CN103073019A - Hierarchical pore zeolite molecular sieve preparation method - Google Patents
Hierarchical pore zeolite molecular sieve preparation method Download PDFInfo
- Publication number
- CN103073019A CN103073019A CN2012104580986A CN201210458098A CN103073019A CN 103073019 A CN103073019 A CN 103073019A CN 2012104580986 A CN2012104580986 A CN 2012104580986A CN 201210458098 A CN201210458098 A CN 201210458098A CN 103073019 A CN103073019 A CN 103073019A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- zeolite molecular
- zeolite
- template
- filtrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 60
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 51
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 27
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 239000002149 hierarchical pore Substances 0.000 title abstract 4
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 11
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 10
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims abstract description 10
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims abstract description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 239000000706 filtrate Substances 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 24
- 239000012153 distilled water Substances 0.000 claims description 20
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 10
- 238000010335 hydrothermal treatment Methods 0.000 claims description 10
- 235000015110 jellies Nutrition 0.000 claims description 10
- 239000008274 jelly Substances 0.000 claims description 10
- 230000007935 neutral effect Effects 0.000 claims description 10
- 229910052708 sodium Inorganic materials 0.000 claims description 10
- 239000011734 sodium Substances 0.000 claims description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000008399 tap water Substances 0.000 claims description 10
- 235000020679 tap water Nutrition 0.000 claims description 10
- 238000003828 vacuum filtration Methods 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 9
- 239000002253 acid Substances 0.000 abstract description 7
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- 239000012847 fine chemical Substances 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 2
- 239000011147 inorganic material Substances 0.000 abstract description 2
- 239000003208 petroleum Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 10
- 239000002105 nanoparticle Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- MWRWFPQBGSZWNV-UHFFFAOYSA-N Dinitrosopentamethylenetetramine Chemical compound C1N2CN(N=O)CN1CN(N=O)C2 MWRWFPQBGSZWNV-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
技术领域 technical field
本发明一种多级孔沸石分子筛的制备方法,属于精细化工领域和无机材料领域,具体涉及一种具有晶粒间介孔或大孔的ZSM-12沸石分子筛的制备方法。 The invention discloses a method for preparing a multi-level pore zeolite molecular sieve, which belongs to the field of fine chemicals and inorganic materials, and specifically relates to a method for preparing a ZSM-12 zeolite molecular sieve with intercrystalline mesopores or macropores.
背景技术 Background technique
沸石作为微孔材料被广泛地应用于催化、吸附与分离等领域。在油品精炼、基础化学和精细化学领域,这种材料已经展现出独特的酸催化和择形选择性能。除了提供择形选择性能外,沸石中大小在分子尺寸(0.3~1.5nm)范围的错综复杂的孔道系统不仅对通过其孔道的反应分子产生扩散限制,同时,当通过孔道的反应分子的空间尺寸与沸石的微孔尺寸接近时,还会对流动系统引起很高的回压、限制反应分子在沸石晶体内部传输速率。一方面,在给定的温度和压力下,如果不改变沸石的内部结构而想提高沸石晶体内部的扩散速率几乎是不可能的;另一方面,沸石内部错综复杂的孔道结构不能使其酸位被相对较大的反应分子充分利用。因此,合成含有相当数量的晶内(Intracrystalline)或晶粒间(Intercrystalline)介孔或大孔结构的沸石材料已经由于能够改善材料的扩散性能和提高催化剂的酸位可及性而成为一个研究热点。 As a microporous material, zeolites are widely used in the fields of catalysis, adsorption and separation. This material has demonstrated unique acid-catalytic and shape-selective properties in the fields of oil refining, basic chemistry, and fine chemistry. In addition to providing shape-selective performance, the intricate pore system in the molecular size range (0.3-1.5nm) in zeolite not only restricts the diffusion of reactive molecules passing through its channels, but also, when the spatial size of the reactive molecules passing through the channels is in line with the Close pore sizes in zeolites also induce high back pressures in the flow system, limiting the transport rate of reacting molecules within the zeolite crystals. On the one hand, at a given temperature and pressure, it is almost impossible to increase the diffusion rate inside the zeolite crystal without changing the internal structure of the zeolite; on the other hand, the intricate pore structure inside the zeolite cannot make its acid sites Relatively large reactive molecules are fully utilized. Therefore, the synthesis of zeolite materials containing a considerable amount of intracrystalline or intercrystalline mesoporous or macroporous structures has become a research hotspot because it can improve the diffusion properties of materials and increase the acid site accessibility of catalysts. .
在同一沸石晶体上结合介孔和微孔的方法可以通过过热水蒸气、酸蚀或碱蚀产生。近几年,采用模板剂法合成多级孔沸石也十分有效。但是采用后处理的方法来制备含有介孔的沸石分子筛会降低催化剂的酸性能,同时容易形成不能贯通催化剂整体的介孔孔道;采用硬模板来合成介孔沸石则由于硬模板成本极为高昂,很难真正实现其工业化;近十来年,研究人员花费相当多的精力来合成具有纳米尺寸的沸石晶体,以便提高沸石的扩散效果。然而合成与制备这种具有纳米尺寸的沸石在实际的研究工作中遇到了不少困难,其中最为显著的一个问题就是合成后的固液混合物很难进行分离,因而大大限制了这种细微晶粒沸石在实际中的应用(Langmuir.21,2005, 504)。 The method of combining mesopores and micropores on the same zeolite crystal can be produced by superheated steam, acid etching or alkaline etching. In recent years, the synthesis of hierarchically porous zeolites using the template method is also very effective. However, the post-treatment method to prepare mesoporous zeolite molecular sieves will reduce the acidity of the catalyst, and at the same time it is easy to form mesoporous channels that cannot penetrate the catalyst as a whole; the use of hard templates to synthesize mesoporous zeolites is very expensive due to the high cost of hard templates. It is difficult to realize its industrialization; in the past ten years, researchers have spent considerable energy to synthesize nano-sized zeolite crystals in order to improve the diffusion effect of zeolite. However, the synthesis and preparation of this nano-sized zeolite has encountered many difficulties in the actual research work. The most notable problem is that the solid-liquid mixture after synthesis is difficult to separate, which greatly limits the fine grain size. The application of zeolite in practice ( Langmuir.21 , 2005, 504).
关于在ZSM-12单晶上形成介孔的报道较少,Wei等人(Micropor. Mesopor. Mater., 97, 2006, 97)利用碱蚀的方法对事先合成的ZSM-12沸石进行碱处理,制备了中孔孔分布在15~20纳米之间的中孔ZSM-12沸石分子筛;Wei等人(Micropor. Mesopor. Mater., 89, 2006, 170)还利用炭黑等作为模板剂合成了孔分布在10~50纳米左右的介孔ZSM-12分子筛材料。不论是碱处理还是利用炭黑作为硬模板,都是在大的单晶上形成中孔,前者容易形成不能贯穿整个晶体粒子的孔道,同时用脱硅的碱处理方式还会因为在脱硅的过程中往往伴随着铝物种的脱出,削弱催化剂骨架酸中心;而采用硬模板剂来合成介孔沸石则由于硬模板剂成本极为高昂,很难真正实现其工业化。因此,急切需要一种简单的、能够大规模进行的方法来生产制备介孔沸石材料。 There are few reports on the formation of mesopores on ZSM-12 single crystals. Wei et al. ( Micropor. Mesopor. Mater. , 97, 2006, 97) used alkali etching to treat the previously synthesized ZSM-12 zeolite with alkali. A mesoporous ZSM-12 zeolite molecular sieve with mesoporous pores distributed between 15 and 20 nanometers was prepared; Wei et al. ( Micropor. Mesopor. Mater. , 89, 2006, 170) also used carbon black as a template to synthesize pore Mesoporous ZSM-12 molecular sieve materials distributed in the range of 10 to 50 nanometers. Whether it is alkali treatment or carbon black as a hard template, mesopores are formed on large single crystals. The former is easy to form pores that cannot penetrate the entire crystal particle. The process is often accompanied by the release of aluminum species, which weakens the acid center of the catalyst framework; and the use of hard templates to synthesize mesoporous zeolites is difficult to achieve industrialization due to the extremely high cost of hard templates. Therefore, there is an urgent need for a simple, large-scale method to produce and prepare mesoporous zeolite materials.
发明内容 Contents of the invention
本发明一种多级孔沸石分子筛的制备方法的目的在于,为解决上述现有技术中存在的多级孔沸石分子筛材料的合成要么通过后处理要么利用昂贵的硬模板剂来实现制造中孔的问题,从而公开一种利用沸石合成的传统模板剂四乙基溴化铵TEABr或四乙基氢氧化铵TEAOH作为模板剂来合成多级孔沸石分子筛的方法。 The purpose of the preparation method of a kind of multi-stage pore zeolite molecular sieve of the present invention is, in order to solve the synthesis of the multi-stage pore zeolite molecular sieve material that exists in the above-mentioned prior art either through aftertreatment or utilize expensive hard templating agent to realize the manufacture of mesopores Problem, thereby disclosing a method for synthesizing hierarchically porous zeolite molecular sieves using traditional templates synthesized by zeolites, tetraethylammonium bromide TEABr or tetraethylammonium hydroxide TEAOH, as templates.
本发明一种多级孔沸石分子筛的制备方法,其特征在于是一种利用沸石合成的传统模板剂四乙基溴化铵TEABr或四乙基氢氧化铵TEAOH作为模板剂来合成多级孔沸石分子筛的方法,具体步骤为: A preparation method of a multi-stage pore zeolite molecular sieve of the present invention is characterized in that a traditional template synthesized by zeolite, tetraethylammonium bromide TEABr or tetraethylammonium hydroxide TEAOH, is used as a template to synthesize a multi-stage pore zeolite The method of molecular sieve, concrete steps are:
I 在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml质量百分比浓度为40%的硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理8~24h,然后真空抽滤,保留滤液备用; 1 At room temperature, 1.28g of sodium metaaluminate, 1.89g of sodium hydroxide, 18ml of silica sol with a mass percent concentration of 40% and 54ml of distilled water were mixed and stirred into a uniform white jelly, and put into a stainless steel reaction kettle at 170 Hydrothermal treatment at ℃ for 8~24h, then vacuum filtration, and keep the filtrate for later use;
II 取上述的滤液50~100ml,在滤液中加入10~19.3g模板剂,该模板剂是四乙基溴化铵TEABr或四乙基氢氧化铵TEAOH,5~18ml质量百分比浓度为25%的氨水与3~15ml质量百分比浓度为40%的硅溶胶,搅拌均匀,于140~180摄氏度下晶化4~7天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,100℃的烘箱中干燥12h后,于550℃下在马弗炉中,在通空气的条件下焙烧4~6h,即得到一种具有晶粒间介孔或大孔的ZSM-12多级孔沸石分子筛。 II Take 50~100ml of the above-mentioned filtrate, add 10~19.3g template agent in the filtrate, the template agent is tetraethylammonium bromide TEABr or tetraethylammonium hydroxide TEAOH, 5~18ml mass percentage concentration is 25% Ammonia water and 3~15ml of silica sol with a mass percentage concentration of 40% are stirred evenly, crystallized at 140~180 degrees Celsius for 4~7 days, then cooled to room temperature with tap water, the product is washed with distilled water until neutral, filtered, and 100℃ After drying in a special oven for 12 hours, it was calcined in a muffle furnace at 550°C for 4-6 hours under the condition of ventilation to obtain a ZSM-12 hierarchically porous zeolite molecular sieve with intergranular mesopores or macropores. .
本发明一种多级孔沸石分子筛的制备方法的优点在于:利用第一步预晶化后的前躯体中存在的沸石的初级和次级结构单元来加速ZSM-12沸石的成核并诱导获得一种由纳米晶粒堆积而成的多级孔ZSM-12沸石分子筛;较传统的后处理在单晶上造中孔的制备方法而言,本发明能获得贯穿的介孔孔道;与利用昂贵的软、硬模板剂来制备多级孔沸石分子筛而言,本发明利用传统的沸石合成的模板剂,即廉价的四乙基溴化铵或四乙基氢氧化铵作为模板剂来合成多级孔沸石分子筛,成本低廉、易于实现工业化;与单晶上形成的多孔沸石分子筛材料(Micropor. Mesopor. Mater., 97, 2006, 97; Micropor. Mesopor. Mater., 89, 2006, 170)相比,这种小晶粒组成的聚集体中的介孔孔道就是小晶粒沸石的外表面,既与沸石的微孔相连接,同时由于沸石的外表面都是富铝的场所,因此这种多晶聚集体的介孔孔道与晶内孔相比,更是富含酸中心的介孔孔道,必然为催化剂带来不同的酸催化性能;利用纳米晶粒形成的多晶聚集体,一方面既实现了纳米晶粒的扩散速率因扩散路径的缩短而大大提高,又解决了单纳米晶粒沸石分子筛合成后的固液混合物很难进行分离难题(Langmuir. 21,2005, 504);通过对合成条件如晶化时间的控制来改变多晶聚集体中纳米晶体的粒径尺寸,能有效调节聚集体中的介孔孔道尺寸。 The advantage of the preparation method of a multi-stage zeolite molecular sieve of the present invention is that the primary and secondary structural units of the zeolite present in the precursor after the first step of precrystallization are used to accelerate the nucleation of ZSM-12 zeolite and induce the acquisition of A kind of hierarchically porous ZSM-12 zeolite molecular sieve formed by stacking nano crystal grains; Compared with the traditional post-processing method of making mesopores on single crystals, the present invention can obtain through mesoporous channels; In terms of soft and hard templates to prepare multi-stage zeolite molecular sieves, the present invention utilizes traditional zeolite synthesis templates, i.e. cheap tetraethylammonium bromide or tetraethylammonium hydroxide as templates to synthesize multi-stage Porous zeolite molecular sieve, low cost and easy to realize industrialization; compared with porous zeolite molecular sieve materials formed on single crystals (Micropor. Mesopor. Mater., 97, 2006, 97; Micropor. Mesopor. Mater., 89, 2006, 170) The mesoporous channel in the aggregate composed of small crystal grains is the outer surface of the small crystal grain zeolite, which is connected with the micropores of the zeolite, and because the outer surface of the zeolite is all aluminum-rich places, so this multi- Compared with the intracrystalline pores, the mesoporous channels of crystal aggregates are rich in acid centers, which will inevitably bring different acid catalytic properties to the catalyst; The diffusion rate of nanocrystalline particles has been greatly improved due to the shortening of the diffusion path, and it has also solved the difficulty of separating the solid-liquid mixture after the synthesis of single nanocrystalline zeolite molecular sieves (Langmuir. 21 , 2005, 504); through the synthesis Conditions such as the control of crystallization time to change the particle size of nanocrystals in polycrystalline aggregates can effectively adjust the size of mesoporous channels in aggregates.
小晶粒纳米沸石具有很高的外表面,且单位重量的沸石催化剂具有更多的孔道入口因而其酸位可及性得以大大提高,同时由于晶粒尺寸很小,所以其微孔孔道被有效缩短,反应分子在材料孔道内的扩散限制被大大减轻了,有效地提高了反应和产物分子在材料内部孔道的扩散速率,这样反应产物在沸石材料的孔道中释放速率更快,大大降低二次反应发生的几率。 The small-grained nano-zeolite has a high outer surface, and the zeolite catalyst has more pore entrances per unit weight, so its acid site accessibility is greatly improved. shortening, the diffusion restriction of reaction molecules in the material pores is greatly reduced, effectively increasing the diffusion rate of reaction and product molecules in the internal pores of the material, so that the reaction product releases faster in the pores of the zeolite material, greatly reducing the secondary The probability of the reaction occurring. the
附图说明 Description of drawings
图1为多级孔ZSM-12沸石样品的XRD衍射图。 Figure 1 is the XRD diffraction pattern of a hierarchically porous ZSM-12 zeolite sample.
图2为多级孔ZSM-12沸石样品的SEM图。 Figure 2 is the SEM image of the hierarchically porous ZSM-12 zeolite sample.
图3为多级孔ZSM-12沸石样品的N2吸附图。 Figure 3 is the N adsorption diagram of the hierarchically porous ZSM-12 zeolite sample.
具体实施方式 Detailed ways
实施方式1:Implementation mode 1:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理24h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 24 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液55ml,在滤液中补加12.5g 模板剂四乙基溴化铵TEABr,6ml氨水与3ml硅溶胶,搅拌均匀,于140摄氏度下晶化7天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧6h,即得最终样品。经XRD和SEM分析表明所得的样品为纳米小晶粒组成的整体约10微米左右ZSM-12多晶聚集体,N2分析表明存在约3~5nm孔分布的晶粒间介孔。 Step 2: Take 55ml of the above-mentioned filtrate, add 12.5g template agent tetraethylammonium bromide TEABr, 6ml ammonia water and 3ml silica sol to the filtrate, stir evenly, crystallize at 140 degrees Celsius for 7 days, then cool with tap water To room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 6 hours under the condition of ventilation to obtain the final sample. The XRD and SEM analysis showed that the obtained sample was a ZSM-12 polycrystalline aggregate of about 10 microns in size composed of nano-sized grains, and the N 2 analysis showed that there were intergranular mesopores with a pore distribution of about 3-5 nm.
the
实施方式2: Implementation mode 2:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理24h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 24 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液50ml,在滤液中补加10g 模板剂四乙基溴化铵TEABr,5ml氨水与15ml硅溶胶,搅拌均匀,于170摄氏度下晶化4天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧4h,即得最终样品。经XRD和SEM分析表明所得的样品为纳米小晶粒组成的整体约50微米左右ZSM-12多晶聚集体,N2分析表明存在约5~10nm孔分布的晶粒间介孔。 The second step: take 50ml of the above-mentioned filtrate, add 10g template agent tetraethylammonium bromide TEABr, 5ml ammonia water and 15ml silica sol to the filtrate, stir evenly, crystallize at 170 degrees Celsius for 4 days, then cool with tap water to At room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 4 hours under air ventilation to obtain the final sample. XRD and SEM analysis showed that the obtained sample was a ZSM-12 polycrystalline aggregate of about 50 microns overall composed of nano-sized grains, and N 2 analysis showed that there were intergranular mesopores with a pore distribution of about 5-10 nm.
the
实施方式3:Implementation mode 3:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理24h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 24 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液72ml,在滤液中补加19.3g 模板剂四乙基溴化铵TEABr,5ml氨水与5ml硅溶胶,搅拌均匀,于180摄氏度下晶化5天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明ZSM-12特征衍射峰明显宽化,见图1,正是由于晶粒变小的缘故;SEM分析表明所得的样品为纳米小晶粒组成的整体约10~15微米左右ZSM-12多晶聚集体,N2分析表明存在约4~8nm孔分布的晶粒间介孔。 Step 2: Take 72ml of the above-mentioned filtrate, add 19.3g template agent tetraethylammonium bromide TEABr, 5ml ammonia water and 5ml silica sol to the filtrate, stir evenly, crystallize at 180 degrees Celsius for 5 days, then cool with tap water To room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 5 hours under air ventilation to obtain the final sample. The results of XRD characterization show that the characteristic diffraction peak of ZSM-12 is obviously broadened, as shown in Figure 1, it is precisely because of the smaller crystal grains; SEM analysis shows that the obtained sample is composed of nano-sized crystal grains with an overall size of about 10-15 microns ZSM -12 polycrystalline aggregates, N2 analysis shows the presence of intergranular mesopores with a pore distribution of about 4~8nm.
the
实施方式4:Implementation mode 4:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理12h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 12 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液100ml,在滤液中补加10g 模板剂四乙基溴化铵TEABr,13.5 ml氨水与9ml硅溶胶,搅拌均匀,于170摄氏度下晶化4天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明ZSM-12特征衍射峰宽化,正是由于晶粒变小的缘故;SEM分析表明所得的样品为纳米小晶粒组成的整体约100微米左右ZSM-12多晶聚集体,N2分析表明存在约10~15nm孔分布的晶粒间介孔。 Step 2: Take 100ml of the above-mentioned filtrate, add 10g template agent tetraethylammonium bromide TEABr, 13.5ml ammonia water and 9ml silica sol to the filtrate, stir evenly, crystallize at 170 degrees Celsius for 4 days, then cool with tap water To room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 5 hours under air ventilation to obtain the final sample. The results of XRD characterization show that the characteristic diffraction peak of ZSM-12 is broadened because of the smaller crystal grains; SEM analysis shows that the obtained sample is an overall about 100 micron ZSM-12 polycrystalline aggregate composed of nano-sized crystal grains. N2 analysis indicated the presence of intergranular mesopores with a pore distribution of about 10–15 nm.
the
实施方式5:Implementation mode 5:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理12h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 12 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液65ml,在滤液中补加15.7g 模板剂四乙基溴化铵TEABr,18 ml氨水与3.5ml硅溶胶,搅拌均匀,于170摄氏度下晶化4天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明ZSM-12特征衍射峰宽化;SEM分析表明所得的样品为纳米小晶粒组成的整体约50微米左右ZSM-12多晶聚集体,见图2;N2分析表明存在约4~9nm孔分布的晶粒间介孔。 The second step: take 65ml of the above-mentioned filtrate, add 15.7g template agent tetraethylammonium bromide TEABr, 18ml ammonia water and 3.5ml silica sol to the filtrate, stir evenly, crystallize at 170 degrees Celsius for 4 days, and then use The tap water was cooled to room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 5 hours under the condition of ventilation to obtain the final sample. The results of XRD characterization show that the characteristic diffraction peak of ZSM-12 is broadened; SEM analysis shows that the obtained sample is a ZSM-12 polycrystalline aggregate of about 50 microns overall composed of small nano-sized grains, as shown in Figure 2; N 2 analysis shows that there are about Intergranular mesopores with 4~9nm pore distribution.
the
实施方式6:Implementation mode 6:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理12h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g sodium metaaluminate, 1.89g sodium hydroxide, 18ml silica sol and 54ml distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 12 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液70ml,在滤液中补加13.5g 模板剂四乙基氢氧化铵TEAOH,15 ml氨水与4ml硅溶胶,搅拌均匀,于160摄氏度下晶化4天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明ZSM-12特征衍射峰宽化;SEM分析表明所得的样品为纳米小晶粒组成的整体约50微米左右ZSM-12多晶聚集体;样品的N2吸附等温线在p/p0=0.4~0.8之间存在较大的滞后环,见图3,归结为小晶粒堆积形成的晶粒间介孔孔道。 Step 2: Take 70ml of the above-mentioned filtrate, add 13.5g template agent tetraethylammonium hydroxide TEAOH, 15ml ammonia water and 4ml silica sol to the filtrate, stir evenly, crystallize at 160 degrees Celsius for 4 days, and then use tap water Cool to room temperature, wash the product with distilled water until neutral, filter, dry in an oven at 100°C for 12 hours, and bake in a muffle furnace at 550°C for 5 hours under air ventilation to obtain the final sample. The XRD characterization results show that the characteristic diffraction peak of ZSM-12 is broadened; SEM analysis shows that the obtained sample is a ZSM-12 polycrystalline aggregate of about 50 microns overall composed of small nano-sized grains; the N2 adsorption isotherm of the sample is at p/ There is a large hysteresis loop between p0=0.4~0.8, as shown in Figure 3, which is attributed to the intergranular mesoporous channels formed by the accumulation of small grains.
the
实施方式7:Implementation mode 7:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理8h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g of sodium metaaluminate, 1.89g of sodium hydroxide, 18ml of silica sol and 54ml of distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 8 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液82ml,在滤液中补加19g 模板剂四乙基氢氧化铵TEAOH,13 ml氨水与12ml硅溶胶,搅拌均匀,于160摄氏度下晶化7天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明为ZSM-12沸石分子筛;样品的N2吸附等温线在p/p0=0.4~0.8之间存在滞后环,归结为晶粒堆积形成的晶粒间介孔孔道。 Step 2: Take 82ml of the above-mentioned filtrate, add 19g template agent tetraethylammonium hydroxide TEAOH, 13ml ammonia water and 12ml silica sol to the filtrate, stir evenly, crystallize at 160 degrees Celsius for 7 days, then cool with tap water To room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 5 hours under air ventilation to obtain the final sample. The results of XRD characterization show that it is ZSM-12 zeolite molecular sieve; the N 2 adsorption isotherm of the sample has a hysteresis loop between p/p0=0.4~0.8, which is attributed to the intergranular mesoporous channels formed by the accumulation of crystal grains.
实施方式8:Implementation mode 8:
第一步:在室温下,将1.28g偏铝酸钠,1.89g 氢氧化钠,18ml硅溶胶与54ml蒸馏水混合搅拌成均匀白色胶状物,装入不锈钢反应釜中,于170℃下水热处理8h,然后真空抽滤,保留滤液备用; Step 1: At room temperature, mix 1.28g of sodium metaaluminate, 1.89g of sodium hydroxide, 18ml of silica sol and 54ml of distilled water to form a uniform white jelly, put it into a stainless steel reaction kettle, and conduct hydrothermal treatment at 170°C for 8 hours , then vacuum filtration, and retain the filtrate for subsequent use;
第二步:取上述的滤液72ml,在滤液中补加19g 模板剂四乙基氢氧化铵TEAOH,13 ml氨水与5ml硅溶胶,搅拌均匀,于150摄氏度下晶化4天,然后用自来水冷却至常温,产物用蒸馏水洗涤至中性、过滤,于100℃的烘箱中干燥12h,于550℃下在马弗炉中,在通空气的条件下焙烧5h,即得最终样品。经XRD表征结果表明为ZSM-12沸石分子筛;样品的N2吸附等温线在p/p0=0.8~1之间存在大滞后环,归结为晶粒堆积形成的晶粒间大孔孔道。 Step 2: Take 72ml of the above-mentioned filtrate, add 19g template agent tetraethylammonium hydroxide TEAOH, 13ml ammonia water and 5ml silica sol to the filtrate, stir evenly, crystallize at 150 degrees Celsius for 4 days, then cool with tap water To room temperature, the product was washed with distilled water until neutral, filtered, dried in an oven at 100°C for 12 hours, and calcined in a muffle furnace at 550°C for 5 hours under air ventilation to obtain the final sample. The results of XRD characterization show that it is ZSM-12 zeolite molecular sieve; the N 2 adsorption isotherm of the sample has a large hysteresis loop between p/p0=0.8~1, which is attributed to the large pores between crystal grains formed by the accumulation of crystal grains.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458098.6A CN103073019B (en) | 2012-11-15 | 2012-11-15 | Hierarchical pore zeolite molecular sieve preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458098.6A CN103073019B (en) | 2012-11-15 | 2012-11-15 | Hierarchical pore zeolite molecular sieve preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103073019A true CN103073019A (en) | 2013-05-01 |
CN103073019B CN103073019B (en) | 2014-11-26 |
Family
ID=48149744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210458098.6A Expired - Fee Related CN103073019B (en) | 2012-11-15 | 2012-11-15 | Hierarchical pore zeolite molecular sieve preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103073019B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103435065A (en) * | 2013-08-23 | 2013-12-11 | 黑龙江大学 | Preparation method of nano ZSM-12 molecular sieve |
CN106966408A (en) * | 2017-03-22 | 2017-07-21 | 华南理工大学 | A kind of difunctional template and its preparation and the molecular sieve based on it for being oriented to the type zeolite molecular sieves of synthesis multi-stage porous ZSM 12 |
CN106977542A (en) * | 2017-05-26 | 2017-07-25 | 南通艾德旺化工有限公司 | A kind of preparation method of triphenyl phosphite |
CN107029664A (en) * | 2017-05-02 | 2017-08-11 | 长乐净能新材料科技有限公司 | The molecular sieve preparation methods of Mn/ZSM 12 for adsorbing the formaldehyde gas in air in mouth mask |
CN112939017A (en) * | 2019-12-11 | 2021-06-11 | 中国科学院大连化学物理研究所 | Synthesis method of MTW type molecular sieve |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208718A (en) * | 1998-07-01 | 1999-02-24 | 复旦大学 | Composite medium-microporous molecular sieve and its synthesis method |
CN102000601A (en) * | 2010-09-30 | 2011-04-06 | 上海师范大学 | Multistage pore structure nano molecular sieve catalyst and preparation method thereof |
-
2012
- 2012-11-15 CN CN201210458098.6A patent/CN103073019B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1208718A (en) * | 1998-07-01 | 1999-02-24 | 复旦大学 | Composite medium-microporous molecular sieve and its synthesis method |
CN102000601A (en) * | 2010-09-30 | 2011-04-06 | 上海师范大学 | Multistage pore structure nano molecular sieve catalyst and preparation method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103435065A (en) * | 2013-08-23 | 2013-12-11 | 黑龙江大学 | Preparation method of nano ZSM-12 molecular sieve |
CN106966408A (en) * | 2017-03-22 | 2017-07-21 | 华南理工大学 | A kind of difunctional template and its preparation and the molecular sieve based on it for being oriented to the type zeolite molecular sieves of synthesis multi-stage porous ZSM 12 |
CN107029664A (en) * | 2017-05-02 | 2017-08-11 | 长乐净能新材料科技有限公司 | The molecular sieve preparation methods of Mn/ZSM 12 for adsorbing the formaldehyde gas in air in mouth mask |
CN106977542A (en) * | 2017-05-26 | 2017-07-25 | 南通艾德旺化工有限公司 | A kind of preparation method of triphenyl phosphite |
CN112939017A (en) * | 2019-12-11 | 2021-06-11 | 中国科学院大连化学物理研究所 | Synthesis method of MTW type molecular sieve |
Also Published As
Publication number | Publication date |
---|---|
CN103073019B (en) | 2014-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104321280B (en) | Zeolite beta and manufacture method thereof | |
CN103848439B (en) | Synthetic method of ZSM-5 type molecular sieve | |
CN102530980B (en) | Hierarchical pore zeolite, preparation and application thereof | |
JP5689890B2 (en) | Method for producing ZSM-5 zeolite using nanocrystalline ZSM-5 core | |
Zhang et al. | Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction | |
CN102712489A (en) | [Beta] zeolite and method for producing same | |
JP6472103B2 (en) | Molecular sieve SSZ-101 | |
CN103073019B (en) | Hierarchical pore zeolite molecular sieve preparation method | |
CN110759356B (en) | Preparation method of coal gangue-based oriented multi-stage pore ZSM-5 molecular sieve membrane material | |
CN103214006B (en) | Preparation method of composite zeolite with core/shell structure | |
CN104043477A (en) | ZSM-5/MCM-48 composite molecular sieve, preparation method and application thereof | |
JP2017518250A (en) | Molecular sieve SSZ-99 | |
CN104211086A (en) | ZSM-5 zeolite molecular sieve and preparation method thereof | |
CN108441245B (en) | A kind of modified composite molecular sieve and its preparation method and use | |
US10287172B2 (en) | Preparation method for beta zeolite | |
CN1557707A (en) | Method for preparing Fe-ZSM-5 zeolite microspheres with diatomite as raw material | |
CN108275698A (en) | A kind of Beta/ZSM-12 symbiosis zeolite molecular sieve and preparation method thereof | |
CN107416859A (en) | A kind of preparation method and application of step hole Beta molecular sieves | |
CN107297220B (en) | A kind of worm-like mesoporous Al2O3/molecular sieve composite material and preparation method thereof | |
KR101925360B1 (en) | Molecular sieve ssz-87 composition of matter and synthesis thereof | |
Lv et al. | Al-rich Cu-SSZ-13 zeolite synthesized by interconversion from Y: Crystallization process resolution and application in the selective catalytic reduction of NO with NH3 | |
CN108117089A (en) | A kind of chabazite molecular sieve and its application | |
CN102502685A (en) | Preparation method of mesoporous LTA zeolite | |
CN109694086B (en) | Preparation method of nano ZSM-5 zeolite molecular sieve aggregate | |
CN102060310A (en) | Preparation method of molecular sieve containing ZSM-5 zeolite secondary structure unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141126 Termination date: 20151115 |
|
EXPY | Termination of patent right or utility model |