[go: up one dir, main page]

CN103090898A - Flight data recording equipment ground integrated test system - Google Patents

Flight data recording equipment ground integrated test system Download PDF

Info

Publication number
CN103090898A
CN103090898A CN2011103358861A CN201110335886A CN103090898A CN 103090898 A CN103090898 A CN 103090898A CN 2011103358861 A CN2011103358861 A CN 2011103358861A CN 201110335886 A CN201110335886 A CN 201110335886A CN 103090898 A CN103090898 A CN 103090898A
Authority
CN
China
Prior art keywords
signal
subsystem
module
simulation
verification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103358861A
Other languages
Chinese (zh)
Inventor
邱长泉
赵良
李宵
张伟
郑宇�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Near Space Vehicles System Engineering
Original Assignee
China Academy of Launch Vehicle Technology CALT
Beijing Institute of Near Space Vehicles System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Beijing Institute of Near Space Vehicles System Engineering filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN2011103358861A priority Critical patent/CN103090898A/en
Publication of CN103090898A publication Critical patent/CN103090898A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明涉及一种飞行数据记录设备地面综合测试系统,包括主控计算机、仿真控制计算机、验证控制计算机、信号仿真子系统、信号验证子系统、通信网络子系统及同步触发子系统。主控计算机完成用户管理、报表输出、飞参解译等功能;仿真控制计算机是信号仿真子系统的控制中枢;验证控制计算机是信号验证子系统的控制中枢;信号仿真子系统实时输出各种仿真信号;信号验证子系统由测试仪器构成,对信号仿真子系统输出的仿真信号进行正确性或精度验证;通信网络子系统是系统内计算机、测试仪器间的通信平台;同步触发子系统实现信号仿真子系统和信号验证子系统的时钟同步和触发同步。本发明为地面环境飞行数据记录设备的全面测试提供了准确的信号源。

Figure 201110335886

The invention relates to a ground comprehensive test system for flight data recording equipment, which includes a main control computer, a simulation control computer, a verification control computer, a signal simulation subsystem, a signal verification subsystem, a communication network subsystem and a synchronous trigger subsystem. The main control computer completes functions such as user management, report output, and flight parameter interpretation; the simulation control computer is the control center of the signal simulation subsystem; the verification control computer is the control center of the signal verification subsystem; the signal simulation subsystem outputs various simulations in real time. Signal; the signal verification subsystem is composed of test instruments, which verify the correctness or accuracy of the simulation signal output by the signal simulation subsystem; the communication network subsystem is a communication platform between computers and test instruments in the system; the synchronous trigger subsystem realizes signal simulation Clock synchronization and trigger synchronization of subsystems and signal verification subsystems. The invention provides an accurate signal source for the comprehensive test of the ground environment flight data recording equipment.

Figure 201110335886

Description

一种飞行数据记录设备地面综合测试系统A Ground Comprehensive Test System for Flight Data Recording Equipment

技术领域 technical field

本发明涉及一种飞行数据记录设备地面综合测试系统,特别是涉及一种以真实的飞行数据驱动仪器仿真多路实际机载信号,作为飞行数据记录设备的信号源,在地面对其进行全面测试评估的飞行数据记录设备地面综合测试系统。The present invention relates to a ground comprehensive test system for flight data recording equipment, in particular to an instrument simulation multi-channel actual airborne signal driven by real flight data, which is used as the signal source of the flight data recording equipment and comprehensively tested on the ground. Test evaluation of flight data recording equipment ground integrated test system.

背景技术 Background technique

在航空航天领域中,飞参数据具有重要的参考和应用价值。除了利用飞参数据对失事飞行器进行事故原因调查外,还可以利用飞参数据测试飞行器的设计性能、监控飞行器健康状况、故障诊断和趋势预测等。获取飞参主要是通过两种途径来实现的:①地面站利用通讯系统与飞行器直接通信获取;②利用机载飞行数据记录设备如飞行数据记录仪来获取,其中通过飞行数据记录仪获取飞行数据是主要手段。飞行数据记录仪是机载设备中记录飞参数据的载体,它按照时间顺序记载了飞机从起飞到降落过程中与飞行器性能和飞行状态相关的参量,这些参量体现了飞行器在飞行中各个系统或部件的工作状态。飞行数据记录仪主要分为磁带式飞行记录仪FDR、数字式飞行数据记录仪DFDR以及快速存储数据记录仪QAR,从FDR到QAR,所记录的参数逐渐增多,从单一的PCM信号发展到离散量信号、总线数据、多路PCM信号、音视频数据等多种信号,涵盖了高度、速度、加速度、俯仰、倾斜、航向等飞行参数、发动机及主要部件的性能参数,以及温度、气压、风速等舱内外的参数等。故而当今的飞行数据记录功能越来越多,结构越来越复杂。In the field of aerospace, flight parameter data has important reference and application value. In addition to using the flight parameter data to investigate the cause of the accident of the crashed aircraft, the flight parameter data can also be used to test the design performance of the aircraft, monitor the health status of the aircraft, fault diagnosis and trend prediction, etc. Obtaining flight parameters is mainly achieved in two ways: ① the ground station uses the communication system to directly communicate with the aircraft; is the main means. The flight data recorder is the carrier for recording flight parameter data in the airborne equipment. It records the parameters related to the performance and flight status of the aircraft from take-off to landing in chronological order. The working state of the component. Flight data recorders are mainly divided into tape flight recorder FDR, digital flight data recorder DFDR and fast storage data recorder QAR. From FDR to QAR, the recorded parameters gradually increase, from a single PCM signal to a discrete quantity Signals, bus data, multi-channel PCM signals, audio and video data and other signals, covering flight parameters such as altitude, speed, acceleration, pitch, tilt, heading, etc., performance parameters of the engine and main components, as well as temperature, air pressure, wind speed, etc. Parameters inside and outside the cabin, etc. Therefore, today's flight data recording functions are more and more, and the structure is more and more complex.

目前对飞行数据记录设备的研发过程中,对产品的测试都简单地提供较少路数的模拟量信号、离散量信号或总线信号供其采集来实现的,针对飞行记录设备多路信号的全面测试只能通过实地试飞来完成,测试的开销大、时间长且具有一定的危险性。At present, in the research and development process of flight data recording equipment, the test of the product is simply provided with a small number of analog signals, discrete signals or bus signals for its collection. Testing can only be done through field test flights, which are expensive, time-consuming and dangerous.

鉴于以上情况,亟需提供一种新型的飞行数据记录设备地面综合测试系统。In view of the above situation, it is urgent to provide a new type of ground comprehensive test system for flight data recording equipment.

发明内容 Contents of the invention

本发明要解决的技术问题是提供一种以真实的飞行数据驱动仪器仿真多路实际机载信号,并保证信号间的时序关系,为飞行数据记录设备在实际装机测试之前在地面站的全面测试提供一种可行的途径的飞行数据记录设备地面综合测试系统。The technical problem to be solved by the present invention is to provide a kind of real flight data to drive the instrument to simulate multi-channel actual airborne signals, and to ensure the timing relationship between the signals, for the comprehensive test of the flight data recording equipment on the ground station before the actual installation test Provide a feasible approach to the flight data recording equipment ground comprehensive test system.

为解决上述技术问题,本发明一种飞行数据记录设备地面综合测试系统,其特征在于:包括1台主控计算机、1台数据库服务器、M台仿真控制计算机、N台验证控制计算机、M个信号仿真子系统、N个信号验证子系统、1个通信网络子系统以及1个同步触发子系统构成。M大于等于1,1个信号仿真子系统对应1台仿真控制计算机,N大于等于1,1个信号验证子系统对应1台验证控制计算机;In order to solve the above technical problems, the present invention provides a ground comprehensive test system for flight data recording equipment, which is characterized in that it includes 1 main control computer, 1 database server, M simulation control computers, N verification control computers, and M signal It consists of a simulation subsystem, N signal verification subsystems, a communication network subsystem and a synchronous trigger subsystem. M is greater than or equal to 1, one signal simulation subsystem corresponds to one simulation control computer, N is greater than or equal to 1, one signal verification subsystem corresponds to one verification control computer;

主控计算机将原始飞行数据导入数据库服务器,通过飞行数据解译、野值剔除、插值平滑和反解算处理后形成仿真数据库,并根据用户的选择、配置生成信号仿真策略和信号验证策略,信号仿真策略包含与信号仿真子系统相关的仪器信息、与信号特征相关的起止时刻、幅度、频率、脉冲个数、以及数据包内容,信号验证策略包含与信号验证子系统相关的仪器信息;主控计算机同时与仿真控制计算机、验证控制计算机保持通信,控制两者的任务调度并接收两者的状态反馈;The main control computer imports the original flight data into the database server, and forms a simulation database through flight data interpretation, outlier elimination, interpolation smoothing and inverse calculation processing, and generates signal simulation strategies and signal verification strategies according to user selection and configuration. The simulation strategy includes instrument information related to the signal simulation subsystem, the start and end time, amplitude, frequency, pulse number, and data packet content related to signal characteristics, and the signal verification strategy includes instrument information related to the signal verification subsystem; the main control The computer maintains communication with the simulation control computer and the verification control computer at the same time, controls the task scheduling of the two and receives the status feedback of the two;

数据库服务器为整个系统提供数据存储服务,存储原始飞行数据和仿真数据;The database server provides data storage services for the entire system, storing original flight data and simulation data;

仿真控制计算机与主控计算机通信获取信号仿真策略,对信号仿真策略进行解析,获取仿真信号特征;同时与信号仿真子系统通信,控制信号仿真子系统内各个仪器、设备的运行,并监测信号仿真子系统内各个设备的运行状态;The simulation control computer communicates with the main control computer to obtain the signal simulation strategy, analyzes the signal simulation strategy, and obtains the characteristics of the simulated signal; at the same time communicates with the signal simulation subsystem to control the operation of various instruments and equipment in the signal simulation subsystem, and monitor the signal simulation The operating status of each device in the subsystem;

信号仿真子系统由若干台测试仪器构成,在仿真控制计算机的控制下,各个仪器、设备根据仿真信号特征输出物理信号,同时将信号仿真子系统内各个仪器、设备的运行状态定期报告给仿真控制计算机。The signal simulation subsystem is composed of several test instruments. Under the control of the simulation control computer, each instrument and equipment output physical signals according to the characteristics of the simulation signal, and at the same time, the operating status of each instrument and equipment in the signal simulation subsystem is regularly reported to the simulation control computer.

验证控制计算机与主控计算机通信获取信号验证策略,对信号验证策略进行解析,获取信号验证时的信号验证子系统内仪器的配置信息;通过通信网络子系统与信号验证子系统通信,将配置信息发送至信号验证子系统,控制信号验证子系统内各个仪器、设备采集信号仿真子系统输出的物理信号,并将得到的验证结果回传给主控计算机;The verification control computer communicates with the main control computer to obtain the signal verification strategy, analyzes the signal verification strategy, and obtains the configuration information of the instruments in the signal verification subsystem during signal verification; through communication between the communication network subsystem and the signal verification subsystem, the configuration information Send to the signal verification subsystem, control each instrument and equipment in the signal verification subsystem to collect the physical signal output by the signal simulation subsystem, and send the obtained verification results back to the main control computer;

信号验证子系统在验证控制计算机的控制下,采集信号仿真子系统输出的物理信号,并将采集得到的结果和信号验证子系统内各个仪器、设备的运行状态回传给验证控制计算机;Under the control of the verification control computer, the signal verification subsystem collects the physical signals output by the signal simulation subsystem, and sends back the collected results and the operating status of each instrument and equipment in the signal verification subsystem to the verification control computer;

通信网络子系统作为主控计算机、数据库服务器、仿真控制计算机、验证控制计算机、信号仿真子系统内各台仪器、信号验证子系统内各台仪器之间的通信平台;The communication network subsystem serves as a communication platform between the main control computer, database server, simulation control computer, verification control computer, instruments in the signal simulation subsystem, and instruments in the signal verification subsystem;

同步触发子系统具备时钟同步和触发两个功能,其中时钟同步实现信号仿真子系统及信号验证子系统内各个仪器设备的物理时钟同步,触发则实现信号仿真子系统及信号验证子系统内各个仪器设备动作的同步。The synchronous triggering subsystem has two functions of clock synchronization and triggering. The clock synchronization realizes the physical clock synchronization of each instrument in the signal simulation subsystem and the signal verification subsystem, and the trigger realizes the signal simulation subsystem and each instrument in the signal verification subsystem. Synchronization of device actions.

主控计算机包括数据获取模块、飞参解译模块、数据处理模块、策略生成模块、数据发送模块、数据接收模块、数据比对模块、日志管理模块、报表输出模块、用户管理模块、以及用户接口模块;数据获取模块是从数据库服务器中读取原始飞行数据并将其发送至飞参解译模块;飞参解译模块根据参数类型不同以三种还原算法:模拟量解译、离散量解译和数字量解译将原始飞行数据中的二进制源码值转化为十进制工程值,同时将解译后的数据发送至数据处理模块;数据处理模块实现解译后十进制工程值的野值剔除、插值平滑、反解算处理后将数据写入数据库服务器形成仿真数据库,其中野值剔除根据时间点跳跃、参数超限、变化率失真判据进行剔除并以上一时刻的有效飞行数据代替野值,插值平滑按照每秒n次进行线性插值,反解算过程是将得到的十进制工程值转化为测试仪器可以仿真的物理量以驱动测试仪器产生信号,并存入数据库服务器;通过上述步骤完成飞行数据的“预处理”;The main control computer includes a data acquisition module, a flight reference interpretation module, a data processing module, a strategy generation module, a data sending module, a data receiving module, a data comparison module, a log management module, a report output module, a user management module, and a user interface module; the data acquisition module reads the original flight data from the database server and sends it to the flight parameter interpretation module; the flight parameter interpretation module uses three restoration algorithms according to different parameter types: analog quantity interpretation, discrete quantity interpretation Convert the binary source code value in the original flight data into a decimal engineering value, and send the interpreted data to the data processing module; the data processing module realizes outlier elimination and interpolation smoothing of the interpreted decimal engineering value , After the anti-calculation process, write the data into the database server to form a simulation database, in which outliers are eliminated based on time point jumps, parameter overruns, and rate of change distortion criteria, and the effective flight data at the previous moment are used to replace outliers, and the interpolation is smooth Linear interpolation is performed n times per second, and the inverse calculation process is to convert the obtained decimal engineering value into a physical quantity that can be simulated by the test instrument to drive the test instrument to generate a signal and store it in the database server; complete the "pre-prediction" of flight data through the above steps deal with";

当用户通过用户接口模块设定待测试的飞行数据记录设备型号、仿真信号类型、仿真起止时间信息后,策略生成模块生成相应的信号仿真策略和信号验证策略并传递至数据发送模块;数据发送模块通过通信网络子系统将信号仿真策略和信号验证策略分别发送至仿真控制计算机和验证控制计算机,仿真控制计算机和验证控制计算机据此执行相应的动作;数据接收模块通过通信网络子系统从验证控制计算机获取验证结果;数据比对模块比较两组飞行数据的吻合度;日志管理模块记录用户的操作记录;报表输出模块将用户选择的飞行数据输出或打印;用户管理模块用于添加或删除用户并设置用户权限。After the user sets the type of flight data recording equipment to be tested, the type of simulation signal, and the start and end time information of the simulation through the user interface module, the strategy generation module generates the corresponding signal simulation strategy and signal verification strategy and transmits them to the data sending module; the data sending module The signal simulation strategy and the signal verification strategy are sent to the simulation control computer and the verification control computer respectively through the communication network subsystem, and the simulation control computer and the verification control computer perform corresponding actions accordingly; Obtain the verification result; the data comparison module compares the coincidence of two sets of flight data; the log management module records the user's operation records; the report output module outputs or prints the flight data selected by the user; the user management module is used to add or delete users and set User rights.

仿真控制计算机包括数据接收模块、数据解析模块、数据发送模块、状态获取模块、以及状态显示模块;数据接收模块接收来自主控计算机的信号仿真策略并传递至数据解析模块;数据解析模块对信号仿真策略进行解析,得到仿真信号特征并发送至数据发送模块;数据发送模块将仿真信号特征通过通信网络子系统发送至信号仿真子系统中测试仪器,使其产生并输出物理信号;状态获取模块接收信号仿真子系统报告给仿真控制计算机的仪器、设备运行状态或错误报告,并通过状态显示模块显示在屏幕上。The simulation control computer includes a data receiving module, a data analysis module, a data sending module, a status acquisition module, and a status display module; the data receiving module receives the signal simulation strategy from the main control computer and transmits it to the data analysis module; the data analysis module simulates the signal The strategy is analyzed, and the characteristics of the simulated signal are obtained and sent to the data sending module; the data sending module sends the simulated signal characteristics to the test instrument in the signal simulation subsystem through the communication network subsystem, so that it generates and outputs a physical signal; the state acquisition module receives the signal The simulation subsystem reports to the simulation control computer the instrument, equipment operation status or error report, and displays it on the screen through the status display module.

信号仿真子系统包括数据接收模块、信号产生模块、数据判别模块、以及状态发送模块;数据接收模块通过通信网络子系统接收信号仿真控制计算机发送的仿真信号特征并传递至数据判别模块;数据判别模块对信号仿真特征做出判断,若与测试仪器能力范围匹配则传递至信号产生模块,信号产生模块是基于Vpp驱动的针对不同仪器的子功能函数体,通过调用信号产生模块,测试仪器实现各自的信号输出动作;若超出测试仪器能力范围则产生错误报告传递至状态发送模块,状态发送模块通过通信网络子系统将错误报告及仿真子系统中各仪器、设备的运行状态回传给仿真控制计算机。The signal simulation subsystem includes a data receiving module, a signal generating module, a data discrimination module, and a state transmission module; the data reception module receives the signal simulation control computer through the communication network subsystem and transmits the simulated signal characteristics sent by the computer to the data discrimination module; the data discrimination module Make a judgment on the signal simulation characteristics, and if it matches the capability range of the test instrument, it will be passed to the signal generation module. The signal generation module is a sub-function function body for different instruments driven by Vpp. By calling the signal generation module, the test instrument realizes its own Signal output action; if it exceeds the capability of the test instrument, an error report will be generated and sent to the status sending module. The status sending module will send the error report and the operating status of each instrument and equipment in the simulation subsystem back to the simulation control computer through the communication network subsystem.

信号仿真子系统由若干GPIB、VXI、PXI和LXI仪器组成。The signal simulation subsystem consists of several GPIB, VXI, PXI and LXI instruments.

验证控制计算机包括数据接收模块、数据解析模块、数据发送模块、数据获取模块、以及状态显示模块模块;数据接收模块接收来自主控计算机的信号验证策略并传递至数据解析模块;数据解析模块解析信号验证策略生成仪器配置信息并传递至数据发送模块;数据发送模块通过通信网络子系统将仪器配置信息发送至信号验证子系统,信号验证子系统据此执行相应的动作;数据获取模块一方面接收验证子系统采集的数据并将该验证结果通过数据发送模块发送至主控计算机,同时接收信号验证子系统报告给验证控制计算机的仪器、设备运行状态或错误报告,并通过状态显示模块显示在屏幕上。The verification control computer includes a data receiving module, a data analysis module, a data sending module, a data acquisition module, and a status display module; the data receiving module receives the signal verification strategy from the main control computer and transmits it to the data analysis module; the data analysis module analyzes the signal The verification strategy generates instrument configuration information and transmits it to the data sending module; the data sending module sends the instrument configuration information to the signal verification subsystem through the communication network subsystem, and the signal verification subsystem performs corresponding actions accordingly; the data acquisition module receives the verification information on the one hand. The data collected by the subsystem and the verification result are sent to the main control computer through the data sending module, and at the same time, the received signal verification subsystem reports to the verification control computer the instrument, equipment operation status or error report, and displays it on the screen through the status display module .

信号验证子系统包含数据接收模块、配置识别模块、数据采集模块、以及状态发送模块;数据接收模块接收来自验证控制计算机的仪器配置信息并传递至配置识别模块;配置识别模块判断仪器配置信息的合法性,若合法则调用数据采集模块测试仪器实现各自的信号采集动作并将采集结果传递至状态发送模块,若不合法则产生错误报告并传递至状态发送模块;状态发送模块通过通信网络子系统将错误报告、数据采集结果及验证子系统内各仪器、设备的运行状态回传给验证控制计算机。The signal verification subsystem includes a data receiving module, a configuration identification module, a data acquisition module, and a status sending module; the data receiving module receives the instrument configuration information from the verification control computer and transmits it to the configuration identification module; the configuration identification module judges the validity of the instrument configuration information If it is legal, call the data acquisition module test instrument to realize their respective signal acquisition actions and transfer the collection results to the status sending module; if it is not legal, generate an error report and send it to the status sending module; Reports, data collection results and the operating status of each instrument and equipment in the verification subsystem are sent back to the verification control computer.

信号验证子系统由若干GPIB、VXI、PXI及LXI组成。The signal verification subsystem is composed of several GPIB, VXI, PXI and LXI.

通信网络子系统以Ethernet作为基础架构,连接系统内的仪器和计算机;其中GPIB、PXI和VXI仪器分别通过GPIB-LAN网关、PXI嵌入式计算机和VXI-LXI零槽控制器实现测试总线向Ethernet的集成,LXI仪器直接连入Ethernet。The communication network subsystem uses Ethernet as the basic structure to connect the instruments and computers in the system; the GPIB, PXI and VXI instruments realize the connection of the test bus to the Ethernet through the GPIB-LAN gateway, the PXI embedded computer and the VXI-LXI zero-slot controller respectively. Integrated, LXI instruments connect directly to Ethernet.

同步触发子系统采用系统中的OCXO或TCXO晶振作为主时钟,采用菊花链型时钟同步方式,时钟传输线采用阻抗为50Ω的同轴电缆,各个仪器通过时钟传输线共享主时钟的时钟脉冲信号;采用星型触发,将触发主设备的可编程接口通过等长的50Ω同轴电缆分别连接至其他仪器的TRIG IN端口。The synchronous triggering subsystem uses the OCXO or TCXO crystal oscillator in the system as the main clock, adopts the daisy chain clock synchronization method, the clock transmission line adopts a coaxial cable with an impedance of 50Ω, and each instrument shares the clock pulse signal of the main clock through the clock transmission line; Type trigger, connect the programmable interface of the trigger master device to the TRIG IN ports of other instruments through equal-length 50Ω coaxial cables.

同步触发子系统中菊花链型时钟同步方式为仪器1的CLK OUT端口连接仪器2的CLK IN端口、仪器2的CLK OUT端口连接仪器3的CLK IN端口,如此递推。The daisy-chain clock synchronization method in the synchronous trigger subsystem is that the CLK OUT port of instrument 1 is connected to the CLK IN port of instrument 2, and the CLK OUT port of instrument 2 is connected to the CLK IN port of instrument 3, and so on.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)本发明综合地采用多台GPIB、VXI、PXI和LXI仪器,可仿真的机载信号类型全面,包括了模拟量信号、离散量信号和总线信号;同时仿真信号通道多,可同时仿真多路机载信号。(1) The present invention comprehensively adopts multiple GPIB, VXI, PXI and LXI instruments, and the airborne signal types that can be simulated are comprehensive, including analog signal, discrete signal and bus signal; Simultaneously, there are many signal channels, which can be simulated simultaneously Multiple airborne signals.

(2)本发明采用同步触发技术,保证所输出的多路仿真信号之间,具有良好的时间及量值关联性。(2) The present invention adopts a synchronous trigger technology to ensure that the output multi-channel simulation signals have good time and value correlation.

(3)本发明所产生的多路仿真信号精度高。选用精度较高的GPIB、VXI、PXI和LXI设备作为产生仿真信号的源,并且这些设备在电磁兼容方面设计完善,抗干扰能力强,可以输出精度较高的仿真信号。(3) The multi-channel simulation signal produced by the present invention has high precision. GPIB, VXI, PXI and LXI devices with high precision are selected as the source for generating simulation signals, and these devices are well designed in terms of electromagnetic compatibility, have strong anti-interference ability, and can output high-precision simulation signals.

附图说明 Description of drawings

图1为本发明所提供的一种飞行数据记录设备地面综合测试系统的示意图。Fig. 1 is a schematic diagram of a ground comprehensive test system for flight data recording equipment provided by the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

本发明一种飞行数据记录设备地面综合测试系统,其特征在于:包括1台主控计算机、1台数据库服务器、M台仿真控制计算机、N台验证控制计算机、M个信号仿真子系统、N个信号验证子系统、1个通信网络子系统以及1个同步触发子系统构成。M大于等于1,1个信号仿真子系统对应1台仿真控制计算机,N大于等于1,1个信号验证子系统对应1台验证控制计算机;The present invention is a ground comprehensive test system for flight data recording equipment, which is characterized in that it includes 1 main control computer, 1 database server, M simulation control computers, N verification control computers, M signal simulation subsystems, N It consists of a signal verification subsystem, a communication network subsystem and a synchronous trigger subsystem. M is greater than or equal to 1, one signal simulation subsystem corresponds to one simulation control computer, N is greater than or equal to 1, one signal verification subsystem corresponds to one verification control computer;

主控计算机将原始飞行数据导入数据库服务器,通过飞行数据解译、野值剔除、插值平滑和反解算处理后形成仿真数据库,并根据用户的选择、配置生成信号仿真策略和信号验证策略,信号仿真策略包含与信号仿真子系统相关的仪器信息、与信号特征相关的起止时刻、幅度、频率、脉冲个数、以及数据包内容,信号验证策略包含与信号验证子系统相关的仪器信息;主控计算机同时与仿真控制计算机、验证控制计算机保持通信,控制两者的任务调度并接收两者的状态反馈;The main control computer imports the original flight data into the database server, and forms a simulation database through flight data interpretation, outlier elimination, interpolation smoothing and inverse calculation processing, and generates signal simulation strategies and signal verification strategies according to user selection and configuration. The simulation strategy includes instrument information related to the signal simulation subsystem, the start and end time, amplitude, frequency, pulse number, and data packet content related to signal characteristics, and the signal verification strategy includes instrument information related to the signal verification subsystem; the main control The computer maintains communication with the simulation control computer and the verification control computer at the same time, controls the task scheduling of the two and receives the status feedback of the two;

数据库服务器为整个系统提供数据存储服务,存储原始飞行数据和仿真数据;The database server provides data storage services for the entire system, storing original flight data and simulation data;

仿真控制计算机与主控计算机通信获取信号仿真策略,对信号仿真策略进行解析,获取仿真信号特征;同时与信号仿真子系统通信,控制信号仿真子系统内各个仪器、设备的运行,并监测信号仿真子系统内各个设备的运行状态;The simulation control computer communicates with the main control computer to obtain the signal simulation strategy, analyzes the signal simulation strategy, and obtains the characteristics of the simulated signal; at the same time communicates with the signal simulation subsystem to control the operation of various instruments and equipment in the signal simulation subsystem, and monitor the signal simulation The operating status of each device in the subsystem;

信号仿真子系统由若干台测试仪器构成,在仿真控制计算机的控制下,各个仪器、设备根据仿真信号特征输出物理信号,同时将信号仿真子系统内各个仪器、设备的运行状态定期报告给仿真控制计算机。The signal simulation subsystem is composed of several test instruments. Under the control of the simulation control computer, each instrument and equipment output physical signals according to the characteristics of the simulation signal, and at the same time, the operating status of each instrument and equipment in the signal simulation subsystem is regularly reported to the simulation control computer.

验证控制计算机与主控计算机通信获取信号验证策略,对信号验证策略进行解析,获取信号验证时的信号验证子系统内仪器的配置信息;通过通信网络子系统与信号验证子系统通信,将配置信息发送至信号验证子系统,控制信号验证子系统内各个仪器、设备采集信号仿真子系统输出的物理信号,并将得到的验证结果回传给主控计算机;The verification control computer communicates with the main control computer to obtain the signal verification strategy, analyzes the signal verification strategy, and obtains the configuration information of the instruments in the signal verification subsystem during signal verification; through communication between the communication network subsystem and the signal verification subsystem, the configuration information Send to the signal verification subsystem, control each instrument and equipment in the signal verification subsystem to collect the physical signal output by the signal simulation subsystem, and send the obtained verification results back to the main control computer;

信号验证子系统在验证控制计算机的控制下,采集信号仿真子系统输出的物理信号,并将采集得到的结果和信号验证子系统内各个仪器、设备的运行状态回传给验证控制计算机;Under the control of the verification control computer, the signal verification subsystem collects the physical signals output by the signal simulation subsystem, and sends back the collected results and the operating status of each instrument and equipment in the signal verification subsystem to the verification control computer;

通信网络子系统作为主控计算机、数据库服务器、仿真控制计算机、验证控制计算机、信号仿真子系统内各台仪器、信号验证子系统内各台仪器之间的通信平台;The communication network subsystem serves as a communication platform between the main control computer, database server, simulation control computer, verification control computer, instruments in the signal simulation subsystem, and instruments in the signal verification subsystem;

同步触发子系统具备时钟同步和触发两个功能,其中时钟同步实现信号仿真子系统及信号验证子系统内各个仪器设备的物理时钟同步,触发则实现信号仿真子系统及信号验证子系统内各个仪器设备动作的同步。The synchronous triggering subsystem has two functions of clock synchronization and triggering. The clock synchronization realizes the physical clock synchronization of each instrument in the signal simulation subsystem and the signal verification subsystem, and the trigger realizes the signal simulation subsystem and each instrument in the signal verification subsystem. Synchronization of device actions.

主控计算机包括数据获取模块、飞参解译模块、数据处理模块、策略生成模块、数据发送模块、数据接收模块、数据比对模块、日志管理模块、报表输出模块、用户管理模块、以及用户接口模块;数据获取模块是从数据库服务器中读取原始飞行数据并将其发送至飞参解译模块;飞参解译模块根据参数类型不同以三种还原算法:模拟量解译、离散量解译和数字量解译将原始飞行数据中的二进制源码值转化为十进制工程值,同时将解译后的数据发送至数据处理模块;数据处理模块实现解译后十进制工程值的野值剔除、插值平滑、反解算处理后将数据写入数据库服务器形成仿真数据库,其中野值剔除根据时间点跳跃、参数超限、变化率失真判据进行剔除并以上一时刻的有效飞行数据代替野值,插值平滑按照每秒n次进行线性插值,反解算过程是将得到的十进制工程值转化为测试仪器可以仿真的物理量以驱动测试仪器产生信号,并存入数据库服务器;通过上述步骤完成飞行数据的“预处理”;The main control computer includes a data acquisition module, a flight reference interpretation module, a data processing module, a strategy generation module, a data sending module, a data receiving module, a data comparison module, a log management module, a report output module, a user management module, and a user interface module; the data acquisition module reads the original flight data from the database server and sends it to the flight parameter interpretation module; the flight parameter interpretation module uses three restoration algorithms according to different parameter types: analog quantity interpretation, discrete quantity interpretation Convert the binary source code value in the original flight data into a decimal engineering value, and send the interpreted data to the data processing module; the data processing module realizes outlier elimination and interpolation smoothing of the interpreted decimal engineering value , After the anti-calculation process, write the data into the database server to form a simulation database, in which outliers are eliminated based on time point jumps, parameter overruns, and rate of change distortion criteria, and the effective flight data at the previous moment are used to replace outliers, and the interpolation is smooth Linear interpolation is performed n times per second, and the inverse calculation process is to convert the obtained decimal engineering value into a physical quantity that can be simulated by the test instrument to drive the test instrument to generate a signal and store it in the database server; complete the "pre-prediction" of flight data through the above steps deal with";

当用户通过用户接口模块设定待测试的飞行数据记录设备型号、仿真信号类型、仿真起止时间信息后,策略生成模块生成相应的信号仿真策略和信号验证策略并传递至数据发送模块;数据发送模块通过通信网络子系统将信号仿真策略和信号验证策略分别发送至仿真控制计算机和验证控制计算机,仿真控制计算机和验证控制计算机据此执行相应的动作;数据接收模块通过通信网络子系统从验证控制计算机获取验证结果;数据比对模块比较两组飞行数据的吻合度;日志管理模块记录用户的操作记录;报表输出模块将用户选择的飞行数据输出或打印;用户管理模块用于添加或删除用户并设置用户权限。After the user sets the type of flight data recording equipment to be tested, the type of simulation signal, and the start and end time information of the simulation through the user interface module, the strategy generation module generates the corresponding signal simulation strategy and signal verification strategy and transmits them to the data sending module; the data sending module The signal simulation strategy and the signal verification strategy are sent to the simulation control computer and the verification control computer respectively through the communication network subsystem, and the simulation control computer and the verification control computer perform corresponding actions accordingly; Obtain the verification result; the data comparison module compares the coincidence of two sets of flight data; the log management module records the user's operation records; the report output module outputs or prints the flight data selected by the user; the user management module is used to add or delete users and set User rights.

仿真控制计算机包括数据接收模块、数据解析模块、数据发送模块、状态获取模块、以及状态显示模块;数据接收模块接收来自主控计算机的信号仿真策略并传递至数据解析模块;数据解析模块对信号仿真策略进行解析,得到仿真信号特征并发送至数据发送模块;数据发送模块将仿真信号特征通过通信网络子系统发送至信号仿真子系统中测试仪器,使其产生并输出物理信号;状态获取模块接收信号仿真子系统报告给仿真控制计算机的仪器、设备运行状态或错误报告,并通过状态显示模块显示在屏幕上。The simulation control computer includes a data receiving module, a data analysis module, a data sending module, a status acquisition module, and a status display module; the data receiving module receives the signal simulation strategy from the main control computer and transmits it to the data analysis module; the data analysis module simulates the signal The strategy is analyzed, and the characteristics of the simulated signal are obtained and sent to the data sending module; the data sending module sends the simulated signal characteristics to the test instrument in the signal simulation subsystem through the communication network subsystem, so that it generates and outputs a physical signal; the state acquisition module receives the signal The simulation subsystem reports to the simulation control computer the instrument, equipment operation status or error report, and displays it on the screen through the status display module.

信号仿真子系统包括数据接收模块、信号产生模块、数据判别模块、以及状态发送模块;数据接收模块通过通信网络子系统接收信号仿真控制计算机发送的仿真信号特征并传递至数据判别模块;数据判别模块对信号仿真特征做出判断,若与测试仪器能力范围匹配则传递至信号产生模块,信号产生模块是基于Vpp驱动的针对不同仪器的子功能函数体,通过调用信号产生模块,测试仪器实现各自的信号输出动作;若超出测试仪器能力范围则产生错误报告传递至状态发送模块,状态发送模块通过通信网络子系统将错误报告及仿真子系统中各仪器、设备的运行状态回传给仿真控制计算机。信号仿真子系统由若干GPIB、VXI、PXI和LXI仪器组成。The signal simulation subsystem includes a data receiving module, a signal generating module, a data discrimination module, and a state transmission module; the data reception module receives the signal simulation control computer through the communication network subsystem and transmits the simulated signal characteristics sent by the computer to the data discrimination module; the data discrimination module Make a judgment on the signal simulation characteristics, and if it matches the capability range of the test instrument, it will be passed to the signal generation module. The signal generation module is a sub-function function body for different instruments driven by Vpp. By calling the signal generation module, the test instrument realizes its own Signal output action; if it exceeds the capability of the test instrument, an error report will be generated and sent to the status sending module. The status sending module will send the error report and the operating status of each instrument and equipment in the simulation subsystem back to the simulation control computer through the communication network subsystem. The signal simulation subsystem consists of several GPIB, VXI, PXI and LXI instruments.

验证控制计算机包括数据接收模块、数据解析模块、数据发送模块、数据获取模块、以及状态显示模块模块;数据接收模块接收来自主控计算机的信号验证策略并传递至数据解析模块;数据解析模块解析信号验证策略生成仪器配置信息并传递至数据发送模块;数据发送模块通过通信网络子系统将仪器配置信息发送至信号验证子系统,信号验证子系统据此执行相应的动作;数据获取模块一方面接收验证子系统采集的数据并将该验证结果通过数据发送模块发送至主控计算机,同时接收信号验证子系统报告给验证控制计算机的仪器、设备运行状态或错误报告,并通过状态显示模块显示在屏幕上。The verification control computer includes a data receiving module, a data analysis module, a data sending module, a data acquisition module, and a status display module; the data receiving module receives the signal verification strategy from the main control computer and transmits it to the data analysis module; the data analysis module analyzes the signal The verification strategy generates instrument configuration information and transmits it to the data sending module; the data sending module sends the instrument configuration information to the signal verification subsystem through the communication network subsystem, and the signal verification subsystem performs corresponding actions accordingly; the data acquisition module receives the verification information on the one hand. The data collected by the subsystem and the verification result are sent to the main control computer through the data sending module, and at the same time, the received signal verification subsystem reports to the verification control computer the instrument, equipment operation status or error report, and displays it on the screen through the status display module .

信号验证子系统包含数据接收模块、配置识别模块、数据采集模块、以及状态发送模块;数据接收模块接收来自验证控制计算机的仪器配置信息并传递至配置识别模块;配置识别模块判断仪器配置信息的合法性,若合法则调用数据采集模块测试仪器实现各自的信号采集动作并将采集结果传递至状态发送模块,若不合法则产生错误报告并传递至状态发送模块;状态发送模块通过通信网络子系统将错误报告、数据采集结果及验证子系统内各仪器、设备的运行状态回传给验证控制计算机。信号验证子系统由若干GPIB、VXI、PXI及LXI仪器组成。The signal verification subsystem includes a data receiving module, a configuration identification module, a data acquisition module, and a status sending module; the data receiving module receives the instrument configuration information from the verification control computer and transmits it to the configuration identification module; the configuration identification module judges the validity of the instrument configuration information If it is legal, call the data acquisition module test instrument to realize their respective signal acquisition actions and transfer the collection results to the status sending module; if it is not legal, generate an error report and send it to the status sending module; Reports, data collection results and the operating status of each instrument and equipment in the verification subsystem are sent back to the verification control computer. The signal verification subsystem consists of several GPIB, VXI, PXI and LXI instruments.

通信网络子系统以Ethernet作为基础架构,连接系统内的仪器和计算机;其中GPIB、PXI和VXI仪器分别通过GPIB-LAN网关、PXI嵌入式计算机和VXI-LXI零槽控制器实现测试总线向Ethernet的集成,LXI仪器直接连入Ethernet。为保证计算机、仪器间的通信实时性,采用千兆全双工交换式以太网技术,交换机采用直接转发方式工作。The communication network subsystem uses Ethernet as the basic structure to connect the instruments and computers in the system; the GPIB, PXI and VXI instruments realize the connection of the test bus to the Ethernet through the GPIB-LAN gateway, the PXI embedded computer and the VXI-LXI zero-slot controller respectively. Integrated, LXI instruments connect directly to Ethernet. In order to ensure the real-time communication between computers and instruments, Gigabit full-duplex switched Ethernet technology is adopted, and the switch works in a direct forwarding mode.

同步触发子系统采用系统中的OCXO或TCXO晶振作为主时钟,采用菊花链型时钟同步方式,时钟传输线采用阻抗为50Ω的同轴电缆,各个仪器通过时钟传输线共享主时钟的时钟脉冲信号;采用星型触发,将触发主设备的可编程接口通过等长的50Ω同轴电缆分别连接至其他仪器的TRIG IN端口。同步触发子系统中菊花链型时钟同步方式为仪器1的CLK OUT端口连接仪器2的CLK IN端口、仪器2的CLK OUT端口连接仪器3的CLK IN端口,如此递推。The synchronous triggering subsystem uses the OCXO or TCXO crystal oscillator in the system as the main clock, adopts the daisy chain clock synchronization method, the clock transmission line adopts a coaxial cable with an impedance of 50Ω, and each instrument shares the clock pulse signal of the main clock through the clock transmission line; Type trigger, connect the programmable interface of the trigger master device to the TRIG IN ports of other instruments through equal-length 50Ω coaxial cables. The daisy-chain clock synchronization method in the synchronous trigger subsystem is that the CLK OUT port of instrument 1 is connected to the CLK IN port of instrument 2, and the CLK OUT port of instrument 2 is connected to the CLK IN port of instrument 3, and so on.

Claims (11)

1.一种飞行数据记录设备地面综合测试系统,其特征在于:包括1台主控计算机、1台数据库服务器、M台仿真控制计算机、N台验证控制计算机、M个信号仿真子系统、N个信号验证子系统、1个通信网络子系统以及1个同步触发子系统构成。M大于等于1,1个信号仿真子系统对应1台仿真控制计算机,N大于等于1,1个信号验证子系统对应1台验证控制计算机;1. A ground comprehensive test system for flight data recording equipment, characterized in that: comprise 1 main control computer, 1 database server, M simulation control computers, N verification control computers, M signal simulation subsystems, N It consists of a signal verification subsystem, a communication network subsystem and a synchronous trigger subsystem. M is greater than or equal to 1, one signal simulation subsystem corresponds to one simulation control computer, N is greater than or equal to 1, one signal verification subsystem corresponds to one verification control computer; 所述主控计算机将原始飞行数据导入数据库服务器,通过飞行数据解译、野值剔除、插值平滑和反解算处理后形成仿真数据库,并根据用户的选择、配置生成信号仿真策略和信号验证策略,信号仿真策略包含与信号仿真子系统相关的仪器信息、与信号特征相关的起止时刻、幅度、频率、脉冲个数、以及数据包内容,信号验证策略包含与信号验证子系统相关的仪器信息;主控计算机同时与仿真控制计算机、验证控制计算机保持通信,控制两者的任务调度并接收两者的状态反馈;The main control computer imports the original flight data into the database server, forms a simulation database after flight data interpretation, outlier elimination, interpolation smoothing and inverse calculation processing, and generates signal simulation strategies and signal verification strategies according to user selection and configuration , the signal simulation strategy includes instrument information related to the signal simulation subsystem, the start and end time, amplitude, frequency, pulse number, and data packet content related to signal characteristics, and the signal verification strategy includes instrument information related to the signal verification subsystem; The main control computer maintains communication with the simulation control computer and the verification control computer at the same time, controls the task scheduling of the two and receives the status feedback of the two; 所述数据库服务器为整个系统提供数据存储服务,存储原始飞行数据和仿真数据;The database server provides data storage services for the entire system, storing original flight data and simulation data; 所述仿真控制计算机与主控计算机通信获取信号仿真策略,对信号仿真策略进行解析,获取仿真信号特征;同时与信号仿真子系统通信,控制信号仿真子系统内各个仪器、设备的运行,并监测信号仿真子系统内各个设备的运行状态;The simulation control computer communicates with the main control computer to obtain the signal simulation strategy, analyzes the signal simulation strategy, and obtains the characteristics of the simulation signal; at the same time communicates with the signal simulation subsystem to control the operation of various instruments and equipment in the signal simulation subsystem, and monitors The operating status of each device in the signal simulation subsystem; 所述信号仿真子系统由若干台测试仪器构成,在仿真控制计算机的控制下,各个仪器、设备根据仿真信号特征输出物理信号,同时将信号仿真子系统内各个仪器、设备的运行状态定期报告给仿真控制计算机。The signal simulation subsystem is composed of several test instruments. Under the control of the simulation control computer, each instrument and equipment output physical signals according to the characteristics of the simulation signal, and at the same time, the operating status of each instrument and equipment in the signal simulation subsystem is regularly reported to Simulation control computer. 所述验证控制计算机与主控计算机通信获取信号验证策略,对信号验证策略进行解析,获取信号验证时的信号验证子系统内仪器的配置信息;通过通信网络子系统与信号验证子系统通信,将配置信息发送至信号验证子系统,控制信号验证子系统内各个仪器、设备采集信号仿真子系统输出的物理信号,并将得到的验证结果回传给主控计算机;The verification control computer communicates with the main control computer to obtain the signal verification strategy, analyzes the signal verification strategy, and obtains the configuration information of the instrument in the signal verification subsystem during signal verification; through the communication network subsystem and the signal verification subsystem, the The configuration information is sent to the signal verification subsystem, and each instrument and equipment in the signal verification subsystem is controlled to collect the physical signals output by the signal simulation subsystem, and the obtained verification results are sent back to the main control computer; 所述信号验证子系统在验证控制计算机的控制下,采集信号仿真子系统输出的物理信号,并将采集得到的结果和信号验证子系统内各个仪器、设备的运行状态回传给验证控制计算机;Under the control of the verification control computer, the signal verification subsystem collects the physical signal output by the signal simulation subsystem, and returns the collected results and the operating status of each instrument and equipment in the signal verification subsystem to the verification control computer; 所述通信网络子系统作为主控计算机、数据库服务器、仿真控制计算机、验证控制计算机、信号仿真子系统内各台仪器、信号验证子系统内各台仪器之间的通信平台;The communication network subsystem is used as a communication platform between the main control computer, the database server, the simulation control computer, the verification control computer, each instrument in the signal simulation subsystem, and each instrument in the signal verification subsystem; 所述同步触发子系统具备时钟同步和触发两个功能,其中时钟同步实现信号仿真子系统及信号验证子系统内各个仪器设备的物理时钟同步,触发则实现信号仿真子系统及信号验证子系统内各个仪器设备动作的同步。The synchronous triggering subsystem has two functions of clock synchronization and triggering, wherein the clock synchronization realizes the physical clock synchronization of each instrument in the signal simulation subsystem and the signal verification subsystem, and the triggering realizes the synchronization of the physical clocks in the signal simulation subsystem and the signal verification subsystem. Synchronization of the actions of various instruments and equipment. 2.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述主控计算机包括数据获取模块、飞参解译模块、数据处理模块、策略生成模块、数据发送模块、数据接收模块、数据比对模块、日志管理模块、报表输出模块、用户管理模块、以及用户接口模块;所述数据获取模块是从数据库服务器中读取原始飞行数据并将其发送至飞参解译模块;所述飞参解译模块根据参数类型不同以三种还原算法:模拟量解译、离散量解译和数字量解译将原始飞行数据中的二进制源码值转化为十进制工程值,同时将解译后的数据发送至数据处理模块;所述数据处理模块实现解译后十进制工程值的野值剔除、插值平滑、反解算处理后将数据写入数据库服务器形成仿真数据库,其中野值剔除根据时间点跳跃、参数超限、变化率失真判据进行剔除并以上一时刻的有效飞行数据代替野值,插值平滑按照每秒n次进行线性插值,反解算过程是将得到的十进制工程值转化为测试仪器可以仿真的物理量以驱动测试仪器产生信号,并存入数据库服务器;通过上述步骤完成飞行数据的“预处理”;2. A kind of flight data recording equipment ground comprehensive test system according to claim 1, is characterized in that: described main control computer comprises data acquisition module, flight reference interpretation module, data processing module, strategy generation module, data sending module module, data receiving module, data comparison module, log management module, report output module, user management module, and user interface module; the data acquisition module reads the original flight data from the database server and sends it to the flight reference module Interpretation module; said flight reference interpretation module is different with three kinds of reduction algorithms according to parameter type: analog quantity interpretation, discrete quantity interpretation and digital quantity interpretation convert the binary source code value in the original flight data into decimal engineering value, Simultaneously, the data after interpretation is sent to the data processing module; the data processing module realizes the outlier removal, interpolation smoothing and inverse calculation processing of the decimal engineering value after the interpretation, and writes the data into the database server to form a simulation database, wherein the outlier Value elimination is based on the time point jump, parameter overrun, and rate of change distortion criteria to eliminate and replace the outlier value with the valid flight data at the previous moment. The interpolation smoothing is performed linearly interpolating n times per second. The reverse calculation process is to obtain the decimal value The engineering value is converted into a physical quantity that can be simulated by the test instrument to drive the test instrument to generate a signal and store it in the database server; the "preprocessing" of the flight data is completed through the above steps; 当用户通过所述用户接口模块设定待测试的飞行数据记录设备型号、仿真信号类型、仿真起止时间信息后,所述策略生成模块生成相应的信号仿真策略和信号验证策略并传递至数据发送模块;所述数据发送模块通过通信网络子系统将信号仿真策略和信号验证策略分别发送至仿真控制计算机和验证控制计算机,仿真控制计算机和验证控制计算机据此执行相应的动作;所述数据接收模块通过通信网络子系统从验证控制计算机获取验证结果;所述数据比对模块比较两组飞行数据的吻合度;所述日志管理模块记录用户的操作记录;所述报表输出模块将用户选择的飞行数据输出或打印;所述用户管理模块用于添加或删除用户并设置用户权限。After the user sets the type of flight data recording equipment to be tested, the type of simulation signal, and the start and end time information of the simulation through the user interface module, the strategy generation module generates the corresponding signal simulation strategy and signal verification strategy and transmits them to the data sending module The data sending module sends the signal simulation strategy and the signal verification strategy to the simulation control computer and the verification control computer respectively through the communication network subsystem, and the simulation control computer and the verification control computer perform corresponding actions accordingly; the data receiving module passes The communication network subsystem obtains the verification result from the verification control computer; the data comparison module compares the coincidence degree of two groups of flight data; the log management module records the user's operation records; the report output module outputs the flight data selected by the user or print; the user management module is used to add or delete users and set user permissions. 3.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述仿真控制计算机包括数据接收模块、数据解析模块、数据发送模块、状态获取模块、以及状态显示模块;所述数据接收模块接收来自主控计算机的信号仿真策略并传递至数据解析模块;所述数据解析模块对信号仿真策略进行解析,得到仿真信号特征并发送至数据发送模块;所述数据发送模块将仿真信号特征通过通信网络子系统发送至信号仿真子系统中测试仪器,使其产生并输出物理信号;所述状态获取模块接收信号仿真子系统报告给仿真控制计算机的仪器、设备运行状态或错误报告,并通过所述状态显示模块显示在屏幕上。3. a kind of flight data recording equipment ground comprehensive test system according to claim 1, is characterized in that: described simulation control computer comprises data receiving module, data analysis module, data transmission module, status acquisition module and status display module The data receiving module receives the signal simulation strategy from the main control computer and transmits it to the data analysis module; the data analysis module analyzes the signal simulation strategy, obtains the characteristics of the simulation signal and sends it to the data transmission module; the data transmission module The characteristics of the simulated signal are sent to the test instrument in the signal simulation subsystem through the communication network subsystem, so that it generates and outputs a physical signal; the state acquisition module receives the signal simulation subsystem and reports to the simulation control computer the instrument, equipment operation status or error report and display on the screen through the status display module. 4.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述信号仿真子系统包括数据接收模块、信号产生模块、数据判别模块、以及状态发送模块;所述数据接收模块通过通信网络子系统接收信号仿真控制计算机发送的仿真信号特征并传递至数据判别模块;所述数据判别模块对信号仿真特征做出判断,若与测试仪器能力范围匹配则传递至信号产生模块,所述信号产生模块是基于Vpp驱动的针对不同仪器的子功能函数体,通过调用信号产生模块,测试仪器实现各自的信号输出动作;若超出测试仪器能力范围则产生错误报告传递至所述状态发送模块,所述状态发送模块通过通信网络子系统将错误报告及仿真子系统中各仪器、设备的运行状态回传给仿真控制计算机。4. a kind of flight data recording equipment ground comprehensive testing system according to claim 1, is characterized in that: described signal emulation subsystem comprises data receiving module, signal generation module, data discrimination module and state sending module; The data receiving module receives the characteristics of the simulation signal sent by the signal simulation control computer through the communication network subsystem and transmits it to the data discrimination module; the data discrimination module makes a judgment on the signal simulation characteristics, and if it matches the capability range of the test instrument, it is transmitted to the signal generation module, the signal generation module is based on the sub-function function body driven by Vpp for different instruments, by calling the signal generation module, the test instrument realizes its own signal output action; if it exceeds the capability range of the test instrument, an error report is generated and passed to the A status sending module, the status sending module sends back the error report and the running status of each instrument and equipment in the simulation subsystem to the simulation control computer through the communication network subsystem. 5.根据权利要求4所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述信号仿真子系统由若干GPIB、VXI、PXI和LXI仪器组成。5. A kind of flight data recording equipment ground comprehensive test system according to claim 4, is characterized in that: described signal emulation subsystem is made up of several GPIB, VXI, PXI and LXI instruments. 6.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述验证控制计算机包括数据接收模块、数据解析模块、数据发送模块、数据获取模块、以及状态显示模块模块;所述数据接收模块接收来自主控计算机的信号验证策略并传递至数据解析模块;所述数据解析模块解析信号验证策略生成仪器配置信息并传递至数据发送模块;所述数据发送模块通过通信网络子系统将仪器配置信息发送至信号验证子系统,信号验证子系统据此执行相应的动作;所述数据获取模块一方面接收验证子系统采集的数据并将该验证结果通过数据发送模块发送至主控计算机,同时接收信号验证子系统报告给验证控制计算机的仪器、设备运行状态或错误报告,并通过所述状态显示模块显示在屏幕上。6. A kind of flight data recording equipment ground comprehensive test system according to claim 1, is characterized in that: described verification control computer comprises data receiving module, data analysis module, data transmission module, data acquisition module and status display module module; the data receiving module receives the signal verification strategy from the main control computer and transmits it to the data analysis module; the data analysis module analyzes the signal verification strategy to generate instrument configuration information and transmits it to the data transmission module; the data transmission module communicates The network subsystem sends the instrument configuration information to the signal verification subsystem, and the signal verification subsystem performs corresponding actions accordingly; on the one hand, the data acquisition module receives the data collected by the verification subsystem and sends the verification result to the The main control computer simultaneously receives the instrument and equipment operation status or error report reported by the verification subsystem to the verification control computer, and displays it on the screen through the status display module. 7.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述信号验证子系统包含数据接收模块、配置识别模块、数据采集模块、以及状态发送模块;所述数据接收模块接收来自验证控制计算机的仪器配置信息并传递至配置识别模块;所述配置识别模块判断仪器配置信息的合法性,若合法则调用所述数据采集模块测试仪器实现各自的信号采集动作并将采集结果传递至状态发送模块,若不合法则产生错误报告并传递至状态发送模块;所述状态发送模块通过通信网络子系统将错误报告、数据采集结果及验证子系统内各仪器、设备的运行状态回传给验证控制计算机。7. A kind of flight data recording equipment ground comprehensive test system according to claim 1, is characterized in that: described signal verification subsystem comprises data receiving module, configuration identification module, data acquisition module and state transmission module; The data receiving module receives the instrument configuration information from the verification control computer and transmits it to the configuration identification module; the configuration identification module judges the legitimacy of the instrument configuration information, and if it is legal, calls the data acquisition module to test the instrument to realize respective signal acquisition actions and The collection result is transmitted to the status transmission module, if it is illegal, an error report is generated and transmitted to the status transmission module; the status transmission module transmits the error report, the data collection result and the operation of each instrument and equipment in the verification subsystem through the communication network subsystem The status is passed back to the verification control computer. 8.根据权利要求7所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述信号验证子系统由若干GPIB、VXI、PXI和LXI仪器组成。8. A ground comprehensive test system for flight data recording equipment according to claim 7, characterized in that: said signal verification subsystem is made up of several GPIB, VXI, PXI and LXI instruments. 9.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述通信网络子系统以Ethernet作为基础架构,连接系统内的仪器和计算机;其中GPIB、PXI和VXI仪器分别通过GPIB-LAN网关、PXI嵌入式计算机和VXI-LXI零槽控制器实现测试总线向Ethernet的集成,LXI仪器直接连入Ethernet。9. A kind of flight data recording equipment ground comprehensive test system according to claim 1, is characterized in that: described communication network subsystem uses Ethernet as infrastructure, connects the instrument and the computer in the system; Wherein GPIB, PXI and VXI The instrument realizes the integration of the test bus to Ethernet through GPIB-LAN gateway, PXI embedded computer and VXI-LXI zero-slot controller, and the LXI instrument is directly connected to Ethernet. 10.根据权利要求1所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述同步触发子系统采用系统中的OCXO或TCXO晶振作为主时钟,采用菊花链型时钟同步方式,时钟传输线采用阻抗为50Ω的同轴电缆,各个仪器通过时钟传输线共享主时钟的时钟脉冲信号;采用星型触发,将触发主设备的可编程接口通过等长的50Ω同轴电缆分别连接至其他仪器的TRIG IN端口。10. A kind of flight data recording equipment ground comprehensive test system according to claim 1, it is characterized in that: described synchronous triggering subsystem adopts OCXO or TCXO crystal oscillator in the system as main clock, adopts daisy chain type clock synchronous mode, The clock transmission line adopts a coaxial cable with an impedance of 50Ω, and each instrument shares the clock pulse signal of the master clock through the clock transmission line; adopts star trigger, and connects the programmable interface of the trigger master device to other instruments through a 50Ω coaxial cable of equal length the TRIG IN port. 11.根据权利要求10所述的一种飞行数据记录设备地面综合测试系统,其特征在于:所述同步触发子系统中菊花链型时钟同步方式为仪器1的CLKOUT端口连接仪器2的CLK IN端口、仪器2的CLK OUT端口连接仪器3的CLK IN端口,如此递推。11. A kind of flight data recording equipment ground comprehensive test system according to claim 10, it is characterized in that: the daisy-chain type clock synchronous mode is that the CLKOUT port of instrument 1 connects the CLK IN port of instrument 2 in the synchronous trigger subsystem 1. Connect the CLK OUT port of instrument 2 to the CLK IN port of instrument 3, and so on.
CN2011103358861A 2011-10-31 2011-10-31 Flight data recording equipment ground integrated test system Pending CN103090898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103358861A CN103090898A (en) 2011-10-31 2011-10-31 Flight data recording equipment ground integrated test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103358861A CN103090898A (en) 2011-10-31 2011-10-31 Flight data recording equipment ground integrated test system

Publications (1)

Publication Number Publication Date
CN103090898A true CN103090898A (en) 2013-05-08

Family

ID=48203753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103358861A Pending CN103090898A (en) 2011-10-31 2011-10-31 Flight data recording equipment ground integrated test system

Country Status (1)

Country Link
CN (1) CN103090898A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760439A (en) * 2013-09-24 2014-04-30 中国航空工业集团公司沈阳飞机设计研究所 Automatic test system of avionic system
CN105141489A (en) * 2014-05-29 2015-12-09 中国人民解放军93199部队飞行仿真技术研究所 Real-time data acquisition system for simulator
CN105223843A (en) * 2015-09-14 2016-01-06 中国运载火箭技术研究院 A kind of re-entry space vehicle combination property verification system based on data sharing
CN105791056A (en) * 2016-04-26 2016-07-20 太原罗克佳华工业有限公司 Virtual reality test system of mechanical device
CN110472289A (en) * 2019-07-17 2019-11-19 陕西千山航空电子有限责任公司 A kind of FDR system test verification method based on Dynamic Signal emulation
CN112027111A (en) * 2020-09-10 2020-12-04 天津津航计算技术研究所 Real-time acquisition and display method and system for aircraft bus data
CN112417678A (en) * 2020-11-18 2021-02-26 中国运载火箭技术研究院 A Hard Real-Time Aircraft Test System
CN112634666A (en) * 2020-12-15 2021-04-09 中国科学院微小卫星创新研究院 Event-based spacecraft data analysis system and method
CN112784448A (en) * 2021-03-12 2021-05-11 北京仿真中心 Data storage simulation device, system and method
CN113536673A (en) * 2021-07-13 2021-10-22 上海中畅数据技术有限公司 Method for evaluating and optimizing operation and maintenance system algorithm through simulation modeling
CN114488770A (en) * 2022-01-13 2022-05-13 北京临近空间飞行器系统工程研究所 Dual-redundancy control system for realizing dynamic time synchronization between aircraft devices
RU2780244C1 (en) * 2022-05-04 2022-09-21 Алексей Сергеевич Солдатов Flight information collection and processing system for aircraft digital twin validation during flight tests
CN113066265B (en) * 2021-03-29 2023-11-03 广州海格通信集团股份有限公司 Communication method, device, computer equipment and storage medium of distress life-saving system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135311A1 (en) * 2002-01-17 2003-07-17 Levine Howard B. Aircraft flight and voice data recorder system and method
CN101382968A (en) * 2008-10-17 2009-03-11 北京航空航天大学 Advanced comprehensive avionics simulation system and simulation method thereof
CN201637434U (en) * 2010-01-27 2010-11-17 成都华太航空科技有限公司 General-purpose instrument for recording and testing flight data
CN101989067A (en) * 2009-07-30 2011-03-23 中国商用飞机有限责任公司 Flight environment simulation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030135311A1 (en) * 2002-01-17 2003-07-17 Levine Howard B. Aircraft flight and voice data recorder system and method
CN101382968A (en) * 2008-10-17 2009-03-11 北京航空航天大学 Advanced comprehensive avionics simulation system and simulation method thereof
CN101989067A (en) * 2009-07-30 2011-03-23 中国商用飞机有限责任公司 Flight environment simulation system
CN201637434U (en) * 2010-01-27 2010-11-17 成都华太航空科技有限公司 General-purpose instrument for recording and testing flight data

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曲宾 等: ""基于测控技术的飞行数据仿真系统设计"", 《微计算机信息》, vol. 24, no. 91, 5 September 2008 (2008-09-05), pages 247 - 248 *
邱长泉 等: ""飞行数据管理仿真系统软件设计及实现"", 《测试技术学报》, vol. 25, no. 1, 31 January 2011 (2011-01-31), pages 40 - 46 *
陈洋 等: ""飞行数据仿真管理系统同步触发设计及实现"", 《电子测量与仪器学报》, 6 November 2009 (2009-11-06), pages 153 - 156 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760439B (en) * 2013-09-24 2016-04-06 中国航空工业集团公司沈阳飞机设计研究所 A kind of Auto-Test System of avionics system
CN103760439A (en) * 2013-09-24 2014-04-30 中国航空工业集团公司沈阳飞机设计研究所 Automatic test system of avionic system
CN105141489A (en) * 2014-05-29 2015-12-09 中国人民解放军93199部队飞行仿真技术研究所 Real-time data acquisition system for simulator
CN105141489B (en) * 2014-05-29 2019-01-08 中国人民解放军93199部队飞行仿真技术研究所 A kind of real-time data acquisition system for emulator
CN105223843A (en) * 2015-09-14 2016-01-06 中国运载火箭技术研究院 A kind of re-entry space vehicle combination property verification system based on data sharing
CN105223843B (en) * 2015-09-14 2017-11-07 中国运载火箭技术研究院 A kind of re-entry space vehicle combination property checking system based on data sharing
CN105791056A (en) * 2016-04-26 2016-07-20 太原罗克佳华工业有限公司 Virtual reality test system of mechanical device
CN105791056B (en) * 2016-04-26 2020-01-10 太原罗克佳华工业有限公司 Virtual-real testing system of mechanical device
CN110472289B (en) * 2019-07-17 2023-06-30 陕西千山航空电子有限责任公司 Flight parameter system test verification method based on dynamic signal simulation
CN110472289A (en) * 2019-07-17 2019-11-19 陕西千山航空电子有限责任公司 A kind of FDR system test verification method based on Dynamic Signal emulation
CN112027111A (en) * 2020-09-10 2020-12-04 天津津航计算技术研究所 Real-time acquisition and display method and system for aircraft bus data
CN112417678A (en) * 2020-11-18 2021-02-26 中国运载火箭技术研究院 A Hard Real-Time Aircraft Test System
CN112417678B (en) * 2020-11-18 2024-04-09 中国运载火箭技术研究院 A hard real-time aircraft test system
CN112634666A (en) * 2020-12-15 2021-04-09 中国科学院微小卫星创新研究院 Event-based spacecraft data analysis system and method
CN112784448A (en) * 2021-03-12 2021-05-11 北京仿真中心 Data storage simulation device, system and method
CN113066265B (en) * 2021-03-29 2023-11-03 广州海格通信集团股份有限公司 Communication method, device, computer equipment and storage medium of distress life-saving system
CN113536673A (en) * 2021-07-13 2021-10-22 上海中畅数据技术有限公司 Method for evaluating and optimizing operation and maintenance system algorithm through simulation modeling
CN114488770A (en) * 2022-01-13 2022-05-13 北京临近空间飞行器系统工程研究所 Dual-redundancy control system for realizing dynamic time synchronization between aircraft devices
CN114488770B (en) * 2022-01-13 2024-06-11 北京临近空间飞行器系统工程研究所 Dual redundancy control system for realizing dynamic time synchronization between aircraft equipment
RU2780244C1 (en) * 2022-05-04 2022-09-21 Алексей Сергеевич Солдатов Flight information collection and processing system for aircraft digital twin validation during flight tests

Similar Documents

Publication Publication Date Title
CN103090898A (en) Flight data recording equipment ground integrated test system
CN109855651B (en) Ground test system and test method for modern aircraft radio communication navigation system
CN108009097B (en) Cloud computing simulation test method and device for rail transit signal system
CN103033210B (en) Simulation testing system of electronic flight instrument system
CN109541642B (en) Multi-equipment data synchronous recording system
CN108958225B (en) Nuclear power plant safety level DCS platform integration testing device
CN101446998A (en) Physical interface device of all-digital real-time simulation system of power system
CN101902368B (en) WEB performance test method based on simulation of bulk thin client operation and test system thereof
CN109116315A (en) A kind of general purpose radar avionics simulation system
CN106371961A (en) Device and method for testing bus recorder
CN105319463A (en) Onboard ground test simulation exciter
CN117491847A (en) Integrated circuit chip function test system and method
US20150369626A1 (en) Method of simulating a real-time aircraft system input to an avionics component
CN117193249A (en) Complex avionics system test and integrated verification platform
CN204065697U (en) A kind of automatic testing equipment of avionics system
CN102645928B (en) Test platform for baseband equipment of test control system
CN100493005C (en) A fuel cell vehicle vehicle communication network test system based on TTCAN
CN109728970A (en) Collecting method and equipment for bus aircraft iron bird test hydraulic system
CN201945884U (en) SOE (Sequence of event) record testing device
CN103401734B (en) The method and apparatus of the signal quality debugging of high speed data bus
CN104787634B (en) Monitoring method, elevator integrated machine and its monitoring system of elevator integrated machine
CN105183954B (en) A kind of universal serial bus health monitoring platform based on PXI
CN113985374A (en) Test platform and test method for radar system
CN106950851B (en) A thyristor simulation device and a thyristor semi-physical simulation platform
CN203522776U (en) A Configurable Industrial Ethernet Data Analysis System

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130508