CN103064294A - Chemical process decoupling non-minimal realization expansion state space quadric form control method - Google Patents
Chemical process decoupling non-minimal realization expansion state space quadric form control method Download PDFInfo
- Publication number
- CN103064294A CN103064294A CN2013100181093A CN201310018109A CN103064294A CN 103064294 A CN103064294 A CN 103064294A CN 2013100181093 A CN2013100181093 A CN 2013100181093A CN 201310018109 A CN201310018109 A CN 201310018109A CN 103064294 A CN103064294 A CN 103064294A
- Authority
- CN
- China
- Prior art keywords
- matrix
- output
- input
- model
- state space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000001311 chemical methods and process Methods 0.000 title claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 51
- 239000011159 matrix material Substances 0.000 claims description 45
- 239000002131 composite material Substances 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004939 coking Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
技术领域 technical field
本发明属于自动化技术领域,涉及一种化工过程解耦非最小实现扩展状态空间二次型控制方法。 The invention belongs to the technical field of automation, and relates to a chemical process decoupling non-minimum realization expansion state space quadratic control method.
背景技术 Background technique
化工过程是我国流程工业过程的重要组成部分,其要求是供给合格的工业产品,以满足我国工业发展的需要。作为工业生产的一个重要主体,流程工业生产过程水平的提高对整个工业经济效益的提高起着至关重要的作用。为此,生产过程的各个主要工艺参数必须严格控制。随着工业的发展以及对产品的质量、能源消耗和环境保护的要求越来越高,对工业过程的控制精度要求也越来越严格,传统的控制方法虽满足了一定的要求,但难以进一步提升控制水平,加上工艺过程变得更加复杂。简单的单回路过程控制已经无法满足控制精度和平稳性的要求,产品合格率低,装置效率低下。而目前实际工业中控制基本上采用传统的简单的控制手段,控制参数完全依赖技术人员经验,使生产成本增加,控制效果很不理想。我国化工过程控制与优化技术比较落后,能耗居高不下,控制性能差,自动化程度低,很难适应节能减排以及间接环境保护的需求,这其中直接的影响因素之一便是系统的控制方案问题。 The chemical process is an important part of my country's process industry process, and its requirement is to supply qualified industrial products to meet the needs of my country's industrial development. As an important subject of industrial production, the improvement of the production process level of the process industry plays a vital role in the improvement of the economic benefits of the entire industry. For this reason, each main process parameter of the production process must be strictly controlled. With the development of industry and the higher and higher requirements for product quality, energy consumption and environmental protection, the requirements for control precision of industrial processes are becoming more and more stringent. Although traditional control methods meet certain requirements, it is difficult to further improve Increased levels of control coupled with more complex processes. The simple single-loop process control can no longer meet the requirements of control accuracy and stability, the product qualification rate is low, and the device efficiency is low. At present, the control in the actual industry basically adopts traditional simple control methods, and the control parameters are completely dependent on the experience of technicians, which increases the production cost and the control effect is not ideal. my country's chemical process control and optimization technology is relatively backward, with high energy consumption, poor control performance, and low degree of automation. It is difficult to meet the needs of energy conservation, emission reduction, and indirect environmental protection. One of the direct influencing factors is the control of the system. program problem.
发明内容 Contents of the invention
本发明的目标是针对现有的化工过程系统控制技术的不足之处,提供一种化工过程解耦非最小实现扩展状态空间二次型控制方法。该方法弥补了传统控制方式的不足,保证控制具有较高的精度和稳定性的同时,也保证形式简单并满足实际工业过程的需要。 The object of the present invention is to provide a chemical process decoupling non-minimum realization extended state space quadratic control method for the deficiencies of the existing chemical process system control technology. This method makes up for the deficiency of the traditional control method, ensures high precision and stability of the control, and at the same time ensures the simplicity of the form and meets the needs of the actual industrial process.
本发明方法首先基于化工过程模型建立解耦状态空间模型,挖掘出基本的过程特性;然后基于该解耦状态空间模型建立化工过程解耦非最小实现扩展状态空间二次型控制回路;最后通过计算化工过程解耦非最小实现扩展状态空间二次型控制器的参数,将过程对象整体实施解耦非最小实现扩展状态空间二次型控制。 The method of the present invention first establishes a decoupling state space model based on the chemical process model, and digs out the basic process characteristics; then establishes a chemical process decoupling non-minimum realization of the extended state space quadratic control loop based on the decoupling state space model; finally, through calculation Chemical process decoupling non-minimum realizes the parameters of the extended state space quadratic controller, and decouples the process object as a whole to realize the extended state space quadratic control.
本发明的技术方案是通过数据采集、过程处理、预测机理、数据驱动、优化等手段,确立了一种化工过程解耦非最小实现扩展状态空间二次型控制方法,利用该方法可有效提高控制的精度,提高控制平稳度。 The technical solution of the present invention is to establish a chemical process decoupling non-minimum realization expansion state space quadratic control method through data collection, process processing, prediction mechanism, data drive, optimization and other means, which can effectively improve the control Accuracy, improve control smoothness.
本发明方法的步骤包括: The steps of the inventive method comprise:
(1)利用化工过程模型建立解耦状态空间模型,具体方法是: (1) Use the chemical process model to establish a decoupled state space model, the specific method is:
首先采集化工过程的输入输出数据,利用该数据建立输入输出模型如下: First collect the input and output data of the chemical process, and use the data to establish the input and output model as follows:
其中、、分别为输出向量变换、传递函数矩阵、输入向量变换; in , , are the output vectors Transformation, transfer function matrix, input vector transform;
,,,表示过程的各回路传递函数,和分别为第个输入和输出变量的变换,,为计算机控制系统的离散变换算子,为的倒数,为过程的输入输出变量个数,所述的输入输出数据为数据采集器中存储的数据; , , , Represents the transfer function of each loop of the process, and respectively of input and output variables transform, , is the discrete transform operator of the computer control system, for the reciprocal of is the number of input and output variables of the process, and the input and output data is the data stored in the data collector;
进一步对上述方程选取伴随矩阵解耦阵为: Further select the adjoint matrix decoupling matrix for the above equation as:
其中,是伴随矩阵解耦阵,为的伴随矩阵。 in, is the adjoint matrix decoupling matrix, for The adjoint matrix of .
将上述伴随矩阵解耦阵与过程输入输出模型合并得到: Combining the above adjoint matrix decoupling matrix with the process input and output model, we get:
其中,是得到的解耦过程模型,为的行列式,为以的行列式为元素的对角矩阵。 in, is the resulting decoupled process model, for determinant of for The determinant of is a diagonal matrix of elements.
将上述解耦过程模型处理成个单变量过程的离散表示方式: The above decoupled process model is processed into Discrete representation of a univariate process:
其中和分别是第个过程的输出和输入变量,,和分别是和的系数矩阵多项式; in and respectively The output and input variables of a process, , and respectively and The coefficient matrix polynomial of ;
其中是相应的系数,为后移步算子,是得到的模型阶次; in is the corresponding coefficient, to move back step operator, is the obtained model order;
将过程模型通过后移算子处理成过程的状态空间表示方式: Pass the process model through the backward shift operator Processed into a state-space representation of a process:
; ;
其中, 、分别是第时刻的变量值,为第时刻的输入增量变量值,、分别为第时刻的输出变量增量和输入变量增量值,、、分别为对应的状态矩阵、输入矩阵和输出矩阵,为取转置符号。 in, , respectively the value of the variable at time, for the first The input increment variable value at time, , respectively The output variable increment and input variable increment value at time, , , are the corresponding state matrix, input matrix and output matrix respectively, to take the transpose sign.
定义一过程期望输出为,并且输出误差为: Define the expected output of a process as , and the output error for:
进一步得到第时刻的输出误差为: further get the time output error for:
其中,为第时刻的过程期望输出增量。 in, for the first The process expects output increments at moments.
定义一个新的复合状态变量: Defining a new composite state variable:
将上述处理过程综合为一个解耦状态空间模型: Synthesize the above process into a decoupled state-space model:
其中,为第时刻的复合状态变量,、、分别为对应复合状态变量的状态矩阵、输入矩阵和输出矩阵,具体是: in, for the first Composite state variable at time, , , are the state matrix, input matrix and output matrix corresponding to the composite state variable, specifically:
,, , ,
(2)基于该解耦状态空间模型设计解耦非最小实现扩展状态空间二次型控制器,具体方法是: (2) Based on the decoupled state space model, design a decoupled non-minimum quadratic controller with extended state space, the specific method is:
a.定义该解耦非最小实现扩展状态空间二次型控制器的目标函数为: a. Define the objective function of the decoupled non-minimum realization extended state space quadratic controller as:
其中,为目标函数,和分别为状态变量和输出变量的加权矩阵。 in, is the objective function, and are the weighting matrices of state variables and output variables, respectively.
b.计算该解耦非最小实现扩展状态空间二次型控制器的参数,具体是: b. Calculate the parameters of the decoupled non-minimum realization extended state space quadratic controller, specifically:
其中为控制器反馈系数向量。 in is the controller feedback coefficient vector.
本发明提出的一种化工过程解耦非最小实现扩展状态空间二次型控制方法弥补了传统控制的不足,并有效地方便了控制器的设计,保证控制性能的提升,同时满足给定的生产性能指标。 The invention proposes a chemical process decoupling non-minimum realization expansion state space quadratic control method to make up for the shortcomings of traditional control, and effectively facilitate the design of the controller, ensure the improvement of control performance, and meet the given production requirements at the same time Performance.
本发明提出的控制技术可以有效减少理想工艺参数与实际工艺参数之间的误差,进一步弥补了传统控制器的不足,同时保证控制装置操作在最佳状态,使生产过程的工艺参数达到严格控制。 The control technology proposed by the invention can effectively reduce the error between ideal process parameters and actual process parameters, further make up for the shortcomings of traditional controllers, and at the same time ensure that the control device operates in the best state, so that the process parameters of the production process can be strictly controlled.
具体实施方式 Detailed ways
以焦化加热炉辐射出口温度过程控制为例: Take the process control of the radiation outlet temperature of coking furnace as an example:
这里以焦化加热炉辐射出口温度过程控制作为例子加以描述。该过程是一个多变量耦合的过程,出口温度不仅受到燃料量流量的影响,同时也受炉膛压力,进风流量的影响。调节手段采用燃料量流量,其余的影响作为不确定因素。 Here, the coking furnace radiation outlet temperature process control is taken as an example to describe. This process is a multi-variable coupling process, and the outlet temperature is not only affected by the fuel flow rate, but also by the furnace pressure and the inlet air flow rate. The adjustment method adopts the fuel flow rate, and the rest of the effects are regarded as uncertain factors.
(1)建立解耦状态空间模型,具体方法是: (1) Establish a decoupled state space model, the specific method is:
首先利用数据采集器采集化工过程输入数据(燃料流量)和输出数据(加热炉辐射出口温度),建立输入输出模型如下: First, the data collector is used to collect the input data (fuel flow) and output data (radiation outlet temperature of the heating furnace) of the chemical process, and the input and output model is established as follows:
其中,,,,表示加热炉出口温度过程的传递函数方程, 分别为燃料流量、加热炉出口温度数据变换; in, , , , The transfer function equation representing the temperature process at the outlet of the heating furnace, Respectively, the data of fuel flow rate and heating furnace outlet temperature transform;
然后定义三个变量、、如下: Then define three variables , , as follows:
将以上过程的输入数据和输出数据表示为: The input data and output data of the above process are expressed as:
进一步对上述方程选取伴随矩阵解耦阵为: Further select the adjoint matrix decoupling matrix for the above equation as:
其中,是伴随矩阵解耦阵,为的伴随矩阵。 in, is the adjoint matrix decoupling matrix, for The adjoint matrix of .
将上述过程模型展开得到: Expand the above process model to get:
其中,是得到的解耦过程模型,为的行列式,为以的行列式为元素的对角矩阵。 in, is the resulting decoupled process model, for determinant of for The determinant of is a diagonal matrix of elements.
将上述解耦过程模型处理成个单变量过程的离散表示方式: The above decoupled process model is processed into Discrete representation of a univariate process:
其中,、分别是第个过程的输出、输入变量,、分别是、的系数矩阵多项式,是得到的模型阶次,是相应的系数,为后移步算子。 in, , respectively The output and input variables of a process, , respectively , The coefficient matrix polynomial of , is the obtained model order, is the corresponding coefficient, to move back step operator.
将过程模型通过后移算子处理成过程的状态空间表示方式: Pass the process model through the backward shift operator Processed into a state-space representation of a process:
其中, 、分别是第时刻的变量值,为第时刻的输入增量变量值,、分别为第时刻的输出变量增量和输入变量增量值,、、分别为对应的状态矩阵、输入矩阵和输出矩阵,为取转置符号。 in, , respectively the value of the variable at time, for the first The input increment variable value at time, , respectively The output variable increment and input variable increment value at time, , , are the corresponding state matrix, input matrix and output matrix respectively, to take the transpose sign.
。 .
定义一过程期望输出为,并且输出误差为: Define the expected output of a process as , and the output error for:
进一步得到第时刻的输出误差为: further get the time output error for:
其中,为第时刻的过程期望输出增量。 in, for the first The process expects output increments at moments.
最后定义一个新的复合状态变量: Finally define a new composite state variable:
将上述处理过程综合为一个解耦的过程模型: Synthesize the above processing into a decoupled process model:
其中,为第时刻的复合状态变量,、、分别为对应复合状态变量的状态矩阵、输入矩阵和输出矩阵,具体是: in, for the first Composite state variable at time, , , are the state matrix, input matrix and output matrix corresponding to the composite state variable, specifically:
(2)设计出口温度解耦非最小实现扩展状态空间二次型控制器,具体方法是: (2) Design the outlet temperature decoupling non-minimum to realize the extended state space quadratic controller, the specific method is:
第一步:定义该二次型控制器的目标函数为: Step 1: Define the objective function of the quadratic controller as:
其中,为目标函数,和分别为状态变量和输出变量的加权矩阵。 in, is the objective function, and are the weighting matrices of state variables and output variables, respectively.
b.计算二次型控制器的参数,具体是: b. Calculate the parameters of the quadratic controller, specifically:
其中为控制器反馈系数向量。 in is the controller feedback coefficient vector.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100181093A CN103064294A (en) | 2013-01-18 | 2013-01-18 | Chemical process decoupling non-minimal realization expansion state space quadric form control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100181093A CN103064294A (en) | 2013-01-18 | 2013-01-18 | Chemical process decoupling non-minimal realization expansion state space quadric form control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103064294A true CN103064294A (en) | 2013-04-24 |
Family
ID=48106967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100181093A Pending CN103064294A (en) | 2013-01-18 | 2013-01-18 | Chemical process decoupling non-minimal realization expansion state space quadric form control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103064294A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104317321A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Coking furnace hearth pressure control method based on state-space predictive functional control optimization |
CN104317194A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Temperature control method for non-minimal state space model predictive control optimization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520617A (en) * | 2011-12-30 | 2012-06-27 | 杭州电子科技大学 | Prediction control method for unminimized partial decoupling model in oil refining industrial process |
CN102880046A (en) * | 2012-09-24 | 2013-01-16 | 杭州电子科技大学 | Chemical multi-variable process decoupling prediction function control method |
-
2013
- 2013-01-18 CN CN2013100181093A patent/CN103064294A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520617A (en) * | 2011-12-30 | 2012-06-27 | 杭州电子科技大学 | Prediction control method for unminimized partial decoupling model in oil refining industrial process |
CN102880046A (en) * | 2012-09-24 | 2013-01-16 | 杭州电子科技大学 | Chemical multi-variable process decoupling prediction function control method |
Non-Patent Citations (5)
Title |
---|
张日东等: "《非线性预测控制与工业应用》", 31 December 2012, article "扩展状态空间预测函数控制", pages: 79-80 * |
张日东等: "基于支持向量机的非线性系统预测控制", 《自动化学报》, vol. 33, no. 10, 31 October 2007 (2007-10-31), pages 1066 - 1073 * |
毕玉春: "Matlab在线性二次型最优控制器设计中的应用", 《克山师专学报》, 31 December 2004 (2004-12-31), pages 125 - 127 * |
王国玉等: "预测函数控制及其应用研究", 《系统仿真学报》, vol. 14, no. 8, 31 August 2002 (2002-08-31) * |
王晓哲等: "一种新的加权目标函数下的神经网络训练方法", 《东北大学学报(自然科学版)》, vol. 22, no. 6, 31 December 2001 (2001-12-31), pages 591 - 593 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104317321A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Coking furnace hearth pressure control method based on state-space predictive functional control optimization |
CN104317194A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Temperature control method for non-minimal state space model predictive control optimization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102880046A (en) | Chemical multi-variable process decoupling prediction function control method | |
CN102520616B (en) | Partial decoupling unminimized model prediction function control method in oil refining industrial process | |
CN102520617B (en) | Prediction control method for unminimized partial decoupling model in oil refining industrial process | |
CN104503502B (en) | A kind of modified Smith estimates main-stream control structure | |
CN102902201A (en) | Decoupling state spatial prediction control method of chemical multivariate processes | |
CN102053562A (en) | Cracking furnace exit temperature hybrid control method | |
CN108579929B (en) | A control system and control method for double-inlet and double-outlet ball mill based on RBF neural network predictive control | |
CN103116283A (en) | Method for controlling dynamic matrix of non-self-balance object | |
CN203396032U (en) | Room temperature control device based on fuzzy self-adaption PID (proportion integration differentiation) | |
CN101709863B (en) | Hybrid control method for furnace pressure system of coal-fired boiler | |
CN113110046A (en) | Desulfurization system control method based on big data self-learning prediction control | |
CN104101105A (en) | Method and device used for compound control of crude oil heater temperature | |
CN105334751A (en) | Design method for stability controller of batched injection molding process | |
CN106527125A (en) | Model-free control method in intelligent control | |
CN104950670A (en) | Integrated multi-model method for controlling CSTRs (continuous stirred tank reactors) | |
CN103064293A (en) | Chemical process decoupling non-minimal realization state space linear quadric form control method | |
CN103900398A (en) | Indirect dry type air cooling unit circulating water scheduling optimization method based on water temperature feedback | |
CN102998971A (en) | Greenhouse mechanical ventilation PID (proportion integration differentiation) parameter tuning method and greenhouse mechanical ventilation control method and system | |
CN103064294A (en) | Chemical process decoupling non-minimal realization expansion state space quadric form control method | |
CN104749956A (en) | Structure optimization method of industrial robot based on harmony search algorithm | |
CN102520618A (en) | Coking heating furnace radiation outlet temperature control method under error tolerance mechanism | |
CN102410138A (en) | Method for obtaining optimal control input of wind generating set | |
CN104235820A (en) | Boiler steam temperature control method based on improved single neuron adaptive PID (proportion integration differentiation) control strategy | |
CN102880047B (en) | Adjoint matrix decoupling prediction control method for oil refining industrial heating furnace temperature process | |
CN104214772A (en) | AGC load command response control method for circulating fluidized bed set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130424 |