CN103094430B - Luminous structure - Google Patents
Luminous structure Download PDFInfo
- Publication number
- CN103094430B CN103094430B CN201310054962.0A CN201310054962A CN103094430B CN 103094430 B CN103094430 B CN 103094430B CN 201310054962 A CN201310054962 A CN 201310054962A CN 103094430 B CN103094430 B CN 103094430B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor layer
- conductive material
- electrode
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
Landscapes
- Electrodes Of Semiconductors (AREA)
- Electroluminescent Light Sources (AREA)
- Led Devices (AREA)
Abstract
本发明实施例提供一种发光结构,包括依次排布的第一半导体层、发光层、第二半导体层以及导电材料层,其中所述第一半导体层和所述第二半导体层采用不同类型的半导体材料,所述发光结构还包括绝缘层,所述绝缘层位于所述第二半导体层与所述导电材料层之间,以将所述第二半导体层与所述导电材料层电绝缘。根据本发明实施例,在第二半导体层和导电材料层之间增加一薄绝缘层,从而将第二半导体层和导电材料层电绝缘;避免了发光结构中的导电材料层和半导体层直接接触而产生的肖特基接触或者欧姆接触,从而降低了发光结构中的正向串联电阻,进而提高了发光结构整体的出光效率。
An embodiment of the present invention provides a light-emitting structure, including a first semiconductor layer, a light-emitting layer, a second semiconductor layer, and a conductive material layer arranged in sequence, wherein the first semiconductor layer and the second semiconductor layer use different types of semiconductor material, the light emitting structure further includes an insulating layer, the insulating layer is located between the second semiconductor layer and the conductive material layer, so as to electrically insulate the second semiconductor layer from the conductive material layer. According to an embodiment of the present invention, a thin insulating layer is added between the second semiconductor layer and the conductive material layer, thereby electrically insulating the second semiconductor layer and the conductive material layer; avoiding direct contact between the conductive material layer and the semiconductor layer in the light emitting structure The resulting Schottky contact or ohmic contact reduces the forward series resistance in the light emitting structure, thereby improving the overall light extraction efficiency of the light emitting structure.
Description
技术领域technical field
本发明属于半导体制造技术领域,具体涉及一种具有量子隧穿效应的发光结构。The invention belongs to the technical field of semiconductor manufacturing, and in particular relates to a light-emitting structure with quantum tunneling effect.
背景技术Background technique
GaN基发光二级管(LED)具有高亮度、低能耗、长寿命、响应速度快等优点,作为新型高效固体光源,在室内照明、景观照明、显示屏、信号指示等领域都有广泛的应用。当电源的正极与LED的正极相连,电源的负极与LED的负极相连,此时的电压为正向电压。正向电压一般包括PN结电压、N型氮化镓电压、P型氮化镓电压及金属-半导体接触电压的总和。GaN-based light-emitting diodes (LEDs) have the advantages of high brightness, low energy consumption, long life, and fast response. As a new type of high-efficiency solid-state light source, they are widely used in indoor lighting, landscape lighting, display screens, and signal indications. . When the positive pole of the power supply is connected to the positive pole of the LED, and the negative pole of the power supply is connected to the negative pole of the LED, the voltage at this time is a forward voltage. The forward voltage generally includes the sum of PN junction voltage, N-type GaN voltage, P-type GaN voltage and metal-semiconductor contact voltage.
金属-半导体接触是制作半导体器件中十分重要的问题,金属-半导体接触可分为肖特基接触和欧姆接触两种,接触情况直接影响到器件的性能,肖特基接触或欧姆接触产生的电阻会降低器件的出光效率。Metal-semiconductor contact is a very important issue in the manufacture of semiconductor devices. Metal-semiconductor contact can be divided into two types: Schottky contact and ohmic contact. The contact condition directly affects the performance of the device. The resistance generated by Schottky contact or ohmic contact It will reduce the light extraction efficiency of the device.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种器件出光效率较高的发光结构。In view of this, the purpose of the present invention is to provide a light-emitting structure with high light-extraction efficiency of the device.
为实现上述目的,本发明实施例提供一种发光结构,包括依次排布的第一半导体层、发光层、第二半导体层以及导电材料层,其中所述第一半导体层和所述第二半导体层采用不同类型的半导体材料,所述发光结构还包括绝缘层,所述绝缘层位于所述第二半导体层与所述导电材料层之间,以将所述第二半导体层与所述导电材料层电绝缘。To achieve the above object, an embodiment of the present invention provides a light emitting structure, including a first semiconductor layer, a light emitting layer, a second semiconductor layer and a conductive material layer arranged in sequence, wherein the first semiconductor layer and the second semiconductor layer Different types of semiconductor materials are used for the layers, and the light-emitting structure further includes an insulating layer, the insulating layer is located between the second semiconductor layer and the conductive material layer, so as to connect the second semiconductor layer and the conductive material layer layer of electrical insulation.
优选地,所述绝缘层的厚度不大于10nm。Preferably, the thickness of the insulating layer is not greater than 10 nm.
优选地,所述绝缘层采用氧化硅或者氮化硅。Preferably, the insulating layer is made of silicon oxide or silicon nitride.
优选地,所述导电材料层采用掺杂的氮化镓、掺杂的碳化硅、掺杂的硅、氧化铟锡、合金或者金属中的一种或者几种的组合。Preferably, the conductive material layer is one or a combination of doped gallium nitride, doped silicon carbide, doped silicon, indium tin oxide, alloys or metals.
优选地,所述第一半导体层采用N型半导体材料,所述第二半导体层采用P型半导体材料。Preferably, the first semiconductor layer is made of N-type semiconductor material, and the second semiconductor layer is made of P-type semiconductor material.
优选地,所述发光结构还包括第一衬底、第一电极和第二电极,所述第一半导体层位于所述第一衬底与所述发光层之间,所述第一电极位于所述第一半导体层之下,所述第二电极位于导电材料层之上。Preferably, the light emitting structure further includes a first substrate, a first electrode and a second electrode, the first semiconductor layer is located between the first substrate and the light emitting layer, and the first electrode is located between the first substrate and the light emitting layer. The second electrode is located under the first semiconductor layer, and the second electrode is located on the conductive material layer.
优选地,所述第一衬底采用蓝宝石、氮化镓、碳化硅或者硅。Preferably, the first substrate is made of sapphire, gallium nitride, silicon carbide or silicon.
优选地,所述发光结构还包括第二衬底、第一电极和第二电极,所述导电材料层位于所述第二衬底与所述绝缘层之间,所述第一电极位于所述第一半导体层之上,所述第二电极位于所述第二衬底之下。Preferably, the light emitting structure further includes a second substrate, a first electrode and a second electrode, the conductive material layer is located between the second substrate and the insulating layer, and the first electrode is located on the On the first semiconductor layer, the second electrode is located under the second substrate.
优选地,所述第二衬底采用导电导热材质。Preferably, the second substrate is made of an electrically and thermally conductive material.
优选地,所述第一半导体层采用P型半导体材料,所述第二半导体层采用N型半导体材料。Preferably, the first semiconductor layer uses a P-type semiconductor material, and the second semiconductor layer uses an N-type semiconductor material.
根据本发明实施例,在第二半导体层和导电材料层之间增加一薄绝缘层,从而将第二半导体层和导电材料层电绝缘。避免了发光结构中的导电材料层和半导体层直接接触而产生的肖特基接触或者欧姆接触,从而降低了发光结构中的正向串联电阻,进而提高了发光结构整体的出光效率。According to an embodiment of the present invention, a thin insulating layer is added between the second semiconductor layer and the conductive material layer, so as to electrically insulate the second semiconductor layer and the conductive material layer. Schottky contact or ohmic contact caused by direct contact between the conductive material layer and the semiconductor layer in the light-emitting structure is avoided, thereby reducing the forward series resistance in the light-emitting structure, thereby improving the overall light extraction efficiency of the light-emitting structure.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are For some embodiments of the present invention, those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是本发明实施例的发光结构的结构示意图;FIG. 1 is a schematic structural view of a light emitting structure according to an embodiment of the present invention;
图2~5是本发明实施例一的发光结构的结构示意图;2 to 5 are structural schematic diagrams of the light emitting structure of Embodiment 1 of the present invention;
图6是本发明实施例二的发光结构的结构示意图。FIG. 6 is a schematic structural diagram of a light emitting structure according to Embodiment 2 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为提供一种出光效率较高的发光结构,避免发光结构中的肖特基接触或欧姆接触产生的电阻降低器件的出光效率,本申请的发明人经过研究提出以下技术方案。In order to provide a light-emitting structure with high light extraction efficiency and avoid the resistance generated by the Schottky contact or ohmic contact in the light-emitting structure from reducing the light extraction efficiency of the device, the inventors of the present application propose the following technical solutions after research.
实施例一Embodiment one
图1示出了本发明实施例一的发光结构的结构示意图,该发光结构包括第一半导体层101、发光层102、第二半导体103、绝缘层104以及导电材料层105,其中,第一半导体层101可以采用N型半导体材料,发光层102可以采用本领域常用的发光材料,第二半导体层103可以采用P型半导体材料,绝缘层104可以采用氧化硅或者氮化硅,该绝缘层104的厚度可以不大于10nm,例如可以为0.1nm、0.5nm、1nm、2nm、5nm、10nm等,绝缘层104的实际厚度可以按设计需求而定,导电材料层105可以采用常用的导电材料,如掺杂的氮化镓、掺杂的碳化硅、掺杂的硅、氧化铟锡、金属或者合金等,在一个具体实施例中,该导电材料层105可以采用金属。1 shows a schematic structural view of a light emitting structure according to Embodiment 1 of the present invention, the light emitting structure includes a first semiconductor layer 101, a light emitting layer 102, a second semiconductor 103, an insulating layer 104 and a conductive material layer 105, wherein the first semiconductor The layer 101 can be made of N-type semiconductor material, the light-emitting layer 102 can be made of light-emitting materials commonly used in the art, the second semiconductor layer 103 can be made of P-type semiconductor material, and the insulating layer 104 can be made of silicon oxide or silicon nitride. The thickness can be no more than 10nm, such as 0.1nm, 0.5nm, 1nm, 2nm, 5nm, 10nm, etc. The actual thickness of the insulating layer 104 can be determined according to the design requirements, and the conductive material layer 105 can use commonly used conductive materials, such as doped doped gallium nitride, doped silicon carbide, doped silicon, indium tin oxide, metal or alloy, etc. In a specific embodiment, the conductive material layer 105 can be metal.
在工作过程中,当图1中的第一半导体层101采用N型半导体材料、第二半导体层103采用P型半导体材料时,可以在导电材料层105一侧施加正电压、在第一半导体层101一侧施加负电压,具体地可以通过第一电极106和第二电极107施加负电压和正电压(如图2所示),其中第一电极106和第二电极107的具体形状和尺寸可以依设计要求而定,本发明对此不作限定。此时,导电材料层105中的载流子向第一半导体层(N型半导体材料层)101方向运动,但是这些载流子被绝缘层104阻挡而无法到达第二半导体层(P型半导体材料层)103。继续施加正电压,导电材料层105中被绝缘层104阻挡的载流子积累到一定数量,P型半导体材料层103中的多数载流子耗尽、少数载流子积累在P型半导体材料层103和绝缘层104的接触界面,此时导电材料层105中的载流子能够遂穿绝缘层104而到达P型半导体材料层103,形成隧穿电流。这样,“P型半导体材料层103-绝缘层104-导电材料层105”结构产生了量子隧穿效应,发光结构的工作既不基于肖特基接触也不基于欧姆接触,而是基于量子隧穿效应产生的隧穿电流。In the course of work, when the first semiconductor layer 101 in Fig. 1 adopts N-type semiconductor material, and the second semiconductor layer 103 adopts P-type semiconductor material, a positive voltage can be applied on the conductive material layer 105 side, and a positive voltage can be applied on the first semiconductor layer. Negative voltage is applied to one side of 101, specifically negative voltage and positive voltage can be applied through the first electrode 106 and the second electrode 107 (as shown in FIG. 2 ), wherein the specific shape and size of the first electrode 106 and the second electrode 107 can be determined according It depends on design requirements, and the present invention is not limited thereto. At this time, the carriers in the conductive material layer 105 move toward the first semiconductor layer (N-type semiconductor material layer) 101, but these carriers are blocked by the insulating layer 104 and cannot reach the second semiconductor layer (P-type semiconductor material layer). layer) 103. Continue to apply the positive voltage, the carriers blocked by the insulating layer 104 in the conductive material layer 105 accumulate to a certain amount, the majority carriers in the P-type semiconductor material layer 103 are depleted, and the minority carriers accumulate in the P-type semiconductor material layer 103 and the insulating layer 104, at this time, the carriers in the conductive material layer 105 can tunnel through the insulating layer 104 to reach the P-type semiconductor material layer 103, forming a tunneling current. In this way, the "P-type semiconductor material layer 103-insulating layer 104-conducting material layer 105" structure produces a quantum tunneling effect, and the work of the light emitting structure is neither based on Schottky contact nor ohmic contact, but based on quantum tunneling effect of tunneling current.
本发明实施例一的发光结构中,在第二半导体层103和导电材料层105之间增加一薄绝缘层104,从而将第二半导体层103和导电材料层105电绝缘。避免了发光结构中的导电材料层和半导体层直接接触而产生的肖特基接触或者欧姆接触,从而降低了发光结构中的正向串联电阻,进而提高了发光结构整体的出光效率。In the light emitting structure of Embodiment 1 of the present invention, a thin insulating layer 104 is added between the second semiconductor layer 103 and the conductive material layer 105 to electrically insulate the second semiconductor layer 103 and the conductive material layer 105 . Schottky contact or ohmic contact caused by direct contact between the conductive material layer and the semiconductor layer in the light-emitting structure is avoided, thereby reducing the forward series resistance in the light-emitting structure, thereby improving the overall light extraction efficiency of the light-emitting structure.
另外,本发明实施例一中的发光结构还可以包括衬底100,该衬底100位于N型半导体材料层101之上,且N型半导体材料层101位于衬底100和发光层102之间,如图3所示,该衬底100可以采用蓝宝石、氮化镓、碳化硅或者硅等。另外,图3所示的发光结构还可以包括电极,图4示出了其结构示意图,该发光结构还包括第一电极106和第二电极107,且第一电极106用于提供负电压、第二电极107用于提供正电压。N型半导体材料层101形成一个台面,第一电极106位于N型半导体材料层101上的一个台面上,第二电极107位于导电材料层105之上。本领域普通技术人员可以依据需要确定第一电极106和第二电极107的形状和尺寸,本发明对此不作限定。In addition, the light-emitting structure in Embodiment 1 of the present invention may further include a substrate 100, the substrate 100 is located on the N-type semiconductor material layer 101, and the N-type semiconductor material layer 101 is located between the substrate 100 and the light-emitting layer 102, As shown in FIG. 3 , the substrate 100 may be sapphire, gallium nitride, silicon carbide, or silicon. In addition, the light emitting structure shown in FIG. 3 may further include electrodes. FIG. 4 shows a schematic structural view thereof. The light emitting structure also includes a first electrode 106 and a second electrode 107, and the first electrode 106 is used to provide a negative voltage, and the second electrode 107 is used to provide a negative voltage. The two electrodes 107 are used to provide positive voltage. The N-type semiconductor material layer 101 forms a mesa, the first electrode 106 is located on a mesa on the N-type semiconductor material layer 101 , and the second electrode 107 is located on the conductive material layer 105 . Those skilled in the art can determine the shape and size of the first electrode 106 and the second electrode 107 as required, which is not limited in the present invention.
另外,本发明实施例一中的发光结构还可以包括衬底100′,如图5所示,导电材料层105位于衬底100′与绝缘层104之间,且衬底100′采用导热导电材质,例如掺杂的氮化镓、掺杂的碳化硅、掺杂的硅、金属或者合金中的一种或者几种,此时,位于衬底100′一侧的第二电极107用于接正电压、位于第一半导体层(N型半导体材料)101另一侧的第一电极106用于接负电压。In addition, the light-emitting structure in Embodiment 1 of the present invention may further include a substrate 100'. As shown in FIG. , such as one or more of doped gallium nitride, doped silicon carbide, doped silicon, metal or alloy, at this time, the second electrode 107 on one side of the substrate 100' is used to connect Voltage, the first electrode 106 located on the other side of the first semiconductor layer (N-type semiconductor material) 101 is used to connect to a negative voltage.
上述介绍了第一半导体层101采用N型半导体材料、第二半导体层103采用P型半导体材料的情况,本发明实施例中,第一半导体层101还可以采用P型半导体材料、第二半导体层103还可以采用N型半导体材料,以下在实施例二中作具体介绍。The above describes the situation that the first semiconductor layer 101 uses an N-type semiconductor material, and the second semiconductor layer 103 uses a P-type semiconductor material. In the embodiment of the present invention, the first semiconductor layer 101 can also use a P-type semiconductor material, and the second semiconductor layer 103 may also use an N-type semiconductor material, which will be specifically introduced in Embodiment 2 below.
实施例二Embodiment two
本发明实施例二的发光结构的结构示意图如图6所示,与实施例一的不同之处在于,实施例二中的第一半导体层101采用P型半导体材料,第二半导体层103采用N型半导体材料。此时,绝缘层104位于N型半导体材料层(第二半导体层)103与导电材料层105之间,位于第一半导体层(P型半导体材料层)101一侧的第一电极106用于接正电压、位于导电材料层105另一侧的第二电极107用于接负电压。The structure diagram of the light-emitting structure of the second embodiment of the present invention is shown in Figure 6. The difference from the first embodiment is that the first semiconductor layer 101 in the second embodiment uses a P-type semiconductor material, and the second semiconductor layer 103 uses a N-type semiconductor material. type semiconductor material. At this time, the insulating layer 104 is located between the N-type semiconductor material layer (second semiconductor layer) 103 and the conductive material layer 105, and the first electrode 106 located on the side of the first semiconductor layer (P-type semiconductor material layer) 101 is used to connect Positive voltage, the second electrode 107 on the other side of the conductive material layer 105 is used to connect to negative voltage.
图6所示的发光结构的工作原理如下:当正电压施加于第一电极106时,P型半导体材料层101内的载流子向导电材料层105的方向运动,但是这些载流子被绝缘层104阻挡而无法到达导电材料层105,从而积累在N型半导体材料层103和绝缘层104的接触界面。继续向第一电极106施加正电压,P型半导体材料层101中被绝缘层104阻挡的载流子积累到一定数量,N型半导体材料层103中的多数载流子耗尽、少数载流子积累在N型半导体材料层103与绝缘层104的接触界面,此时这些载流子能够遂穿绝缘层104而到达导电材料层105,形成隧穿电流。这样,“N型半导体材料层103-绝缘层104-导电材料层105”结构产生了量子隧穿效应,发光结构的工作既不基于肖特基接触也不基于欧姆接触,而是基于量子隧穿效应产生的隧穿电流。The working principle of the light-emitting structure shown in Figure 6 is as follows: when a positive voltage is applied to the first electrode 106, the carriers in the P-type semiconductor material layer 101 move toward the direction of the conductive material layer 105, but these carriers are insulated The layer 104 prevents it from reaching the conductive material layer 105 , so it accumulates at the contact interface between the N-type semiconductor material layer 103 and the insulating layer 104 . Continue to apply a positive voltage to the first electrode 106, the carriers blocked by the insulating layer 104 in the P-type semiconductor material layer 101 accumulate to a certain amount, the majority carriers in the N-type semiconductor material layer 103 are depleted, and the minority carriers Accumulated at the contact interface between the N-type semiconductor material layer 103 and the insulating layer 104 , these carriers can tunnel through the insulating layer 104 to reach the conductive material layer 105 , forming a tunneling current. In this way, the "N-type semiconductor material layer 103-insulating layer 104-conducting material layer 105" structure produces a quantum tunneling effect, and the work of the light emitting structure is neither based on Schottky contact nor ohmic contact, but based on quantum tunneling effect of tunneling current.
需要说明的是,本发明实施例一中的相应技术特征也可以应用于本发明实施例二,本领域普通技术人员可以在本发明实施例二的技术方案的基础上结合本发明实施例一中的相应技术特征从而获得其他技术方案,这对本领域技术人员来说是容易实现的,在此不再赘述。It should be noted that the corresponding technical features in Embodiment 1 of the present invention can also be applied to Embodiment 2 of the present invention, and those of ordinary skill in the art can combine the technical solution of Embodiment 2 of the present invention with the It is easy for those skilled in the art to realize the corresponding technical features to obtain other technical solutions, and will not be repeated here.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310054962.0A CN103094430B (en) | 2013-02-20 | 2013-02-20 | Luminous structure |
PCT/CN2013/073802 WO2014127563A1 (en) | 2013-02-20 | 2013-04-07 | Light-emitting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310054962.0A CN103094430B (en) | 2013-02-20 | 2013-02-20 | Luminous structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103094430A CN103094430A (en) | 2013-05-08 |
CN103094430B true CN103094430B (en) | 2015-06-17 |
Family
ID=48206780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310054962.0A Active CN103094430B (en) | 2013-02-20 | 2013-02-20 | Luminous structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103094430B (en) |
WO (1) | WO2014127563A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106920827B (en) * | 2017-03-08 | 2019-11-01 | 京东方科技集团股份有限公司 | A kind of light emitting diode, array substrate, luminescent device and display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1661826A (en) * | 2004-02-25 | 2005-08-31 | 三垦电气株式会社 | Semiconductor light emitting element and manufacturing method thereof |
CN102891232A (en) * | 2012-09-29 | 2013-01-23 | 中国科学院半导体研究所 | Semiconductor light emitting device and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368225B2 (en) * | 2004-03-10 | 2009-11-18 | 三洋電機株式会社 | Method for manufacturing nitride-based semiconductor light-emitting device |
JP2006086300A (en) * | 2004-09-15 | 2006-03-30 | Sanken Electric Co Ltd | Semiconductor light emitting device having protective element and manufacturing method thereof |
JP4579654B2 (en) * | 2004-11-11 | 2010-11-10 | パナソニック株式会社 | SEMICONDUCTOR LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, AND LIGHTING MODULE AND LIGHTING DEVICE HAVING SEMICONDUCTOR LIGHT EMITTING DEVICE |
KR100986440B1 (en) * | 2009-04-28 | 2010-10-08 | 엘지이노텍 주식회사 | Light emitting device and method for fabricating the same |
EP2355151A3 (en) * | 2010-01-29 | 2015-12-30 | Oki Data Corporation | Semiconductor light emitting device and image forming apparatus |
-
2013
- 2013-02-20 CN CN201310054962.0A patent/CN103094430B/en active Active
- 2013-04-07 WO PCT/CN2013/073802 patent/WO2014127563A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1661826A (en) * | 2004-02-25 | 2005-08-31 | 三垦电气株式会社 | Semiconductor light emitting element and manufacturing method thereof |
CN102891232A (en) * | 2012-09-29 | 2013-01-23 | 中国科学院半导体研究所 | Semiconductor light emitting device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103094430A (en) | 2013-05-08 |
WO2014127563A1 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102509731B (en) | Alternating current vertical light emitting element and manufacture method thereof | |
CN102214753A (en) | LED (light-emitting diode) with GaN (gallium nitride)-based vertical structure using grapheme film current extension layer | |
CN103378244A (en) | Light emitting diode device and manufacturing method thereof | |
CN102024836A (en) | Light emitting element | |
CN102881797A (en) | Gallium nitride based light emitting diode with current expanding structure | |
CN103367623B (en) | Luminescent device and preparation method thereof | |
CN104600166A (en) | LED chip structure and preparation method thereof | |
CN104617191A (en) | LED vertical chip with current block structure and preparation method thereof | |
CN102856454B (en) | LED epitaxial layer | |
CN103682022B (en) | LED device structure | |
CN105609605A (en) | Led chip and manufacturing method thereof | |
CN102623606A (en) | Gallium nitride-based light-emitting diode with silver nanowire transparent electrode and manufacturing method thereof | |
CN110176470A (en) | A kind of high-voltage LED and preparation method thereof | |
CN103094430B (en) | Luminous structure | |
US20150179880A1 (en) | Nitride semiconductor structure | |
CN105185881B (en) | A kind of light emitting diode and preparation method thereof | |
CN106887490B (en) | A kind of semi-conductor LED chips | |
TWM255514U (en) | Structure improvement of Gallium Indium Nitride light-emitting diode | |
CN106784229B (en) | A kind of duplex energy-saving LED semiconductor chip and the method for reducing power consumption | |
CN106206902B (en) | Light-emitting diode chip for backlight unit | |
CN203674215U (en) | Light emitting diode | |
CN103346230A (en) | Copper sulfide/oxide zinc radical composite transparent electrode light-emitting diode and preparation method thereof | |
TW201501357A (en) | Light-emitting diode crystal grain and manufacturing method thereof | |
CN103594591B (en) | There is the manufacture method of the inverted light-emitting diode (LED) of transparency electrode | |
CN202013885U (en) | LED (Light Emitting Diode) integrated packaging device arranged at upper and lower of electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |