CN103091683B - Assist type is based on the location of satellite-signal - Google Patents
Assist type is based on the location of satellite-signal Download PDFInfo
- Publication number
- CN103091683B CN103091683B CN201310004759.2A CN201310004759A CN103091683B CN 103091683 B CN103091683 B CN 103091683B CN 201310004759 A CN201310004759 A CN 201310004759A CN 103091683 B CN103091683 B CN 103091683B
- Authority
- CN
- China
- Prior art keywords
- satellite
- parameters
- satellites
- parameter
- processing component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- 238000004891 communication Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000010267 cellular communication Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 20
- 230000001413 cellular effect Effects 0.000 description 27
- 238000004590 computer program Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 13
- 239000000284 extract Substances 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 241000500884 Ephemera Species 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
本申请为申请号200680056432.8、申请日2006年9月21日、名称为“辅助式基于卫星信号的定位”的分案申请。This application is a divisional application with application number 200680056432.8, application date September 21, 2006, and titled "Auxiliary Positioning Based on Satellite Signals".
技术领域technical field
本发明涉及辅助式基于卫星信号的定位。The present invention relates to assisted satellite signal based positioning.
背景技术Background technique
各种全球导航卫星系统(GNSS)都支持设备的定位。这些系统例如包括美国全球定位系统(GPS)、俄罗斯全球导航卫星系统(GLONASS)、未来欧洲系统Galileo、基于空间的增强系统(SBAS)、日本GPS增强准天顶(Quasi-Zenith)卫星系统(QZSS)、局域增强系统(LAAS)以及混合系统。Various Global Navigation Satellite Systems (GNSS) support positioning of devices. These systems include, for example, the US Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS), the future European system Galileo, the Space Based Augmentation System (SBAS), the Japanese GPS Augmented Quasi-Zenith Satellite System (QZSS) ), local area augmentation systems (LAAS), and hybrid systems.
GNSS通常包括多个围绕地球运行的卫星。这些卫星也被称为太空交通工具(SV,spacevehicle)。每个卫星都发送至少一个载波信号,其对于所有卫星可能都是相同的。每个载波信号然后被不同的伪随机噪声(PRN)码调制,该伪随机噪声码在频谱中散布(spread)所述信号。结果,获得了不同的信道用于通过不同的卫星进行传输。所述码包括多个位,其在循环(cycle)中被重复。PRN码的位被称为码片(chip),并且循环时间被称为码的出现时间(epoch)。使用导航信息以显著低于PRN码的码片速率的比特率进一步调制所述信号的载波频率。GNSS typically includes multiple satellites orbiting the Earth. These satellites are also known as space vehicles (SV, spacevehicle). Each satellite transmits at least one carrier signal, which may be the same for all satellites. Each carrier signal is then modulated by a different pseudorandom noise (PRN) code that spreads the signal in the frequency spectrum. As a result, different channels are obtained for transmission via different satellites. The code includes a number of bits, which are repeated in cycles. The bits of a PRN code are called chips, and the cycle time is called an epoch of the code. The carrier frequency of the signal is further modulated with the navigation information at a bit rate significantly lower than the chip rate of the PRN code.
导航信息可以包括卫星标识符(SVID)、轨道参数、时间参数以及其他信息。卫星标识符指示了导航信息中的数据被应用到的卫星。其例如可以是序数。轨道参数可以包括星历参数和年历参数。星历参数描述了相应卫星的轨道的较短区段。它们可以例如包括指示卫星当前沿其行进的椭圆的半长轴(semi-majoraxis)和偏心率(eccentricity)的参数。基于星历参数,当卫星位于轨道的所描述的区段时,算法可以估计卫星在任何时间的位置。年历参数也类似,但是是粗略的轨道参数,年历参数的有效时间长于星历参数。要指出的是,在年历的情况下,所有卫星都发送有关系统中所有卫星的年历参数,包括指示相应年历参数属于哪个卫星的SVID。时间参数定义了时钟模型,该模型使卫星时间与GNSS的系统时间相关并且使系统时间与协调世界时(UTC)相关。此外,它们包括指示星历的基准时间的星历时间(TOE)参数,以及指示时钟模型的基准时间的时钟模型时间(TOC)参数。Navigation information may include satellite identifiers (SVIDs), orbit parameters, time parameters, and other information. The satellite identifier indicates the satellite to which the data in the navigation information is applied. It can be an ordinal number, for example. Orbit parameters may include ephemeris parameters and almanac parameters. The ephemeris parameters describe a shorter segment of the orbit of the corresponding satellite. They may for example include parameters indicating the semi-major axis and eccentricity of the ellipse along which the satellite is currently traveling. Based on the ephemeris parameters, the algorithm can estimate the position of the satellite at any time when the satellite is in the described sector of the orbit. The almanac parameter is also similar, but it is a rough orbit parameter, and the valid time of the almanac parameter is longer than that of the ephemeris parameter. It is to be noted that in the case of almanacs, all satellites transmit almanac parameters for all satellites in the system, including the SVID indicating to which satellite the corresponding almanac parameter belongs. The time parameter defines a clock model that relates satellite time to the GNSS system time and system time to Coordinated Universal Time (UTC). In addition, they include a time-of-ephemeris (TOE) parameter indicating the reference time of the ephemeris, and a time-of-clock model (TOC) parameter indicating the reference time of the clock model.
在GLONASS的情况下,使用术语“直接信息”和“非直接信息”代替术语“星历”和“年历”。应理解的是,本文档中任何对“星历”和“年历”的引用都用于表示可用于相同种类信息的所有可能术语,包括GLONASS“直接信息”和“非直接信息”。In the case of GLONASS, the terms "direct information" and "indirect information" are used instead of the terms "ephemera" and "almanac". It should be understood that any references to "ephemera" and "almanac" in this document are used to denote all possible terms that can be used for the same kind of information, including GLONASS "direct information" and "indirect information".
要确定其位置的GNSS接收器接收当前可用的卫星发送的信号,并且其基于所包括的不同PRN码来获取和跟踪不同卫星所使用的信道。然后,接收器确定每个卫星发送的码的发送时间,这通常基于已解码导航消息中的数据并基于PRN码的码片和出现时间的计数。发送时间和所测量的信号到达接收器的时间允许确定卫星与接收器之间的伪距(pseudorange)。术语伪距表示卫星与接收器之间的几何距离,该距离由于与GNSS时间的接收器偏移和未知的卫星而产生偏差。The GNSS receiver whose position is to be determined receives the signals transmitted by the currently available satellites and it acquires and tracks the channels used by the different satellites based on the different PRN codes included. The receiver then determines the time of transmission of the code transmitted by each satellite, typically based on data in the decoded navigation message and based on a count of chips and the time of occurrence of the PRN code. The time of transmission and the measured arrival time of the signal at the receiver allow the determination of the pseudorange between the satellite and the receiver. The term pseudorange refers to the geometric distance between the satellite and the receiver, which is biased by receiver offset from GNSS time and unknown satellites.
在一种可能的解决方案中,卫星与系统时钟之间的偏移被假定为是已知的,并且问题简化为求解四个未知量(即,三个接收器位置坐标以及接收器与GNSS系统时钟之间的偏移)的非线性方程组。因此,至少需要四个测量才能求解该方程组。过程的结果是接收器位置。In one possible solution, the offset between the satellite and the system clock is assumed to be known, and the problem reduces to solving four unknowns (i.e., the three receiver position coordinates and the receiver and GNSS system The nonlinear system of equations for the offset between clocks). Therefore, at least four measurements are required to solve this system of equations. The result of the process is the receiver position.
在某些环境中,GNSS接收器能够获取并跟踪足够的卫星信号以便根据PRN码进行定位,但是信号的质量可能不是足够的高以便解码导航消息。例如,在室内环境中可以是这种情况。此外,解码导航消息需要相当大的处理能力,这在移动GNSS接收器中可能是有限的。In some environments, a GNSS receiver is able to acquire and track enough satellite signals to make a position fix based on the PRN code, but the quality of the signals may not be high enough to decode the navigation message. For example, this may be the case in an indoor environment. Furthermore, decoding navigation messages requires considerable processing power, which may be limited in mobile GNSS receivers.
如果GNSS接收器被包括在蜂窝终端内或作为附属设备附加到蜂窝终端,则蜂窝网络能够经由蜂窝链路向该蜂窝终端提供包括从已解码导航消息提取的参数的辅助数据。此类支持的基于GNSS的定位被称为辅助GNSS(AGNSS)。所接收的信息使得GNSS接收器或关联的蜂窝终端能够以较短的时间和在更具挑战性的信号条件下获得位置定位。通常为与蜂窝终端关联的GNSS接收器可见的每个卫星提供辅助数据。所述辅助数据可以包括导航模型参数,该导航模型参数通常包括轨道参数、TOE和TOC参数以及SVID参数。If a GNSS receiver is included in or attached as an accessory to the cellular terminal, the cellular network can provide the cellular terminal with assistance data comprising parameters extracted from decoded navigation messages via the cellular link. Such supported GNSS-based positioning is known as Assisted-GNSS (AGNSS). The received information enables the GNSS receiver or associated cellular terminal to obtain a position fix in less time and under more challenging signal conditions. Assistance data is typically provided for each satellite visible to the GNSS receiver associated with the cellular terminal. The assistance data may include navigation model parameters, which typically include orbit parameters, TOE and TOC parameters, and SVID parameters.
此外,外部服务可以提供长期轨道,其精确并且比SV广播中的轨道模型(星历/年历)长得多。In addition, external services can provide long-term orbits, which are accurate and much longer than orbit models (ephemera/almanac) in SV broadcasts.
发明内容Contents of the invention
为了提供辅助数据,可以将导航信息中的参数以它们的原始格式复制到辅助消息。传输此类辅助消息所需的带宽是相当大的,但是在某些无线通信(如蜂窝通信)中,带宽是关键因素。To provide assistance data, the parameters in the navigation information may be copied to the assistance message in their original format. The bandwidth required to transmit such assistance messages is considerable, but in some wireless communications, such as cellular communications, bandwidth is a critical factor.
出于考虑的第一方面,提供了一种方法,所述方法包括接收用于至少一个卫星的参数。所述方法还包括从所述参数任意移除冗余信息,以及提供具有减小的冗余度的参数作为辅助数据用于基于卫星信号的定位。From a first aspect considered, there is provided a method comprising receiving parameters for at least one satellite. The method also includes arbitrarily removing redundant information from the parameters, and providing the parameters with reduced redundancy as assistance data for satellite signal based positioning.
出于考虑的第一方面,还提供了一种设备,所述设备包括处理组件。所述处理组件被配置为接收关于至少一个卫星的参数。所述处理组件还被配置为从所述参数任意地移除冗余信息。所述处理组件还被配置为提供具有减小的冗余度的参数作为辅助数据用于基于卫星信号的定位。From a first aspect considered there is also provided an apparatus comprising a processing component. The processing component is configured to receive parameters related to at least one satellite. The processing component is further configured to optionally remove redundant information from the parameters. The processing component is further configured to provide the parameters with reduced redundancy as assistance data for satellite signal based positioning.
出于所考虑的第一方面提供的所述设备的处理组件可以以硬件和/或软件实现。它可以例如是执行用于实现所需功能的软件程序代码的处理器。可选地,它可以例如是被设计为实现所需功能的电路,该电路例如在芯片组或芯片(如集成电路)中实现。The processing components of the device provided for the first aspect considered may be implemented in hardware and/or software. It may, for example, be a processor executing software program codes for realizing the required functions. Alternatively, it may be, for example, a circuit designed to realize the required function, for example implemented in a chipset or chip such as an integrated circuit.
出于所考虑的第一方面提供的所述设备可以例如与所包括的处理组件相同,但是它还可以包括额外的组件。所述设备还可以例如是所提供的用于集成到独立设备或附属设备中的模块。The device provided for the first aspect considered may eg comprise the same processing components, but it may also comprise additional components. The device may also be, for example, a module provided for integration into a stand-alone device or an accessory device.
出于所考虑的第一方面,还提供了一种电子设备,所述电子设备包括出于所考虑的第一方面提供的所述设备。此外,它可以包括被配置为经由无线链路发送信息的无线通信组件和/或卫星信号接收器。所述电子设备可以例如是无线通信网络的网络元件,如蜂窝通信网络的基站、连接到此类网络元件的本地测量单元或连接到此类无线通信网络的服务器。For the first considered aspect, there is also provided an electronic device comprising the device provided for the first considered aspect. Additionally, it may include a wireless communication component and/or a satellite signal receiver configured to transmit information via a wireless link. The electronic device may eg be a network element of a wireless communication network, such as a base station of a cellular communication network, a local measurement unit connected to such a network element or a server connected to such a wireless communication network.
出于考虑的第一方面,还提供了一种计算机程序产品,其中计算机程序代码被存储在计算机可读介质中。当由处理器执行时,所述计算机程序代码将实现出于所考虑的第一方面提供的方法。该计算机程序产品可以例如是单独的存储设备或要被集成到更大的设备中的组件。Considering a first aspect, there is also provided a computer program product, wherein computer program code is stored on a computer readable medium. When executed by a processor, said computer program code will implement the method provided for the first considered aspect. The computer program product may eg be a separate storage device or a component to be integrated into a larger device.
应理解,本发明还覆盖独立于计算机程序产品和计算机可读介质的此类计算机程序代码。It shall be understood that the present invention also covers such computer program code independently of the computer program product and computer readable medium.
出于考虑的第二方面,提供了一种方法,所述方法包括接收参数作为辅助数据用于基于卫星信号的定位,其中所接收的参数基于至少一个卫星的原始参数,已从所述原始参数任意地移除冗余信息。所述方法还包括通过将所移除的冗余信息添加到所接收的参数来重建所述原始参数。所述方法还包括在辅助式基于卫星信号的定位中使用所重建的原始参数。From a second aspect considered, there is provided a method comprising receiving parameters as assistance data for satellite signal based positioning, wherein the received parameters are based on original parameters of at least one satellite, from which original parameters Redundant information is arbitrarily removed. The method also includes reconstructing the original parameters by adding the removed redundant information to the received parameters. The method also includes using the reconstructed raw parameters in assisted satellite signal-based positioning.
出于考虑的第二方面,还提供了一种设备,所述设备包括处理组件。所述处理组件被配置为接收参数作为辅助数据用于基于卫星信号的定位,其中所接收的参数基于至少一个卫星的原始参数,已从所述原始参数任意地移除冗余信息。所述处理组件还被配置为通过将所移除的冗余信息添加到所接收的参数来重建所述原始参数。所述处理组件还被配置为在辅助式基于卫星信号的定位中使用所重建的原始参数。From a second aspect of consideration there is also provided an apparatus comprising a processing component. The processing component is configured to receive parameters as assistance data for satellite signal based positioning, wherein the received parameters are based on original parameters of at least one satellite from which redundant information has been arbitrarily removed. The processing component is further configured to reconstruct the original parameters by adding the removed redundant information to the received parameters. The processing component is also configured to use the reconstructed raw parameters in assisted satellite signal-based positioning.
同样,出于所考虑的第二方面提供的所述设备的处理组件可以以硬件和/或软件实现。它可以例如是执行用于实现所需功能的软件程序代码的处理器。可选地,它可以例如是被设计为实现所需功能的电路,该电路例如在芯片组或芯片(如集成电路)中实现。Likewise, the processing components of the device provided for the second considered aspect may be implemented in hardware and/or software. It may, for example, be a processor executing software program codes for realizing the required functions. Alternatively, it may be, for example, a circuit designed to realize the required function, for example implemented in a chipset or chip such as an integrated circuit.
此外,出于所考虑的第二方面提供的所述设备也可以例如与所包括的处理组件相同,但是它还可以包括额外的组件。所述设备还可以例如是被提供用于集成到独立设备或附属设备中的模块。Furthermore, the device provided for the second considered aspect may also eg comprise the same processing components, but it may also comprise additional components. The device may also eg be a module provided for integration into a stand-alone device or an accessory device.
出于考虑的第二方面,还提供了一种电子设备,所述电子设备包括出于所考虑的第二方面提供的所述设备。此外,它可以包括被配置为经由无线链路接收信息的无线通信组件和/或卫星信号接收器。所述电子设备可以例如是无线通信系统的终端,如蜂窝终端或此类终端的附件。For the second considered aspect, there is also provided an electronic device comprising the device provided for the second considered aspect. Additionally, it may include a wireless communication component and/or a satellite signal receiver configured to receive information via a wireless link. Said electronic device may eg be a terminal of a wireless communication system, such as a cellular terminal or an accessory of such a terminal.
出于考虑的第二方面,还提供了一种计算机程序产品,其中计算机程序代码被存储在计算机可读介质中。当由处理器执行时,所述计算机程序代码将实现出于所考虑的第二方面提供的方法。该计算机程序产品可以例如是单独的存储设备或要被集成到更大的设备中的组件。From a second aspect of consideration there is also provided a computer program product, wherein computer program code is stored on a computer readable medium. When executed by a processor, said computer program code will implement the method provided for the second considered aspect. The computer program product may eg be a separate storage device or a component to be integrated into a larger device.
应理解,本发明还覆盖独立于计算机程序产品和计算机可读介质的此类计算机程序代码。It shall be understood that the present invention also covers such computer program code independently of the computer program product and computer readable medium.
最后,提供了一种系统,所述系统包括出于所考虑的第一方面提供的设备和出于所考虑的第二方面提供的设备。Finally, there is provided a system comprising the apparatus provided for the first considered aspect and the apparatus provided for the second considered aspect.
另一方面,本发明基于这样的考虑:特别地(尽管不是排他地)在卫星信号中传送的参数的原始格式必然具有一些冗余,这是传输路径的类型所要求的。在卫星广播中,可能存在周期性的运行中断等,并且不是始终都能在卫星接收器处收集所有的数据位。冗余可以例如由于出于纠错而提供的大量的开销数据等。另一方面,用于提供辅助数据的链路可以更可靠,并且可以防止误码(biterror),从而无需上述开销。此外,并行传送的关于不同卫星的相应参数可能彼此非常类似。如果若干卫星的参数被以这种方式作为辅助数据提供给单个设备,则一组相应参数也会包括冗余。因此,提出了从其原始格式中的参数移除冗余。应理解,将从所述参数任意地移除冗余;辅助数据中的某些参数可以因此保持不变。On the other hand, the invention is based on the consideration that especially (though not exclusively) the raw format of the parameters transmitted in the satellite signal necessarily has some redundancy, which is required by the type of transmission path. In satellite broadcasting, there may be periodic outages etc. and it is not always possible to collect all the data bits at the satellite receiver. Redundancy may be due, for example, to a large amount of overhead data provided for error correction or the like. On the other hand, the link used to provide the assistance data can be more reliable and bit error-proof, so that the above-mentioned overhead is not needed. Furthermore, corresponding parameters for different satellites transmitted in parallel may be very similar to each other. If the parameters of several satellites are provided as assistance data to a single device in this way, a set of corresponding parameters also includes redundancy. Therefore, it is proposed to remove redundancy from the parameters in their original format. It will be appreciated that redundancy will be arbitrarily removed from the parameters; some parameters in the assistance data may thus remain unchanged.
因此,本发明导致降低了被用于辅助数据的位消耗,用于辅助式基于卫星定位。例如,在蜂窝传输中,所实现的带宽节约是很有价值的。可以减小特定参数所需的位计数而不失去精度或与原始格式(其由相应的卫星系统使用)的兼容性。Thus, the invention results in a reduced bit consumption for assistance data for assisted satellite-based positioning. For example, in cellular transmissions, the bandwidth savings achieved are valuable. The bit count required for a particular parameter can be reduced without losing precision or compatibility with the original format (which is used by the corresponding satellite system).
可从一个或多个卫星信号提取所述原始参数。如上所述,对于年历的情况,单个卫星也可以发送若干卫星的参数。可选地或额外地,可以从其他源(如提供长期轨道的服务器)接收参数。在此情况下,可以例如使用基于网际协议(IP)的方法(用户平面)或在控制平面中提供所述参数。The raw parameters may be extracted from one or more satellite signals. As in the case of almanacs, a single satellite can also transmit the parameters of several satellites, as mentioned above. Alternatively or additionally, parameters may be received from other sources such as servers providing long-term orbits. In this case, the parameters can be provided eg using Internet Protocol (IP) based methods (user plane) or in the control plane.
从参数移除冗余存在不同的选择,这取决于相应的参数的种类。可以通过考虑参数本身,但尤其是通过组合考虑一组对应参数,来实现所述减少。There are different options for removing redundancy from a parameter, depending on the kind of parameter in question. Said reduction can be achieved by considering the parameters themselves, but especially by considering a set of corresponding parameters in combination.
在一个实施例中,从所述参数任意地移除冗余信息包括确定多个参数的公共部分和相应的个体部分。然后,仅对所述多个参数提供一次所述公共部分作为辅助数据。In one embodiment, arbitrarily removing redundant information from said parameters comprises determining a common part and corresponding individual parts of a plurality of parameters. Then, the common part is provided as auxiliary data only once for the plurality of parameters.
如果所述参数包括属于两个或更多不同卫星系统的卫星的参数,则甚至可以确定属于不同卫星系统的卫星的参数的公共部分。另外,然后可以确定属于单个卫星系统的卫星的参数的相应公共部分。If said parameters comprise parameters of satellites belonging to two or more different satellite systems, even a common part of the parameters of satellites belonging to different satellite systems can be determined. In addition, a corresponding common part of the parameters of the satellites belonging to a single satellite system can then be determined.
在接收此类辅助数据的设备处,可以通过将在关于多个原始参数的所述辅助数据中接收的一个或多个公共部分添加到在关于多个原始参数的所述辅助数据中接收的相应个体部分,来重建所述原始参数。At a device receiving such assistance data, it may be possible by adding one or more common parts received in said assistance data for a plurality of original parameters to the corresponding Individual parts to reconstruct the original parameters.
