CN103066074A - Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof - Google Patents
Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof Download PDFInfo
- Publication number
- CN103066074A CN103066074A CN2011103228938A CN201110322893A CN103066074A CN 103066074 A CN103066074 A CN 103066074A CN 2011103228938 A CN2011103228938 A CN 2011103228938A CN 201110322893 A CN201110322893 A CN 201110322893A CN 103066074 A CN103066074 A CN 103066074A
- Authority
- CN
- China
- Prior art keywords
- layer
- charge trapping
- dielectric
- memory
- trapping layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title description 5
- 229910052814 silicon oxide Inorganic materials 0.000 title description 2
- 230000015654 memory Effects 0.000 claims abstract description 67
- 230000005641 tunneling Effects 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 16
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000003989 dielectric material Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 17
- 230000004888 barrier function Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 125000006850 spacer group Chemical group 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 118
- 229910052581 Si3N4 Inorganic materials 0.000 description 22
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000000969 carrier Substances 0.000 description 13
- 238000003860 storage Methods 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PNBPGDKNNUJQGC-UHFFFAOYSA-N [Si].[Si].O=[Si]=O Chemical compound [Si].[Si].O=[Si]=O PNBPGDKNNUJQGC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003949 trap density measurement Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明涉及半导体电荷捕捉存储器领域,公开了一种具有双层电介质电荷捕获层的DC-SONOS非易失性存储器,包括具有沟道表面的沟道的半导体衬底,与沟道邻近的源端和漏端;栅极;介于栅极和沟道表面之间的介电叠层;以及位于栅极及介电叠层两侧的边墙。介电叠层包括:与沟道表面接触的隧穿层;叠加于隧穿层上方的电荷捕获层;电荷捕获层为双层电介质的复合结构;叠加于电荷捕获层上方的阻挡层,与栅极接触。其中,电荷捕获层包括:与隧穿层接触的第一层电介质,其成分为Si3N4,厚度为1-30?;邻近第一层的第二层电介质,其成分为SiN,厚度为1-50?。本发明具有双层电介质电荷捕获层的DC-SONOS存储器改善了传统SONOS非易失性存储器的性能,提高存储器的数据保持特性,有利于获得在工作条件较恶劣下仍保持较高数据保持特性的存储器。
The invention relates to the field of semiconductor charge trapping memory, and discloses a DC-SONOS nonvolatile memory with a double-layer dielectric charge trapping layer, including a semiconductor substrate with a channel on a channel surface, and a source end adjacent to the channel and the drain terminal; the gate; a dielectric stack between the gate and the surface of the channel; and spacers on both sides of the gate and the dielectric stack. The dielectric stack includes: a tunneling layer in contact with the surface of the channel; a charge trapping layer stacked above the tunneling layer; the charge trapping layer is a composite structure of double-layer dielectric; a barrier layer stacked above the charge trapping layer, and a gate pole contact. Wherein, the charge trapping layer includes: the first layer of dielectric contacting the tunneling layer, its composition is Si 3 N 4 , and its thickness is 1-30 Å; the second layer of dielectric adjacent to the first layer, its composition is SiN, its thickness is 1-50?. The DC-SONOS memory with the double-layer dielectric charge trapping layer of the present invention improves the performance of the traditional SONOS non-volatile memory, improves the data retention characteristics of the memory, and is beneficial to obtain a higher data retention characteristic under relatively harsh working conditions. memory.
Description
技术领域 technical field
本发明涉及半导体电荷捕捉存储器领域,尤其涉及一种具有双层电介质电荷捕获层的DC-SONOS存储器及其制备方法。 The invention relates to the field of semiconductor charge trapping memory, in particular to a DC-SONOS memory with a double-layer dielectric charge trapping layer and a preparation method thereof.
背景技术 Background technique
在半导体存储器领域,闪存是非易失性存储器技术中的一种,传统闪存利用浮动栅极作为电荷存储单元,但随着闪存技术的不断发展,存储密度不断增大,浮动栅极之间的距离减小,相邻浮动栅极的存储电荷之间会产生相互影响,对浮栅闪存技术而言,这就阻碍了存储密度的增加。而SONOS (硅一二氧化硅一氮化硅一二氧化硅一硅)存储器采用绝缘的电荷捕捉层来取代浮动栅极,完全避免了存储电荷之间的相互影响,同时它还以其独特的ONO结构,使得闪存具有稳定性好、可靠性高、低功耗、抗辐照能力强以及易与标准CMOS工艺兼容等特点被认为是最具潜力的高密度存储器技术。另外,与其他嵌入式非易失性存储器(NVM)技术相比,SONOS制备工艺所需的掩膜较少,具有更高的性价比;该技术还继承了闪存技术几十年积累的成果,具有可靠性好、集成度高和与基底CMOS工艺兼容的特点;同时其ONO结构的特殊性及离散电荷存储等技术,使得SONOS技术能够实现的存储器单元及可靠性能不断提高。 In the field of semiconductor memory, flash memory is a kind of non-volatile memory technology. Traditional flash memory uses floating gates as charge storage units. However, with the continuous development of flash memory technology, the storage density continues to increase, and the distance between floating gates If it is reduced, there will be mutual influence between the stored charges of adjacent floating gates, which hinders the increase of storage density for floating gate flash memory technology. The SONOS (silicon-silicon dioxide-silicon nitride-silicon dioxide-silicon) memory uses an insulating charge trapping layer to replace the floating gate, completely avoiding the interaction between the stored charges, and it also has its unique The ONO structure makes flash memory have the characteristics of good stability, high reliability, low power consumption, strong radiation resistance, and easy compatibility with standard CMOS processes. It is considered to be the most potential high-density memory technology. In addition, compared with other embedded non-volatile memory (NVM) technologies, the SONOS manufacturing process requires fewer masks and is more cost-effective; this technology also inherits the achievements of flash memory technology accumulated over decades, with The characteristics of good reliability, high integration and compatibility with the substrate CMOS process; at the same time, the particularity of its ONO structure and discrete charge storage technologies make the memory cells and reliability performance that can be realized by SONOS technology continuously improved.
图1A所示为现有技术的SONOS型非易失性存储器的横截面示意图。其结构包括衬底1,源端漏端2,栅极3,在栅极和衬底之间的介电叠层4,以及边墙5。其中,如图1B所示存储器的介电叠层4中自上而下分别为电荷阻挡层(SiO2)4-1,电荷捕获层(Si3N4)4-2,隧穿层(SiO2)4-3。
FIG. 1A is a schematic cross-sectional view of a prior art SONOS non-volatile memory. Its structure includes a
现有“SONOS”型存储器是指电荷捕获层为单一介质和单一结构的非易失性存储器器件,存储器的结构从下到上依次为硅衬底、二氧化硅隧穿层、氮化硅电荷存储层(电荷捕获层)、二氧化硅电荷阻挡层和栅极。在室温下,传统SONOS存储器的电荷丢失主要由P/E循环在隧穿层二氧化硅中引入的缺陷引起;随着工作温度的升高,这一因素的影响逐渐下降,电荷捕获层氮化硅中的空穴垂直输运和空穴堆积成为传统SONOS存储器的电荷丢失的主要因素。在高温(大于等于250摄氏度)恶劣环境下存在对数据保持有着极高要求的特殊存储装置。传统SONOS器件因其单一的电荷捕获层结构而无法提供足够的数据保持性能。 The existing "SONOS" type memory refers to a non-volatile memory device in which the charge trapping layer is a single medium and a single structure. The structure of the memory is silicon substrate, silicon dioxide tunneling layer, silicon nitride charge layer from bottom to top. Storage layer (charge trapping layer), silicon dioxide charge blocking layer and gate. At room temperature, the charge loss of traditional SONOS memory is mainly caused by the defects introduced in the tunneling layer silicon dioxide by the P/E cycle; as the operating temperature increases, the influence of this factor gradually decreases, and the charge trapping layer nitride Hole vertical transport and hole accumulation in silicon become the main factors of charge loss in conventional SONOS memory. In the harsh environment of high temperature (greater than or equal to 250 degrees Celsius), there are special storage devices that have extremely high requirements for data retention. Conventional SONOS devices cannot provide sufficient data retention performance due to their single charge-trapping layer structure.
本发明克服了现有技术的电荷捕获层为单一结构的局限,提出了一种具有双层电介质电荷捕获层的DC-SONOS存储器,通过改变器件结构提高存储器的数据保持特性,有利于获得在工作条件较恶劣下仍保持较高数据保持特性的SONOS非易失性存储器。同时,本发明存储器的两层电荷捕获层分别通过LPCVD和PECVD两种方法制备得到,下层的氮化硅使用LPCVD工艺淀积而成,薄膜质量高,可以改善器件的擦写速度及抗擦写能力;上层的氮化硅使用PECVD工艺淀积而成,缺陷密度增加,有利于电荷的捕获;因此改进了本发明DC-SONOS型非易失性存储器的性能。 The present invention overcomes the limitation that the charge trapping layer of the prior art is a single structure, and proposes a DC-SONOS memory with a double-layer dielectric charge trapping layer. By changing the device structure, the data retention characteristics of the memory are improved, which is beneficial to obtain SONOS non-volatile memory that maintains high data retention characteristics under harsh conditions. At the same time, the two layers of charge trapping layers of the memory of the present invention are prepared by LPCVD and PECVD respectively, and the silicon nitride of the lower layer is deposited by LPCVD process, and the film quality is high, which can improve the erasing speed and erasing resistance of the device. Ability; the upper layer of silicon nitride is deposited by PECVD process, and the defect density is increased, which is beneficial to the trapping of charges; therefore, the performance of the DC-SONOS non-volatile memory of the present invention is improved.
发明内容 Contents of the invention
本发明提出了一种具有双层电介质电荷捕获层的DC-SONOS存储器,包括: The present invention proposes a DC-SONOS memory with a double-layer dielectric charge trapping layer, comprising:
半导体衬底,包括具有沟道表面的沟道,以及与所述沟道邻近的源端和漏端; a semiconductor substrate including a channel having a channel surface, and source and drain terminals adjacent to the channel;
栅极; grid;
介于所述栅极和所述沟道表面之间的介电叠层;以及 a dielectric stack between the gate and the channel surface; and
位于所述栅极及介电叠层两侧的边墙; sidewalls on both sides of the gate and dielectric stack;
其中,所述介电叠层包括: Wherein, the dielectric stack includes:
隧穿层,与所述沟道表面接触; a tunneling layer in contact with the channel surface;
叠加于所述隧穿层上方的电荷捕获层;所述电荷捕获层为双层电介质的复合结构; A charge trapping layer stacked above the tunneling layer; the charge trapping layer is a composite structure of double-layer dielectrics;
叠加于所述电荷捕获层上方的阻挡层,与所述栅极接触。 A blocking layer overlying the charge trapping layer is in contact with the gate.
其中,所述电荷捕获层包括: Wherein, the charge trapping layer comprises:
与所述隧穿层接触的第一层电介质,其成分为Si3N4,厚度为1-30Å; The first dielectric layer in contact with the tunneling layer is composed of Si 3 N 4 and has a thickness of 1-30Å;
邻近所述第一层的第二层电介质,其成分为SiN,厚度为1-50Å。 A second layer of dielectric adjacent to the first layer is composed of SiN and has a thickness of 1-50Å.
本发明还提出了一种所述的DC-SONOS存储器的制备方法,在所述半导体衬底上方干氧氧化形成所述隧穿层,再于所述隧穿层上方形成所述电荷捕获层,采用LPCVD工艺于所述电荷捕获层上方形成阻挡层,再采用LPCVD工艺在所述阻挡层上方形成栅极,在所述栅极两侧形成边墙,最后自对准离子注入形成源端和漏端。其中,电荷捕获层中第一层电介质采用PECVD工艺于300-500℃温度下淀积制备而成,第二层电介质采用LPCVD工艺于500-900℃温度下淀积制备而成。 The present invention also proposes a preparation method of the DC-SONOS memory, wherein the tunneling layer is formed by dry oxygen oxidation above the semiconductor substrate, and then the charge trapping layer is formed above the tunneling layer, A barrier layer is formed above the charge trapping layer by LPCVD, a gate is formed above the barrier layer by LPCVD, sidewalls are formed on both sides of the gate, and source and drain are finally formed by self-aligned ion implantation end. Among them, the first layer of dielectric in the charge trapping layer is prepared by depositing PECVD at a temperature of 300-500°C, and the second layer of dielectric is deposited by LPCVD at a temperature of 500-900°C.
本发明“DC-SONOS”是指Double Capture-SONOS型存储器,是将双层介质结构“四氮化三硅-氮化硅”作为电荷捕获层的存储器。 The "DC-SONOS" of the present invention refers to a Double Capture-SONOS memory, which is a memory that uses a double-layer dielectric structure "silicon tetranitride-silicon nitride" as a charge trapping layer.
本发明在现有的SONOS型非易失性存储器器件结构的基础上提出了一种具有双层电介质电荷捕获层的DC-SONOS存储器。本发明不仅对双层电介质电荷捕获层采用不同的制造工艺,还能获得更好的数据保持特性,使得器件能够在恶劣的环境条件下工作。同时,传统的SONOS存储器中,当其氮化硅电荷捕获层厚度小于7nm以后,其数据保留特性和对载流子的捕获能力都随电荷捕获层厚度的减小而降低,当氮化硅电荷捕获层厚度降到大约3nm时,其数据保留特性和对载流子的捕获率几乎可以忽略。本发明通过采用双层电介质电荷捕获层,提高了存储器数据保留特性和对载流子的捕获能力。 The invention proposes a DC-SONOS memory with a double-layer dielectric charge trapping layer on the basis of the existing SONOS type non-volatile memory device structure. The invention not only adopts different manufacturing processes for the double-layer dielectric charge trapping layer, but also can obtain better data retention characteristics, so that the device can work under severe environmental conditions. At the same time, in the traditional SONOS memory, when the thickness of the silicon nitride charge trapping layer is less than 7nm, its data retention characteristics and the ability to capture carriers decrease with the decrease of the thickness of the charge trapping layer. When the thickness of the trapping layer is reduced to about 3nm, its data retention characteristics and carrier trapping rate are almost negligible. The invention improves the data retention characteristics of the memory and the ability to capture carriers by adopting a double-layer dielectric charge trapping layer.
本发明在SONOS型非易失性存储器器件结构的基础上提出了针对电荷捕获层结构的改进技术,即具有双层电介质电荷捕获层结构的DC-SONOS非易失性存储器。与现有技术相比,本发明具有双层电介质电荷捕获层的DC-SONOS存储器克服了传统SONOS存储器在高温等恶劣环境工作时数据保持特性不足的问题。传统SONOS器件电荷捕获层的制备中只采用了LPCVD方法,具有双层电介质复合电荷捕获结构,两层电荷捕获层分别通过LPCVD和PECVD两种方法制备得到,下层的氮化硅使用LPCVD淀积而成,薄膜质量高,可以改善器件的擦写速度及抗擦写能力;而上层的氮化硅使用PECVD淀积而成,缺陷密度增加,有利于电荷的捕获;因此改进了本发明DC-SONOS型非易失性存储器的性能。同时,本发明复合电荷捕获层中两层氮化硅之间的界面存在较多缺陷,有利于更多电荷的存储,同时抑制高温下空穴的垂直输运,可以减缓电荷泄露,提高器件的数据保持特性。 The invention proposes an improved technology for the structure of the charge trapping layer based on the device structure of the SONOS type nonvolatile memory, that is, a DC-SONOS nonvolatile memory with a double-layer dielectric charge trapping layer structure. Compared with the prior art, the DC-SONOS memory with the double-layer dielectric charge trapping layer of the present invention overcomes the problem of insufficient data retention characteristics of the traditional SONOS memory when it works in harsh environments such as high temperature. Only LPCVD method is used in the preparation of the charge trapping layer of traditional SONOS devices. It has a double-layer dielectric compound charge trapping structure. The two charge trapping layers are prepared by LPCVD and PECVD respectively. The lower silicon nitride is deposited by LPCVD. The high-quality film can improve the erasing speed and anti-erasing ability of the device; while the upper layer of silicon nitride is deposited by PECVD, the defect density increases, which is conducive to the capture of charges; therefore, the DC-SONOS of the present invention is improved. type non-volatile memory performance. At the same time, there are many defects in the interface between the two layers of silicon nitride in the composite charge trapping layer of the present invention, which is conducive to the storage of more charges, and at the same time inhibits the vertical transport of holes at high temperatures, which can slow down the charge leakage and improve the performance of the device. Data retention characteristics.
附图说明 Description of drawings
图1A为传统SONOS型非易失性存储器的横截面示意图。 FIG. 1A is a schematic cross-sectional view of a conventional SONOS type non-volatile memory.
图1B为传统SONOS型非易失性存储器中介电叠层的放大示意图。 FIG. 1B is an enlarged schematic diagram of a dielectric stack in a conventional SONOS type non-volatile memory.
图2为本发明具有双层电介质电荷捕获层的DC-SONOS存储器。其中,图2A为本发明存储器的横截面示意图,图2B为本发明存储器中介电叠层的放大示意图。 FIG. 2 is a DC-SONOS memory with a double-layer dielectric charge trapping layer according to the present invention. 2A is a schematic cross-sectional view of the memory of the present invention, and FIG. 2B is an enlarged schematic view of the dielectric stack in the memory of the present invention.
具体实施方式 Detailed ways
结合以下具体实施例和附图,对本发明作进一步的详细说明,本发明的保护内容不局限于以下实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。 The present invention will be described in further detail in conjunction with the following specific examples and accompanying drawings, and the protection content of the present invention is not limited to the following examples. Without departing from the spirit and scope of the inventive concept, changes and advantages conceivable by those skilled in the art are all included in the present invention, and the appended claims are the protection scope.
如图2所示,1-半导体衬底,2-源端和漏端,3-栅极,5-边墙,6-本发明DC-SONOS型存储器的介电叠层,6-1介电叠层中的阻挡层,6-2介电叠层中的复合电荷捕获层,6-2a复合电荷捕获层中的第一层电介质,6-2b复合电荷捕获层中的第二层电介质,6-3介电叠层中的隧穿层。 As shown in Figure 2, 1-semiconductor substrate, 2-source terminal and drain terminal, 3-gate, 5-sidewall, 6-dielectric stack of DC-SONOS type memory of the present invention, 6-1 dielectric Barrier layer in stack, 6-2 Composite charge trapping layer in dielectric stack, 6-2a First dielectric layer in composite charge trapping layer, 6-2b Second dielectric layer in composite charge trapping layer, 6 -3 Tunneling layers in the dielectric stack.
如图2所示,本发明具有双层电介质电荷捕获层的DC-SONOS存储器,包括:半导体衬底1,其上具有沟道表面的沟道,及与所述沟道邻近的源端和漏端2;栅极3;介于栅极3和沟道表面之间的介电叠层6;以及分别位于栅极3及介电叠层6两侧的一对边墙5,边墙5与源端2、漏端2连接。
As shown in Figure 2, the present invention has the DC-SONOS memory of double-layer dielectric charge trapping layer, comprises:
其中,介电叠层包括:隧穿层6-3,与沟道表面接触;叠加于隧穿层6-3上方的电荷捕获层6-2;电荷捕获层6-2为双层电介质的复合结构;叠加于电荷捕获层6-2上方的阻挡层6-1,与所述栅极3接触。
Among them, the dielectric stack includes: a tunneling layer 6-3, which is in contact with the surface of the channel; a charge trapping layer 6-2 superimposed on the tunneling layer 6-3; the charge trapping layer 6-2 is a composite of a double-layer dielectric Structure; a blocking layer 6-1 stacked on the charge trapping layer 6-2, and in contact with the
其中,电荷捕获层6-2包括:与隧穿层接触的第一层电介质6-2a,其成分为Si3N4,厚度为1-30Å;邻近第一层的第二层电介质6-2b,其成分为SiN,厚度为1-50Å。 Among them, the charge trapping layer 6-2 includes: a first layer of dielectric 6-2a in contact with the tunneling layer, the composition of which is Si 3 N 4 , and a thickness of 1-30Å; a second layer of dielectric 6-2b adjacent to the first layer , whose composition is SiN, with a thickness of 1–50Å.
与传统SONOS型非易失性存储器相比,本发明具有双层电介质电荷捕获层的DC-SONOS存储器的新颖之处在于复合电荷捕获层6-2。传统SONOS型非易失性存储器器件结构中使用了简单的Si3N4,而本发明提供的新颖结构SONOS型非易失性存储器器件使用了Si3N4和SiN的双层复合介质的电荷捕获层。 Compared with the traditional SONOS type non-volatile memory, the novelty of the DC-SONOS memory with double dielectric charge trapping layer of the present invention lies in the composite charge trapping layer 6-2. Simple Si3N4 is used in the traditional SONOS nonvolatile memory device structure, but the novel structure SONOS nonvolatile memory device provided by the present invention uses a charge trapping layer of a double-layer composite dielectric of Si3N4 and SiN.
实施例1: Example 1:
本实施例提供一种本发明存储器的具体制备方法。 This embodiment provides a specific preparation method of the memory of the present invention.
首先提供半导体衬底1,然后在衬底上方干氧氧化形成一层SiO2,该层厚度为54Å,为隧穿层6-3。之后再先后使用LPCVD技术形成20Å的Si3N4,即为第一层电介质6-2a。再在其上方使用PECVD技术形成一层SiN,即为第二层电介质6-2b,厚度为40 Å ,这两层共同组成复合电荷捕获层6-2。再使用LPCVD技术在电荷捕获层上方形成一层60Å 的SiO2阻挡层6-1。然后在其上方用LPCVD形成栅极3,并在栅极3两侧形成边墙5。最后自对准离子注入形成源端和漏端2。
First, a
本发明的DC-SONOS存储器在实际使用中,当有偏压时,载流子从硅衬底经过二氧化硅隧穿层注入到氮化硅层中,其中载流子首先被隧穿层二氧化硅与电荷捕捉层氮化硅之间所形成的表面陷阱所捕获,然后再将剩下的载流子注入到电荷捕捉层中,由于电荷捕捉层中的陷阱电荷的数量较多,大部分的载流子都存储在电荷捕捉层中,表面陷阱所捕获的载流子几乎可以忽略。在本发明DC-SONOS存储器的双层电介质复合电荷捕获结构中,下层的氮化硅使用LPCVD淀积而成,薄膜质量高,可以改善器件的擦写速度及抗擦写能力;而上层的Si3N4氮化硅使用PECVD淀积而成,PECVD技术制造氮化硅时所需温度较低,厚度不受任何限制,氮化硅中还可能含有少量的氢杂质,氮化硅的理想配比也不会像LPCVD的结果那样理想,因此缺陷密度增加,有利于电荷的捕获;同时,与传统存储器中单层氮化硅相比,本发明中两层氮化硅之间的界面存在较多缺陷,这就大大增加了载流子的捕获能力和载流子的存储能力。无偏压时,载流子很难越过二氧化硅隧穿层的势垒高度,陷阱辅助隧穿成为主要的漏电机制,陷阱辅助隧穿的陷阱大多数浅的表面陷阱,而两层氮化硅所引进的陷阱都是深陷阱,载流子的陷阱辅助隧穿很困难,抑制了高温下载流子的垂直输运,可以减缓电荷泄露,提高器件的数据保持特性。 In actual use of the DC-SONOS memory of the present invention, when there is a bias voltage, carriers are injected from the silicon substrate into the silicon nitride layer through the silicon dioxide tunneling layer, wherein the carriers are firstly injected into the silicon nitride layer by the tunneling layer two The surface traps formed between silicon oxide and the charge trapping layer silicon nitride are trapped, and then the remaining carriers are injected into the charge trapping layer. Due to the large number of trap charges in the charge trapping layer, most The carriers are all stored in the charge trapping layer, and the carriers trapped by the surface traps are almost negligible. In the double-layer dielectric compound charge trapping structure of the DC-SONOS memory of the present invention, the silicon nitride of the lower layer is deposited using LPCVD, and the film quality is high, which can improve the erasing speed and anti-erasing ability of the device; 3 N 4 silicon nitride is deposited by PECVD. The temperature required for the manufacture of silicon nitride by PECVD technology is low, and the thickness is not subject to any restrictions. Silicon nitride may also contain a small amount of hydrogen impurities. The ideal match for silicon nitride The ratio will not be as ideal as the result of LPCVD, so the defect density increases, which is conducive to the trapping of charges; at the same time, compared with the single-layer silicon nitride in the traditional memory, the interface between the two layers of silicon nitride in the present invention is relatively small. Multiple defects, which greatly increase the carrier capture ability and carrier storage ability. When there is no bias voltage, it is difficult for carriers to cross the barrier height of the silicon dioxide tunneling layer, and trap-assisted tunneling becomes the main leakage mechanism. Most of the traps for trap-assisted tunneling are shallow surface traps, and the two layers of nitride The traps introduced by silicon are all deep traps, and the trap-assisted tunneling of carriers is very difficult, which inhibits the vertical transport of carriers at high temperatures, can slow down charge leakage, and improve the data retention characteristics of devices.
与传统SONOS型非易失性存储器相比,本发明具有双层电介质电荷捕获层,该结构增加了有效陷阱密度,其陷阱数提高了5倍左右,载流子的存储量也增加了3倍,操作窗口也增大了大约1V。对于传统的SONOS存储器,操作窗口大于0.5V就能正常工作,因此增加了的1V操作窗口大大地改善了存储器数据保留特性,本发明存储器在极其恶劣的120℃高温环境下也具有超过10年的数据保持能力,同时由于载流子存储量的增加,少量丢失的载流子与所存储的总的载流子相比完全可以忽略,本发明存储器的工作稳定性及抗擦写能力均有所提高本发明存储器可应用在一些对存储器性能要求非常高的领域中。对于传统SONOS型非易失性存储器,虽然氮化硅电荷存储存厚度大于7nm时具有比较理想的电荷捕获能力,但是当其厚度不断减小时其电荷捕获能力急剧下降,数据保留特性也很低,当其厚度下降到3nm左右时其电荷捕获能力和数据保留能力几乎可以忽略。而同时随着微电子技术的不断发展,芯片集成度得不断提高,对于存储器来说其器件的横向和纵向尺寸都不断缩小,因此传统SONOS器件无法克服随着器件尺寸不断减小所带来的可靠性问题,而本发明的DC-SONOS存储器在器件尺寸不断缩小时还具有非常好的数据保留特性和电荷捕获能力,是未来存储器发展的最佳选择。 Compared with the traditional SONOS non-volatile memory, the present invention has a double-layer dielectric charge trapping layer, the structure increases the effective trap density, the number of traps is increased by about 5 times, and the storage capacity of carriers is also increased by 3 times , the operating window is also increased by about 1V. For traditional SONOS memory, the operating window is greater than 0.5V to work normally, so the increased 1V operating window greatly improves the data retention characteristics of the memory, and the memory of the present invention also has a lifespan of more than 10 years in the extremely harsh 120°C high temperature environment At the same time, due to the increase of carrier storage capacity, a small amount of lost carriers can be completely ignored compared with the total stored carriers. The working stability and anti-erasing ability of the memory of the present invention are improved. Improving the memory of the present invention can be applied in some fields that require very high performance of the memory. For traditional SONOS non-volatile memory, although silicon nitride charge storage has an ideal charge capture capability when its thickness is greater than 7nm, its charge capture capability drops sharply when its thickness decreases, and its data retention characteristics are also very low. When its thickness drops to about 3nm, its charge trapping ability and data retention ability are almost negligible. At the same time, with the continuous development of microelectronics technology and the continuous improvement of chip integration, the horizontal and vertical dimensions of memory devices are constantly shrinking. Therefore, traditional SONOS devices cannot overcome the problems brought about by the continuous reduction in device size. Reliability issues, and the DC-SONOS memory of the present invention also has very good data retention characteristics and charge capture capabilities when the device size is continuously reduced, and is the best choice for future memory development.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103228938A CN103066074A (en) | 2011-10-21 | 2011-10-21 | Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103228938A CN103066074A (en) | 2011-10-21 | 2011-10-21 | Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103066074A true CN103066074A (en) | 2013-04-24 |
Family
ID=48108626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103228938A Pending CN103066074A (en) | 2011-10-21 | 2011-10-21 | Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103066074A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105552081A (en) * | 2016-01-22 | 2016-05-04 | 清华大学 | Charge trap type memory and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981403A (en) * | 1997-11-24 | 1999-11-09 | Lucent Technologies, Inc. | Layered silicon nitride deposition process |
CN1832201A (en) * | 2005-02-16 | 2006-09-13 | 三星电子株式会社 | Nonvolatile memory device with multiple trapping films |
US20070170495A1 (en) * | 2006-01-23 | 2007-07-26 | Toshiyuki Mine | Non-volatile semiconductor storage device and manufacturing method of the same |
CN101017853A (en) * | 2006-02-11 | 2007-08-15 | 三星电子株式会社 | Non-volatile memory element having double trap layers |
CN101211924A (en) * | 2006-12-28 | 2008-07-02 | 中芯国际集成电路制造(上海)有限公司 | Non-volatile memorizer erasing method |
CN101364615A (en) * | 2007-08-08 | 2009-02-11 | 旺宏电子股份有限公司 | Nonvolatile memory and method for forming nonvolatile memory |
CN101383378A (en) * | 2007-09-05 | 2009-03-11 | 中国科学院微电子研究所 | Non-volatile memory with multi-layer nanocrystalline floating gate structure and its preparation method |
US20110248332A1 (en) * | 2007-05-25 | 2011-10-13 | Sagy Levy | Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers |
TWI392063B (en) * | 2005-08-31 | 2013-04-01 | Samsung Electronics Co Ltd | Method for manufacturing charge trapping dielectric and method for fabricating non-volatile semiconductor device of cerium-oxide-nitride-oxide-germanium (SONOS) type |
-
2011
- 2011-10-21 CN CN2011103228938A patent/CN103066074A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981403A (en) * | 1997-11-24 | 1999-11-09 | Lucent Technologies, Inc. | Layered silicon nitride deposition process |
CN1832201A (en) * | 2005-02-16 | 2006-09-13 | 三星电子株式会社 | Nonvolatile memory device with multiple trapping films |
TWI392063B (en) * | 2005-08-31 | 2013-04-01 | Samsung Electronics Co Ltd | Method for manufacturing charge trapping dielectric and method for fabricating non-volatile semiconductor device of cerium-oxide-nitride-oxide-germanium (SONOS) type |
US20070170495A1 (en) * | 2006-01-23 | 2007-07-26 | Toshiyuki Mine | Non-volatile semiconductor storage device and manufacturing method of the same |
CN101017853A (en) * | 2006-02-11 | 2007-08-15 | 三星电子株式会社 | Non-volatile memory element having double trap layers |
CN101211924A (en) * | 2006-12-28 | 2008-07-02 | 中芯国际集成电路制造(上海)有限公司 | Non-volatile memorizer erasing method |
US20110248332A1 (en) * | 2007-05-25 | 2011-10-13 | Sagy Levy | Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers |
CN101364615A (en) * | 2007-08-08 | 2009-02-11 | 旺宏电子股份有限公司 | Nonvolatile memory and method for forming nonvolatile memory |
CN101383378A (en) * | 2007-09-05 | 2009-03-11 | 中国科学院微电子研究所 | Non-volatile memory with multi-layer nanocrystalline floating gate structure and its preparation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105552081A (en) * | 2016-01-22 | 2016-05-04 | 清华大学 | Charge trap type memory and preparation method thereof |
CN105552081B (en) * | 2016-01-22 | 2018-12-04 | 清华大学 | Charge trap-type memory and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6872621B2 (en) | Memory cells, integrated structures and memory arrays | |
CN102208442B (en) | Gate stack structure suitable for semiconductor flash memory device and manufacturing method of gate stack structure | |
TWI615982B (en) | SONOS stacked memory components with separate nitride memory layers and associated fabrication processes | |
CN102315174B (en) | SONOS flash memories containing separate gate structures and preparation method thereof, operational approach | |
CN105448930A (en) | Non-volatile memory assembly and manufacturing method thereof | |
US20050167734A1 (en) | Flash memory devices using large electron affinity material for charge trapping | |
KR20110064551A (en) | Vertical NAND Flash Memory Devices with Oxide Semiconductor Channels | |
CN102479823B (en) | Vertical NROM storage structure and preparation method thereof | |
WO2010087265A1 (en) | Nonvolatile semiconductor storage device and method for manufacturing same | |
CN101364615B (en) | Nonvolatile memory and method of forming nonvolatile memory | |
JPWO2008146760A1 (en) | Storage element and reading method thereof | |
JP2011222932A (en) | Nonvolatile memory array having continuous charge storage dielectric stack | |
CN105514043A (en) | Non-volatile memory manufacturing method and non-volatile memory | |
CN102468342A (en) | Semiconductor memory unit, semiconductor memory device and preparation method of semiconductor memory unit | |
US8659071B2 (en) | Method and structure to improve the erasing speed operation of SONOS memory device having a graded silicon nitride layer | |
JP5438300B2 (en) | Method for manufacturing nonvolatile semiconductor memory device | |
CN103066074A (en) | Double capture-silicon oxide nitride oxide semiconductor (SONOS) memorizer with double layer dielectric charge trapping layer and preparation method thereof | |
CN102315223A (en) | High performance planar floating gate flash memory device structure and manufacturing method thereof | |
CN103247629A (en) | Nonvolatile memory and preparation method thereof | |
CN101814505A (en) | A multi-layer floating gate non-volatile memory structure and its manufacturing method | |
WO2008069325A1 (en) | Semiconductor storage device and semiconductor device | |
US20110018049A1 (en) | Charge trapping device and method for manufacturing the same | |
Sim et al. | Self aligned trap-shallow trench isolation scheme for the reliability of TANOS (TaN/AlO/SiN/Oxide/Si) NAND flash memory | |
JP2010161154A (en) | Semiconductor storage device and method of manufacturing the same | |
US20130181279A1 (en) | Sonos structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130424 |