CN103087552A - Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method - Google Patents
Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method Download PDFInfo
- Publication number
- CN103087552A CN103087552A CN 201310008306 CN201310008306A CN103087552A CN 103087552 A CN103087552 A CN 103087552A CN 201310008306 CN201310008306 CN 201310008306 CN 201310008306 A CN201310008306 A CN 201310008306A CN 103087552 A CN103087552 A CN 103087552A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- nano
- room temperature
- inverse microemulsion
- organic nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 17
- 238000000593 microemulsion method Methods 0.000 title abstract description 10
- 239000004408 titanium dioxide Substances 0.000 title description 5
- 238000002360 preparation method Methods 0.000 title description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 20
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 11
- 239000008367 deionised water Substances 0.000 claims abstract description 11
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 11
- 239000000178 monomer Substances 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims abstract description 8
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical group CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 7
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 6
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims description 4
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 2
- 229910000077 silane Inorganic materials 0.000 claims 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- 238000005352 clarification Methods 0.000 claims 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 35
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 abstract description 16
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 abstract description 9
- 238000005054 agglomeration Methods 0.000 abstract description 5
- 230000002776 aggregation Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000004945 emulsification Methods 0.000 abstract description 3
- 238000007720 emulsion polymerization reaction Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- AHVOFPQVUVXHNL-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C=C AHVOFPQVUVXHNL-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了反相微乳液法制备有机化纳米二氧化钛的方法。该方法在室温下,将十六烷基三甲基溴化铵、丙烯酸和丙烯酸酯单体混合均匀,滴加去离子水使体系变为澄清,将钛酸丁酯和硅烷偶联剂同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌6-24h,制得有机化纳米二氧化钛;本发明不仅具有工艺简单、反应条件温和等特点,而且制得的有机化纳米二氧化钛均匀分散在以丙烯酸酯单体为油相的反相微乳液体系中,可直接加入到水中进行预乳化和乳液聚合,有效避免纳米二氧化钛在后处理及再分散过程中的团聚,具有广泛的应用前景。
The invention discloses a method for preparing organic nano-titanium dioxide by an inverse microemulsion method. In this method, at room temperature, cetyltrimethylammonium bromide, acrylic acid and acrylate monomers are mixed uniformly, deionized water is added dropwise to make the system clear, and butyl titanate and silane coupling agent are added simultaneously In the inverse microemulsion system, the addition rate is controlled to be 0.4-0.6g/min, and then stirred at room temperature for 6-24h to prepare organic nano-titanium dioxide; the invention not only has the characteristics of simple process and mild reaction conditions, but also obtains The organic nano-titanium dioxide is evenly dispersed in the inverse microemulsion system with acrylate monomer as the oil phase, and can be directly added to water for pre-emulsification and emulsion polymerization, effectively avoiding the agglomeration of nano-titanium dioxide in the post-treatment and re-dispersion process , has broad application prospects.
Description
技术领域technical field
本发明属于无机纳米粒子领域,特别涉及反相微乳液法制备有机化纳米二氧化钛(TiO2)的方法。The invention belongs to the field of inorganic nanoparticles, and in particular relates to a method for preparing organic nanometer titanium dioxide (TiO 2 ) by an inverse microemulsion method.
技术背景technical background
纳米二氧化钛(nano-TiO2)除了具有小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应外,还具有独特的颜色效应、光催化作用及紫外屏蔽等特殊功能,在汽车工业、化妆品、废水处理、空气净化等领域有着十分广泛的应用前景。In addition to the small size effect, surface and interface effect, quantum size effect and macroscopic quantum tunneling effect, nano-titanium dioxide (nano-TiO 2 ) also has special functions such as unique color effect, photocatalysis and ultraviolet shielding. It is used in the automotive industry, Cosmetics, wastewater treatment, air purification and other fields have very broad application prospects.
但是,由于纳米二氧化钛的比表面积大、表面能高,处于非热力学稳定状态,因此极易发生团聚,而且在表面上还存在大量羟基而呈现亲水性,很难均匀分散于有机介质中,从而成为其应用的主要瓶颈。虽然,通过对n-TiO2进行物理吸附、包覆改性和表面化学改性,使其表面被无机材料或有机物包覆,可以在一定程度上减小团聚作用,提高与有机聚合物的相容性。但这些方法通常是采用市售的nano-TiO2进行改性,需要先将nano-TiO2和溶剂混合并高速分散以防止团聚,再进行改性,在改性完成后还有后处理及再分散过程,因此工艺复杂,成本较高。However, due to the large specific surface area and high surface energy of nano-titanium dioxide, it is in a non-thermodynamic stable state, so it is very easy to agglomerate, and there are still a large number of hydroxyl groups on the surface to show hydrophilicity, so it is difficult to evenly disperse in organic media. become the main bottleneck of its application. Although, through physical adsorption, coating modification and surface chemical modification of n-TiO 2 , the surface is coated with inorganic materials or organic substances, which can reduce the agglomeration to a certain extent and improve the compatibility with organic polymers. Capacitance. However, these methods usually use commercially available nano-TiO 2 for modification. It is necessary to mix the nano-TiO 2 with a solvent and disperse at a high speed to prevent agglomeration, and then perform modification. Dispersion process, so the process is complicated and the cost is high.
发明内容Contents of the invention
本发明的目的在于克服纳米二氧化钛改性及应用过程中所存在的工艺复杂、条件控制难度大、成本高等缺点,提供一种工艺简单且反应条件温和的反相微乳液法制备有机化纳米二氧化钛的方法,所制得的有机化纳米二氧化钛均匀分散在以丙烯酸酯单体为油相的反相微乳液体系中,可直接加入到水中进行预乳化和乳液聚合。The purpose of the present invention is to overcome the disadvantages of complex process, difficult condition control and high cost in the modification and application of nano-titanium dioxide, and provide a method for preparing organic nano-titanium dioxide by reverse-phase microemulsion method with simple process and mild reaction conditions. In the method, the prepared organic nano-titanium dioxide is uniformly dispersed in an inverse microemulsion system with acrylate monomer as the oil phase, and can be directly added into water for pre-emulsification and emulsion polymerization.
本发明在丙烯酸酯单体(Acr)、丙烯酸和少量去离子水的混合液中,通过十六烷基三甲基溴化铵(CTAB)的乳化作用,形成反相微乳液体系;然后,将钛酸丁酯和含烷氧基及C=C双键的硅烷偶联剂加入反相微乳液体系中,钛酸丁酯经水解生成纳米二氧化钛,同时利用硅烷偶联剂水解生成的羟基与纳米二氧化钛表面的羟基发生缩合反应,制得有机化纳米二氧化钛。In the present invention, in the mixed solution of acrylate monomer (Acr), acrylic acid and a small amount of deionized water, through the emulsification of cetyltrimethylammonium bromide (CTAB), an inverse microemulsion system is formed; then, the Butyl titanate and a silane coupling agent containing alkoxy groups and C=C double bonds are added to the inverse microemulsion system, and the butyl titanate is hydrolyzed to generate nano-titanium dioxide. The hydroxyl group on the surface of titanium dioxide undergoes condensation reaction to prepare organic nano titanium dioxide.
本发明的目的通过如下技术方案实现:The purpose of the present invention is achieved through the following technical solutions:
反相微乳液法制备有机化纳米二氧化钛的方法:在室温下,以质量份数计,将4-10份十六烷基三甲基溴化铵(CTAB)、6-14份丙烯酸(AA)和10-30份丙烯酸酯单体(Acr)混合均匀,滴加去离子水使体系变为澄清,即得CTAB/AA/Acr/H2O反相微乳液体系;将2-6份钛酸丁酯和1-4份硅烷偶联剂同时加入CTAB/AA/Acr/H2O反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌6-24h,制得有机化纳米二氧化钛;所述的丙烯酸酯单体为甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、苯乙烯(St)中的一种或两种;所述的硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷(A-174)、乙烯基三甲氧基硅烷(A-171)或乙烯基三乙氧基硅烷(A-151)。The method for preparing organic nano-titanium dioxide by inverse microemulsion method: at room temperature, in parts by mass, 4-10 parts of cetyltrimethylammonium bromide (CTAB), 6-14 parts of acrylic acid (AA) Mix well with 10-30 parts of acrylate monomer (Acr), drop deionized water to make the system clear, and obtain CTAB/AA/Acr/H 2 O inverse microemulsion system; mix 2-6 parts of titanic acid Add butyl ester and 1-4 parts of silane coupling agent to CTAB/AA/Acr/H 2 O inverse microemulsion system at the same time, control the addition speed to 0.4-0.6g/min, and then stir at room temperature for 6-24h to prepare Obtain organic nano-titanium dioxide; the acrylate monomer is one or both of methyl methacrylate (MMA), butyl acrylate (BA), and styrene (St); the silane coupling agent It is γ-methacryloxypropyltrimethoxysilane (A-174), vinyltrimethoxysilane (A-171) or vinyltriethoxysilane (A-151).
为进一步实现本发明目的,以质量份数计,所述的去离子水优选为10-20份。以质量份数计,所述的钛酸丁酯优选为3-5份。In order to further realize the object of the present invention, the deionized water is preferably 10-20 parts by mass. In terms of parts by mass, the butyl titanate is preferably 3-5 parts.
本发明是在室温下,将CTAB、AA和丙烯酸酯单体(Acr)混合均匀,滴加去离子水使体系变为澄清,即得CTAB/AA/Acr/H2O反相微乳液体系;将钛酸丁酯和含烷氧基及C=C双键的硅烷偶联剂同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌6-24h,制得有机化纳米二氧化钛。In the present invention, at room temperature, CTAB, AA and acrylate monomer (Acr) are uniformly mixed, and deionized water is added dropwise to make the system clear, and a CTAB/AA/Acr/H 2 O inverse microemulsion system is obtained; Add butyl titanate and a silane coupling agent containing alkoxy groups and C=C double bonds to the inverse microemulsion system at the same time, control the addition rate to 0.4-0.6g/min, and then stir at room temperature for 6-24h, Prepared organic nano-titanium dioxide.
本发明所述的反相微乳液法制备有机化纳米二氧化钛的方法与当前技术相比,具有如下优点:Compared with the current technology, the method for preparing organic nano-titanium dioxide by the inverse microemulsion method of the present invention has the following advantages:
(1)由于以丙烯酸酯单体为分散介质,因此所制备的有机化纳米二氧化钛体系可直接通过加水进行预乳化和乳液聚合,使用方便。(1) Since the acrylate monomer is used as the dispersion medium, the prepared organic nano-titanium dioxide system can be directly pre-emulsified and emulsion-polymerized by adding water, which is convenient to use.
(2)在钛酸丁酯水解生成纳米二氧化钛的同时,采用硅烷偶联剂直接对其改性,亲油性提高,有利于其与聚合物相容性的提高,且工艺简单,反应条件温和。(2) While butyl titanate is hydrolyzed to generate nano-titanium dioxide, the silane coupling agent is used to directly modify it, and the lipophilicity is improved, which is beneficial to the improvement of its compatibility with polymers, and the process is simple and the reaction conditions are mild.
(3)通过硅烷偶联剂的“架桥”作用,在纳米二氧化钛上引入不饱和的C=C双键,扩大了其应用范围。(3) Through the "bridging" effect of the silane coupling agent, an unsaturated C=C double bond is introduced on the nano-titanium dioxide, which expands its application range.
附图说明Description of drawings
图1是反相微乳液法制备有机化纳米二氧化钛的红外谱图。Fig. 1 is the infrared spectrogram of organic nano-titanium dioxide prepared by inverse microemulsion method.
图2是反相微乳液法制备有机化纳米二氧化钛的透射电镜图片。Fig. 2 is a transmission electron microscope picture of organic nano-titanium dioxide prepared by the inverse microemulsion method.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的说明,但是本发明的实施方式不限如此。The present invention will be further described below in conjunction with the accompanying drawings and examples, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
在室温下,将6g CTAB、9g AA和24g MMA混合均匀,再缓慢滴加10g去离子水使体系变为澄清,即得CTAB/AA/MMA/H2O反相微乳液体系;将4g钛酸丁酯和1g A-174同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌24h,即得有机化纳米二氧化钛。At room temperature, mix 6g CTAB, 9g AA and 24g MMA evenly, then slowly add 10g deionized water dropwise to make the system clear, and obtain CTAB/AA/MMA/H 2 O inverse microemulsion system; 4g titanium Add butyl ester and 1g A-174 to the inverse microemulsion system at the same time, control the addition rate to 0.4-0.6g/min, and then stir at room temperature for 24h to obtain organic nano-titanium dioxide.
图1是本实施例反相微乳液法制备有机化纳米二氧化钛的红外谱图。样品处理及测试步骤:将有机化纳米二氧化钛体系加入到乙醇水溶液中,在离心机中(上海安亭科学仪器厂,800B)以3500rpm/min的速度离心30min,除去游离的硅烷偶联剂、CTAB和丙烯酸酯单体,重复洗涤3次,再置于45℃的烘箱中烘干。用溴化钾压片法制样,采用红外光谱仪(德国Bruker公司,Tensor 27)测试,波数范围为400-4000cm-1,分辨率为4cm-1,扫描次数为16次。从图1可以看出,400-900cm-1范围内出现了Ti-O的伸缩振动吸收峰,3250cm-1处为二氧化钛表面的O-H伸缩振动峰,1630cm-1和1400cm-1处为吸附于二氧化钛表面水的弯曲振动吸收峰,1500cm-1和1430cm-1处为剩余的表面活性剂CTAB上CH2和CH3的振动吸收峰。1725cm-1处为A-174中羰基的对称振动吸收峰。在1170cm-1处出现了Ti-O-Si键伸缩振动峰,这表明A-174在水解后,与TiO2粒子表面的羟基发生脱水反应生成共价键,已成功接枝到纳米二氧化钛的表面。Fig. 1 is the infrared spectrogram of the preparation of organic nano-titanium dioxide by the inverse microemulsion method in this embodiment. Sample processing and testing steps: Add the organic nano-titanium dioxide system into the ethanol aqueous solution, and centrifuge at a speed of 3500rpm/min for 30min in a centrifuge (Shanghai Anting Scientific Instrument Factory, 800B) to remove free silane coupling agent and CTAB and acrylate monomer, repeated washing 3 times, and then dried in an oven at 45°C. The samples were prepared by the potassium bromide tablet method, and tested by an infrared spectrometer (Tensor 27, Bruker, Germany), with a wavenumber range of 400-4000cm -1 , a resolution of 4cm -1 , and a scan frequency of 16 times. It can be seen from Figure 1 that the stretching vibration absorption peak of Ti-O appears in the range of 400-900cm -1 , the stretching vibration peak of OH on the surface of titanium dioxide is at 3250cm -1 , and the peaks of OH stretching vibration on the surface of titanium dioxide are at 1630cm -1 and 1400cm -1 . The bending vibration absorption peaks of surface water, 1500cm -1 and 1430cm -1 are the vibration absorption peaks of CH 2 and CH 3 on the remaining surfactant CTAB. The 1725cm -1 is the symmetrical vibrational absorption peak of the carbonyl group in A-174. The Ti-O-Si bond stretching vibration peak appeared at 1170cm -1 , which indicated that after hydrolysis, A-174 had a dehydration reaction with the hydroxyl groups on the surface of TiO2 particles to form covalent bonds, and had been successfully grafted to the surface of nano-titanium dioxide .
图2是反相微乳液法制备有机化纳米二氧化钛的透射电镜图片。样品处理及测试步骤:将有机化纳米二氧化钛体系用水稀释约500倍,超声分散后滴于铜网上,待其将干未干时,用1.5wt%的磷钨酸染色,室温干燥后采用透射电镜(荷兰FEI电子光学有限公司,TECNAIG2-12)观察改性纳米二氧化钛的形态。在图2中,黑色的微球为纳米二氧化钛,平均粒径在10.2nm左右,且分散均匀,颗粒之间的团聚现象得到明显改善。Fig. 2 is a transmission electron microscope picture of organic nano-titanium dioxide prepared by the inverse microemulsion method. Sample processing and testing steps: Dilute the organic nano-titanium dioxide system about 500 times with water, ultrasonically disperse it and drop it on the copper grid. (Netherlands FEI Electron Optics Co., Ltd., TECNAIG2-12) to observe the morphology of modified nano titanium dioxide. In Figure 2, the black microspheres are nano-titanium dioxide with an average particle size of about 10.2nm, and the dispersion is uniform, and the agglomeration phenomenon between particles has been significantly improved.
实施例2Example 2
在室温下,将7g CTAB、7g AA和30g丙烯酸丁酯(BA)混合均匀,再缓慢滴加8g去离子水使体系变为澄清,即得CTAB/AA/BA/H2O反相微乳液体系;将6g钛酸丁酯和3g A-171同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌6h,即得有机化纳米二氧化钛。At room temperature, mix 7g CTAB, 7g AA and 30g butyl acrylate (BA) evenly, then slowly add 8g deionized water dropwise to make the system clear, and obtain CTAB/AA/BA/H 2 O inverse microemulsion System: Add 6g of butyl titanate and 3g of A-171 into the inverse microemulsion system at the same time, control the addition rate to 0.4-0.6g/min, and then stir at room temperature for 6h to obtain organic nano-titanium dioxide.
实施例3Example 3
在室温下,将8g CTAB、10g AA和10g甲基丙烯酸甲酯、16g丙烯酸丁酯混合均匀,再缓慢滴加12g去离子水使体系变为澄清,即得CTAB/AA/MMA-BA/H2O反相微乳液体系;将5g钛酸丁酯和4g A-151同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌12h,即得有机化纳米二氧化钛。At room temperature, mix 8g CTAB, 10g AA, 10g methyl methacrylate, 16g butyl acrylate, and then slowly add 12g deionized water dropwise to make the system clear, that is, CTAB/AA/MMA-BA/H 2 O inverse microemulsion system; add 5g butyl titanate and 4g A-151 into the inverse microemulsion system at the same time, control the addition rate at 0.4-0.6g/min, and then stir at room temperature for 12h to obtain organic Nano titanium dioxide.
实施例4Example 4
在室温下,将6g CTAB、10g AA和25g甲基丙烯酸甲酯、5g苯乙烯(St)混合均匀,再缓慢滴加15g去离子水使体系变为澄清,即得CTAB/AA/MMA-St/H2O反相微乳液体系;将3g钛酸丁酯和2g A-174同时加入反相微乳液体系中,控制加入速度为0.4-0.6g/min,然后在室温下搅拌24h,即得有机化纳米二氧化钛。At room temperature, mix 6g CTAB, 10g AA, 25g methyl methacrylate, 5g styrene (St) evenly, then slowly add 15g deionized water dropwise to make the system clear, and CTAB/AA/MMA-St /H 2 O inverse microemulsion system; add 3g butyl titanate and 2g A-174 into the inverse microemulsion system at the same time, control the addition rate at 0.4-0.6g/min, and then stir at room temperature for 24h to obtain Organic nano titanium dioxide.
实施例2-4制备的有机化纳米二氧化钛的红外谱图基本同图1;制备的有机化纳米二氧化钛的透射电镜图片基本同图2,各实施例所制备的有机化纳米二氧化钛的粒径如表1所示。从表1可以看出,有机化纳米二氧化钛的粒径处于9-14.5nm的范围内,说明通过硅烷偶联剂在二氧化钛表面的接枝反应,使表面性质从无机变为有机,有效抑制了团聚现象的发生,体系具有良好的稳定性。The infrared spectrogram of the organic nano titanium dioxide prepared by embodiment 2-4 is basically the same as Fig. 1; the transmission electron microscope picture of the organic nano titanium dioxide prepared is basically the same as Fig. 2, and the particle diameter of the organic nano titanium dioxide prepared by each embodiment is as shown in the table 1. It can be seen from Table 1 that the particle size of the organic nano-titanium dioxide is in the range of 9-14.5nm, indicating that the grafting reaction of the silane coupling agent on the surface of titanium dioxide changes the surface properties from inorganic to organic, effectively inhibiting agglomeration phenomenon occurs, the system has good stability.
表1Table 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310008306.7A CN103087552B (en) | 2013-01-10 | 2013-01-10 | Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310008306.7A CN103087552B (en) | 2013-01-10 | 2013-01-10 | Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103087552A true CN103087552A (en) | 2013-05-08 |
CN103087552B CN103087552B (en) | 2014-07-02 |
Family
ID=48200702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310008306.7A Expired - Fee Related CN103087552B (en) | 2013-01-10 | 2013-01-10 | Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103087552B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105504879A (en) * | 2016-01-19 | 2016-04-20 | 王虹 | Method for preparing core-shell type silicon dioxide coated ammonium phosphate based on reversed-phase micro-emulsion method |
CN109577010A (en) * | 2018-11-16 | 2019-04-05 | 广州中科检测技术服务有限公司 | A kind of wear-resisting super lyophoby surface and its preparation method and application |
CN113927982A (en) * | 2021-09-07 | 2022-01-14 | 安徽金田高新材料股份有限公司 | Biaxially oriented polyethylene antifogging film and preparation method thereof |
-
2013
- 2013-01-10 CN CN201310008306.7A patent/CN103087552B/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105504879A (en) * | 2016-01-19 | 2016-04-20 | 王虹 | Method for preparing core-shell type silicon dioxide coated ammonium phosphate based on reversed-phase micro-emulsion method |
CN109577010A (en) * | 2018-11-16 | 2019-04-05 | 广州中科检测技术服务有限公司 | A kind of wear-resisting super lyophoby surface and its preparation method and application |
CN109577010B (en) * | 2018-11-16 | 2021-07-16 | 中科检测技术服务(广州)股份有限公司 | Wear-resistant super-lyophobic surface and preparation method and application thereof |
CN113927982A (en) * | 2021-09-07 | 2022-01-14 | 安徽金田高新材料股份有限公司 | Biaxially oriented polyethylene antifogging film and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103087552B (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103289021B (en) | Waterborne organic and inorganic fluorosiloxane modified acrylate polymer emulsion and preparation method and application thereof | |
CN105017871B (en) | A kind of antiultraviolet exterior coating and preparation method thereof | |
CN103102791B (en) | Preparation method of nano TiO2 self-cleaning transparent coating | |
CN102659990B (en) | Method for preparing stable-dispersibility pigment/polymer core-shell structure composite granules by using by polymer-wrapped pigment particles | |
CN105670514B (en) | The method of the nanometer particle-modified water-borne wood coating of nano-cellulose hybrid inorganic | |
CN102031022A (en) | Method for modifying nano titanium dioxide sol by utilizing silane coupling agent | |
CN103242684B (en) | Silicon dioxide coated carbon nano-tubes and preparation method thereof | |
CN105749762B (en) | A kind of polymer compound film material with photocatalytic activity and preparation method thereof | |
CN102086309A (en) | Preparation method of modified inorganic nanoparticle grafted by polymers through esterification at room temperature | |
CN102241866B (en) | Transparent acrylic acid silicone resin nano composite material and preparation method thereof | |
CN104559327B (en) | A kind of surface modified nano calcium carbonate with core shell structure and preparation method thereof | |
CN103980738B (en) | A kind of preparation method of coated modified nano-titanium dioxide | |
CN104327225A (en) | A kind of nano-SiO2 composite heavy oil viscosity reducer and preparation method thereof | |
CN101613537A (en) | A kind of preparation method of nano-titanium dioxide-coated nano-silica | |
CN102206395A (en) | Preparation method and application of nano-montmorillonite/polyacrylate composite material | |
CN103130968B (en) | A kind of low surface free energy TiO2 nanocomposite particle and preparation method thereof | |
CN108409893A (en) | A kind of surface-modified nano ZnO photoinitiators and preparation method thereof | |
CN102627872A (en) | Method for modifying attapulgite clay | |
CN104231910A (en) | Transparent heat insulation film and preparation method thereof | |
CN103087552A (en) | Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method | |
CN114367250A (en) | Polyacrylate polymer@vanadium dioxide microcapsules and preparation method and use | |
CN103113538B (en) | Fluorine-containing large-molecule coupling agent, and preparation method and application thereof | |
Sheng et al. | Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres | |
CN108299579B (en) | Graphene/nano silicon dioxide/polystyrene hybrid material and preparation method and application thereof | |
CN102675518A (en) | Preparation method for organic-inorganic hybrid fluorine-silicon modified nano waterborne resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130508 Assignee: FOSHAN XINXIANGXING CHEMICAL CO.,LTD. Assignor: South China University of Technology Contract record no.: 2015440000122 Denomination of invention: Preparation method of organic nanometer titanium dioxide by means of reversed-phase microemulsion method Granted publication date: 20140702 License type: Exclusive License Record date: 20150508 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140702 Termination date: 20220110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |