过琼脂糖凝胶电泳分析500ng的上清液的DNA。可区分相应于线性或开环质粒DNA的大小的弱条带。
B)将1ng的来源于pAS03或pAS04的S的DNA用作模板,使用围绕TFT-1位点的引物进行PCR扩增;通过琼脂糖凝胶电泳分析扩增的片段(对于pAS03和pAS04,分别为670和731bp)。
C)将1%的在珠粒洗脱后回收的样品(E)用作模板进行PCR,并通过琼脂糖凝胶电泳对其进行分析。
实施例1:形成三螺旋的寡核苷酸探针(TFO探针)的构建:
根据本发明并且如图1中所示,最终构建的TFO-1探针具有下列特征:
1-通过6个碳的间隔子连接在寡核苷酸的5'末端的补骨脂素;
2-22-聚体序列特异性寡核苷酸,其中11个残基被LNA(小写字母)替代并且所有胞嘧啶残基(包括胞嘧啶-LNA类似物)被5-甲基胞嘧啶替代;
3-通过124个原子的间隔子将脱硫生物素(生物素类似物)而非生物素缀合在寡核苷酸的3'末端。
根据其对链霉抗生物素蛋白的更弱的亲和力,而决定使用脱硫生物素而非生物素,从而允许脱硫生物素-链霉抗生物素蛋白相互作用可通过添加游离生物素来置换。
实施例2:包含形成三螺旋的标签(TFT)的质粒DNA的构建:
质粒pAS03(6290bp)通过修饰几个限制性内切核酸酶识别位点而从pcDNA3.1(+)CAT(6217bp,Invitrogen)衍生。
将1至3个与实施例1中描述的TFO-1形成三螺旋的TFT-1序列引入pAS03。所得的质粒命名为pAS03.1(1个TFT-1序列)、pAS03.2(2个TFT-1序列)和pAS04(3个TFT-1序列,6473bp)(图2)。
由于这些新构建的质粒保留CoIE1和SV40复制起点,因此它们可在大肠杆菌中进行扩增,以及在表达SV40大T抗原的灵长类动物细胞中进行培养。
图2为所构建的质粒的图谱。
实施例3:TFO介导的体外质粒捕获:
为了确认TFO-1探针有效地识别质粒DNA中的TFT-1序列,将实施例2中制备的质粒与TFO-1探针混合并且搅拌。
将DynabeadsMyOneStreptavidinC1(Invitrogen)磁珠(C1)添加至混合物中,并进一步搅拌。
随后,将混合物暴露于磁力座,以将C1结合的级分与未结合的级分分离。在对C1级分进行样品漂洗以除去非特异性结合的质粒DNA后,通过加热或通过添加游离生物素洗脱C1珠粒。
通过琼脂糖凝胶电泳分析洗脱的产物。
如图3中显示的,取决于TFT-1序列的存在,质粒得以回收。数据清楚地显示,TFO-1与TFT-1位点之间的复合的高特异性和稳定性。基于滴定(TFO-1、C1和质粒的量)和时间过程(质粒与TFO-1的搅拌时间,质粒/TFO-1与C1的搅拌时间,和从C1洗脱质粒/TFO-1的时间)实验,可得出下列结论:
1.约10:1的TFO-1对质粒(例如pAS04)的摩尔比对于获得质粒的有效回收是最佳的。该比率在极宽的TFO-1浓度范围(例如约40nM-1000nM)上是有效的;
2.TFO-1对pAS03(无TFT-1序列)的非特异性捕获低于0.2%的输入;
3.20μg的C1珠粒通过TFO-1捕获约94ng的pAS04;
4.当使用20μg的C1时,约1pmol的TFO-1是理想的量;
5.质粒与TFO-1之间的温育时间:在室温(RT)下2-3小时(hr)是足够的,虽然更长的温育时间(例如,超过12小时)略微更好;
6.质粒与TFO-1和C1珠粒之间的温育时间:在RT下1.5-2小时是足够的,虽然更长的温育时间(例如,超过12小时)略微更好;
7.通过添加游离生物素在室温下进行3小时获得TFO-1-质粒复合物从C1珠粒的几乎最大洗脱。
实施例4:缓冲液组分:
为了使用本方法分离蛋白质,缓冲液需要存在温和的去垢剂,以溶解交联的DNA-蛋白质复合物。
在不同的缓冲条件(包含去垢剂)下测试TFO-介导的体外质粒分离(如实施例3中描述的),并且发现,较低的离子强度可减小质粒的回收得率。此类作用可通过添加MgCl2来抵消(图4)。
综上所述,TFO-质粒捕获法在包括去垢剂的缓冲液中是可行的,并且MgCl2的添加改善信噪比。
实施例5:从大肠杆菌分离质粒和质粒-蛋白质复合物:
为了检查TFO法的可行性,即,其在活生物中分离结合于包含TFT序列的特异性DNA序列的蛋白质的能力,首先进行使用大肠杆菌菌株的实验。
用pAS03或pAS04转化大肠杆菌DH1菌株,将转化的菌株用作模型菌株。
将来自菌株DH1/pAS03和DH1/pAS04的细胞在液体中培养至OD600=0.4,并通过在RT下进行甲醛处理(最终3%)30分钟(min)来交联细胞。
破裂交联的细胞,将其经历RNA酶A处理以降解RNA级分。
通过离心将可溶性级分(sup-1)与不溶性级分分离。
将不溶性级分重悬浮于缓冲液中,进行超声处理,以回收额外的可溶性材料级分(sup-2)。
将混合物sup-1+sup-2用作材料,用于通过TFO法分离质粒-蛋白质复合物。
如图5A中显示的,pAS04被特异性分离。虽然在不结合C1珠粒的级分(未结合的级分UB)中观察到显著量的质粒,但可通过第二轮的TFO捕获回收未结合的质粒。
与其中20μg的C1能够捕获约94ng的pAS04的体外反应相比较,涉及大肠杆菌粗制提取物的本实验中,20μg的C1仅捕获约10ng的pAS04。
必要时,回收产率可通过C1珠粒的量的相应增加来补偿。
如图5B中显示的,从DH1/pAS04回收的蛋白质的量显著高于DH1/pAS03。这些结果显示,在体内与质粒结合的蛋白质可利用本TFO法从粗制大肠杆菌提取物特异性回收。
实施例6:从人细胞分离质粒
作为下一步,已对TFO法进行改造,以适用于捕获人细胞中的质粒DNA。
利用pAS03或pAS04瞬时转化人细胞系293FT(Invitrogen),将转染的细胞用作模型菌株以研究TFO法在人细胞中的可行性。
通过在RT下进行甲醛处理(最终3%)30分钟来交联细胞。从交联的细胞分离细胞核,将其经历RNA酶A处理以降解RNA级分。通过超声处理破碎细胞核,并通过离心将可溶性级分(上清液;sup)与不溶性级分分离。
上清液中的平均染色体DNA片段大小为约3-4kbp(图6A),与原始质粒的大小(≈6.5kbp)接近。事实上,当分析500ng的上清液的DNA时,在琼脂糖凝胶(图6A)上在DNAsmear内几乎不能区分以线性或开环(OC)形式存在的全长质粒。应当指出,上清液制剂的质量是至关重要的)。
将上清液与缀合有链霉抗生物素蛋白的珠粒混合以除去存在于人细胞中的含有生物素的蛋白质。将上清液(S)用作用于通过TFO法分离质粒-蛋白质复合物的材料。为了定量S中的质粒DNA的量,利用PCR扩增质粒DNA片段。
如图6B中显示的,pAS03和pAS04质粒DNA被类似地扩增,并且据估计代表≈0.15%的S中的总DNA。首先将包含≈3μg总DNA的起始量的S(即,估计的质粒DNA的量:≈4.5ng)与2.5pmol的TFO-1混合,随后与40μg的C1混合。随后我们添加过量的单链DNA(10μM终浓度的19-聚体寡核苷酸)以阻止C1表面上DNA和DNA/蛋白质复合物的非特异性结合(珠粒钝化过程)。在洗涤C1珠粒后,释放捕获在C1珠粒上的质粒DNA,通过PCR进行分析。如图6C中显示的,可通过本TFO法从粗制人提取物特异性分离pAS04。事实上,当省略TFO-1的添加时,pAS04的扩增水平与作为阴性对照的pAS03相当(图6C)。估计的信噪比大于20倍(图6C)。
应当指出:在本实验中,噪声(即由pAS03产生的PCR信号)由代表0.15%的总DNA的DNA产生。该量与牵涉单拷贝的片段化染色体DNA的情形相比,较高。
在ColFI实验中,信号与噪声之间的差异将因此大得多。数据显示,噪声的量由紧密结合在磁珠表面上的DNA/蛋白质复合物的非特异性结合引起(图6C中的-TFO实验)。与其中20μgC1具有捕获约94ngpAS04的能力的体外反应相比较,在该人细胞粗制提取物中,20μg的C1仅捕获约0.1ng的pAS04。
本结果显示,甚至在存在大量非靶DNA的情况下,TFO法对于捕获包含TFT-1靶的DNA是高度特异性的。减少的回收产率(≈2%)可通过C1珠粒的量的相应增加来补偿。

Claims (39)

1.一种用于分离与任何类型的目标核酸序列结合的蛋白质的方法,其中
a.在第一步骤中,将形成三螺旋的标签序列,即TFT序列,引入活细胞的所述核酸序列中,并培养所述活细胞,其中所述TFT序列为可用作标签的任何核酸序列并且其中所述TFT序列为这样的序列,其通常不存在于所述目标核酸序列所存在的核酸序列中;
b.在第二步骤中,收集步骤1中获得的细胞,并在允许形成核酸三螺旋的条件下,将其与特异于引入的TFT序列的分子探针,即TFO探针,混合,其中所述TFO探针是包含与正常DNA核苷酸混合的锁核酸核苷酸的核酸序列;
c.在第三步骤中,分离第二步骤中形成的核酸三螺旋,并分析结合的蛋白质。
2.权利要求1的方法,其中所述目标核酸序列为基因组核酸。
3.权利要求1的方法,其中所述目标核酸序列为基因组DNA或附加型DNA。
4.权利要求1至3的任一项的方法,其中所述TFT序列为多聚嘧啶-多聚嘌呤序列。
5.权利要求1至3的任一项的方法,其中所述TFT序列为短的TFT序列,其具有10至50个碱基对的长度。
6.权利要求5的方法,其中所述短的TFT序列具有15至35个碱基对的长度。
7.权利要求5的方法,其中所述短的TFT序列具有20个碱基对的长度。
8.权利要求1至3的任一项的方法,其中在收获步骤1中获得的细胞时并且在与TFO探针混合之前,在步骤2中进行细胞碎裂的另外步骤。
9.权利要求1至3的任一项的方法,其中在添加TFO探针之前进行纯化或分离细胞的细胞核的另外步骤。
10.权利要求1至3的任一项的方法,其中添加结合至核酸的蛋白质的交联步骤。
11.权利要求10的方法,其中紧在步骤1之后、在收集步骤之前添加交联步骤。
12.权利要求10的方法,其中紧在细胞收集之后、紧在添加TFO探针之前,在步骤2中添加交联步骤。
13.权利要求10的方法,其中按照选自下述的任何方法进行交联步骤:UV光交联、甲醛交联技术、六价铬、二甲基己二酸;二琥珀酰亚胺基辛二酸酯;二硫代双[琥珀酰亚胺基丙酸酯];乙二醇双[琥珀酰亚胺基琥珀酸酯]。
14.权利要求10的方法,其中使用体内甲醛交联技术进行所述交联步骤。
15.权利要求1至3的任一项的方法,其中进行细胞裂解的另外步骤。
16.权利要求15的方法,其中当按照权利要求1至9的方法不进行交联步骤时,在所述方法的第二步骤中在收集细胞后添加细胞裂解步骤。
17.权利要求15的方法,其中当按照权利要求10至14的方法进行交联步骤时,在交联步骤之前或之后,添加细胞裂解步骤。
18.权利要求17的方法,其中在交联步骤之前,添加细胞裂解步骤。
19.权利要求1至3的任一项的方法,其中所述TFO探针是与提高其效率的其它元件组合的、与插入的TFT序列互补的任何核酸序列。
20.权利要求1至3的任一项的方法,其中在所述TFO探针中,胞嘧啶被5-甲基胞嘧啶替代。
21.权利要求1至3的任一项的方法,其中所述TFO探针在其3'或5'-末端上包含由任何芳香环结构组成的用作嵌入剂的化合物。
22.权利要求21的方法,其中所述用作嵌入剂的化合物为光活化嵌入剂。
23.权利要求21的方法,其中所述用作嵌入剂的化合物为补骨脂素、吖啶、溴乙啶、黄连素、原黄素、道诺霉素、多柔比星、沙立度胺、奎纳克林或邻二氮菲。
24.权利要求1至3的任一项的方法,其中所述TFO探针为包含与正常核苷酸混合的锁核酸核苷酸的核酸序列,其在其3'或5'-末端上包含由芳香环结构组成的化合物,并且其中胞嘧啶被5-甲基胞嘧啶替代。
25.权利要求24的方法,其中所述化合物为嵌入剂。
26.权利要求1至3的任一项的方法,其中在所述TFO探针中,在其3'或5'-末端上具有芳香环结构的探针在其相对的末端上通过接头连接至可被相应捕获钩特异性捕获的捕获柄。
27.权利要求26的方法,其中所述接头是可具有1至300个碳原子的长度的碳间隔子。
28.权利要求26的方法,其中所述接头是可具有100至200个碳原子的长度的碳间隔子。
29.权利要求26的方法,其中所述接头是可具有110至130个碳原子的长度的碳间隔子。
30.权利要求26的方法,其中所述捕获柄和相应捕获钩是任何强相互作用分子对。
31.权利要求30的方法,其中所述强相互作用分子对是任何类型的显示亲和力相互作用的材料。
32.权利要求30的方法,其中所述强相互作用分子对是组氨酸-金属、抗原-抗体、或特定寡核苷酸-特定寡核苷酸结合蛋白的组合。
33.权利要求30的方法,其中所述强相互作用分子对是FLAG-抗FLAG或lacO-LacI的组合。
34.权利要求26的方法,其中所述相应捕获钩是链霉抗生物素蛋白或抗生物素蛋白或Neutravidin,并且所述捕获柄是生物素或等同物。
35.权利要求34的方法,其中所述生物素等同物是脱硫生物素。
36.权利要求34的方法,其中所述钩被固定在柱子上或珠粒上。
37.权利要求34的方法,其中所述钩被固定在磁珠上。
38.权利要求1至37的任一项的方法用于制备核苷酸-蛋白质复合物的用途。
39.用于实施权利要求1至37的任一项的方法的试剂盒,所述试剂盒包含至少一种待引入在活细胞的核酸序列中的目标核酸序列附近的TFT,至少一种交联化合物,至少一种特异于TFT的分子探针,以及由可结合TFO的捕获柄的化合物构成的钩,所述TFT、所述交联化合物、所述特异于TFT序列的分子探针和所述钩如前述权利要求的任一项中所描述。
CN201180034252.0A 2010-07-13 2011-07-05 用于分离结合至任何类型的目的核酸序列的蛋白质的方法 Active CN103097550B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10007204A EP2407552B1 (en) 2010-07-13 2010-07-13 Method for the isolation of the proteins bound to any kind of interesting nucleic acid sequence
EP10007204.0 2010-07-13
PCT/EP2011/003322 WO2012007117A1 (en) 2010-07-13 2011-07-05 Method for the isolation of proteins binding to any kind nucleic acid sequence of interest

Publications (2)

Publication Number Publication Date
CN103097550A CN103097550A (zh) 2013-05-08
CN103097550B true CN103097550B (zh) 2016-03-16

Family

ID=43467009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180034252.0A Active CN103097550B (zh) 2010-07-13 2011-07-05 用于分离结合至任何类型的目的核酸序列的蛋白质的方法

Country Status (7)

Country Link
US (1) US8927222B2 (zh)
EP (1) EP2407552B1 (zh)
JP (1) JP5965398B2 (zh)
CN (1) CN103097550B (zh)
CA (1) CA2803944A1 (zh)
ES (1) ES2399502T3 (zh)
WO (1) WO2012007117A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669383A1 (en) 2012-06-01 2013-12-04 Cnrs New method for the isolation of the proteins bound to any kind of interesting nucleic acid sequence
US12227812B2 (en) * 2018-08-01 2025-02-18 Gen-Probe Incorporated Compositions and methods for detecting nucleic acids of Epstein-Barr virus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444564B2 (ja) * 2001-03-23 2010-03-31 サントリオン 三重螺旋相互作用によるターゲット二本鎖dna配列の精製及び検出方法
CN101238213B (zh) * 2005-05-25 2015-05-20 蒂纳控股有限责任公司 使用扭转嵌入核酸(TINA)稳定并选择性地形成Hoogsteen型三链体和双链体以及制备TINA的工艺
DK2191016T3 (en) * 2007-08-20 2015-06-08 Gen Hospital Corp INSULATION OF PROTEIN FACTORS BINDING DIRECT OR INDIRECT WITH NUCLEIC ACIDS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effect of DNA target sequence on triplex formation by oligo-2’-deoxy- and 2‘-O-methylribonucleotides;Rachel A. Cassidy et al.;《Nucleic Acids Research》;20031231;第31卷(第14期);4099-4108 *
Je&acute;ro&#710;me De&acute;jardin et al..Purification of Proteins Associated with Specific Genomic Loci.《cell》.2009, *
Normal Transcription of the C1 Inhibitor Gene is Dependent Upon a Polypurine.Polypyrimidine Region Within the Promoter;Kamyar Zahedi et al.;《Inflammation》;20020831;第26卷(第4期);183-191 *

Also Published As

Publication number Publication date
EP2407552B1 (en) 2012-11-14
ES2399502T3 (es) 2013-04-01
US20130196326A1 (en) 2013-08-01
JP2013532982A (ja) 2013-08-22
CN103097550A (zh) 2013-05-08
WO2012007117A1 (en) 2012-01-19
US8927222B2 (en) 2015-01-06
JP5965398B2 (ja) 2016-08-03
EP2407552A1 (en) 2012-01-18
CA2803944A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP7100680B2 (ja) ゲノム適用および治療適用のための、核酸分子のクローン複製および増幅のためのシステムおよび方法
AU2014333776B2 (en) Methods and kits for detecting nucleic acid sequences of interest using DNA-binding protein domain
JP2021052779A (ja) 連続性を維持した転位
EP2505666B1 (en) Methods and compositions for enriching either target polynucleotides or non-target polynucleotides from a mixture of target and non-target polynucleotides
US11807896B2 (en) Physical linkage preservation in DNA storage
JPH09508268A (ja) 核酸の配列決定
JP4564219B2 (ja) Dna−プローブの中のシトシン−メチル化の検出方法
EP3507297A1 (en) Genome-wide identification of chromatin interactions
US20140356872A1 (en) Homologous pairing capture assay and related methods and applications
JPH11506316A (ja) 固相支持体上でのリゾルベース解離によるミスマッチの検出
CN113528612A (zh) 用于检测染色质开放位点间染色质相互作用的NicE-C技术
US20090215029A1 (en) Methods of isolating and purifying nucleic acid-binding biomolecules and compositions including same
CN103097550B (zh) 用于分离结合至任何类型的目的核酸序列的蛋白质的方法
Baranello et al. Mapping DNA breaks by next-generation sequencing
EP2669383A1 (en) New method for the isolation of the proteins bound to any kind of interesting nucleic acid sequence
Brégeon et al. Assays for transcriptional mutagenesis in active genes
JP3065035B2 (ja) 高性能なRecA様組換え酵素/1本鎖核酸プローブ複合体の調製方法及びその利用
US20090011955A1 (en) Method for Localization of Nucleic Acid Associated Molecules and Modifications
JP2002209590A (ja) 核酸末端領域の非対称的修飾法
Kielec With these techniques, the role of the fifth base is becoming a lot more prominent.
Nilsson et al. Application of Padlock and Selector Probes in Molecular Medicine
JP2006238782A (ja) Muファージトランスポゼースを用いた突然変異又は遺伝子多型の検出方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200108

Address after: Fa Guomasai

Patentee after: M. R. Fuchs

Address before: Fa Guobali

Patentee before: Guo Jiakeyanzhongxin

TR01 Transfer of patent right