CN103074058B - Low-toxicity heat-sensitive quantum dot material and preparation method thereof - Google Patents
Low-toxicity heat-sensitive quantum dot material and preparation method thereof Download PDFInfo
- Publication number
- CN103074058B CN103074058B CN201310020598.6A CN201310020598A CN103074058B CN 103074058 B CN103074058 B CN 103074058B CN 201310020598 A CN201310020598 A CN 201310020598A CN 103074058 B CN103074058 B CN 103074058B
- Authority
- CN
- China
- Prior art keywords
- zns
- layer
- inp
- quantum dot
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 95
- 239000000463 material Substances 0.000 title claims abstract description 64
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 231100000053 low toxicity Toxicity 0.000 title claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 123
- 238000000576 coating method Methods 0.000 claims abstract description 25
- 238000002955 isolation Methods 0.000 claims abstract description 17
- 239000011241 protective layer Substances 0.000 claims abstract description 14
- 239000002243 precursor Substances 0.000 claims description 69
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 31
- 150000001450 anions Chemical class 0.000 claims description 24
- 150000001768 cations Chemical class 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 21
- 239000011701 zinc Substances 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 229910052717 sulfur Inorganic materials 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 13
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- GOBQJWZGIQHYFF-UHFFFAOYSA-L copper;tetradecanoate Chemical compound [Cu+2].CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O GOBQJWZGIQHYFF-UHFFFAOYSA-L 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 11
- 239000011574 phosphorus Substances 0.000 claims description 11
- 239000012046 mixed solvent Substances 0.000 claims description 10
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- -1 sulfur anion Chemical class 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002159 nanocrystal Substances 0.000 claims description 8
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 claims description 7
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 7
- 235000021360 Myristic acid Nutrition 0.000 claims description 7
- 238000005253 cladding Methods 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- RJMMFJHMVBOLGY-UHFFFAOYSA-N indium(3+) Chemical compound [In+3] RJMMFJHMVBOLGY-UHFFFAOYSA-N 0.000 claims description 4
- FFZANLXOAFSSGC-UHFFFAOYSA-N phosphide(1-) Chemical compound [P-] FFZANLXOAFSSGC-UHFFFAOYSA-N 0.000 claims description 4
- 229940006486 zinc cation Drugs 0.000 claims description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 4
- ZDVNRCXYPSVYNN-UHFFFAOYSA-K di(tetradecanoyloxy)indiganyl tetradecanoate Chemical compound [In+3].CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O ZDVNRCXYPSVYNN-UHFFFAOYSA-K 0.000 claims description 3
- PFTXKXWAXWAZBP-UHFFFAOYSA-N octacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC8=CC=CC=C8C=C7C=C6C=C5C=C4C=C3C=C21 PFTXKXWAXWAZBP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 14
- 239000004065 semiconductor Substances 0.000 abstract description 13
- 239000002245 particle Substances 0.000 abstract description 10
- 229910052793 cadmium Inorganic materials 0.000 abstract description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 97
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 239000011258 core-shell material Substances 0.000 description 12
- 239000011162 core material Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- DLIJPAHLBJIQHE-UHFFFAOYSA-N butylphosphane Chemical compound CCCCP DLIJPAHLBJIQHE-UHFFFAOYSA-N 0.000 description 1
- 229940065285 cadmium compound Drugs 0.000 description 1
- 150000001662 cadmium compounds Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000010415 colloidal nanoparticle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明的一种低毒性热敏量子点材料及其制备方法属于半导体纳米材料制备技术领域。本发明以Cu掺杂的InP量子点为核,先包覆半导体材料ZnS隔离层,隔绝内外两层材料,再包覆半导体材料InP纳米晶壳层,最外层包覆ZnS保护层,最终形成结构为CuInP/ZnS/CdSe/ZnS的量子点。本发明的量子点对温度高度敏感,在常温下发绿光,在200℃时发红光,在中间温度时发不同程度的黄光,该量子点性质稳定,尺寸均一,分散性好,壳层包覆后粒子呈完美球形;由于本发明制备的是一种非镉的半导体材料,具有低毒性的优点,符合绿色化学的合成理念,对环境友好,应用性强。
A low-toxicity heat-sensitive quantum dot material and a preparation method thereof of the present invention belong to the technical field of semiconductor nanometer material preparation. The present invention takes Cu-doped InP quantum dots as the core, first coats the semiconductor material ZnS isolation layer, isolates the inner and outer layers of materials, then coats the semiconductor material InP nanocrystalline shell layer, and the outermost layer coats the ZnS protective layer, and finally forms Quantum dots with a structure of CuInP/ZnS/CdSe/ZnS. The quantum dots of the present invention are highly sensitive to temperature. They emit green light at room temperature, red light at 200°C, and yellow light in different degrees at intermediate temperatures. The quantum dots are stable in nature, uniform in size, good in dispersibility, and The particles are perfectly spherical after layer coating; since the preparation of the present invention is a non-cadmium semiconductor material, it has the advantage of low toxicity, conforms to the synthesis concept of green chemistry, is environmentally friendly, and has strong applicability.
Description
技术领域technical field
本发明属于半导体纳米材料制备技术领域,涉及一种低毒性热敏量子点材料及其合成方法,该量子点材料对温度高度敏感,具体表现为不同温度条件下,材料会发不同颜色的光,且材料本身及其制备过程低毒环保。The invention belongs to the technical field of semiconductor nanomaterial preparation, and relates to a low-toxicity heat-sensitive quantum dot material and a synthesis method thereof. The quantum dot material is highly sensitive to temperature, and the specific performance is that the material emits light of different colors under different temperature conditions. Moreover, the material itself and its preparation process are low-toxic and environmentally friendly.
背景技术Background technique
半导体材料从体相逐渐减小至一定临界尺寸(1~20纳米)后,其载流子的波动性变得显著,运动将受限,导致动能的增加,相应的电子结构从体相连续的能级结构变成准分裂的不连续,这一现象称作量子尺寸效应。比较常见的半导体纳米粒子即量子点主要有II-VI,III-V以及IV-VI族。这些种类的量子点都十分遵守量子尺寸效应,其性质随尺寸呈现规律性变化,例如吸收及发射波长随尺寸变化而变化。因此,半导体量子点在照明、显示器、激光器以及生物荧光标记等领域都有着十分重要的应用。After the semiconductor material is gradually reduced from the bulk phase to a certain critical size (1-20 nanometers), the volatility of the carriers becomes significant, and the movement will be limited, resulting in an increase in kinetic energy. The corresponding electronic structure is continuous from the bulk phase to The energy level structure becomes a quasi-split discontinuity, a phenomenon known as the quantum size effect. The more common semiconductor nanoparticles, that is, quantum dots, mainly include II-VI, III-V and IV-VI groups. These types of quantum dots are well obeyed by the quantum size effect, and their properties change regularly with the size, for example, the absorption and emission wavelengths change with the size. Therefore, semiconductor quantum dots have very important applications in the fields of lighting, displays, lasers, and bioluminescent labels.
最早的胶体量子点研究工作可追溯到1982年,Brus小组首次报道了水溶性半导体量子点的制备与光学性质。自此,一些小组相继开展了不同种类的半导体量子点的制备以及性质研究的工作。通常我们熟知的胶体纳米粒子为点、棒或核壳结构的量子点,这些都是在一种粒子基础上生长的单一量子点体系。The earliest research on colloidal quantum dots can be traced back to 1982, when the Brus group first reported the preparation and optical properties of water-soluble semiconductor quantum dots. Since then, some groups have successively carried out the preparation and property research of different types of semiconductor quantum dots. Colloidal nanoparticles are generally known as point, rod or core-shell quantum dots, which are all single quantum dot systems grown on a particle basis.
在胶体半导体纳米领域,已经有一些研究团队致力于制备复合量子点体系。在早期的研究中,最有意义的一次尝试是Mews等在1994年提出的CdS-HgS-CdS(MewsA.;Eychmueller,A.;Weller,H.J.Phys.Chem.1994,98,934-4)体系,他们通过表面离子交换的方法成功实现了在两层CdS之间插入单层或多层的HgS,并在吸收光谱上观测到了明显的红移,然而吸收光谱不足以判定每一层量子点体系都能够独立表现出我们希望得到的电子或光学性质,另外,复合粒子体系在受激发时表现出了单一的较宽且弱的发射峰。由于当时的合成技术并不完善,虽然这一模型的提出很有意义,但是文献报道中关于粒子以及层层包覆的合成效果比较差。In the field of colloidal semiconductor nanometers, some research teams have devoted themselves to preparing composite quantum dot systems. In the early research, the most meaningful attempt was the CdS-HgS-CdS (MewsA.; Eychmueller, A.; Weller, H.J.Phys.Chem. 1994, 98, 934-4) system proposed by Mews et al. in 1994. They Through the method of surface ion exchange, a single or multi-layer HgS was successfully inserted between two layers of CdS, and an obvious red shift was observed in the absorption spectrum. However, the absorption spectrum is not enough to determine whether each layer of quantum dot system can Independently exhibit the desired electronic or optical properties. In addition, the composite particle system exhibits a single broad and weak emission peak when excited. Due to the imperfect synthesis technology at that time, although the proposal of this model is very meaningful, the synthesis effect of particles and layer-by-layer coating in literature reports is relatively poor.
后来Peng小组在2005年,采用离子吸附的方法在两层CdSe之间生长一定厚度的ZnS,,通过调节ZnS隔离层的厚度,来实现内外两层量子点体系在性质上是否相关联。实验表明,这种离子吸附生长技术可以精确控制每一单层粒子生长水平,从而较好的调控整体壳层厚度,这样就实现了制备在已给定的纳米粒子核外延连续生长不同材料的半导体纳米粒子。在CdSe-ZnS-CdSe体系(David,B.;Bridgette B.;Peng X.J.Am.Chem.Soc.2005,127,10889-10897)中,ZnS壳层厚度可从一层生长到五层,ZnS较薄如一到两层时,观测不到外层CdSe的吸收和发射峰。待ZnS隔离层达到三到四层后,逐步出现外层较强的CdSe发射峰,同时不会影响内层CdSe的峰位。总结来说,Peng小组以带隙较宽的ZnS作为隔离层材料,通过改变ZnS壳层厚度,可以得到具有双重发射峰位的复合纳米粒子。后来人们研究Mn掺杂的胶体半导体纳米粒子,如Zn1-xMnxSe/ZnCdSe体系(Chih-Hao,H.;Anna,W.;Haw,Y.Acs Nano.2011,5(12),9511-9522),同样具有双重发射峰,并且这些发射有很强的温度相关性。在改变温度时,两种发射峰可以交替出现。这种仅通过变换生长条件即可调控双峰发射温度范围的材料在光学温控传感器上有很大的开发潜力。Later, in 2005, the Peng group used the method of ion adsorption to grow a certain thickness of ZnS between the two layers of CdSe, and adjusted the thickness of the ZnS isolation layer to realize whether the properties of the inner and outer two-layer quantum dot systems were related. Experiments have shown that this ion adsorption growth technology can precisely control the growth level of each monolayer particle, so as to better regulate the overall shell thickness. Nanoparticles. In the CdSe-ZnS-CdSe system (David, B.; Bridgette B.; Peng XJAm.Chem.Soc.2005, 127, 10889-10897), the thickness of the ZnS shell can grow from one layer to five layers, and ZnS is thinner For example, when there are one or two layers, the absorption and emission peaks of the outer layer CdSe cannot be observed. After the ZnS isolation layer reaches three to four layers, the stronger CdSe emission peak of the outer layer will gradually appear, and at the same time, the peak position of the inner CdSe will not be affected. In summary, Peng's group used ZnS with a wide band gap as the material for the isolation layer, and by changing the thickness of the ZnS shell, composite nanoparticles with dual emission peaks can be obtained. Later, people studied Mn-doped colloidal semiconductor nanoparticles, such as Zn 1-x Mn x Se/ZnCdSe system (Chih-Hao, H.; Anna, W.; Haw, Y.Acs Nano.2011,5(12), 9511-9522), also have dual emission peaks, and these emissions have a strong temperature dependence. When changing the temperature, the two emission peaks can appear alternately. This kind of material, which can adjust the temperature range of bimodal emission only by changing the growth conditions, has great development potential in optical temperature control sensors.
然而,由于人们在这一领域的研究主要着眼于模型理论构建以及新材料的发现,而没有关注热敏材料本身的敏感度以及变温颜色是否明显等问题,所以,在真正实现应用之前还有很多的问题亟待解决。其中,最主要的就是,温度改变带来的发光颜色的改变不够明确,温度和颜色没有明确的对应关系,变温颜色区间跨度较小,仅能由红到黄。However, since people's research in this field mainly focuses on the construction of model theory and the discovery of new materials, but does not pay attention to the sensitivity of the heat-sensitive material itself and whether the temperature-changing color is obvious, etc., there are still many problems before the actual application. problem needs to be resolved urgently. Among them, the most important thing is that the change of luminous color caused by temperature change is not clear enough, there is no clear correspondence between temperature and color, and the temperature range span is small, only from red to yellow.
另外正如上述背景材料中提到的,前人对于这种双波长发光的复合纳米粒子的研究大多都包含了镉这种有毒元素,众所周知镉及其化合物拥有着令人生畏的毒性,镉会对呼吸道产生刺激,可造成化学性肺炎,镉化合物不易被肠道吸收,但可经呼吸被体内吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显,表现为肾小管回收功能障碍,还可导致骨质疏松和软化,严重的可造成死亡。In addition, as mentioned in the above-mentioned background material, most of the previous studies on this dual-wavelength luminescent composite nanoparticle contain the toxic element cadmium. It is well known that cadmium and its compounds have daunting toxicity. Stimulation of the respiratory tract can cause chemical pneumonia. Cadmium compounds are not easily absorbed by the intestines, but can be absorbed by the body through breathing and accumulate in the liver or kidneys, causing damage, especially the most obvious damage to the kidneys, manifested as renal tubular recycling dysfunction. It can also lead to osteoporosis and softening, and severe cases can cause death.
发明内容Contents of the invention
本发明要解决的技术问题是,克服背景技术存在的不足,提供一种颜色随着温度变化明确,变色区间可从绿色变到黄色再变到红色,可重复使用的低毒性不含镉的热敏量子点材料。The technical problem to be solved by the present invention is to overcome the deficiencies in the background technology and provide a reusable low-toxicity and cadmium-free thermostat whose color changes clearly with temperature and whose discoloration interval can change from green to yellow to red. Sensitive quantum dot materials.
本发明的技术问题可通过以下技术方案解决:Technical problem of the present invention can be solved by following technical scheme:
一种低毒性热敏量子点材料,其结构有InP量子点核、ZnS隔离层、InP纳米晶壳层和ZnS保护层,所述的InP量子点核是荧光峰位为650nm~800nm的Cu掺杂的InP量子点,Cu掺杂量为按摩尔比Cu:P=1:5~20,所述的InP纳米晶壳层是2~4层InP。A low-toxicity heat-sensitive quantum dot material, which has a structure of InP quantum dot core, ZnS isolation layer, InP nanocrystalline shell layer and ZnS protective layer. Doped InP quantum dots, the Cu doping amount is Cu:P=1:5-20 in molar ratio, and the InP nano crystal shell layer is 2-4 layers of InP.
所述的Cu掺杂量优选按摩尔比Cu:P=1:10;所述的ZnS隔离层为3~6层ZnS,优选4层,所述的ZnS保护层为1~4层ZnS,优选2层。The doping amount of Cu is preferably Cu:P=1:10 in molar ratio; the ZnS isolation layer is 3-6 layers of ZnS, preferably 4 layers, and the ZnS protective layer is 1-4 layers of ZnS, preferably 2 layer.
一种低毒性热敏量子点材料的制备方法,有Cu掺杂InP量子点核溶液的制备、ZnS隔离层的包覆、InP纳米晶壳层的包覆和ZnS保护层的包覆的工艺过程;A method for preparing a low-toxicity heat-sensitive quantum dot material, including the preparation of a Cu-doped InP quantum dot core solution, the coating of a ZnS isolation layer, the coating of an InP nanocrystalline shell layer, and the coating of a ZnS protective layer ;
所述的InP量子点核溶液的制备过程,首先将醋酸铟与十四酸加入到十八烯中,升温至80~120℃,其中醋酸铟与十四酸的摩尔比为1:3.5,十八烯的用量为每摩尔醋酸铟使用25升;在氮气保护下升温至188℃,注入辛胺和浓度为0.2mol/L的3-(三甲基硅基)磷的十八烯溶液,其中注入的辛胺与醋酸铟的摩尔比为12:1,注入的磷与醋酸铟的摩尔比为1:2;降温至178℃,保持30分钟再降温到60~100℃,向其中注入浓度为0.005~0.02mol/L的十四酸铜的十八烯溶液,十四酸铜的用量为按摩尔比Cu:P=1:5~20,升温至150℃保持20~40分钟,得到Cu掺杂InP量子点(记为CuInP)核溶液;In the preparation process of the InP quantum dot nucleus solution, first, indium acetate and myristic acid are added to octadecene, and the temperature is raised to 80-120° C., wherein the molar ratio of indium acetate to myristic acid is 1:3.5, ten The consumption of octacene is that every mole of indium acetate uses 25 liters; Under the protection of nitrogen, the temperature is raised to 188°C, and the octadecene solution of 3-(trimethylsilyl)phosphorus is injected into octylamine and concentration of 0.2mol/L, wherein The molar ratio of injected octylamine to indium acetate is 12:1, and the molar ratio of injected phosphorus to indium acetate is 1:2; the temperature is lowered to 178°C, kept for 30 minutes and then lowered to 60-100°C, and the injected concentration is 0.005~0.02mol/L octadecene solution of copper myristate, the amount of copper myristate is Cu:P=1:5~20 in molar ratio, the temperature is raised to 150°C and kept for 20~40 minutes to obtain Cu-doped Mixed InP quantum dots (referred to as CuInP) core solution;
所述的ZnS隔离层的包覆过程是,首先将Cu掺杂InP量子点核溶液维持在120~160℃,按壳层组分投料,先注入一层用量的锌的阳离子前体溶液,升温至220~260℃反应30~45分钟,再注入一层用量的硫的阴离子前体溶液,反应30~45分钟;此后保持220~260℃,交替注入一层用量的锌的阳离子前体溶液和硫的阴离子前体溶液并各反应30~45分钟,总共进行3~6次,形成3~6层的ZnS隔离层;然后将反应体系降至室温,加入体积比为1:10的氯仿和乙醇的混合溶剂使量子点沉淀,再离心分离,得到提纯的ZnS包覆的Cu掺杂InP纳米晶量子点(记为CuInP/ZnS);The coating process of the ZnS isolation layer is as follows: firstly, the Cu-doped InP quantum dot core solution is maintained at 120-160° C., and the materials are fed according to the shell layer components; React at 220-260°C for 30-45 minutes, then inject a layer of sulfur anion precursor solution, and react for 30-45 minutes; then maintain 220-260°C, alternately inject a layer of zinc cation precursor solution and Sulfur anion precursor solution and each reaction for 30-45 minutes, 3-6 times in total to form 3-6 layers of ZnS isolation layer; then the reaction system was lowered to room temperature, and chloroform and ethanol with a volume ratio of 1:10 were added The mixed solvent makes the quantum dots precipitate, and then centrifuges to obtain the purified ZnS-coated Cu-doped InP nanocrystalline quantum dots (referred to as CuInP/ZnS);
所述的InP纳米晶壳层的包覆过程是,将提纯的ZnS包覆的Cu掺杂InP纳米晶量子点分散到十八烯中;十八烯的用量为每毫摩尔ZnS包覆的Cu掺杂InP纳米晶量子点使用1~2升;升温至60~100℃,抽真空在氮气保护下再升温至120~160℃,按壳层组分投料,先加入一层计算用量的磷的阴离子前体溶液,升温至180℃反应30~45分钟,再注入一层计算用量的铟的阳离子前体溶液反应30~45分钟;此后保持180℃,交替注入一层用量的磷的阴离子前体溶液和铟的阳离子前体溶液并各反应30~45分钟,总共进行2~3次,形成2~3层的InP纳米晶壳层,得到先包覆ZnS再包覆InP的Cu掺杂InP纳米晶量子点(记为CuInP/ZnS/InP);The cladding process of described InP nanocrystal shell layer is, the Cu-doped InP nanocrystal quantum dot that will purify ZnS cladding is dispersed in octadecene; Use 1-2 liters of doped InP nanocrystalline quantum dots; heat up to 60-100°C, vacuumize and then heat up to 120-160°C under the protection of nitrogen, feed according to the shell composition, first add a layer of calculated amount of phosphorus Anion precursor solution, heat up to 180°C and react for 30-45 minutes, then inject a layer of calculated amount of indium cation precursor solution and react for 30-45 minutes; then maintain 180°C, alternately inject a layer of phosphorus anion precursor solution and indium cation precursor solution and each reaction for 30 to 45 minutes, a total of 2 to 3 times to form 2 to 3 layers of InP nanocrystalline shells, to obtain Cu-doped InP nanocrystals coated with ZnS and then coated with InP. Crystalline quantum dots (referred to as CuInP/ZnS/InP);
所述的ZnS保护层的包覆过程是,首先将先包覆ZnS再包覆InP的Cu掺杂InP纳米晶量子点溶液维持在120~160℃,按壳层组分投料,先注入一层计算用量的锌的阳离子前体溶液,升温至220~260℃反应30~45分钟,再注入硫的阴离子前体溶液反应30~45分钟;此后保持220~260℃,交替注入一层用量的锌的阳离子前体溶液和硫的阴离子前体溶液并各反应30~45分钟,总共进行2~3次,形成1~4层的ZnS保护层;将最终的反应体系冷却到室温,加入体积比为1:10的氯仿和乙醇的混合溶剂使量子点沉淀,再离心分离,得到提纯的低毒性热敏量子点材料(记为CuInP/ZnS/InP/ZnS)。The coating process of the ZnS protective layer is as follows: firstly, the Cu-doped InP nanocrystalline quantum dot solution coated with ZnS and then coated with InP is maintained at 120-160 ° C, fed according to the shell layer components, and a layer of Calculate the amount of zinc cation precursor solution, heat up to 220-260°C for 30-45 minutes, then inject sulfur anion precursor solution for 30-45 minutes; after that keep 220-260°C, alternately inject a layer of zinc The cation precursor solution and the anion precursor solution of sulfur were reacted for 30 to 45 minutes each, and carried out 2 to 3 times in total to form 1 to 4 layers of ZnS protective layer; the final reaction system was cooled to room temperature, and the volume ratio of adding A 1:10 mixed solvent of chloroform and ethanol precipitated the quantum dots, and then centrifuged to obtain a purified low-toxicity heat-sensitive quantum dot material (referred to as CuInP/ZnS/InP/ZnS).
本发明中的所有包覆过程,在包覆每一层时,按壳层组分投料用量的计算可参考文献Chem.Mater.2010,22,1439。For all the coating processes in the present invention, when coating each layer, the calculation of the dosage of shell layer components can refer to the literature Chem.Mater.2010, 22, 1439.
所述的Cu掺杂InP量子点核溶液的制备过程中,十四酸铜的用量优选为按摩尔比Cu:P=1:10。In the preparation process of the Cu-doped InP quantum dot nucleus solution, the amount of copper myristate is preferably Cu:P=1:10 by molar ratio.
所述的ZnS隔离层的包覆过程优选为总共进行4次,所述的ZnS保护层的包覆过程优选为总共进行2次。The coating process of the ZnS isolation layer is preferably carried out 4 times in total, and the coating process of the ZnS protective layer is preferably carried out 2 times in total.
所述的锌的阳离子前体溶液是浓度为0.5~1mol/L的硬脂酸锌的十八烯溶液;所述的铟的阳离子前体溶液是,每摩尔十四酸铟溶解在0.48升三丁基膦和0.52升十八烯混合溶剂中得到的溶液;所述的硫的阴离子前体溶液是浓度为0.5~1mol/L的单质硫的十八烯溶液;所述的磷的阴离子前体溶液是,每摩尔3-(三甲基硅基)磷溶解在0.45升辛胺和0.55升十八烯的混合溶剂中得到的溶液。The cation precursor solution of zinc is an octadecene solution of zinc stearate with a concentration of 0.5~1mol/L; the cation precursor solution of indium is that every mole of indium myristate is dissolved in 0.48 liters of three A solution obtained in a mixed solvent of butylphosphine and 0.52 liters of octadecene; the anion precursor solution of sulfur is an octadecene solution of elemental sulfur with a concentration of 0.5 to 1 mol/L; the anion precursor of phosphorus The solution is a solution obtained by dissolving 0.45 liter of octylamine and 0.55 liter of octadecene in a mixed solvent per mole of 3-(trimethylsilyl)phosphorus.
本发明基于能带工程理论构建了不同材料组成的核壳结构量子点,中间层ZnS材料能够有效的隔绝内、外层材料的电子过程,使其各自发光而无互相干扰。The present invention constructs core-shell quantum dots composed of different materials based on the energy band engineering theory. The ZnS material in the middle layer can effectively isolate the electron process of the inner and outer materials, so that they can emit light without mutual interference.
本发明制备的热敏材料属于疏水性材料,表面配体主要为长链烷基羧酸。The thermosensitive material prepared by the invention belongs to the hydrophobic material, and the surface ligands are mainly long-chain alkyl carboxylic acids.
本发明制备的热敏材料提纯干燥后可制得固体粉末样品,固体状态下发光颜色也会随温度变化而变化。The heat-sensitive material prepared by the invention can be purified and dried to obtain a solid powder sample, and the luminescent color in the solid state will also change with temperature.
本发明制备的热敏型量子点材料,性质稳定,放置六个月依然能够随温度变色。The heat-sensitive quantum dot material prepared by the invention has stable properties and can still change color with temperature after being placed for six months.
本发明制备的热敏量子点材料,每一层材料的包覆均可精确控制厚度,壳层包覆后粒子呈完美球形,尺寸均一,单分散性好。The heat-sensitive quantum dot material prepared by the invention can precisely control the thickness of each layer of material coating, and the particles after the shell layer coating are perfectly spherical, uniform in size and good in monodispersity.
本发明不含有半导体材料中普遍存在的镉、汞等有毒重金属,相对环保,潜在应用性强。The invention does not contain toxic heavy metals such as cadmium and mercury that are commonly present in semiconductor materials, is relatively environmentally friendly, and has strong potential applicability.
综上,本发明一种核壳结构的热敏量子点材料及其制备方法具有以下有益效果:In summary, a heat-sensitive quantum dot material with a core-shell structure and a preparation method thereof of the present invention have the following beneficial effects:
1、制备的材料对温度敏感,颜色随温度的变化明确。1. The prepared material is sensitive to temperature, and the color changes with temperature clearly.
2、制备的材料变色范围宽,随着温度从常温变到200℃,材料颜色会从绿色逐渐变化到红色,中间经历不同程度的黄色。2. The prepared material has a wide range of color change. As the temperature changes from room temperature to 200°C, the color of the material will gradually change from green to red, and experience different degrees of yellow in the middle.
3、制备的材料稳定,可重复利用。3. The prepared material is stable and reusable.
4、制备的材料在固态下颜色也随温度变化而变化。4. The color of the prepared material also changes with the temperature in the solid state.
5、制备方法可精确控制每一层材料的包覆厚度,壳层包覆后粒子呈完美球形,尺寸均一,单分散性好5. The preparation method can precisely control the coating thickness of each layer of material. After the shell layer is coated, the particles are perfectly spherical, uniform in size and good in monodispersity.
6、制备的材料及制备过程严格无镉、无汞,具有低毒性的优点,符合绿色化学的合成理念,对环境友好,潜在应用性较强。6. The prepared materials and preparation process are strictly cadmium-free and mercury-free, with the advantage of low toxicity, in line with the synthesis concept of green chemistry, friendly to the environment, and have strong potential applications.
附图说明Description of drawings
图1是按本发明的实施例2、5、7、9、11、13、14的顺序得到的核壳结构的热敏量子点材料在不同温度下的光谱图。Fig. 1 is the spectrograms of thermosensitive quantum dot materials with core-shell structure obtained in the order of Examples 2, 5, 7, 9, 11, 13 and 14 of the present invention at different temperatures.
图2是实施例2制得的InP量子点粒子的透射电镜照片,粒子直径约2nm。Fig. 2 is a transmission electron micrograph of InP quantum dot particles prepared in Example 2, and the diameter of the particles is about 2nm.
图3是按实施例2、5、7的顺序制得的CuInP/ZnS结构的量子点的透射电镜照片,粒子直径约4.5nm。Fig. 3 is a transmission electron micrograph of quantum dots of CuInP/ZnS structure prepared in the order of Examples 2, 5, and 7, and the particle diameter is about 4.5nm.
图4是按实施例2、5、7、9、11、13的顺序制得的CuInP/ZnS/InP/ZnS结构量子点透射电镜照片,粒子直径约8nm。Fig. 4 is a transmission electron microscope photograph of CuInP/ZnS/InP/ZnS structure quantum dots prepared in the order of Examples 2, 5, 7, 9, 11, and 13, and the particle diameter is about 8nm.
图5是本发明一种低毒性热敏量子点材料的结构示意图。Fig. 5 is a schematic structural view of a low-toxicity heat-sensitive quantum dot material of the present invention.
具体实施方式Detailed ways
配制各种阴、阳离子前体注入液:配制Zn、In、S、P的前体注入液,取10毫摩尔的硬脂酸锌及20毫升的十八烯混合,抽真空通氮气加热至200℃溶解,得到0.5mol/L的前体注入液;取10毫摩尔的硬脂酸锌及10毫升的十八烯混合,抽真空通氮气加热至200℃溶解,得到1mol/L的前体注入液;取10毫摩尔十四酸铟、4.8升三丁基膦和5.2升十八烯混合,抽真空通氮气加热到250℃溶解,得到1mol/L的In前体注入液;取10毫摩尔的硫粉及20毫升十八烯混合,抽真空通氮气加热至140℃溶解,制得0.5mol/L的S前体注入液;取10毫摩尔的硫粉及10毫升十八烯混合,抽真空通氮气加热至140℃溶解,制得1mol/L的S前体注入液;取10毫摩尔的3-(三甲基硅基)磷,与4.5升的辛胺以及5.5升的十八烯混合,抽真空通氮气加热到50℃溶解,得到1mol/L的P前体注入液。配制0.005mol/LCu的掺杂用液,取0.05毫摩尔十四酸铜与10毫升十八烯混合,抽真空通氮气加热70℃溶解;配制0.01mol/LCu的掺杂用液,取0.1毫摩尔十四酸铜与10毫升十八烯混合,抽真空通氮气加热70℃溶解;配制0.02mol/LCu的掺杂用液,取0.2毫摩尔十四酸铜与10毫升十八烯混合,抽真空通氮气加热70℃溶解;此外,还要在手套箱中配制0.2mol/L的3-(三甲基硅基)磷的十八烯溶液。Prepare various anion and cation precursor injection solutions: prepare Zn, In, S, P precursor injection solutions, mix 10 millimoles of zinc stearate and 20 ml of octadecene, vacuumize and heat to 200 Dissolve at ℃ to obtain a 0.5mol/L precursor injection solution; mix 10mmol of zinc stearate and 10ml of octadecene, vacuumize and heat to 200℃ with nitrogen to dissolve, and obtain a 1mol/L precursor injection solution solution; take 10 mmol of indium myristate, 4.8 liters of tributylphosphine and 5.2 liters of octadecene and mix them, vacuumize nitrogen and heat to 250 ° C to dissolve, and obtain a 1mol/L In precursor injection solution; take 10 mmol Sulfur powder and 20 milliliters of octadecene were mixed, vacuumed and heated to 140° C. to dissolve, and a 0.5 mol/L S precursor injection solution was obtained; 10 millimoles of sulfur powder and 10 milliliters of octadecene were mixed, pumped Vacuum nitrogen and heat to 140 ° C to dissolve, and prepare a 1mol/L S precursor injection solution; take 10 mmol of 3-(trimethylsilyl)phosphorus, 4.5 liters of octylamine and 5.5 liters of octadecene Mixed, evacuated and nitrogen gas heated to 50 ° C to dissolve, to obtain a 1mol/L P precursor injection solution. To prepare a doping solution of 0.005mol/LCu, take 0.05 mmol of copper myristate and mix it with 10 milliliters of octadecene, vacuumize and heat at 70°C with nitrogen to dissolve; to prepare a doping solution of 0.01mol/LCu, take 0.1 milliliters Mix one mole of copper myristate with 10 ml of octadecene, vacuumize and heat at 70°C with nitrogen to dissolve; prepare a 0.02 mol/LCu doping solution, mix 0.2 mmol of copper myristate with 10 ml of octadecene, pump Vacuum nitrogen and heat at 70°C to dissolve; in addition, prepare a 0.2 mol/L octadecene solution of 3-(trimethylsilyl)phosphorus in a glove box.
以下分四个部分具体说明制备非镉热敏量子点材料每个步骤的具体实施方式。The specific implementation of each step of preparing the non-cadmium heat-sensitive quantum dot material will be described in detail below in four parts.
第一部分:制备InP量子点核溶液(实施例1~3)Part 1: Preparation of InP quantum dot nucleus solution (Example 1-3)
实施例1:Example 1:
首先,制备InP量子点:取0.2毫摩尔醋酸铟与0.7毫摩尔的十四酸加入到5毫升十八烯中,升温至80℃,抽真空后,在氮气保护下升温至188℃,注入0.5毫升浓度为0.2mol/L3-(三甲基硅基)磷的十八烯溶液与1.2毫摩尔的辛胺,注入后自然降温至178℃,保持温度178℃反应30分钟即可得到InP量子点,得到的InP量子点直径约为2nm。First, prepare InP quantum dots: Take 0.2 millimoles of indium acetate and 0.7 millimoles of myristic acid and add them to 5 milliliters of octadecene, heat up to 80 ° C, after vacuuming, heat up to 188 ° C under the protection of nitrogen, inject 0.5 In a milliliter concentration of 0.2mol/L 3-(trimethylsilyl) phosphorus octadecene solution and 1.2 mmol octylamine, after injection, naturally cool down to 178°C, keep the temperature at 178°C for 30 minutes to obtain InP quantum dots , the obtained InP quantum dots have a diameter of about 2nm.
然后,进行Cu掺杂:将制备好的InP量子点直接降温到60℃,向体系中滴入总量为1毫升浓度为0.005mmol/L的十四酸铜的十八烯溶液,再升温至150℃,保持温度20分钟即可得到Cu掺杂的InP量子点核溶液,掺Cu量为按摩尔比Cu:P=1:20。Then, Cu doping is carried out: the prepared InP quantum dots are directly cooled to 60°C, and a total amount of 1 ml of octadecene solution of copper myristate with a concentration of 0.005mmol/L is dropped into the system, and then the temperature is raised to 150°C, keep the temperature for 20 minutes to get a Cu-doped InP quantum dot nucleus solution, the amount of Cu doped is Cu:P=1:20 by molar ratio.
实施例2:Example 2:
首先,制备InP量子点:取0.2毫摩尔醋酸铟与0.7毫摩尔的十四酸加入到5毫升十八烯中,升温至100℃,抽真空后,在氮气保护下升温至188℃,注入0.5毫升浓度为0.2mol/L3-(三甲基硅基)膦的十八烯溶液与1.2毫摩尔的辛胺,注入后自然降温至178℃,保持温度178℃反应30分钟即可得到InP量子点,得到的InP量子点直径约为2nm。First, prepare InP quantum dots: Take 0.2 millimoles of indium acetate and 0.7 millimoles of myristic acid and add them to 5 milliliters of octadecene, heat up to 100 ° C, after vacuuming, heat up to 188 ° C under the protection of nitrogen, inject 0.5 0.2 mol/L 3-(trimethylsilyl) phosphine octadecene solution and 1.2 mmol octylamine, after injection, naturally cool down to 178°C, keep the temperature at 178°C for 30 minutes to obtain InP quantum dots , the obtained InP quantum dots have a diameter of about 2nm.
然后,进行Cu掺杂:将制备好的InP量子点直接降温到80℃,向体系中滴入总量为1毫升浓度为0.01mmol/L的十四酸铜的十八烯溶液,再升温至150℃,保持温度30分钟即可得到Cu掺杂的InP量子点核溶液,掺Cu量为按摩尔比Cu:P=1:10。Then, Cu doping is carried out: the prepared InP quantum dots are directly cooled to 80 ° C, and a total amount of 1 milliliter of octadecene solution of copper myristate with a concentration of 0.01 mmol/L is dropped into the system, and then the temperature is raised to 150°C, keep the temperature for 30 minutes to get a Cu-doped InP quantum dot nucleus solution, the amount of Cu doped is the molar ratio Cu:P=1:10.
实施例3:Example 3:
首先,制备InP量子点:取0.2毫摩尔醋酸铟与0.7毫摩尔的十四酸加入到5毫升十八烯中,升温至120℃,抽真空后,在氮气保护下升温至188℃,注入0.5毫升浓度为0.2mol/L3-(三甲基硅基)膦的十八烯溶液与1.2毫摩尔的辛胺,注入后自然降温至178℃,保持温度178℃反应30分钟即可得到InP量子点,得到的InP量子点直径约为2nm。First, prepare InP quantum dots: take 0.2 millimoles of indium acetate and 0.7 millimoles of myristic acid and add them to 5 milliliters of octadecene, heat up to 120 ° C, after vacuuming, heat up to 188 ° C under the protection of nitrogen, inject 0.5 0.2 mol/L 3-(trimethylsilyl) phosphine octadecene solution and 1.2 mmol octylamine, after injection, naturally cool down to 178°C, keep the temperature at 178°C for 30 minutes to obtain InP quantum dots , the obtained InP quantum dots have a diameter of about 2nm.
然后,进行Cu掺杂:将制备好的InP量子点直接降温到100℃,向体系中滴入总量为1毫升浓度为0.02mmol/L的十四酸铜的十八烯溶液,再升温至150℃,保持温度40分钟即可得到Cu掺杂的InP量子点核溶液,掺Cu量为按摩尔比Cu:P=1:5。Then, Cu doping is carried out: the prepared InP quantum dots are directly cooled to 100° C., and a total amount of 1 milliliter of octadecene solution of copper myristate with a concentration of 0.02 mmol/L is dropped into the system, and then the temperature is raised to 150°C, keep the temperature for 40 minutes to get a Cu-doped InP quantum dot nucleus solution, the amount of Cu doped is Cu:P=1:5 by molar ratio.
第二部分:包覆ZnS隔离层及提纯(实施例4~7)The second part: coating ZnS isolation layer and purification (embodiments 4-7)
实施例4:Example 4:
将实施例1~3任一实施例制备的Cu掺杂的InP量子点核溶液维持到120℃,按照投料量计算核溶液所需要的包覆用量,注入一层用量的浓度为0.5mol/L的Zn的阳离子前体溶液,将反应温度升至220℃生长量子点壳层45分钟,再注入一层用量的浓度为0.5mol/L的S的阴离子前体溶液,同样反应45分钟。此后,保持220℃交替注入两种前体溶液并各反应45分钟,共包覆3层。Zn、S的前体注入液用量均为:由第一到第三层依次为:0.24毫升,0.4毫升,0.58毫升。Maintain the Cu-doped InP quantum dot nuclear solution prepared in any one of Examples 1 to 3 to 120°C, calculate the required coating amount of the nuclear solution according to the feeding amount, and inject a layer with a concentration of 0.5mol/L Zn cation precursor solution, the reaction temperature was raised to 220° C. to grow the quantum dot shell for 45 minutes, and then a layer of S anion precursor solution with a concentration of 0.5 mol/L was injected, and the same reaction was performed for 45 minutes. Thereafter, the two precursor solutions were alternately injected at 220° C. and reacted for 45 minutes each to coat 3 layers in total. The dosages of the Zn and S precursor injection solutions are as follows: 0.24 milliliters, 0.4 milliliters, and 0.58 milliliters from the first to the third layer.
实施例5:Example 5:
将实施例1~3任一实施例制备的Cu掺杂的InP量子点核溶液维持到140℃,按照投料量计算核溶液所需要的包覆用量,注入一层用量的浓度为0.5mol/L的Zn的阳离子前体溶液,将反应温度升至240℃生长量子点壳层40分钟,再注入一层用量的浓度为0.5mol/L的S的阴离子前体溶液,同样反应40分钟。此后,保持240℃交替注入两种前体溶液并各反应40分钟,共包覆4层。Zn、S的前体注入液用量均为:由第一到第四层依次为:0.24毫升,0.4毫升,0.58毫升,0.8毫升。Maintain the Cu-doped InP quantum dot nuclear solution prepared in any one of Examples 1 to 3 to 140°C, calculate the required coating amount of the nuclear solution according to the feeding amount, and inject a layer with a concentration of 0.5mol/L Zn cation precursor solution, the reaction temperature was raised to 240° C. to grow the quantum dot shell for 40 minutes, and then a layer of S anion precursor solution with a concentration of 0.5 mol/L was injected, and the same reaction was performed for 40 minutes. Thereafter, the two precursor solutions were alternately injected at 240° C. and reacted for 40 minutes each to coat 4 layers in total. The dosages of Zn and S precursor injection solutions are as follows: 0.24 ml, 0.4 ml, 0.58 ml, 0.8 ml from the first to the fourth layer.
实施例6:Embodiment 6:
将实施例1~3任一实施例制备的Cu掺杂的InP量子点核溶液维持到160℃,按照投料量计算核溶液所需要的包覆用量,注入一层用量的浓度为0.5mol/L的Zn的阳离子前体溶液,将反应温度升至260℃生长量子点壳层30分钟,再注入一层用量的浓度为0.5mol/L的S的阴离子前体溶液,同样反应30分钟。此后,保持260℃交替注入两种前体溶液并各反应30分钟,共包覆6层。Zn、S的前体注入液用量均为:由第一到第六层依次为:0.24毫升,0.4毫升,0.58毫升,0.8毫升,1毫升,1.3毫升。Maintain the Cu-doped InP quantum dot nuclear solution prepared in any one of Examples 1 to 3 to 160°C, calculate the required coating amount of the nuclear solution according to the feeding amount, and inject a layer with a concentration of 0.5mol/L Zn cation precursor solution, the reaction temperature was raised to 260 ° C for 30 minutes to grow the quantum dot shell, and then injected a layer of S anion precursor solution with a concentration of 0.5 mol/L, and reacted for 30 minutes. Thereafter, the two precursor solutions were alternately injected at 260° C. and reacted for 30 minutes each to coat 6 layers in total. The dosages of Zn and S precursor injection solutions are: from the first layer to the sixth layer: 0.24 ml, 0.4 ml, 0.58 ml, 0.8 ml, 1 ml, 1.3 ml.
实施例7:Embodiment 7:
将实施例4~6制备好的结构为CuInP/ZnS的量子点溶液温度降至室温,加入1毫升氯仿和10毫升乙醇的混合溶剂使量子点沉淀,然后用每分钟4000转的转速离心分离20分钟,得到提纯的CuInP/ZnS量子点。The temperature of the quantum dot solution whose structure is CuInP/ZnS prepared in Examples 4-6 is lowered to room temperature, and a mixed solvent of 1 ml of chloroform and 10 ml of ethanol is added to precipitate the quantum dots, and then centrifuged at a speed of 4000 rpm for 20 Minutes, the purified CuInP/ZnS quantum dots were obtained.
第三部分:包覆InP纳米晶壳层(实施例8~9)The third part: coated InP nanocrystalline shell layer (Examples 8-9)
实施例8:Embodiment 8:
将实施例4~6任一实施例制备的核壳结构的量子点用实施例7的方法进行提纯后再次分散到5毫升的十八烯中并放入三颈烧瓶,升温到60℃,抽真空通氮气反复三次,升温至120℃,加入一层计算量的浓度为1mol/L的P的阴离子前体溶液,升温至180℃生长壳层45分钟,再注入浓度为1mol/L的In的阳离子前体溶液,同样生长45分钟,此后保持180℃交替注入阴、阳离子前体溶液并各保持45分钟,总共包覆2层InP材料,得到结构为CuInP/ZnS/InP的量子点。阳、阴离子前体溶液的用量均为:由第一到第二层依次为:0.53毫升,0.68毫升。Purify the quantum dots with core-shell structure prepared in any one of Examples 4 to 6 by the method of Example 7, and then disperse them into 5 ml of octadecene and put them into a three-necked flask, raise the temperature to 60° C., and pump Vacuum nitrogen was repeated three times, the temperature was raised to 120°C, a layer of P anion precursor solution with a calculated concentration of 1mol/L was added, the temperature was raised to 180°C to grow the shell for 45 minutes, and then In was injected with a concentration of 1mol/L. The cation precursor solution was also grown for 45 minutes, and then the anion and cation precursor solutions were alternately injected at 180°C and kept for 45 minutes each, and a total of 2 layers of InP materials were coated to obtain quantum dots with a structure of CuInP/ZnS/InP. The dosages of cation and anion precursor solutions are: from the first layer to the second layer: 0.53 milliliters, 0.68 milliliters.
实施例9:Embodiment 9:
将实施例4~6任一实施例制备的核壳结构的量子点用实施例7的方法进行提纯后再次分散到5毫升的十八烯中并放入三颈烧瓶,升温到100℃,抽真空通氮气反复三次,升温至160℃,使用浓度为1mol/L的In、P的前体注入液,加入一层计算量的P的阴离子前体溶液,升温至200℃生长壳层30分钟,再注入浓度为1mol/L的In的阳离子前体溶液,同样生长30分钟,此后保持200℃交替注入阴、阳离子前体溶液并各保持30分钟,,总共包覆3层InP材料,得到结构为CuInP/ZnS/InP的量子点。阳、阴离子前体溶液的用量均为:由第一到第三层依次为:0.53毫升,0.68毫升,0.85毫升。Purify the quantum dots with a core-shell structure prepared in any one of Examples 4 to 6 by the method of Example 7, and then disperse them in 5 ml of octadecene and put them into a three-necked flask, raise the temperature to 100° C., and pump Vacuum nitrogen was repeated three times, the temperature was raised to 160°C, the concentration of In and P precursor injection solution was 1mol/L, and a layer of calculated amount of P anion precursor solution was added, and the temperature was raised to 200°C to grow the shell for 30 minutes. Then inject a cation precursor solution of In with a concentration of 1mol/L, and grow for 30 minutes, and then keep 200°C to alternately inject anion and cation precursor solutions and keep for 30 minutes each, and a total of 3 layers of InP materials are coated, and the structure is obtained. Quantum dots of CuInP/ZnS/InP. The dosages of cation and anion precursor solutions are: from the first layer to the third layer: 0.53 milliliters, 0.68 milliliters, 0.85 milliliters.
第四部分:包覆ZnS保护层及提纯(实施例10~13)Part 4: Coating ZnS protective layer and purification (Examples 10-13)
实施例10:Example 10:
在实施例8或9制备的核壳结构的量子点基础上,再包覆1层ZnS材料以起到稳定作用,将实施例8或9制备的核壳结构的量子点溶液维持在120℃,加入一层计算量的浓度为1mol/L的Zn的阳离子前体溶液,升温至220℃生长壳层45分钟,再注入一层计算量的浓度为1mol/L的S的阴离子前体溶液,同样生长45分钟,得到结构为CuInP/ZnS/InP/ZnS的热敏量子点溶液。阳、阴离子前体溶液的用量均为:1毫升。On the basis of the quantum dots with a core-shell structure prepared in Example 8 or 9, a layer of ZnS material is coated again to play a stabilizing effect, and the quantum dot solution with a core-shell structure prepared in Example 8 or 9 is maintained at 120 ° C. Add a layer of calculated amount of Zn cation precursor solution with a concentration of 1mol/L, heat up to 220°C to grow the shell for 45 minutes, and then inject a layer of calculated amount of S anion precursor solution with a concentration of 1mol/L, the same After growing for 45 minutes, a heat-sensitive quantum dot solution with a structure of CuInP/ZnS/InP/ZnS was obtained. The dosages of the cation and anion precursor solutions are both: 1 ml.
实施例11:Example 11:
在实施例8或9制备的核壳结构的量子点基础上,再包覆2层ZnS材料以起到稳定作用,使用浓度为1mol/L的Zn、S的前体注入液,将实施例8或9制备的核壳结构的量子点溶液维持在140℃,加入一层计算量的Zn的阳离子前体溶液,升温至260℃生长壳层30分钟,再注入一层计算量的S的阴离子前体溶液,同样生长30分钟,此后保持260℃交替注入阳、阴离子前体溶液并各保持30分钟,总共包覆2层InP材料,得到结构为CuInP/ZnS/InP/ZnS的热敏量子点溶液。阳、阴离子前体溶液的用量均为:由第一到第二层依次为:1毫升,1.2毫升。On the basis of the quantum dots with core-shell structure prepared in Example 8 or 9, coat 2 layers of ZnS materials to play a stabilizing effect, and use the precursor injection solution of Zn and S with a concentration of 1mol/L to convert Example 8 or 9. Maintain the quantum dot solution with core-shell structure at 140°C, add a layer of calculated amount of Zn cation precursor solution, raise the temperature to 260°C to grow the shell layer for 30 minutes, and inject a layer of calculated amount of S anion before body solution, also grow for 30 minutes, then maintain 260 ℃ and alternately inject cation and anion precursor solutions and keep each for 30 minutes, a total of 2 layers of InP materials are coated, and a heat-sensitive quantum dot solution with a structure of CuInP/ZnS/InP/ZnS is obtained . The dosages of the cation and anion precursor solutions are: from the first layer to the second layer: 1 milliliter, 1.2 milliliters.
实施例12:Example 12:
在实施例8或9制备的核壳结构的量子点基础上,再包覆4层ZnS材料以起到稳定作用,使用浓度为1mol/L的Zn、S的前体注入液,将实施例8或9制备的核壳结构的量子点溶液维持在140℃,加入一层计算量的Zn的阳离子前体溶液,升温至260℃生长壳层30分钟,再注入一层计算量的S的阴离子前体溶液,同样生长30分钟,此后保持260℃交替注入阳、阴离子前体溶液并各保持30分钟,总共包覆4层InP材料,得到结构为CuInP/ZnS/InP/ZnS的热敏量子点溶液。阳、阴离子前体溶液的用量均为:由第一到第四层依次为:1毫升,1.2毫升,1.4毫升,1.7毫升。On the basis of the quantum dots with core-shell structure prepared in Example 8 or 9, 4 layers of ZnS materials are coated to stabilize, and the concentration is 1mol/L. or 9. Maintain the quantum dot solution with core-shell structure at 140°C, add a layer of calculated amount of Zn cation precursor solution, raise the temperature to 260°C to grow the shell layer for 30 minutes, and inject a layer of calculated amount of S anion before body solution, also grown for 30 minutes, then kept at 260 °C and alternately injected cation and anion precursor solutions and kept for 30 minutes each, covering a total of 4 layers of InP materials to obtain a heat-sensitive quantum dot solution with a structure of CuInP/ZnS/InP/ZnS . The dosages of cation and anion precursor solutions are: from the first layer to the fourth layer: 1 milliliter, 1.2 milliliter, 1.4 milliliter, 1.7 milliliter.
实施例13:Example 13:
将实施例10~12任一实施例制备的结构为CuInP/ZnS/InP/ZnS的热敏量子点溶液冷却到室温,加入1毫升氯仿和10毫升乙醇的混合溶剂使量子点沉淀,然后用每分钟4000转的转速离心分离20分钟,即得到提纯的结构为CuInP/ZnS/InP/ZnS的低毒性热敏量子点材料。The heat-sensitive quantum dot solution prepared by any one of Examples 10 to 12 with the structure CuInP/ZnS/InP/ZnS is cooled to room temperature, and a mixed solvent of 1 milliliter of chloroform and 10 milliliters of ethanol is added to precipitate the quantum dots, and then each Minute 4000 rotation speed centrifugation for 20 minutes, the purified low toxicity heat-sensitive quantum dot material with the structure of CuInP/ZnS/InP/ZnS can be obtained.
实施例14:Example 14:
将实施例13沉淀得到的结构为CuInP/ZnS/InP/ZnS的热敏量子点材料固体样品在真空烘箱里烘干,最终得到固体粉末样品,进行变温荧光测试,得到光谱如图1所示,在20℃时,由于发绿光的InP纳米晶壳层的荧光量子效率远高于发红光的核材料CuInP的荧光量子效率,因此材料整体呈绿色;由于InP纳米晶壳层是热不稳定的,随着温度升高,绿光逐渐淬灭,在200℃时,绿光完全淬灭,而核材料CuInP是热稳定的,随着温度升高,红光几乎保持原有效率,因此当温度到200℃左右时,材料整体就完全显示红光,在中间温度时,绿光效率下降但未完全淬灭,材料整体呈现不同程度的黄光。Dry the heat-sensitive quantum dot material solid sample with the structure of CuInP/ZnS/InP/ZnS precipitated in Example 13 in a vacuum oven to finally obtain a solid powder sample, and perform a temperature-variable fluorescence test to obtain a spectrum as shown in Figure 1. At 20°C, because the fluorescence quantum efficiency of the green-emitting InP nanocrystalline shell is much higher than that of the red-emitting core material CuInP, the overall material is green; since the InP nanocrystalline shell is thermally unstable Yes, as the temperature rises, the green light is gradually quenched. At 200 ° C, the green light is completely quenched, and the core material CuInP is thermally stable. As the temperature rises, the red light almost maintains the original efficiency, so when When the temperature reaches about 200°C, the overall material will completely display red light. At the intermediate temperature, the green light efficiency will decrease but not be completely quenched, and the overall material will show different degrees of yellow light.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310020598.6A CN103074058B (en) | 2013-01-18 | 2013-01-18 | Low-toxicity heat-sensitive quantum dot material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310020598.6A CN103074058B (en) | 2013-01-18 | 2013-01-18 | Low-toxicity heat-sensitive quantum dot material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103074058A CN103074058A (en) | 2013-05-01 |
CN103074058B true CN103074058B (en) | 2015-04-15 |
Family
ID=48150761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310020598.6A Expired - Fee Related CN103074058B (en) | 2013-01-18 | 2013-01-18 | Low-toxicity heat-sensitive quantum dot material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103074058B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103952137A (en) * | 2014-04-29 | 2014-07-30 | 吉林大学 | White light quantum dot material and preparation method thereof |
CN109423273A (en) * | 2017-08-23 | 2019-03-05 | 苏州星烁纳米科技有限公司 | A kind of preparation method of the quantum dot of doping metals |
KR102246703B1 (en) * | 2019-03-11 | 2021-04-30 | 한국전자기술연구원 | InZnP quantum dots doped manganese and manufacturing method thereof |
CN112251231A (en) * | 2020-10-20 | 2021-01-22 | 京东方科技集团股份有限公司 | Quantum dot and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102031110A (en) * | 2010-11-29 | 2011-04-27 | 天津大学 | InP/ZnS core-shell structure quantum dot and preparation method thereof |
-
2013
- 2013-01-18 CN CN201310020598.6A patent/CN103074058B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102031110A (en) * | 2010-11-29 | 2011-04-27 | 天津大学 | InP/ZnS core-shell structure quantum dot and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103074058A (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103074068B (en) | A thermosensitive quantum dot material with core-shell structure and preparation method thereof | |
CN105523581B (en) | A kind of single size CsPbX3The nanocrystalline preparation method of perovskite | |
KR102024161B1 (en) | Cadmium-free Quantum Dot Nanoparticles | |
US20170229618A1 (en) | Quantum Dot Nanoparticles Having Enhanced Stability and Luminescence Efficiency | |
EP2675618B1 (en) | Enhancement of light emission quantum yield in treated broad spectrum nanocrystals | |
CN103952136B (en) | Cu doping Type-II type nucleocapsid structure white light quanta point material and preparation method | |
JP5388099B2 (en) | Core-shell type quantum dot fluorescent fine particles | |
Labiadh et al. | ZnS quantum dots and their derivatives: Overview on identity, synthesis and challenge into surface modifications for restricted applications | |
CN103952137A (en) | White light quantum dot material and preparation method thereof | |
JP2021507541A (en) | Electron transport membrane and its preparation method and application | |
CN103074058B (en) | Low-toxicity heat-sensitive quantum dot material and preparation method thereof | |
Wu et al. | Strategies of improving CsPbX3 perovskite quantum dots optical performance | |
CN102105554A (en) | Indium arsenide nanocrystals and methods of making the same | |
Hagura et al. | Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium | |
CN104560033A (en) | Preparation method of novel high-efficient luminescence Mn-doped quantum dots | |
CN105536877A (en) | Preparation of Superparamagnetic Fe3O4-PAMAM-ZnO/TiO2 Core-Composite Shell Nanoparticles | |
KR101912818B1 (en) | Quantum dot having core-multishell structure and manufacturing method of the same | |
Xiong et al. | Photoluminescent ZnO nanoparticles synthesized at the interface between air and triethylene glycol | |
CN108410448A (en) | A kind of methyl amine lead bromide nano crystal material and preparation method thereof of oleyl amine as molecular encapsulation | |
CN108753284A (en) | A kind of photoemissive Mn of high fluorescein:CsPbCl3The preparation method of nano-cluster | |
CN1317737C (en) | Method for synthesizing cadmium selenide and quantum point with cadmium selenide cadmium sulfide nucleocapsid structure | |
KR20150045196A (en) | AgInS2 quantum dot doped Zn2+, Composition of the same and Preparing method of the same | |
JP5951136B2 (en) | Zinc aluminate luminescent material and method for producing the same | |
Pramanik et al. | Light-induced wavelength dependent self assembly process for targeted synthesis of phase stable 1D nanobelts and 2D nanoplatelets of CsPbI3 perovskites | |
JP2004075464A (en) | Semiconductor ultrafine particle and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150415 Termination date: 20160118 |
|
EXPY | Termination of patent right or utility model |