此方法适合不同种类的参数。例如,它可以用于多个偏心率参数和/或多个半长轴参数和/或指示相应时间点的多个时间参数。这些参数可以源自星历参数、年历参数或甚至某些外部源,如商业的长期轨道服务。在辅助数据中,通常为辅助设备可见的每个卫星发送轨道参数。因此,导航模型的位计数的任何减少都将直接对带宽要求做出贡献。This method is suitable for different kinds of parameters. For example, it can be used for multiple eccentricity parameters and/or multiple semi-major axis parameters and/or multiple time parameters indicating respective points in time. These parameters may originate from ephemeris parameters, almanac parameters or even some external source such as a commercial long-term orbit service. In assistance data, orbital parameters are typically sent for each satellite visible to the aid. Therefore, any reduction in the bit count of the navigation model will directly contribute to the bandwidth requirement.
如果公共部分可用于不同卫星系统的参数或参数组,则本发明还适于协调跨所考虑的系统的表示。The invention is also suitable for harmonizing representations across the systems considered, if a common part is available for parameters or sets of parameters of different satellite systems.
如果所述参数例如包括多个卫星的相应偏心率参数,则从所述参数任意地移除冗余信息可包括将所述多个偏心率参数分离为公共最高有效位(MSB,mostsignificantbit)部分和相应的个体最低有效位(LSB,leastsignificantbit)部分。对于所述多个偏心率参数可以仅提供一次所述公共MSB部分作为辅助数据。相比之下,对于每个偏心率参数可分别传送个体LSB部分。If the parameters include, for example, corresponding eccentricity parameters of a plurality of satellites, arbitrarily removing redundant information from the parameters may comprise separating the plurality of eccentricity parameters into a common most significant bit (MSB, mostsignificantbit) part and The corresponding individual least significant bit (LSB, leastsignificantbit) part. The common MSB part may be provided as auxiliary data only once for the plurality of eccentricity parameters. In contrast, individual LSB portions may be transmitted separately for each eccentricity parameter.
如果所述参数包括多个卫星的相应半长轴参数,则从所述参数任意地移除冗余信息可包括将所述多个半长轴参数分离为公共MSB部分和相应的个体LSB部分。然后,对于所述多个半长轴参数可仅提供一次所述公共MSB部分作为辅助数据。相比之下,对于每个半长轴参数可分别传送个体LSB部分。If the parameters include respective semi-major axis parameters of a plurality of satellites, arbitrarily removing redundant information from the parameters may comprise separating the plurality of semi-major axis parameters into a common MSB part and respective individual LSB parts. Then, the common MSB part may be provided as auxiliary data only once for the plurality of semi-major axis parameters. In contrast, individual LSB portions may be transmitted separately for each semi-major axis parameter.
如上所述,所提供的用于减少偏心率和半长轴参数中的冗余度的实施例可用于星历、年历以及提供相似参数的任何其他源。As noted above, the embodiments provided for reducing redundancy in eccentricity and semimajor axis parameters can be used for ephemeris, almanac, and any other source that provides similar parameters.
如果所述参数包括指示相应时间点的多个时间参数,则从所述参数任意地移除冗余信息可包括为所述多个时间参数确定公共部分和个体部分,所述公共部分指示时间块中的固定时间,所述个体部分定义了由相应时间参数指示的所述时间点与所述固定时间的偏差。然后,对于所述多个时间参数可仅提供一次所述公共部分作为辅助数据。相比之下,对于每个时间参数可分别传送个体部分。If the parameters include a plurality of time parameters indicating respective points in time, arbitrarily removing redundant information from the parameters may comprise determining a common part and an individual part for the plurality of time parameters, the common part being indicative of a block of time A fixed time in , the individual part defines the deviation of the time point indicated by the corresponding time parameter from the fixed time. Then, said common part may be provided as auxiliary data only once for said plurality of time parameters. In contrast, individual parts may be transmitted separately for each time parameter.
此类为其定义公共部分的时间参数可包括多个卫星的TOE参数或多个卫星的TOC参数。在单独的TOE和TOC参数可用于卫星的情况下,TOE和TOC参数都还可以定义类似的时间点。因此,所述方法还可以用于相应单个卫星的TOE参数和TOC参数。最有效地,为一种卫星系统的所有考虑的卫星的所有TOE参数和所有TOC参数确定公共部分,或者甚至为若干卫星系统的所有考虑的卫星的所有TOE参数和所有TOC参数确定公共部分。Such temporal parameters for which a common portion is defined may include TOE parameters for multiple satellites or TOC parameters for multiple satellites. Where separate TOE and TOC parameters are available for satellites, both TOE and TOC parameters may also define similar points in time. Thus, the method can also be used for TOE parameters and TOC parameters of corresponding individual satellites. Most efficiently, a common part is determined for all TOE parameters and all TOC parameters of all considered satellites of one satellite system, or even for all TOE parameters and all TOC parameters of all considered satellites of several satellite systems.
如果所述参数包括多个卫星的相应卫星标识参数,则所述卫星标识参数可以是序数的位表示。在此情况下,可以通过将所述序数的所述多个位表示转换成所述序数的单个位掩码表示,从所述参数任意地移除冗余信息。此方法的效率随着所考虑的卫星数的增加而增加。实际上,可以存在在先的决策步骤,其确保只有在超过预定数量的所考虑的卫星的情况下才使用该方法,以避免在所考虑的卫星很少的情况中可能的数据增加。If the parameters include corresponding satellite identification parameters for a plurality of satellites, the satellite identification parameters may be a bit representation of an ordinal number. In this case, redundant information may be arbitrarily removed from the parameter by converting the plurality of bit representations of the ordinal into a single bit mask representation of the ordinal. The efficiency of this method increases with the number of satellites considered. In fact, there may be a prior decision-making step which ensures that the method is only used if a predetermined number of satellites considered is exceeded, to avoid a possible data increase in the case of few satellites considered.
在接收此类辅助数据的设备处,可以通过将序数的单个位掩码表示转换为序数的多个位表示,重建所述原始卫星标识参数,所述序数的位表示对应于所述原始卫星标识参数。At a device receiving such assistance data, the original satellite identification parameters may be reconstructed by converting a single bit mask representation of an ordinal number into a multi-bit representation of an ordinal number corresponding to the original satellite identification parameter.
在某些卫星系统中,卫星标识参数包括偏移。即,表示卫星标识所使用的位多于区分所有可能卫星所需的位。In some satellite systems, the satellite identification parameters include offsets. That is, more bits are used to represent the satellite identity than are required to distinguish all possible satellites.
在此情况下,从所述参数任意地移除冗余信息可包括通过移除相应卫星标识参数中的预定偏移来减小所述参数的位计数。此方法可用作上述转换为位掩码的备选方法,或者除了上述转换为位掩码以外还可以使用此方法。In this case, arbitrarily removing redundant information from said parameters may comprise reducing the bit count of said parameters by removing a predetermined offset in the corresponding satellite identification parameter. This method can be used as an alternative to, or in addition to, the conversion to bitmask described above.
在接收此类辅助数据的设备处,通过添加预定偏移而将所述辅助数据中较少位的所接收卫星标识参数转换为较多位的原始卫星标识参数,可以重建所述原始参数。如果此外还使用了位掩码,则首先将所述位掩码转换为多个位表示,然后将所述偏移添加到这些位表示以便重新获得所述原始参数。At the device receiving such assistance data, the original parameters may be reconstructed by converting the received satellite identification parameters with fewer bits into original satellite identification parameters with more bits by adding a predetermined offset. If a bitmask is also used in addition, the bitmask is first converted into bit representations, and then the offset is added to these bit representations in order to retrieve the original parameters.
同样,所提供的用于减小卫星标识参数中的冗余度的实施例可用于星历、年历以及提供相似参数的任何其他源。Likewise, the provided embodiments for reducing redundancy in satellite identification parameters can be used for ephemeris, almanac, and any other source that provides similar parameters.
年历参数包括定义轨道的区段还有基准时间的参数。The almanac parameters include parameters defining the segments of the orbit as well as the reference time.
如果所述参数包括多个卫星的年历参数,则所述年历参数可包括所述卫星中的每个卫星的年历基准时间信息。同样,在此情况下,可以通过定义至少包括所述基准时间信息的一部分的公共部分,从所述参数任意地移除冗余信息。然后对于所述多个卫星可以仅提供一次所述公共部分作为辅助数据。取决于所考虑的卫星系统,所述公共部分可以例如包括周计数、某些其他粗略的时间指示,或完整的基准时间指示。可以以其原始格式或更加适合分离的修改后的格式来使用任何基准时间指示。If the parameters include almanac parameters for a plurality of satellites, the almanac parameters may include almanac reference time information for each of the satellites. Also in this case, redundant information can be arbitrarily removed from said parameters by defining a common part comprising at least a part of said reference time information. The common part may then be provided as assistance data only once for the plurality of satellites. Depending on the satellite system considered, the common part may eg comprise a week count, some other coarse indication of time, or a full reference time indication. Any reference time indication may be used in its original format or in a modified format more suitable for separation.
如果所述参数包括属于至少两个卫星系统的多个卫星的年历参数,则例如通过为所述年历参数确定公共部分,可以从所述参数任意地移除冗余信息,其中所述公共部分用于属于不同卫星系统的多个卫星的周计数。此外,可以提供公共部分用于属于同一卫星系统的多个卫星的周时间间(time-of-week),以及个体部分用于属于此卫星系统的所述多个卫星中的每个卫星的年历数据。对于一个或多个所考虑的卫星系统可以选择此第一个选项。备选地或额外地,可以提供公共部分用于属于同一卫星系统的多个卫星的日计数,并且可以提供个体部分用于属于同一卫星系统的所述多个卫星中的每个卫星的日时间(timeofday)和年历数据。备选地或额外地,可以提供个体部分用于属于同一卫星系统的多个卫星中的每个卫星的日计数、日时间和年历数据。对于一个或多个所考虑的卫星系统同样可以选择后者的选项。然后对于所述年历参数仅提供一次每个公共部分作为辅助数据。If said parameters comprise almanac parameters of a plurality of satellites belonging to at least two satellite systems, redundant information can be arbitrarily removed from said parameters, for example by determining a common part for said almanac parameters, wherein said common part is denoted by Week counts for multiple satellites belonging to different satellite systems. Furthermore, a common part may be provided for the time-of-week of a plurality of satellites belonging to the same satellite system, and an individual part for the almanac of each of said plurality of satellites belonging to this satellite system data. This first option can be selected for one or more of the satellite systems under consideration. Alternatively or additionally, a common part may be provided for day counts of a plurality of satellites belonging to the same satellite system, and an individual part may be provided for the time of day of each of said plurality of satellites belonging to the same satellite system (timeofday) and almanac data. Alternatively or additionally, individual portions may be provided for day count, time of day and almanac data for each of a plurality of satellites belonging to the same satellite system. The latter option can also be selected for one or more of the satellite systems under consideration. Each common part is then provided as auxiliary data only once for the almanac parameter.
可以例如通过蜂窝链路将所述辅助数据传送到卫星信号接收器所关联的蜂窝终端。备选地,可以使用任何类型的数据链路将所述辅助数据传送到任何需要所述辅助数据的设备。Said assistance data may be transmitted to a cellular terminal associated with the satellite signal receiver, for example via a cellular link. Alternatively, any type of data link may be used to transfer the assistance data to any device requiring the assistance data.
本发明可用于任何种类的当前和未来的AGNSS,包括但不限于辅助GPSL5,Galileo、GLONASS、QZSS、LAAS、SBAS或它们的组合。可能的SBAS例如包括广域增强系统(WAAS)或欧洲静地导航覆盖服务(EGNOS)。The present invention can be used with any kind of current and future AGNSS including but not limited to assisted GPSL5, Galileo, GLONASS, QZSS, LAAS, SBAS or combinations thereof. Possible SBAS include, for example, the Wide Area Augmentation System (WAAS) or the European Geostationary Navigation Overlay Service (EGNOS).
应理解的是,还可以以任何适当的组合使用所有提供的示例性实施例。It should be understood that all of the exemplary embodiments provided can also be used in any suitable combination.
从以下考虑的结合附图的详细说明,本发明的其他目标和特性将变得显而易见。但是要理解的是,附图只是旨在用于示例性说明的目的而不是作为对本发明限制的限定,本发明的范围应参考所附的权利要求。还应理解,附图并未按比例绘制并且它们仅旨在概念性地示例性示出在此所描述的结构和过程。Other objects and characteristics of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are intended for illustrative purposes only and not as a limitation of the invention, the scope of which should be referred to the appended claims. It should also be understood that the drawings are not drawn to scale and that they are intended only to conceptually illustrate the structures and processes described herein.
附图说明Description of drawings
图1是根据本发明的一个实施例的第一系统的示意图;1 is a schematic diagram of a first system according to an embodiment of the present invention;
图2是示例性示出图1的系统中的轨道参数的示例性冗余减小的流程图;FIG. 2 is a flowchart illustrating exemplary redundancy reduction of orbital parameters in the system of FIG. 1;
图3是示例性示出图1的系统中的时间参数的示例性冗余减小的流程图;FIG. 3 is a flowchart illustrating exemplary redundancy reduction of time parameters in the system of FIG. 1;
图4是示例性示出图1的系统中的SVID参数的示例性冗余减小的流程图;FIG. 4 is a flowchart illustrating exemplary redundancy reduction of SVID parameters in the system of FIG. 1;
图5是示例性示出图1的系统中的年历参数的示例性冗余减小的表的排列;Figure 5 is an arrangement of tables illustrating exemplary redundancy reduction of almanac parameters in the system of Figure 1;
图6是示例性示出图1的系统中的导航模型参数的示例性冗余恢复的流程图;以及FIG. 6 is a flowchart illustrating exemplary redundancy restoration of navigation model parameters in the system of FIG. 1; and
图7是根据本发明的一个实施例的第二系统的示意图。Figure 7 is a schematic diagram of a second system according to one embodiment of the present invention.
具体实施方式detailed description
图1提供了根据本发明的示例性系统,其允许经由蜂窝链路使用减小的带宽传输辅助数据用于基于AGNSS的定位。Figure 1 provides an exemplary system according to the present invention that allows the transmission of assistance data for AGNSS based positioning via a cellular link using reduced bandwidth.
所述系统包括蜂窝终端110、蜂窝通信网络的基站130和本地测量单元(LMU)140。The system comprises a cellular terminal 110 , a base station 130 of a cellular communication network and a local measurement unit (LMU) 140 .
蜂窝终端110可以是蜂窝电话或任何其他类型的蜂窝终端,如膝上型计算机。它包括处理器114、链接到此处理器114的蜂窝通信组件112、GNSS接收器113以及存储器115。Cellular terminal 110 may be a cellular telephone or any other type of cellular terminal, such as a laptop computer. It comprises a processor 114 , a cellular communication component 112 linked to this processor 114 , a GNSS receiver 113 and a memory 115 .
处理器114被配置为执行计算机程序代码。存储器115存储计算机程序代码,所述计算机程序代码可由处理器114取回用于执行。所存储的计算机程序代码包括定位辅助软件(SW)116。The processor 114 is configured to execute computer program codes. Memory 115 stores computer program code, which can be retrieved by processor 114 for execution. The stored computer program code includes positioning assistance software (SW) 116 .
基站130包括处理器134和链接到此处理器134的蜂窝通信组件132、存储器135以及接口(I/F)组件131。The base station 130 includes a processor 134 and a cellular communication component 132 linked to this processor 134 , a memory 135 and an interface (I/F) component 131 .
处理器134被配置为执行计算机程序代码。存储器135存储计算机程序代码,所述计算机程序代码可由处理器134取回用于执行。所存储的计算机程序代码包括定位辅助软件(SW)136。The processor 134 is configured to execute computer program codes. Memory 135 stores computer program code, which can be retrieved by processor 134 for execution. The stored computer program code includes positioning assistance software (SW) 136 .
LMU140包括接口组件141和链接到此接口组件141的GNSS接收器143。The LMU 140 includes an interface component 141 and a GNSS receiver 143 linked to this interface component 141 .
LMU140可以经由接口组件131与141之间建立的连接被链接到基站130。必须要指出的是,可以使用任何种类的使得能够有线或无线链接的匹配的接口组件131、141。LMU 140 may be linked to base station 130 via a connection established between interface components 131 and 141 . It has to be noted that any kind of matching interface components 131, 141 enabling a wired or wireless link may be used.
蜂窝终端110的蜂窝通信组件112和基站130的蜂窝通信组件132能够使用蜂窝链路彼此通信。The cellular communication component 112 of the cellular terminal 110 and the cellular communication component 132 of the base station 130 are capable of communicating with each other using a cellular link.
GNSS接收器113、143都被配置为接收、获取和跟踪由属于一个或多个GNSS的卫星S1、S2传送的信号。至少GNSS接收器143还被配置为解码此类信号中包括的导航消息。Both GNSS receivers 113, 143 are configured to receive, acquire and track signals transmitted by satellites S1, S2 belonging to one or more GNSSs. At least GNSS receiver 143 is also configured to decode navigation messages included in such signals.
现在将参考图2至5描述图1的系统中的辅助式基于GNSS的定位。Assisted GNSS based positioning in the system of FIG. 1 will now be described with reference to FIGS. 2 to 5 .
图2是示出轨道参数中的冗余信息的减少的流程图。Fig. 2 is a flowchart illustrating reduction of redundant information in orbital parameters.
GNSS接收器143接收、获取、跟踪和解码由属于相应GNSS的k个卫星S1、S2传送的信号(步骤200)。所支持的GNSS信号包括(通过实例的方式)GPSL5、Galileo、GLONASS、SBAS和QZSS信号。GNSS接收器143经由接口组件141、131将获得的k个信号的导航消息提供给基站130。The GNSS receiver 143 receives, acquires, tracks and decodes the signals transmitted by the k satellites S1 , S2 belonging to the respective GNSS (step 200 ). Supported GNSS signals include (by way of example) GPSL5, Galileo, GLONASS, SBAS and QZSS signals. The GNSS receiver 143 provides the obtained navigation messages of the k signals to the base station 130 via the interface components 141 , 131 .
处理器134执行定位辅助软件136。它从k个导航消息提取各种导航模型参数,包括轨道参数、时间参数和卫星标识(SVID)参数(步骤201)。必须指出的是,处理器134还可以从某些服务器(未示出)接收包括长期轨道的轨道参数的额外的GNSS相关的参数,其处理方式可以与以下描述的从卫星信号提取的参数的处理方式相同。Processor 134 executes positioning assistance software 136 . It extracts various navigation model parameters from the k navigation messages, including orbit parameters, time parameters and satellite identification (SVID) parameters (step 201). It must be noted that processor 134 may also receive additional GNSS-related parameters from some server (not shown), including orbital parameters for long-term orbits, in a manner similar to the processing of parameters extracted from satellite signals described below. the same way.
例如,在ESA文档ESA-EUING-TN/10206:”SpecificationofGalileoandGioveSpaceSegmentPropertiesRelevantforSatelliteLaserRanging”(2006年7月)中规定了用于GalileoSV的轨道。For example, the orbit for GalileoSV is specified in ESA document ESA-EUING-TN/10206: "Specification of Galileo and Giove Space Segment Properties Relevant for Satellite Laser Ranging" (July 2006).
所述轨道被规定为具有29,601,000米的半长轴和0.002的偏心率。从GPS可知,卫星轨道的半长轴非常稳定并且在卫星之间变化不大。更具体地说,GPS卫星轨道围绕标称的半长轴变化±65千米,该变化预期与Galileo相同。The orbit is specified to have a semi-major axis of 29,601,000 meters and an eccentricity of 0.002. It is known from GPS that the semi-major axes of satellite orbits are very stable and do not vary much between satellites. More specifically, GPS satellite orbits vary by ±65 km around the nominal semi-major axis, which is expected to be the same as for Galileo.
原始Galileo格式将偏心率和半长轴参数定义为如下:The original Galileo format defines the eccentricity and semi-major axis parameters as follows:
对于每个卫星使用32位的参数来描述偏心率。所采用的标度因子(scalefactor)是2-33。范围为[0,0.49999]。A 32-bit parameter is used to describe the eccentricity for each satellite. The scale factor used is 2-33 . The range is [0,0.49999].
此外,通过用于每个卫星的32位(无符号)的参数来表达每个卫星的轨道的半长轴的平方根。所采用的标度因子是2-19m1/2。由于半长轴是29,601,000米,所以分辨率的量级为0.02米。Also, the square root of the semi-major axis of the orbit of each satellite is expressed by a parameter of 32 bits (unsigned) for each satellite. The scale factor used is 2-19 m 1 / 2 . Since the semi-major axis is 29,601,000 meters, the resolution is on the order of 0.02 meters.
由于偏心率实际上在0与0.002之间变化,所以对于每个卫星无需覆盖范围[0,0.49999]。在所提供的实施例中,每个偏心率参数因此被分成对于每个卫星都相同的MSB部分和特定于每个卫星的LSB部分(步骤210)。Since the eccentricity actually varies between 0 and 0.002, there is no need to cover the range [0,0.49999] for each satellite. In the example provided, each eccentricity parameter is thus divided into an MSB portion common to each satellite and an LSB portion specific to each satellite (step 210).
MSB部分包括7位且标度因子是2-8。范围则为[0,0.49609375]。每个LSB部分包括25位且标度因子是2-33。范围则为[0,0.0039]。将此类MSB部分与LSB部分中的相应的一个LSB部分组合将产生原始范围和分辨率。实际上,如果假设偏心率的范围为[0,0.002],则根本无需MSB,因为它们始终仅包含0。但是,可能希望保留MSB,因为它们出现在原有格式中,并且因此它们在未来可能具有某种用途。The MSB part consists of 7 bits and the scale factor is 2 −8 . The range is then [0,0.49609375]. Each LSB portion consists of 25 bits and the scale factor is 2-33 . The range is then [0,0.0039]. Combining such MSB parts with a corresponding one of the LSB parts will yield the original range and resolution. In fact, if you assume the eccentricity is in the range [0,0.002], you don't need the MSBs at all, since they always contain only 0. However, it may be desirable to preserve the MSBs since they occur in the native format, and therefore they may have some use in the future.
处理器134因此提供k个所考虑卫星的所有偏心率参数共有的单个MSB部分(7位),以及每个偏心率参数的个体LSB部分(25位)作为辅助数据(步骤211)。The processor 134 thus provides as assistance data a single MSB part (7 bits) common to all eccentricity parameters of the k satellites considered, and an individual LSB part (25 bits) for each eccentricity parameter (step 211 ).
根据GPSL5规范,例如,半长轴此外围绕标称值29,601,000米变化约65千米。因此,半长轴的平方根在[5434.7,5446.7]的范围内。由于半长轴的变化仅为±65000米,所以其无需提供给每个卫星的整个范围。还进一步假设Galileo轨道的行为与GPS轨道的行为类似。According to the GPSL5 specification, for example, the semi-major axis also varies by about 65 kilometers around the nominal value of 29,601,000 meters. Therefore, the square root of the semimajor axis is in the range [5434.7,5446.7]. Since the variation of the semi-major axis is only ±65000 meters, it is not necessary to provide the full range of each satellite. It is further assumed that the Galileo orbit behaves similarly to the GPS orbit.
在所提供的实施例中,每个半长轴参数也因此被分成对于每个卫星都相同的MSB部分和特定于每个卫星的LSB部分(步骤220)。In the example provided, each semi-major axis parameter is thus also divided into an MSB part common to each satellite and an LSB part specific to each satellite (step 220).
当假设半长轴围绕标称值a0=29,601,000米变化约△a=65km时,所述范围的上限和下限的位表示由下式给出:When assuming that the semi-major axis varies by about △a=65 km around the nominal value a 0 =29,601,000 meters, the bit representation of the upper and lower limits of the range is given by:
因此,对于所覆盖范围内的任何可能的值,存在6个公共MSB且MSB=1010102=4210*27=537610。Thus, for any possible value in the covered range, there are 6 common MSBs and MSB=101010 2 =42 10 *2 7 =5376 10 .
因而,MSB部分被选择为包括6位且标度因子为27米。范围为[0,8064.00000]m1/2。LSB部分被选择为包括26位且标度因子为2-19米。范围为[0,127.99999]m1/2。Thus, the MSB portion is chosen to include 6 bits and a scale factor of 27 meters. The range is [0,8064.00000]m 1 / 2 . The LSB part is chosen to consist of 26 bits with a scale factor of 2-19 meters. The range is [0,127.99999]m 1 / 2 .
处理器134因此提供k个所考虑卫星的所有半长轴参数共有的单个MSB部分(6位),以及每个半长轴参数的个体LSB部分(26位)作为辅助数据(步骤221)。The processor 134 thus provides as auxiliary data a single MSB part (6 bits) common to all semi-major axis parameters of the k satellites considered, and an individual LSB part (26 bits) for each semi-major axis parameter (step 221 ).
因此,使用上述方法获得的轨道参数的位计数的总体节约为(k*32+k*32)位-(7+k*25+6+k*26)位=(k-1)*13位。Thus, the overall savings in bit counts for orbital parameters obtained using the above method is (k*32+k*32) bits - (7+k*25+6+k*26) bits = (k-1)*13 bits .
可以以相应的方式处理源自除Galileo卫星以外的其他GNSS卫星的信号的轨道参数。可以理解,取决于系统,还可以减少除偏心率和半长轴以外的参数以便消耗更少的位。Orbital parameters for signals originating from GNSS satellites other than Galileo satellites can be processed in a corresponding manner. It will be appreciated that, depending on the system, parameters other than eccentricity and semi-major axis may also be reduced to consume fewer bits.
图3是示出提取自k个已解码导航消息的时间参数中的冗余信息的减少的流程图。Fig. 3 is a flowchart illustrating the reduction of redundant information in temporal parameters extracted from k decoded navigation messages.
对于每个系统,时间参数包括星历时间(TOE)和时钟模型时间(TOC)参数。For each system, the time parameters include Time of Ephemeris (TOE) and Time of Clock Model (TOC) parameters.
目前,GNSS将位分配给这些参数,如下表中所概括的:Currently, GNSS assigns bits to these parameters as summarized in the table below:
对于GPSL5信号,计时(timekeeping)基于周时间间(TOW)。为TOE参数和TOC参数中的每个参数提供使用300秒的标度因子的11个位。For GPSL5 signals, timekeeping is based on time of week (TOW). Eleven bits using a scale factor of 300 seconds are provided for each of the TOE parameter and the TOC parameter.
对于Galileo信号,计时同样基于周时间间。在此情况下,为TOE参数和TOC参数中的每个参数提供使用60秒的标度因子的14个位。For the Galileo signal, the timing is also based on weekly time intervals. In this case, 14 bits using a scale factor of 60 seconds are provided for each of the TOE parameter and the TOC parameter.
根据L1C草案IS-GPS-800(2006年4月),QZSS信号将类似于GPS信号L1C,而就关于轨道模型和SV时钟模型的导航模型而言,L1C和L5也类似。因此,L1C、L5和QZSS最终都可以通过多模式导航模型中的同一模式来描述。According to the L1C draft IS-GPS-800 (April 2006), the QZSS signal will be similar to the GPS signal L1C, while L1C and L5 will also be similar in terms of the navigation model with respect to the orbit model and the SV clock model. Therefore, L1C, L5, and QZSS can all be described ultimately by the same mode in the multimodal navigation model.
如果简单地将这些原始格式复制到辅助消息中以便传输,则由于所包括的冗余数据而浪费了位。If these original formats were simply copied into ancillary messages for transmission, bits would be wasted due to the redundant data included.
例如,单个Galileo卫星可能提供400,000秒的TOE值和401,800秒的TOC值。在原始格式中,需要28位来表示此数据。但是,备选方法是将TOE和TOC值分别表达为“400,000+000,000”和“400,000+001,800”。因此,TOE和TOC值具有公共部分“400,000”以及分别具有增量部分“000,000”和“001,800”。在适当选择公共部分和增量部分时,可以使用此考虑来节省位。表达增量部分用于表示参数值与所确定的公共值的偏差。For example, a single Galileo satellite might provide a TOE value of 400,000 seconds and a TOC value of 401,800 seconds. In raw format, 28 bits are required to represent this data. However, an alternative is to express the TOE and TOC values as "400,000+000,000" and "400,000+001,800", respectively. Thus, the TOE and TOC values have a common part of "400,000" and incremental parts of "000,000" and "001,800", respectively. This consideration can be used to save bits when choosing the common and delta parts appropriately. The delta portion of the expression is used to represent the deviation of the parameter value from the determined common value.
同样的考虑类似地适用于Galileo和QZSS。The same considerations apply similarly to Galileo and QZSS.
因此,当接收到来自k个卫星信号的时间参数时,首先确定它们是否是来自GPS、QZSS或Galileo信号的参数(步骤230)。Therefore, when time parameters from k satellite signals are received, it is first determined whether they are parameters from GPS, QZSS or Galileo signals (step 230).
如果是,则确定公共部分(步骤231)。通过将周分为6小时的块来构建公共部分。块长度的选择受限于模型的可应用时间。块长度必须等于或长于最长的可应用时间。在原始格式中,最长的时间是4小时。但是,由于必须考虑到长期轨道,所以将块长度设为6小时。但是必须指出的是,长度的选择是非常任意的,只要其长于任何原始GNSS格式的合适的间隔,所以6小时块的选择只是一个实例。此外,随着块长度的增加,所获得的位计数减小也将减少,这是因为增量部分中所需的位数增加了。If yes, the common part is determined (step 231). Build the Commons section by breaking the week into 6-hour chunks. The choice of block length is limited by the applicable time of the model. The block length must be equal to or longer than the longest applicable time. In raw format, the maximum time is 4 hours. However, since long-term orbits must be taken into account, the block length is set to 6 hours. But it has to be pointed out that the choice of length is very arbitrary as long as it is longer than any suitable interval of the original GNSS format, so the choice of 6 hour blocks is just an example. Also, as the block length increases, the resulting reduction in bit count decreases because the number of bits required in the delta portion increases.
在当前实例中,通过使用6小时的标度因子的5位来描述公共部分,这导致范围为0-186小时。这允许以6小时的块表示整个周。对于所有k个卫星信号中的所有TOE和TOC值都共同使用此公共部分。In the current example, the public part is described by using 5 bits of a scale factor of 6 hours, which results in a range of 0-186 hours. This allows representing entire weeks in 6-hour blocks. This common part is common to all TOE and TOC values in all k satellite signals.
对每个卫星以及每个TOE和TOC值的个体增量部分的选择取决于所考虑的卫星系统(步骤232)。The choice of individual increments for each satellite and each TOE and TOC value depends on the satellite system under consideration (step 232).
在所考虑的卫星系统是GPS或QZSS的情况下,对于k个所考虑的卫星信号中的每个信号,每个TOC值的个体增量部分由7位来表示,并且对于k个所考虑的卫星信号中的每个信号,每个TOE值的个体增量部分由另外7位来表示(步骤233)。In case the satellite system under consideration is GPS or QZSS, for each of the k considered satellite signals, the individual incremental part of each TOC value is represented by 7 bits, and for the k considered Each of the satellite signals, the individual incremental portion of each TOE value is represented by another 7 bits (step 233).
然后将单个公共部分和k个个体增量部分包括在辅助消息中。与原始(2*k*11)位相比,公共部分和k个个体增量部分的总位数因此为(5+2*k*7)位。The single common part and the k individual delta parts are then included in the auxiliary message. The total number of bits in the common part and the k individual incremental parts is thus (5+2*k*7) bits compared to the original (2*k*11) bits.
在所考虑的卫星系统是Galileo的情况下,对于k个所考虑的卫星信号中的每个信号,每个TOC值的个体增量部分由9位来表示,并且对于k个所考虑的卫星信号中的每个信号,每个TOE值的个体增量部分由另外9位来表示(步骤234)。In the case where the satellite system considered is Galileo, for each of the k satellite signals considered, the individual incremental part of each TOC value is represented by 9 bits, and for the k satellite signals considered For each signal in , the individual incremental portion of each TOE value is represented by another 9 bits (step 234).
然后将单个公共部分和k个个体增量部分包括在辅助消息中。与原始(2*k*14)位相比,公共部分和k个个体增量部分的总位数因此为(5+2*k*9)位。The single common part and the k individual delta parts are then included in the auxiliary message. The total number of bits in the common part and the k individual incremental parts is thus (5+2*k*9) bits compared to the original (2*k*14) bits.
在所有三种情况中,所述公共部分对于所有SV的所有TOC和TOE参数都相同,而增量部分是时间参数和特定于SV的。因此,最小化增量部分中的位计数同样将最小化总体位使用。In all three cases, the common part is the same for all TOC and TOE parameters of all SVs, while the delta part is temporal parameter and SV-specific. Therefore, minimizing the bit count in the delta portion will also minimize the overall bit usage.
相比之下,在接收到来自k个卫星信号的时间参数并且确定它们是来自GLONASS或SBAS信号的参数时(步骤230),对于TOE和TOC值或对于不同的卫星不使用公共部分。In contrast, when time parameters from k satellite signals are received and they are determined to be parameters from GLONASS or SBAS signals (step 230), no common part is used for TOE and TOC values or for different satellites.
原因是在这些情况中,计数始于日变化,与其中计时基于周时间的其他系统相反。由于SBAS和GLONASS在日的基础上对它们的时间进行计数,所以从SBAS和GLONASS的角度,指示用于Galileo、GPS、QZSS等的6小时块的MSB是无用的开销。因此,上述MSB没有被用于SBAS和GLONASS。相反,仅针对SBAS和GLONASS使用LSB。The reason is that in these cases the counting starts with diurnal variations, as opposed to other systems where timekeeping is based on weekly times. Since SBAS and GLONASS count their time on a daily basis, indicating the MSB of the 6-hour block for Galileo, GPS, QZSS, etc. is useless overhead from the perspective of SBAS and GLONASS. Therefore, the above MSB is not used for SBAS and GLONASS. Instead, use LSB only for SBAS and GLONASS.
在原始GLONASS格式中,通过从日开始的多个块来表示TOE和TOC。由7位字段tb中的值来表示所述多个块。2位字段P1中的额外值指示块的长度,其可以是30分、45分或60分。将TOE/TOC置于块的中间。所述参数被同时用于TOE和TOC,所以只需要7+2位。In the original GLONASS format, TOE and TOC are represented by blocks starting from day. The number of blocks is represented by the value in the 7-bit field tb . The extra value in the 2-bit field P1 indicates the length of the block, which can be 30, 45 or 60 cents. Place the TOE/TOC in the middle of the block. The parameters are used for both TOE and TOC, so only 7+2 bits are needed.
在原始SBAS格式中,对于WAAS中的TOE和TOC使用相同的13位值且标度因子为24秒。计数也始于GPS日变化。In the original SBAS format, the same 13-bit value is used for TOE and TOC in WAAS with a scale factor of 24 seconds. Counting also starts with GPS diurnal variation.
因此,在此情况下LSB的数量视情况而定。也就是说,对于SBAS,它们包括13位,而对于GLONASS,它们仅包括9位。因此,LSB的数量将是GNSSID的函数。Therefore, the number of LSBs in this case is case-by-case. That is, for SBAS they include 13 bits, but for GLONASS they only include 9 bits. Therefore, the number of LSBs will be a function of the GNSSID.
在所提供的实施例中维护SBAS的位计数特性和标度因子。还在辅助消息中传递GLONASS参数的基准时间,因为其由SV广播,即,使用7+2位。The bit count properties and scale factors of the SBAS are maintained in the provided embodiments. The reference time of the GLONASS parameter is also conveyed in the assistance message as it is broadcast by the SV, ie using 7+2 bits.
此外,将每个卫星的TOE和TOC参数的个体部分分成LSB和MSB部分。这些LSB和MSB部分可被视为用于Galileo、GPS、QZSS等的LSB的子部分。Furthermore, the individual parts of the TOE and TOC parameters for each satellite are divided into LSB and MSB parts. These LSB and MSB parts can be considered as sub-parts of LSB for Galileo, GPS, QZSS, etc.
对于GLONASS和SBAS这两个系统,每个参数的9个LSB被提供为辅助消息的相应LSB部分(步骤236)。For both GLONASS and SBAS systems, the 9 LSBs of each parameter are provided as the corresponding LSB portion of the assistance message (step 236).
在GLONASS的情况下(步骤237),在辅助消息中仅使用这9个(7位用于块计数,2位用于标志P1)LSB位。In the case of GLONASS (step 237 ), only these 9 (7 bits for block count and 2 bits for flag P1 ) LSB bits are used in the auxiliary message.
在SBAS的情况下(步骤237),来自原始SBAS格式的13位中的其余4位被提供为辅助数据的相应MSB部分(步骤238)。In the case of SBAS (step 237), the remaining 4 bits of the 13 bits from the original SBAS format are provided as the corresponding MSB portion of the ancillary data (step 238).
应注意的是,取决于系统是SBAS还是GLONASS,LSB部分的解释将会变化。It should be noted that the interpretation of the LSB section will vary depending on whether the system is SBAS or GLONASS.
下表概述了参考图3描述的不同GNSS的位节省:The table below summarizes the bit savings of the different GNSS described with reference to Figure 3:
在所提供的多模式导航模型中,由相同模式表示GPSL5和QZSS,这是因为在GPSL5和QZSS中,导航模型在轨道和时间方面可能完全相同。In the presented multi-mode navigation model, GPSL5 and QZSS are represented by the same mode because the navigation models may be identical in orbit and time in GPSL5 and QZSS.
在所提供的多模式导航模型中,由相同模式表示GLONASS和SBAS,这是因为两者中的轨道模型都基于以地心地固(ECEF,earth-centered,earth-fixed)坐标表示给定瞬间的卫星位置、速度和加速度,然后根据变化率信息摄动(perturb)位置。In the multimodal navigation model provided, GLONASS and SBAS are represented by the same schema, since the orbital models in both are based on the Satellite position, velocity, and acceleration, then perturb the position based on the rate-of-change information.
图4是示出提取自k个已解码导航消息的SVID参数中的冗余信息的减少的流程图。FIG. 4 is a flowchart illustrating the reduction of redundant information in SVID parameters extracted from k decoded navigation messages.
下表中指示了标识不同GNSS中的卫星所需的位计数:The bit counts required to identify satellites in different GNSS are indicated in the table below:
在GPSL5信号的情况下,在原始格式中由5位SV索引(其允许标识32个不同的卫星)标识卫星。这将消耗k*5位,其中k是所标识的卫星数。In the case of GPSL5 signals, satellites are identified in raw format by a 5-bit SV index (which allows 32 different satellites to be identified). This will consume k*5 bits, where k is the number of satellites identified.
如果要为多于6个的卫星(k>6)提供辅助数据,则通过使用32位的位掩码(其中每个位指示是否已跟踪特定的卫星信号),可以更加位有效地提供k个SV索引。If assistance data is to be provided for more than 6 satellites (k > 6), k can be provided more bit efficiently by using a 32-bit bitmask where each bit indicates whether a particular satellite signal has been tracked SV index.
如果所考虑的卫星系统是GPS(步骤240),则将k*5个位表示转换成32位的位掩码(步骤241)。If the satellite system under consideration is GPS (step 240), the k*5 bit representation is converted into a 32-bit bitmask (step 241).
例如,如果存在k=8个SV{1581018192230},则PRN编号将需要8*5=40位的带宽。相比之下,当由位掩码[10001001010000000110010000000100]表示SV时,通过使用减少8位的带宽来提供同样的信息。For example, if there are k=8 SV{1581018192230}, the PRN number will require 8*5=40 bits of bandwidth. In contrast, when the SV is represented by the bitmask [10001001010000000110010000000100], the same information is provided by using a bandwidth reduced by 8 bits.
在所考虑的卫星系统是Galileo(步骤240)的情况下,适用相同的方法。但是在Galileo的情况下,在原始格式中由6位SV索引(其允许标识64个不同的卫星)标识卫星。因此,将k个卫星信号的GalileoSVID的6位表示转换成64位的位掩码(步骤242)。如果为多于10的Galileo卫星信号(k>10)提供辅助数据,则可以实现位节省。In case the satellite system under consideration is Galileo (step 240), the same method applies. But in the case of Galileo, satellites are identified in raw format by a 6-bit SV index (which allows 64 different satellites to be identified). Thus, the 6-bit representation of the GalileoSVID for the k satellite signals is converted into a 64-bit bitmask (step 242). Bit savings can be achieved if assistance data is provided for more than 10 Galileo satellite signals (k > 10).
再者,至少对于年历,在由Galileo联合执行体提供的日期为2006年5月23日的GalileoSIS-ICD草案0“GalileoOpenServiceSignalInSpaceInterfaceControlDocument”中指出:仅为36个卫星发送年历。因此,对于年历,可以预期使用36位位掩码便已足够。这意味着如果为多于6个的卫星(k>6)提供辅助数据,则已经节省了位。Again, at least for the almanac, it is stated in the Galileo SIS-ICD draft 0 "GalileoOpenServiceSignalInSpaceInterfaceControlDocument" dated 23 May 2006 provided by the Galileo Joint Executive that only 36 satellites send the almanac. Therefore, for the almanac, a 36-bit bitmask can be expected to be sufficient. This means that bits are already saved if assistance data is provided for more than 6 satellites (k>6).
在原始GLONASS格式中,将5位用于标识32个轨道时隙之一的时隙索引,而将额外5位用于标识32个频率之一的频率索引。如果所考虑的卫星系统是GLONASS(步骤240),则将时隙的k*5位表示转换成32位的位掩码表示(步骤243),就像GPSL5的情况那样。将k个频率索引包括在辅助消息中而不进行修改。In the original GLONASS format, 5 bits are used for the slot index identifying one of the 32 orbital slots, and an additional 5 bits are used for the frequency index identifying one of the 32 frequencies. If the satellite system under consideration is GLONASS (step 240), the k*5-bit representation of the time slot is converted into a 32-bit bitmask representation (step 243), as in the case of GPSL5. The k frequency indices are included in the assistance message without modification.
在SBAS的情况下,将8位用于表示原始形式中的SVID,但是在0-255的覆盖范围内,仅将值120-138用于WAAS和EGNOS。如果所考虑的卫星系统是SBAS(步骤240),则在使用120的偏移时,可以使用18位位掩码来表示k*8位(步骤244),因为要描述的空间只有18个SV那样长。如果为多于2个的卫星(k>2)提供辅助数据,则可以实现位节省。In the case of SBAS, 8 bits are used to represent the SVID in the original form, but only the values 120-138 are used for WAAS and EGNOS within the coverage range of 0-255. If the satellite system under consideration is SBAS (step 240), an 18-bit bitmask can be used to represent k*8 bits (step 244) when using an offset of 120, since the space to be described is only as large as 18 SVs long. Bit savings can be achieved if assistance data is provided for more than 2 satellites (k>2).
在QZSS的情况下,很可能同样将仅使用可用PRN编号的子空间。在此情况下,如果所考虑的卫星系统是QZSS(步骤240),则如SBAS的情况一样,可以类似地实现位节省。In the case of QZSS, it is also likely that only subspaces of available PRN numbers will be used. In this case, if the satellite system under consideration is QZSS (step 240), bit savings can be achieved similarly as in the case of SBAS.
图5是示出从已解码的导航消息提取的年历参数中的冗余信息的减少的表的排列。Figure 5 is an arrangement of tables showing reduction of redundant information in almanac parameters extracted from decoded navigation messages.
假设(通过实例的方式)已解码的导航消息来自Galileo和GLONASS卫星。Assume (by way of example) that the decoded navigation messages are from Galileo and GLONASS satellites.
年历参数包括多个参数,包括关于年历的基准时间。在Galileo的情况下,如上述GalileoSIS-ICD草案中规定的,基准时间包括Galileo周和周时间。在GLONASS的情况下,基准时间由两个参数来描述,即自上一闰年的1月1日起的日计数以及日时间(Toa),如GLONASSICD中所述(版本5.0,莫斯科,2002年,俄罗斯国防部协调科学信息中心)。The almanac parameters include a plurality of parameters, including a reference time with respect to the almanac. In the case of Galileo, the reference time includes the Galileo week and week time as specified in the above-mentioned GalileoSIS-ICD draft. In the case of GLONASS, the base time is described by two parameters, the count of days since January 1 of the previous leap year and the time of day (Toa), as described in GLONASSICD (Version 5.0, Moscow, 2002, Coordinated Scientific Information Center of the Ministry of Defense of Russia).
为了实现冗余减小,对于GLONASS,自上一闰年的1月1日起的日计数首先被替换为与Galileo周计数对应的周计数和自周开始起的日计数。如GLONASSICD中所描述的那样维护日时间(Toa)。To achieve redundancy reduction, for GLONASS the day count since January 1 of the previous leap year is first replaced by the week count corresponding to the Galileo week count and the day count since the start of the week. The time of day (Toa) is maintained as described in GLONASSICD.
现在,对于Galileo年历数据和GLONASS年历数据,可以共同使用8位的“周”计数。不对周表示使用任何定标(scaling)。这在图5的第一个表中示出。For Galileo almanac data and GLONASS almanac data, an 8-bit "week" count can now be used together. Do not use any scaling for week representations. This is shown in the first table of FIG. 5 .
此外,为Galileo提供自己的公共部分,其包括2位且没有定标的数据发布(IODa,IssueodData)以及8位且具有212秒定标的周时间(Toa)。IODa是描述数据集版本的顺序号。这在图5的第二个表中示出。In addition, Galileo is provided with its own public part, which includes 2-bit data issues (IODa, IssueodData) without scaling and 8-bit time of week (Toa) with 2 12 second scaling. IODa is a sequential number describing the version of the dataset. This is shown in the second table of FIG. 5 .
为每个所考虑的Galileo卫星在个体部分中单独提供实际的年历数据。这在图5的第三个表中示出。未详细说明所包括的参数。它们在上述GalileoSIS-ICD草案中描述。但是要理解,针对星历参数的与参考图2-4所提供的那些对应的减少方案同样可以用于年历参数以进行冗余的任何进一步减小。The actual almanac data are provided separately in the individual sections for each considered Galileo satellite. This is shown in the third table of FIG. 5 . The parameters involved are not specified. They are described in the aforementioned GalileoSIS-ICD draft. It is to be understood, however, that reduction schemes for the ephemeris parameters corresponding to those provided with reference to Figures 2-4 can likewise be used for the almanac parameters for any further reduction of redundancy.
对于GLONASS,未提供自己的公共部分或空的公共部分。这在图5的第四个表中示出。For GLONASS, no own public section is provided or an empty public section. This is shown in the fourth table of FIG. 5 .
对于每个所考虑的GLONASS卫星,在个体部分中与实际年历数据一起单独地提供日计数(day,天)和日时间(Toa)。这在图5的第五个表中示出。未详细说明其他包括的参数。它们在上述GLONASSICD中描述。再次地,可以理解,针对星历参数的与参考图2-4所提供的那些对应的减少方案同样可以用于年历参数。For each considered GLONASS satellite, the day count (day) and time of day (Toa) are provided separately in the individual section together with the actual almanac data. This is shown in the fifth table of FIG. 5 . Other included parameters were not specified. They are described in the GLONASSICD mentioned above. Again, it will be appreciated that reduction schemes for the ephemeris parameters corresponding to those provided with reference to Figures 2-4 may likewise be used for the almanac parameters.
为了完整,需要注意的是,通常Toa是指“年历时间”的术语。对于Galileo,其原先为“周时间”(加上周计数),因为Galileo计时基于对周进行计数以及在一周的块中对时间进行计数。另一方面,对于GLONASS,“Toa”原先为自最近的闰年开始起的日的计数并且然后对该日内的时间进行计数。所以“年历时间”的解释取决于GNSS而改变。For the sake of completeness, it's important to note that usually Toa refers to the term "annual calendar time". For Galileo, it was originally "week time" (plus week count), because Galileo timing is based on counting weeks and counting time in blocks of a week. For GLONASS, on the other hand, "Toa" is originally a count of days since the beginning of the most recent leap year and then counts the time within that day. So the interpretation of "almanac time" changes depending on GNSS.
要理解的是,如果仅考虑Galileo信号或仅考虑GLONASS信号,则可以对公共部分和个体部分使用相同的分布。It is to be understood that the same distribution can be used for the common and individual parts if only Galileo signals or only GLONASS signals are considered.
要理解的是,备选地,可以为每个卫星系统单独确定公共部分。It is to be understood that alternatively the common part may be determined separately for each satellite system.
进而,可以为其他GNSS实现年历参数的公共部分和个体部分的类似划分。Furthermore, a similar division of the public and individual parts of the almanac parameters can be achieved for other GNSSs.
此外,所提供的划分为公共部分和个体部分应被理解为只是示例性实施例。例如,在一个备选实施例中,GLONASS中的“日”参数可以作为GLONASS卫星的公共部分。Furthermore, the provided division into common and individual parts should be understood as an exemplary embodiment only. For example, in an alternative embodiment, the "day" parameter in GLONASS could be a common part of the GLONASS satellites.
导致图2-5的操作的全部参数因而具有减小的冗余。它们与从k个导航消息提取的其他数据一起被插入辅助消息中,该辅助消息由基站130经由蜂窝链路传送到蜂窝终端110。在蜂窝终端110中,将所接收的辅助消息提供给处理器114。All parameters leading to the operation of Figures 2-5 thus have reduced redundancy. Together with other data extracted from the k navigation messages, they are inserted into the assistance message, which is transmitted by the base station 130 to the cellular terminal 110 via the cellular link. In the cellular terminal 110 the received assistance message is provided to a processor 114 .
处理器114执行辅助定位软件116。它接收来自GNSS接收器113的关于多个被获取并跟踪的卫星信号的测量结果,但可能没有已解码的导航数据。定位蜂窝终端110所需的关联导航数据被从辅助数据获得,例如以便加速定位或以便使得能够在那些其中不可能解码所获取和跟踪的卫星信号中的导航消息的情况下进行定位。Processor 114 executes positioning aid software 116 . It receives measurements from the GNSS receiver 113 about multiple acquired and tracked satellite signals, but possibly no decoded navigation data. The associated navigation data needed to locate the cellular terminal 110 is obtained from the assistance data, for example to speed up positioning or to enable positioning in those cases where it is not possible to decode navigation messages in acquired and tracked satellite signals.
图6是示出从所接收的辅助消息中的参数重建原始导航轨道参数的流程图。Figure 6 is a flow diagram illustrating reconstruction of original navigation orbit parameters from parameters in received assistance messages.
处理器114从辅助消息提取低冗余偏心率参数,并为k个卫星信号中的每个信号将公共5位MSB部分与相应的个体25位LSB部分组合(步骤601)。所得到的值与原始k*32位偏心率参数完全相同。Processor 114 extracts the low-redundancy eccentricity parameter from the assistance message and combines, for each of the k satellite signals, a common 5-bit MSB part with a corresponding individual 25-bit LSB part (step 601 ). The resulting value is exactly the same as the original k*32-bit eccentricity parameter.
处理器114还从辅助消息提取低冗余半长轴参数,并为k个卫星信号中的每个信号将公共6位MSB部分与相应的个体26位LSB部分组合(步骤602)。所得到的值与原始k*32位半长轴参数完全相同。The processor 114 also extracts the low-redundancy semi-major axis parameters from the assistance message and combines the common 6-bit MSB part with the corresponding individual 26-bit LSB part for each of the k satellite signals (step 602). The resulting value is exactly the same as the original k*32-bit semi-major axis parameter.
处理器114还从辅助消息提取时间参数,与原始时间参数相比,所述时间参数可能具有或者可能不具有减小的冗余。取决于所考虑的卫星系统,处理器114将所提取的公共部分与2*k个所提取的个体部分中的每个个体部分组合,或者将所提取的MSB(如果有)与所提取的LSB组合(步骤603)。所述组合包括已在基站130中执行的标度因子的任何改变的逆转。所得到的值与原始k个TOE/TOC参数完全相同。The processor 114 also extracts a time parameter from the auxiliary message, which may or may not have reduced redundancy compared to the original time parameter. Depending on the satellite system considered, the processor 114 combines the extracted common part with each of the 2*k extracted individual parts, or the extracted MSB (if any) with the extracted LSB combination (step 603). The combination includes the inversion of any change in scaling factor already performed in the base station 130 . The resulting values are exactly the same as the original k TOE/TOC parameters.
处理器114还从辅助消息提取低冗余SVID参数。取决于所考虑的卫星系统,它将所获得的位掩码表示转换成k个位表示。在转换成位掩码表示之前已从k个原始位表示移除偏移的情况下,现在再次将预定的偏移添加到k个位表示中的每个位表示,以便获得原始位计数(步骤604)。结果则与原始k个SVID参数完全相同。Processor 114 also extracts low redundancy SVID parameters from the auxiliary message. Depending on the satellite system considered, it converts the obtained bitmask representation into a k-bit representation. In the case where the offsets have been removed from the k original bit representations before conversion into the bitmask representation, a predetermined offset is now added again to each of the k bit representations in order to obtain the original bit counts (step 604). The result is exactly the same as the original k SVID parameters.
处理器114还从辅助消息提取低冗余年历参数。它将公共部分与个体部分中的每个部分组合(步骤605)。例如,如果为Galileo和GLONASS提供年历参数,则将指示两者的周计数的公共部分与用于Galileo的指示周时间的公共部分组合。然后将此组合后的公共部分进一步与相应Galileo卫星的每个个体年历部分组合。此外,将指示周计数的Galileo和GLONASS的公共部分转换成日计数,并将其与相应GLONASS卫星的每个个体年历部分中的日计数和日时间信息组合。所得到的参数因此与年历参数的原始集合完全相同。Processor 114 also extracts low-redundancy almanac parameters from the auxiliary message. It combines the common part with each of the individual parts (step 605). For example, if an almanac parameter is provided for Galileo and GLONASS, combine the common part indicating the week count for both with the common part indicating the week time for Galileo. This combined common part is then further combined with each individual almanac part of the corresponding Galileo satellite. In addition, the common parts of Galileo and GLONASS indicating week counts are converted into day counts and combined with the day count and time of day information in each individual almanac part of the corresponding GLONASS satellite. The resulting parameters are thus identical to the original set of almanac parameters.
然后,重新获得的原始轨道、时间和SVID参数被与任何其他辅助数据一起使用,所述辅助数据提取自常规定位计算中的辅助消息(步骤606)。The retrieved original orbit, time and SVID parameters are then used together with any other assistance data extracted from the assistance message in the conventional position calculation (step 606).
总体上,将显而易见的是,通过从提取自导航消息的参数移除冗余,可以显著减小将辅助数据从基站130传送到蜂窝终端110所需的带宽。尽管如此,可以在蜂窝终端110处重新获得原始参数而不损失精度或与原始格式的兼容性。In general, it will be apparent that by removing redundancy from the parameters extracted from the navigation messages, the bandwidth required to communicate the assistance data from the base station 130 to the cellular terminal 110 can be significantly reduced. Nevertheless, the original parameters can be retrieved at the cellular terminal 110 without loss of accuracy or compatibility with the original format.
图7提供了根据本发明的另一个示例性系统,其使用减小的带宽在无线链路上传输用于基于AGNSS的定位的辅助数据。Fig. 7 provides another exemplary system according to the present invention for transmitting assistance data for AGNSS based positioning over a wireless link using reduced bandwidth.
所述系统包括移动设备720、GNSS附属设备710、无线通信网络的定位服务器730以及无线通信网络的固定站740。The system includes a mobile device 720, a GNSS accessory device 710, a location server 730 of a wireless communication network, and a fixed station 740 of the wireless communication network.
移动设备720包括无线通信组件722。无线通信组件722可以例如是蜂窝引擎或终端,或是WLAN引擎或终端等。Mobile device 720 includes a wireless communication component 722 . The wireless communication component 722 may be, for example, a cellular engine or a terminal, or a WLAN engine or a terminal, and the like.
GNSS附属设备710包括芯片715和链接到此芯片715的GNSS接收器713。芯片715可以例如是集成电路(IC),其包括被配置为实现辅助定位的电路。除了实际辅助定位组件719(其可以以常规方式实现)之外,所述电路还包括轨道参数重建组件716、时间参数重建组件717以及SVID参数重建组件718。The GNSS accessory device 710 includes a chip 715 and a GNSS receiver 713 linked to this chip 715 . Chip 715 may, for example, be an integrated circuit (IC) including circuitry configured to facilitate positioning. In addition to the actual assisted positioning component 719 (which may be implemented in a conventional manner), the circuit also includes an orbit parameter reconstruction component 716, a time parameter reconstruction component 717, and an SVID parameter reconstruction component 718.
移动设备720和GNSS附属设备710包括匹配的接口(未示出),其使能够在两个设备之间经由无线或有线链路的数据交换。Mobile device 720 and GNSS accessory device 710 include mating interfaces (not shown) that enable data exchange between the two devices via a wireless or wired link.
固定站740包括无线通信组件742,其允许建立到移动设备720的无线通信组件722的无线链路。所述无线链路可以是蜂窝链路或非蜂窝链路,如无线局域网(LAN)连接。The fixed station 740 includes a wireless communication component 742 that allows a wireless link to be established to the wireless communication component 722 of the mobile device 720 . The wireless link may be a cellular link or a non-cellular link, such as a wireless local area network (LAN) connection.
定位服务器730包括芯片735和链接到此芯片735的GNSS接收器733。芯片735可以例如是集成电路(IC),其包括被配置为组装用于辅助定位的辅助消息的电路。除了实际辅助消息组装组件739之外,所述电路还包括轨道参数冗余减小组件736、时间参数冗余减小组件737以及SVID参数冗余减小组件738。The positioning server 730 includes a chip 735 and a GNSS receiver 733 linked to this chip 735 . Chip 735 may, for example, be an integrated circuit (IC) that includes circuitry configured to assemble assistance messages for assisted positioning. In addition to the actual assistance message assembly component 739 , the circuit also includes an orbit parameter redundancy reduction component 736 , a time parameter redundancy reduction component 737 , and an SVID parameter redundancy reduction component 738 .
固定站740和定位服务器730包括匹配的接口(未示出),其使得能够进行在两个设备之间经由无线或有线链路的直接或间接数据交换。The fixed station 740 and the positioning server 730 include matching interfaces (not shown) that enable direct or indirect data exchange between the two devices via wireless or wired links.
GNSS接收器713、733都被配置为接收、获取和跟踪由属于一个或多个GNSS的卫星S1、S2传送的信号,例如,包括GPSL5、Galileo、GLONASS、SBAS以及QZSS信号。至少GNSS接收器733还被配置为解码此类信号中包括的导航消息。Both GNSS receivers 713, 733 are configured to receive, acquire and track signals transmitted by satellites S1, S2 belonging to one or more GNSS, including, for example, GPSL5, Galileo, GLONASS, SBAS and QZSS signals. At least GNSS receiver 733 is also configured to decode navigation messages included in such signals.
可以以与参考图2-6针对图1的系统描述的方式对应的方式来实现图7的系统中的辅助定位操作。在此情况下,芯片735负责处理器134的功能,而芯片715负责处理器114的功能。Assisted positioning operations in the system of FIG. 7 may be implemented in a manner corresponding to that described for the system of FIG. 1 with reference to FIGS. 2-6 . In this case, chip 735 is responsible for the functions of processor 134 and chip 715 is responsible for the functions of processor 114 .
基站130或网络元件730可以是根据所考虑的第一方面的示例性电子设备。处理器134或芯片735可以是根据所考虑的第一方面的示例性设备。蜂窝终端110或GNSS附件710可以是根据所考虑的第二方面的示例性电子设备。处理器114或芯片715可以是根据所考虑的第二方面的示例性设备。The base station 130 or the network element 730 may be an exemplary electronic device according to the first aspect considered. The processor 134 or the chip 735 may be exemplary devices according to the first aspect considered. The cellular terminal 110 or the GNSS accessory 710 may be exemplary electronic devices according to the second aspect considered. The processor 114 or the chip 715 may be exemplary devices according to the second aspect considered.
执行软件136的处理器134所示的功能或芯片735所示的功能也可以被视为用于接收已从至少一个卫星信号提取的参数的装置、用于从所述参数任意地移除冗余信息的装置,以及用于提供具有减小冗余度的参数作为基于卫星信号的定位的辅助数据的装置。The functions shown by the processor 134 executing the software 136 or the functions shown by the chip 735 can also be regarded as means for receiving parameters that have been extracted from at least one satellite signal, for removing redundancy arbitrarily from said parameters information, and means for providing parameters with reduced redundancy as assistance data for satellite signal-based positioning.
执行软件116的处理器114所示的功能或芯片715所示的功能也可以被视为用于接收参数作为基于卫星信号的定位的辅助数据的装置(其中所接收的参数基于从至少一个卫星信号提取的原始参数,已从所述原始参数任意地移除冗余信息)、用于通过将所移除的冗余信息添加到所接收的参数来重建所述原始参数的装置,以及用于在辅助式基于卫星信号的定位中使用所重建的原始参数的装置。The functions shown by the processor 114 executing the software 116 or the functions shown by the chip 715 can also be regarded as means for receiving parameters as assistance data for satellite signal-based positioning (wherein the received parameters are based on signals obtained from at least one satellite signal extracted original parameters from which redundant information has been arbitrarily removed), means for reconstructing said original parameters by adding the removed redundant information to the received parameters, and for A device for using reconstructed raw parameters in assisted satellite signal-based positioning.
此外,要求保护的装置加功能从句旨在覆盖在此描述为执行所列举的功能的结构,并且不仅覆盖结构上的等同物,而且还覆盖等同的结构。Furthermore, means-plus-function clauses of claim are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
虽然本发明的基本新颖特性被示出、说明和指出为应用于本发明的优选实施例,但是可以理解,本领域的技术人员可以在不偏离本发明的精神的情况下对所述设备和方法的形式和细节做出各种省略、替换和更改。例如,那些以基本相同的方式执行基本相同的功能以便达到基本相同的结果的元件和/或方法步骤的所有组合都明确旨在落入本发明的范围之内。此外应认识到,与本发明的任何公开的形式或实施例一起示出和/或描述的结构和/或元件和/或方法步骤,都可以作为设计选择的普通内容结合到任何其他公开、描述或建议的形式或实施例中。只是为了给出一个实例,显然,可以以任何适当的方式更改所指示的用于MSB和LSB部分的位计数以及所指示的标度因子。进而,可以根据需要使所提供的实施例适合与任何其他GNSS(包括未来的GNSS)一起使用。因此,本发明旨在仅由所附的权利要求的范围来进行限制。While the essential novel features of this invention have been shown, described and pointed out as applied to the preferred embodiments of the invention, it will be appreciated that those skilled in the art can modify the described apparatus and methods without departing from the spirit of the invention various omissions, substitutions and changes in form and detail. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve substantially the same results are within the scope of the invention. In addition, it should be recognized that the structures and/or elements and/or method steps shown and/or described together with any disclosed form or embodiment of the present invention can be incorporated into any other disclosed, described or suggested form or example. Just to give an example, it will be apparent that the indicated bit counts for the MSB and LSB portions as well as the indicated scale factors may be altered in any suitable manner. Furthermore, the provided embodiments can be adapted for use with any other GNSS, including future GNSS, as desired. Accordingly, it is intended that the invention be limited only by the scope of the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310004759.2A CN103091683B (en) | 2006-09-21 | 2006-09-21 | Assist type is based on the location of satellite-signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310004759.2A CN103091683B (en) | 2006-09-21 | 2006-09-21 | Assist type is based on the location of satellite-signal |
CN2006800564328A CN101542308B (en) | 2006-09-21 | 2006-09-21 | Assisted satellite signal-based positioning |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800564328A Division CN101542308B (en) | 2006-09-21 | 2006-09-21 | Assisted satellite signal-based positioning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103091683A CN103091683A (en) | 2013-05-08 |
CN103091683B true CN103091683B (en) | 2016-02-03 |
Family
ID=48204485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310004759.2A Active CN103091683B (en) | 2006-09-21 | 2006-09-21 | Assist type is based on the location of satellite-signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103091683B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861980B1 (en) * | 2004-05-26 | 2005-03-01 | Qualcomm Incorporated | Data messaging efficiency for an assisted wireless position determination system |
-
2006
- 2006-09-21 CN CN201310004759.2A patent/CN103091683B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861980B1 (en) * | 2004-05-26 | 2005-03-01 | Qualcomm Incorporated | Data messaging efficiency for an assisted wireless position determination system |
Also Published As
Publication number | Publication date |
---|---|
CN103091683A (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2064566B1 (en) | Assisted satellite signal based positioning | |
US10534088B2 (en) | Method and apparatus for position determination with extended SPS orbit information | |
US6829535B2 (en) | Method and apparatus for generating satellite tracking information in a compact format | |
CA2611933C (en) | Supporting an assisted satellite based positioning | |
CN100409029C (en) | Interface for GPS | |
CN101203770B (en) | Supports assisted satellite positioning | |
US10241210B2 (en) | Navigation data configuration for optimal time to first fix | |
US8635016B2 (en) | Systems and methods of communication in an assisted navigation system | |
CN103091683B (en) | Assist type is based on the location of satellite-signal | |
JP2005338079A (en) | Send satellite position list message | |
RU2394252C2 (en) | Position finding support using satellites | |
RU2386142C2 (en) | Position finding support using satellites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20151230 Address after: Espoo, Finland Applicant after: Technology Co., Ltd. of Nokia Address before: Espoo, Finland Applicant before: Nokia Oyj |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |