CN103062951B - Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler - Google Patents
Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler Download PDFInfo
- Publication number
- CN103062951B CN103062951B CN201310031962.9A CN201310031962A CN103062951B CN 103062951 B CN103062951 B CN 103062951B CN 201310031962 A CN201310031962 A CN 201310031962A CN 103062951 B CN103062951 B CN 103062951B
- Authority
- CN
- China
- Prior art keywords
- stage
- heat exchanger
- pulse tube
- stirling
- refrigerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 238000005057 refrigeration Methods 0.000 claims abstract description 58
- 230000001172 regenerating effect Effects 0.000 claims abstract description 40
- 239000003507 refrigerant Substances 0.000 claims abstract description 22
- 238000001816 cooling Methods 0.000 claims description 65
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000001307 helium Substances 0.000 abstract description 30
- 229910052734 helium Inorganic materials 0.000 abstract description 30
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 30
- 239000007788 liquid Substances 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 11
- 239000012530 fluid Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 102100038194 Destrin Human genes 0.000 description 1
- 101000883470 Homo sapiens Destrin Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
本发明公开了一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,包括预冷单元和制冷单元,制冷单元包括J-T压缩机、第一级回热式换热器、第二级回热式换热器、节流前换热器、节流阀和蒸发器;预冷单元为二级或二级以上的斯特林/脉管复合制冷机机构,用于对J-T节流制冷循环工质氦在进入节流前换热器的高温侧管路前由斯特林/脉管复合型制冷机进行多级预冷的制冷剂进行预冷。本发明的斯特林/脉管复合型制冷机预冷的J-T节流制冷循环的制冷性能也会比现有采用单一回热式制冷机预冷的J-T节流制冷循环高,而且可靠性更高,寿命更长,同时具备结构紧凑等优点。
The invention discloses a low-temperature JT throttling refrigerator for precooling of a Stirling/pulse tube composite refrigerator, which includes a precooling unit and a refrigeration unit, and the refrigeration unit includes a JT compressor and a first-stage regenerative heat exchanger , the second-stage regenerative heat exchanger, the pre-throttle heat exchanger, the throttle valve and the evaporator; JT throttling refrigeration cycle working medium helium is pre-cooled by multi-stage precooling refrigerant of Stirling/pulse tube composite refrigerator before entering the high-temperature side pipeline of the heat exchanger before throttling. The refrigerating performance of the JT throttling refrigeration cycle precooled by the Stirling/pulse tube composite refrigerator of the present invention is also higher than that of the existing JT throttling refrigeration cycle precooled by a single regenerative refrigerator, and the reliability is higher High, longer life, and has the advantages of compact structure.
Description
技术领域technical field
本发明涉及一种制冷系统,具体是涉及一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机。The invention relates to a refrigeration system, in particular to a low-temperature J-T throttling refrigerator precooled by a Stirling/pulse tube composite refrigerator.
背景技术Background technique
随着科学技术的进步,低温制冷技术在过去近半个世纪中得到了快速发展,并在航空航天、国防军事、超导、医疗、能源以及低温物理等领域有着广泛而不可替代的应用。目前,对于空间液氦温区的制冷方式主要有液氦(或超流氦)杜瓦技术和机械式制冷技术。其中液氦杜瓦制冷技术利用储存在高真空多层绝热储罐里的液氦或者超流氦的蒸发吸热来实现制冷效应,这种方式可以获得较稳定的温度,在早期的航天探测领域具有广泛的应用,技术相对成熟,但是它存在体积大、重量重、绝热系统复杂,发射成本高以及使用寿命受工质存储量限制等缺点。随着机械式制冷技术的进步和发展,特别是板弹簧和间隙密封等技术的应用,彻底解决了杜瓦技术始终无法克服的长寿命问题,使得机械式制冷技术如斯特林制冷机和脉管制冷机近20年来在航天领域快速发展并占有相当的份额。而在15K以下温区,氦严重偏离理想气体性质、回热材料体积比热容急剧下降等原因造成已在空间大量运用的斯特林制冷机和斯特林型脉管制冷机在液氦温区制冷效率较低。实际空间应用中经常希望压缩机单元能够尽可能靠近散热单元便于热量的耗散,尽可能远离被冷却的探测器装置以减小压缩机带来的热耗散、机械振动和电磁干扰。而回热式低温制冷机的冷端与热端距离比较近,难以实现压缩机和冷头分置的要求,从而限制了其在空间任务中的应用。With the advancement of science and technology, cryogenic refrigeration technology has developed rapidly in the past half a century, and has extensive and irreplaceable applications in aerospace, national defense, superconductivity, medical treatment, energy, and cryogenic physics. At present, there are mainly liquid helium (or superfluid helium) Dewar technology and mechanical refrigeration technology for the refrigeration of space liquid helium temperature zone. Among them, the liquid helium Dewar refrigeration technology uses the evaporation and heat absorption of liquid helium or superfluid helium stored in a high-vacuum multi-layer adiabatic storage tank to achieve the cooling effect. This method can obtain a relatively stable temperature. In the field of early aerospace exploration It has a wide range of applications, and the technology is relatively mature, but it has the disadvantages of large size, heavy weight, complex insulation system, high launch cost, and limited service life by the amount of working fluid stored. With the progress and development of mechanical refrigeration technology, especially the application of leaf spring and gap seal technology, the long life problem that Dewar technology has never been able to overcome has been completely solved, making mechanical refrigeration technology such as Stirling refrigerator and pulse Tube refrigerators have developed rapidly in the aerospace field in the past 20 years and have occupied a considerable share. However, in the temperature range below 15K, helium seriously deviates from the ideal gas properties, and the volume specific heat capacity of the regenerative material drops sharply. As a result, Stirling refrigerators and Stirling-type pulse tube refrigerators that have been widely used in space are cooled in the liquid helium temperature range. less efficient. In actual space applications, it is often desired that the compressor unit be as close as possible to the heat dissipation unit for heat dissipation, and as far away from the cooled detector device as possible to reduce heat dissipation, mechanical vibration and electromagnetic interference caused by the compressor. However, the distance between the cold end and the hot end of the regenerative cryogenic refrigerator is relatively close, and it is difficult to realize the requirement of separating the compressor and the cold end, thus limiting its application in space missions.
焦耳-汤普逊制冷机(Joule-Thomson Cooler,以下简称J-T节流制冷机)利用温度低于15K时,氦气的非理想特性显著这一特点引起的Joule-Thomson节流效应来获得制冷,效率较高。而且J-T节流制冷机工质直流流动,冷端可根据所需冷却的结构进行自由设计等特点所带来的一系列优点使J-T节流制冷机成为空间液氦温区任务的主流。Joule-Thomson cooler (Joule-Thomson Cooler, hereinafter referred to as J-T throttling refrigerator) uses the Joule-Thomson throttling effect caused by the significant non-ideal characteristics of helium when the temperature is lower than 15K to obtain refrigeration. Higher efficiency. Moreover, the J-T throttling refrigerator has a series of advantages brought about by the direct flow of the working fluid and the free design of the cold end according to the required cooling structure, making the J-T throttling refrigerator the mainstream of the space liquid helium temperature zone.
空间液氦温区机械式制冷技术主要集中在日本宇宙研究开发机构(Japan Aerospace Exploration Agency,JAXA)、美国宇航局(NationalAeronautics and Space Administration,NASA)和欧洲空间局(EuropeanSpace Agency,ESA)等机构,这些机构在近年来已发射或即将发射的航天探测器中,使用液氦温区机械式制冷技术的低温空间项目如表1所示。The mechanical refrigeration technology in the space liquid helium temperature zone is mainly concentrated in Japan Aerospace Exploration Agency (JAXA), NASA (National Aeronautics and Space Administration, NASA) and European Space Agency (European Space Agency, ESA). Table 1 shows the low-temperature space projects using mechanical refrigeration technology in the liquid helium temperature zone among the space probes that these institutions have launched or are about to launch in recent years.
表1采用液氦温区机械式制冷技术的低温空间任务Table 1 Low-temperature space missions using liquid helium temperature zone mechanical refrigeration technology
从表1可以看到,以上提到的研究机构近年来已有的应用于空间的液氦温区的机械式制冷机大多为预冷型的J-T节流制冷机,且主要采用回热式制冷机预冷,如SMILES、Asrto-H和SPICA项目中的液氦温区J-T节流制冷循环均采用两级斯特林制冷机预冷,在ACTDP项目的竞标过程中更是出现了采用四级高频脉管制冷机、三级斯特林制冷机和三级高频脉管制冷机三种不同的预冷方式。It can be seen from Table 1 that most of the mechanical refrigerators used in the liquid helium temperature zone of the above-mentioned research institutions in recent years are pre-cooling type J-T throttling refrigerators, and mainly adopt regenerative refrigeration For example, the J-T throttling refrigeration cycle in the liquid helium temperature zone in the SMILES, Asrto-H and SPICA projects uses a two-stage Stirling refrigerator for pre-cooling. In the bidding process of the ACTDP project, a four-stage refrigerator was used There are three different precooling methods of high-frequency pulse tube refrigerator, three-stage Stirling refrigerator and three-stage high-frequency pulse tube refrigerator.
传统的制冷方式,均存在这冷效率不高的技术问题。目前还没有采用利用二级或二级以上斯特林/脉管复合制冷机预冷液氦温区J-T节流制冷系统的报道。Traditional refrigeration methods all have the technical problem of low cooling efficiency. At present, there is no report on the J-T throttling refrigeration system in the liquid helium temperature zone precooled by using a two-stage or above-stage Stirling/pulse tube composite refrigerator.
发明内容Contents of the invention
本发明提供了一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,该制冷系统制冷性能高,且同时具备结构紧凑、寿命长和可靠性高等优点。The invention provides a low-temperature J-T throttling refrigerator precooled by a Stirling/pulse tube composite refrigerator. The refrigeration system has high refrigeration performance and has the advantages of compact structure, long service life and high reliability.
一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,包括预冷单元和制冷单元,其特征在于,所述制冷单元包括J-T压缩机、第一级回热式换热器、第一级预冷换热器、第二级回热式换热器、第二级预冷换热器、节流前换热器、节流阀和蒸发器,按照制冷剂流向,J-T压缩机的出口依次通过第一级回热式换热器、第一级预冷换热器,第二级回热式换热器、第二级预冷换热器和节流前换热器的高温侧管路以及节流阀与蒸发器入口连通,蒸发器出口依次通过节流前换热器、第二级回热式换热器和第一级回热式换热器的低温侧管路与J-T压缩机入口连通;所述预冷单元为二级或二级以上的斯特林/脉管复合制冷机机构,分别用于对第一级预冷换热器和第二级预冷换热器内的制冷剂进行预冷。A low-temperature J-T throttling refrigerator precooled by a Stirling/pulse tube composite refrigerator, comprising a precooling unit and a refrigeration unit, characterized in that the refrigeration unit includes a J-T compressor, a first-stage heat exchanger Heater, first-stage pre-cooling heat exchanger, second-stage regenerative heat exchanger, second-stage pre-cooling heat exchanger, pre-throttle heat exchanger, throttle valve and evaporator, according to the refrigerant flow direction, The outlet of the J-T compressor passes through the first-stage regenerative heat exchanger, the first-stage pre-cooling heat exchanger, the second-stage regenerative heat exchanger, the second-stage pre-cooling heat exchanger and the heat exchanger before throttling The high-temperature side pipeline of the evaporator and the throttle valve are connected with the evaporator inlet, and the evaporator outlet passes through the low-temperature side of the pre-throttle heat exchanger, the second-stage regenerative heat exchanger, and the first-stage regenerative heat exchanger in sequence. The pipeline is connected with the inlet of the J-T compressor; the precooling unit is a Stirling/pulse tube composite refrigerator mechanism of two or more stages, which are respectively used for the first stage precooling heat exchanger and the second stage precooling The refrigerant in the cold heat exchanger is pre-cooled.
斯特林/脉管复合型制冷机由于其斯特林单元中存在主动式控制部件-排出器,使得其可调节制冷机的冷端压比,所以采用斯特林制冷机和脉管制冷机的复合型结构可以实现脉管制冷机低温段所需的大压比和小的充气压力,制冷性能比一般单一的多级斯特林制冷机或者单一的多级脉管制冷机高,而且可靠性更高,寿命更长,而且兼具两者的结构紧凑等优点。因此,用斯特林/脉管复合型制冷机预冷的液氦温区J-T节流制冷循环的制冷性能也会比现有采用单一回热式制冷机预冷的液氦温区J-T节流制冷循环更好,同时也具备其他方面的优点。The Stirling/Pulse Tube Composite Refrigerator uses the Stirling Refrigerator and the Pulse Tube Refrigerator because of the active control part-displacer in the Stirling unit, which can adjust the cold end pressure ratio of the refrigerator. The composite structure of the pulse tube refrigerator can realize the large pressure ratio and the small charging pressure required by the low temperature section of the pulse tube refrigerator. The refrigeration performance is higher than that of a single multi-stage Stirling refrigerator or a single multi-stage pulse tube refrigerator, and it is reliable Higher reliability, longer life, and both advantages of compact structure. Therefore, the refrigeration performance of the J-T throttling refrigeration cycle in the liquid helium temperature zone precooled by the Stirling/pulse tube composite refrigerator will also be better than that of the existing J-T throttling in the liquid helium temperature zone precooled by a single regenerative refrigerator Refrigeration cycles are better, but have other advantages as well.
下面是对上述技术方案的进一步优选的技术方案:Below is the further preferred technical scheme to above-mentioned technical scheme:
为便于布置,作为优选的技术方案:所述预冷单元可选择二级斯特林/脉管复合制冷机机构,包括预冷机压缩机、与预冷机压缩机出口依次连通的热端换热器、第一级斯特林气缸、第一级冷端换热器、第二级回热器、第二级冷端换热器、第二级脉管、第二级脉管热端换热器和第二级调相部件;所述第一级冷端换热器通过第一级热桥对第一级预冷换热器内的制冷剂进行预冷;所述第二级冷端换热器通过第二级热桥对第二级预冷换热器内的制冷剂进行预冷。For the convenience of layout, as a preferred technical solution: the pre-cooling unit can choose a two-stage Stirling/pulse tube composite refrigerator mechanism, including a pre-cooler compressor, a hot end exchanger connected to the outlet of the pre-cooler compressor in sequence Heater, first stage Stirling cylinder, first stage cold end heat exchanger, second stage regenerator, second stage cold end heat exchanger, second stage pulse tube, second stage pulse tube hot end exchanger The heat exchanger and the second-stage phase adjustment component; the first-stage cold-end heat exchanger precools the refrigerant in the first-stage pre-cooling heat exchanger through the first-stage heat bridge; the second-stage cold-end The heat exchanger precools the refrigerant in the second-stage precooling heat exchanger through the second-stage heat bridge.
所述调相部件可选用多种结构,为提高制冷系统的整体制冷性能,作为优选,所述第二级调相部件为与第二级脉管热端换热器连通的第二级惯性管、以及与第二级惯性管连通的第二级气库。作为进一步优选,所述第二级调相部件同时与所述第一级热桥相连。通过调相部件,能够实现对第二级回热器内压力流和质量流相位的调整。Various structures can be selected for the phase modulation component. In order to improve the overall refrigeration performance of the refrigeration system, as a preference, the second-stage phase modulation component is a second-stage inertial tube connected to the second-stage pulse tube hot-end heat exchanger. , and the second-level gas storage connected with the second-level inertia tube. As a further preference, the second-stage phase modulation component is connected to the first-stage thermal bridge at the same time. The phase adjustment of the pressure flow and mass flow in the second-stage regenerator can be realized through the phase adjustment component.
所述预冷单元也可选择三级斯特林/脉管复合制冷机机构,此时,作为对上述方案的进一步优选,所述预冷单元还包括同时与第二级冷端换热器出口连通的第三级回热器、以及通过管路依次与第三级回热器出口连通的第三级冷端换热器、第三级脉管、第三级脉管热端换热器和第三级调相部件;所述制冷单元还包括第三级逆流式换热器和第三级预冷换热器,所述第二级预冷换热器出口依次通过第三级逆流式换热器的高温侧管路和第三级预冷换热器与节流前换热器的高温侧管路入口连通,节流前换热器的低温侧管路出口通过第三级逆流式换热器的低温侧管路与第二级回热式换热器的低温侧管路入口连通;所述第三级冷端换热器通过第三级热桥对第三级预冷换热器内的制冷剂进行预冷。The pre-cooling unit can also choose a three-stage Stirling/pulse tube composite refrigerator mechanism. At this time, as a further optimization of the above-mentioned solution, the pre-cooling unit also includes the outlet of the second-stage cold end heat exchanger at the same time. The connected third-stage regenerator, and the third-stage cold-end heat exchanger, the third-stage pulse tube, the third-stage pulse tube hot-end heat exchanger and The third-stage phase adjustment component; the refrigeration unit also includes a third-stage counter-flow heat exchanger and a third-stage pre-cooling heat exchanger, and the outlet of the second-stage pre-cooling heat exchanger passes through the third-stage counter-flow heat exchanger in turn. The high-temperature side pipeline of the heat exchanger and the third-stage pre-cooling heat exchanger are connected with the high-temperature side pipeline inlet of the pre-throttling heat exchanger, and the low-temperature side pipeline outlet of the pre-throttling heat exchanger passes through the third-stage counter-flow exchanger. The low-temperature side pipeline of the heat exchanger communicates with the low-temperature side pipeline inlet of the second-stage regenerative heat exchanger; the third-stage cold-end heat exchanger connects the third-stage precooling heat exchanger The refrigerant inside is pre-cooled.
所述第二级调相部件和第三级调相部件均为与其对应脉管热端换热器连通的惯性管、以及与该惯性管连通的气库。作为进一步优选,所述第二级调相部件同时与第一级热桥相连;所述第三级调相部件同时与所述第二级热桥相连。Both the second-stage phase-modulating component and the third-stage phase-modulating component are inertial tubes connected to the heat exchanger at the hot end of the corresponding pulse tube, and an air bank connected to the inertial tube. As a further preference, the second-stage phase modulation component is connected to the first-stage thermal bridge at the same time; the third-stage phase-modulation component is also connected to the second-stage thermal bridge.
当预冷单元选用三级斯特林/脉管复合制冷机机构时,另外一种优选的技术方案为:所述预冷单元为三级斯特林/脉管复合制冷机机构,包括预冷机压缩机、与预冷机压缩机出口依次连通的热端换热器、第一级斯特林气缸、第一级冷端换热器、第二级斯特林气缸、第二级冷端换热器、第三级回热器、第三级冷端换热器、第三级脉管、第三级脉管热端换热器和第三级调相部件;所述制冷单元还包括第三级逆流式换热器和第三级预冷换热器,所述第二级预冷换热器出口通过第三级逆流式换热器的高温侧管路和第三级预冷换热器与节流前换热器的高温侧管路入口连通,节流前换热器的低温侧管路出口通过第三级逆流式换热器的低温侧管路与第二级回热式换热器的低温侧管路入口连通;所述第一级冷端换热器通过第一级热桥对第一级预冷换热器内的制冷剂进行预冷;所述第二级冷端换热器通过第二级热桥对第二级预冷换热器内的制冷剂进行预冷;所述第三级冷端换热器通过第三级热桥对第三级预冷换热器内的制冷剂进行预冷。。When the pre-cooling unit uses a three-stage Stirling/pulse tube composite refrigerator mechanism, another preferred technical solution is: the pre-cooling unit is a three-stage Stirling/pulse tube composite refrigerator mechanism, including pre-cooling compressor, the hot end heat exchanger connected with the outlet of the pre-cooler compressor, the first-stage Stirling cylinder, the first-stage cold-end heat exchanger, the second-stage Stirling cylinder, and the second-stage cold end A heat exchanger, a third-stage regenerator, a third-stage cold-end heat exchanger, a third-stage pulse tube, a third-stage pulse tube hot-end heat exchanger, and a third-stage phase adjustment component; the refrigeration unit also includes The third-stage counter-flow heat exchanger and the third-stage pre-cooling heat exchanger, the outlet of the second-stage pre-cooling heat exchanger passes through the high-temperature side pipeline of the third-stage counter-flow heat exchanger and the third-stage pre-cooling heat exchanger The heat exchanger communicates with the inlet of the high-temperature side pipeline of the heat exchanger before throttling, and the outlet of the low-temperature side pipeline of the heat exchanger before throttling passes through the low-temperature side pipeline of the third-stage counterflow heat exchanger and the second-stage regenerative heat exchanger. The low-temperature side pipeline inlet of the heat exchanger is connected; the first-stage cold-end heat exchanger precools the refrigerant in the first-stage pre-cooling heat exchanger through the first-stage heat bridge; the second-stage cooling The end heat exchanger pre-cools the refrigerant in the second-stage pre-cooling heat exchanger through the second-stage heat bridge; the third-stage cold-end heat exchanger exchanges the third-stage pre-cooling The refrigerant in the heater is pre-cooled. .
所述第三级调相部件为与第三级脉管热端换热器连通的第三级惯性管、以及与第三级惯性管连通的第三级气库。同样,作为优选,所述第三级调相部件同时与第二级热桥相连。The third-stage phase adjustment component is a third-stage inertial tube connected to the third-stage pulse tube hot-end heat exchanger, and a third-stage gas storage connected to the third-stage inertial tube. Likewise, preferably, the third-stage phase-modulating component is connected to the second-stage thermal bridge at the same time.
与现有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
本发明的采用斯特林/脉管复合制冷机预冷的液氦温区J-T节流制冷系统,可以实现脉管制冷机低温段所需的大压比和小的充气压力,可提高多级回热式制冷机的制冷性能和可靠性,所得到的斯特林/脉管复合型制冷机预冷的J-T节流制冷循环的制冷性能也会比现有采用单一回热式制冷机预冷的J-T节流制冷循环高,而且可靠性能高,寿命更长,同时具备结构紧凑等优点。The J-T throttling refrigeration system in the liquid helium temperature zone precooled by the Stirling/pulse tube composite refrigerator of the present invention can realize the large pressure ratio and small inflation pressure required by the low temperature section of the pulse tube refrigerator, and can increase the multi-stage The refrigeration performance and reliability of the regenerative refrigerator, the refrigeration performance of the J-T throttling refrigeration cycle pre-cooled by the Stirling/pulse tube composite refrigerator will also be better than that of the existing single regenerative refrigerator. The J-T throttling refrigeration cycle is high, and the reliability is high, the life is longer, and it has the advantages of compact structure and so on.
附图说明Description of drawings
图1为两级斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机示意图。Figure 1 is a schematic diagram of a low-temperature J-T throttling refrigerator precooled by a two-stage Stirling/pulse tube composite refrigerator.
图2为一级斯特林两级脉管复合型制冷机预冷的低温J-T节流制冷机示意图。Fig. 2 is a schematic diagram of a low-temperature J-T throttling refrigerator precooled by a one-stage Stirling two-stage pulse tube compound refrigerator.
图3为两级斯特林一级脉管复合型制冷机预冷的低温J-T节流制冷机示意图。Fig. 3 is a schematic diagram of a low-temperature J-T throttling refrigerator precooled by a two-stage Stirling one-stage pulse-tube composite refrigerator.
其中:1:预冷机压缩机、2:排出器驱动电机、3:膨胀机组、4:单级排出器、5:热端换热器、6:第一级斯特林气缸、7:第一级冷端换热器、8:第一级热桥、9:第二级回热器、10:第二级冷端换热器、11:第二级热桥、12:第二级脉管、13:第二级脉管热端换热器、14:第二级惯性管、15:第二级气库、16:J-T压缩机、17:第一级回热式换热器、18:第一级预冷换热器、19:第二级回热式换热器、20:第二级预冷换热器、21:节流前换热器、22:节流阀、23:蒸发器、24:第三级回热器、25:第三级冷端换热器、26:第三级热桥、27:第三级脉管、28:第三级脉管热端换热器、29:第三级惯性管、30:第三级气库、31:第三级逆流式换热器:32:第三级预冷换热器、33:两级排出器、34:第二级斯特林气缸。Among them: 1: precooler compressor, 2: ejector driving motor, 3: expansion unit, 4: single stage ejector, 5: hot end heat exchanger, 6: first stage Stirling cylinder, 7: second stage First-stage cold end heat exchanger, 8: first-stage thermal bridge, 9: second-stage regenerator, 10: second-stage cold-end heat exchanger, 11: second-stage thermal bridge, 12: second-stage pulse Tube, 13: second-stage pulse tube hot end heat exchanger, 14: second-stage inertia tube, 15: second-stage gas storage, 16: J-T compressor, 17: first-stage regenerative heat exchanger, 18 : First-stage pre-cooling heat exchanger, 19: Second-stage regenerative heat exchanger, 20: Second-stage pre-cooling heat exchanger, 21: Pre-throttle heat exchanger, 22: Throttle valve, 23: Evaporator, 24: third stage regenerator, 25: third stage cold end heat exchanger, 26: third stage heat bridge, 27: third stage pulse tube, 28: third stage pulse tube hot end heat exchange 29: The third-stage inertia tube, 30: The third-stage gas storage, 31: The third-stage counter-flow heat exchanger: 32: The third-stage pre-cooling heat exchanger, 33: The two-stage ejector, 34: The first Two-stage Stirling cylinder.
具体实施方式Detailed ways
实施例1Example 1
如图1所示,一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,包括预冷单元和制冷单元。其中制冷单元包括J-T压缩机16、第一级回热式换热器17、第一级预冷换热器18、第二级回热式换热器19、第二级预冷换热器20、节流前换热器21、节流阀22和蒸发器23。预冷单元为二级斯特林/脉管复合制冷机机构,包括预冷机压缩机1、与预冷机压缩机1出口依次连通的热端换热器5、第一级斯特林气缸6、第一级冷端换热器7、第二级回热器9、第二级冷端换热器10、第二级脉管12、第二级脉管热端换热器13、第二级惯性管14和第二级气库15;预冷单元还包括置于斯特林制冷机机体内的单级排出器4、驱动单级排出器4运行的排出器驱动电机2以及膨胀机组3。As shown in Figure 1, a low-temperature J-T throttling refrigerator precooled by a Stirling/pulse tube composite refrigerator includes a precooling unit and a refrigeration unit. The refrigeration unit includes a J-T compressor 16, a first-stage recuperative heat exchanger 17, a first-stage pre-cooling heat exchanger 18, a second-stage recuperative heat exchanger 19, and a second-stage pre-cooling heat exchanger 20 , Heat exchanger 21 before throttling, throttle valve 22 and evaporator 23. The pre-cooling unit is a two-stage Stirling/pulse tube composite refrigerator mechanism, including a pre-cooler compressor 1, a hot-end heat exchanger 5 sequentially connected to the outlet of the pre-cooler compressor 1, and a first-stage Stirling cylinder 6. The first-stage cold-end heat exchanger 7, the second-stage regenerator 9, the second-stage cold-end heat exchanger 10, the second-stage pulse tube 12, the second-stage pulse tube hot-end heat exchanger 13, the second-stage heat exchanger Second-stage inertia tube 14 and second-stage gas storage 15; the pre-cooling unit also includes a single-stage ejector 4 placed in the body of the Stirling refrigerator, an ejector drive motor 2 for driving the operation of the single-stage ejector 4, and an expansion unit 3.
上述部件的连接关系为:The connection relationship of the above components is:
制冷单元中:J-T压缩机16的出口通过管路依次与第一级回热式换热器17的高温侧管路、第一级预冷换热器18、第二级回热式换热器19的高温侧管路、第二级预冷换热器20和节流前换热器21的高温侧管路、节流阀22和蒸发器23入口连通,蒸发器23出口通过管路依次与节流前换热器21的低温侧管路、第二级回热式换热器19的低温侧管路、第一级回热式换热器17的低温侧管路和J-T压缩机16入口连通。In the refrigeration unit: the outlet of the J-T compressor 16 is sequentially connected with the high-temperature side pipeline of the first-stage regenerative heat exchanger 17, the first-stage pre-cooling heat exchanger 18, and the second-stage regenerative heat exchanger through pipelines. The high-temperature side pipeline of 19, the high-temperature side pipeline of the second-stage pre-cooling heat exchanger 20 and the heat exchanger 21 before throttling, the throttle valve 22 and the inlet of the evaporator 23 are connected, and the outlet of the evaporator 23 is connected with the The low-temperature side pipeline of the pre-throttle heat exchanger 21, the low-temperature side pipeline of the second-stage regenerative heat exchanger 19, the low-temperature side pipeline of the first-stage regenerative heat exchanger 17, and the inlet of the J-T compressor 16 connected.
预冷单元中:预冷机压缩机1的出口通过管路分别与膨胀机组3和热端换热器连接,排出器驱动电机2布置在膨胀机组3内且与单级排出器4连接,热端换热器5通过管路依次与第一级斯特林气缸6、第一级冷端换热器7、第二级回热器9、第二级冷端换热器10、第二级脉管12、第二级脉管热端换热器13、第二级惯性管14和第二级气库15连通。单级排出器4从热端换热器5穿过,布置在第一级斯特林气缸6中,并与第一级斯特林气缸6壁面保证间隙密封,第一级回热填料填充在单排出器4中。In the pre-cooling unit: the outlet of the pre-cooler compressor 1 is respectively connected to the expansion unit 3 and the hot-end heat exchanger through pipelines, the ejector drive motor 2 is arranged in the expansion unit 3 and connected to the single-stage ejector 4, and the heat The end heat exchanger 5 is sequentially connected with the first-stage Stirling cylinder 6, the first-stage cold-end heat exchanger 7, the second-stage regenerator 9, the second-stage cold-end heat exchanger 10, and the second-stage The pulse tube 12 , the heat exchanger 13 at the hot end of the second-stage pulse tube, the second-stage inertia tube 14 and the second-stage gas storage 15 are in communication. The single-stage ejector 4 passes through the heat exchanger 5 at the hot end, is arranged in the first-stage Stirling cylinder 6, and ensures a gap seal with the wall surface of the first-stage Stirling cylinder 6, and the first-stage regenerative filler is filled in Single ejector 4 in.
第一级冷端换热器7通过第一级热桥8对第一级预冷换热器18内的制冷剂进行预冷;第二级冷端换热器10通过第二级热桥11对第二级预冷换热器20内的制冷剂进行预冷。The first-stage cold-end heat exchanger 7 precools the refrigerant in the first-stage pre-cooling heat exchanger 18 through the first-stage heat bridge 8; the second-stage cold-end heat exchanger 10 passes through the second-stage heat bridge 11 The refrigerant in the second-stage precooling heat exchanger 20 is precooled.
本实施方式中工质的运行过程为:The operation process of working fluid in the present embodiment is:
对于制冷单元,制冷剂的运行过程为:制冷剂由J-T压缩机16压缩至高压并排出,依次流经第一级回热式换热器17的高温侧管路、第一级预冷换热器18、第二级回热式换热器19的高温侧管路、第二级预冷换热器20和第三级回热式换热器21的高温侧管路,进入节流阀22处等焓节流至低压并达到液氦温度后进入蒸发器23,经蒸发器23与外界换热后蒸发出低压气体工质,依次流经第三级回热式换热器21的低温侧管路、第二级回热式换热器19的低温侧和第一级回热式换热器17的低温侧管路,最终返回液氦温区J-T压缩机16。复合型制冷机与液氦温区J-T节流制冷循环间只存在热量传递,其第一级冷端换热器7和第二级冷端换热器10分别通过第一级热桥8和第二级热桥11为第一级预冷换热器18和第二级预冷换热器19中制冷工质提供预冷。For the refrigeration unit, the operation process of the refrigerant is as follows: the refrigerant is compressed by the J-T compressor 16 to high pressure and discharged, and then flows through the high-temperature side pipeline of the first-stage regenerative heat exchanger 17, the first-stage pre-cooling heat exchange 18, the high-temperature side pipeline of the second-stage regenerative heat exchanger 19, the high-temperature side pipeline of the second-stage precooling heat exchanger 20 and the third-stage regenerative heat exchanger 21, enter the throttle valve 22 After reaching the low pressure and reaching the temperature of liquid helium, it enters the evaporator 23, and evaporates the low-pressure gas working fluid after exchanging heat with the outside world through the evaporator 23, and then flows through the low-temperature side of the third-stage regenerative heat exchanger 21 in turn The pipeline, the low-temperature side pipeline of the second-stage regenerative heat exchanger 19 and the low-temperature side pipeline of the first-stage recuperator heat exchanger 17 finally return to the J-T compressor 16 in the liquid helium temperature zone. There is only heat transfer between the composite refrigerator and the J-T throttling refrigeration cycle in the liquid helium temperature zone, and the first-stage cold-end heat exchanger 7 and the second-stage cold-end heat exchanger 10 respectively pass through the first-stage heat bridge 8 and the second The secondary thermal bridge 11 provides pre-cooling for the refrigerant in the first-stage pre-cooling heat exchanger 18 and the second-stage pre-cooling heat exchanger 19 .
对于两级斯特林/脉管复合型制冷机,其运行过程为:For a two-stage Stirling/pulse tube composite refrigerator, its operation process is:
高压阶段,通过预冷机压缩机1压缩后的高温高压预冷工质在热端换热器5中被冷却至常温高压,然后进入位于第一级斯特林气缸6中的排出器4中,通过控制位于膨胀机组3中与排出器4底部连接的排出器驱动电机2,实现对排出器4的行程控制,同时该部分预冷工质与排出器4中的回热填料进行换热,并且一部分在第一级斯特林制冷机气缸6的冷端进行膨胀,从而产生制冷效应,制冷量由第一级冷端换热器7通过第一级热桥8用于预冷第一级预冷换热器18中的制冷工质。In the high-pressure stage, the high-temperature and high-pressure pre-cooling working fluid compressed by the pre-cooler compressor 1 is cooled to normal temperature and high pressure in the hot-end heat exchanger 5, and then enters the ejector 4 located in the first-stage Stirling cylinder 6 , by controlling the ejector driving motor 2 connected to the bottom of the ejector 4 in the expansion unit 3, the stroke control of the ejector 4 is realized, and at the same time, this part of the pre-cooling working fluid exchanges heat with the regenerated filler in the ejector 4, And part of it expands at the cold end of the cylinder 6 of the first-stage Stirling refrigerator, thereby generating a refrigeration effect, and the cooling capacity is used for precooling the first stage by the first-stage cold-end heat exchanger 7 through the first-stage thermal bridge 8 Precool the refrigerant in the heat exchanger 18.
另一部分预冷工质由第一级冷端换热器7进入第二级回热器9中,并与其中填充的回热填料进行换热,预冷工质温度进一步降低,并依次进入第二级冷端换热器10、第二级脉管12、第二级脉管热端换热器13、第二级惯性管14和第二级气库15,而后系统压力降低,该部分预冷工质依次通过第二级气库15、第二级惯性管14、第二级脉管热端换热器13、第二级脉管12、第二级冷端换热器10、第二级回热器9和第一级冷端热端换热器7返回第一级斯特林气缸6中,由于进出第二级冷端换热器10的预冷工质存在温差,由此产生制冷效应,该制冷量并由第二级冷端换热器10通过第二级热桥11用于预冷第二级预冷换热器20中的制冷工质。The other part of the pre-cooling working fluid enters the second-stage regenerator 9 from the first-stage cold-end heat exchanger 7, and exchanges heat with the regenerative filler filled therein. Secondary cold-end heat exchanger 10, second-stage pulse pipe 12, second-stage pulse pipe hot-end heat exchanger 13, second-stage inertia tube 14 and second-stage gas storage 15, then the system pressure is reduced, and this part pre- The cold working fluid sequentially passes through the second-stage gas storage 15, the second-stage inertial tube 14, the second-stage pulse tube hot-end heat exchanger 13, the second-stage pulse tube 12, the second-stage cold-end heat exchanger 10, the second-stage The first-stage regenerator 9 and the first-stage cold-end hot-end heat exchanger 7 return to the first-stage Stirling cylinder 6. Due to the temperature difference between the pre-cooled working fluid entering and leaving the second-stage cold-end heat exchanger 10, the resulting Refrigeration effect, the cooling capacity is used by the second-stage cold-end heat exchanger 10 to pre-cool the refrigerant in the second-stage pre-cooling heat exchanger 20 through the second-stage heat bridge 11 .
本实施方式中,系统安装完毕后,对制冷单元和预冷单元内部抽真空至10-2Pa左右,然后充入高纯氦气,保持5分钟左右再对系统内部抽真空至10-2Pa左右。如此反复抽真空充气3-4次后,最终充入工作压力的高纯氦气,即可保证系统中氦气工质的纯度,并对复合型制冷机进行相同的操作。打开预冷机压缩机1电源和单级排出器4电源,调节两者至最佳预冷性能的工作频率并等待其达到稳定后,需保证第二级冷端换热器10温度低于15K,打开J-T压缩机16的电源,调至相应工作频率,在蒸发器温度下降过程中不断调节预冷机压缩机1和单级排出器4频率,以保证二级冷端换热器10温度稳定在15K以下,直至蒸发器23温度稳定在液氦温度,此时即可在蒸发器23处获得液氦温度的制冷量。In this embodiment, after the system is installed, vacuumize the interior of the refrigeration unit and the pre-cooling unit to about 10 -2 Pa, then fill in high-purity helium, keep it for about 5 minutes, and then vacuumize the interior of the system to 10 -2 Pa about. After repeated vacuuming and inflation for 3-4 times, the high-purity helium at the working pressure is finally charged to ensure the purity of the helium working medium in the system, and the same operation is performed on the composite refrigerator. Turn on the power supply of the compressor 1 of the pre-cooler and the power supply of the single-stage ejector 4, adjust the operating frequency of the two to the best pre-cooling performance and wait for them to stabilize, and ensure that the temperature of the second-stage cold-end heat exchanger 10 is lower than 15K , turn on the power of the JT compressor 16, adjust to the corresponding operating frequency, and continuously adjust the frequency of the pre-cooler compressor 1 and the single-stage ejector 4 during the temperature drop of the evaporator, so as to ensure the temperature stability of the secondary cold-end heat exchanger 10 Below 15K, until the temperature of the evaporator 23 stabilizes at the liquid helium temperature, then the refrigerating capacity of the liquid helium temperature can be obtained at the evaporator 23 .
将本实施例1的技术方案与传统的两级斯特林或两级脉管制冷机预冷的J-T节流制冷循环进行模拟计算优化,结果对比如下:The technical scheme of this embodiment 1 was simulated and optimized with the traditional two-stage Stirling or two-stage pulse tube refrigerator precooled J-T throttling refrigeration cycle, and the results were compared as follows:
表2对于两级预冷的液氦温区J-T节流制冷模拟计算结果Table 2 Simulation calculation results of J-T throttling refrigeration in liquid helium temperature zone with two-stage precooling
其中J-T节流制冷循环假设条件为:J-T节流制冷循环压缩机吸气压力0.121MPa、第一级预冷温度90K、回热式换热器效率和节流前换热器效率均为0.97、表中J-T高压区间为计算最大COP所在区间。The hypothetical conditions of the J-T throttling refrigeration cycle are: the suction pressure of the J-T throttling refrigeration cycle compressor is 0.121MPa, the first stage pre-cooling temperature is 90K, the efficiency of the regenerative heat exchanger and the efficiency of the heat exchanger before throttling are both 0.97, The J-T high pressure interval in the table is the interval where the maximum COP is calculated.
对于液氦温区J-T节流制冷机整机性能,预冷温度越低,达到最高效率(同时也是最大制冷量)所需要的高温侧压力越低,这对于整机的性能、寿命、制造成本等各方面都是有利的。而目前两级斯特林制冷机与两级高频脉管制冷机的所达到的性能为:最低制冷温度11~13K(此时无制冷量),对于已公开文献中的情况来看,两级斯特林一般在15K~18K的温度范围内对J-T循环预冷。而两级的斯特林/脉管复合型制冷机即可在10K时获得0.28W,并同时在55K获得6.63W制冷量,结合上表2可以看到,采用复合型制冷机预冷能够大大提高J-T节流制冷机的整机性能。For the overall performance of the J-T throttling refrigerator in the liquid helium temperature zone, the lower the pre-cooling temperature, the lower the high-temperature side pressure required to achieve the highest efficiency (and also the maximum cooling capacity), which affects the performance, life, and manufacturing cost of the entire machine. All aspects are beneficial. At present, the performance achieved by the two-stage Stirling refrigerator and the two-stage high-frequency pulse tube refrigerator is: the minimum refrigeration temperature is 11-13K (no refrigeration capacity at this time), and for the situation in the published literature, the two Grade Stirling generally precools the J-T cycle in the temperature range of 15K ~ 18K. The two-stage Stirling/pulse tube composite refrigerator can obtain 0.28W at 10K, and at the same time obtain 6.63W cooling capacity at 55K. Combined with the above table 2, it can be seen that the precooling of the composite refrigerator can greatly Improve the overall performance of the J-T throttling refrigerator.
另外,两级斯特林制冷机结构复杂,虽然通过克服相关技术问题已经达到较长寿命,然而与单级斯特林相比,仍然很短。采用斯特林/脉管复合型的结构恰好克服了这一缺点,继而使J-T节流制冷整机能够同时达到高效、长寿命的空间任务要求。In addition, the structure of the two-stage Stirling refrigerator is complicated. Although it has achieved a long life by overcoming related technical problems, it is still very short compared with the single-stage Stirling refrigerator. The Stirling/pulse-tube composite structure just overcomes this shortcoming, and then enables the J-T throttling refrigeration unit to simultaneously meet the space mission requirements of high efficiency and long life.
实施例2Example 2
一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,本实施例中预冷单元采用三级斯特林/脉管复合制冷机构,与实施例1不同之处在于:预冷单元还包括同时与第二级冷端换热器10出口连通的第三级回热器24、以及通过管路依次与第三级回热器24出口连通的第三级冷端换热器25、第三级脉管27、第三级脉管热端换热器28、第三级惯性管29和第三级气库30。制冷单元还包括第三级逆流式换热器31和第三级预冷换热器32,第二级预冷换热器20出口依次通过第三级逆流式换热器31的高温侧管路和第三级预冷换热器32与节流前换热器21的高温侧管路入口连通,节流前换热器21的低温侧管路出口通过第三级逆流式换热器31的低温侧管路与第二级回热式换热器19的低温侧管路入口连通;第三级冷端换热器25通过第三级热桥26对第三级预冷换热器32内的制冷剂进行预冷。A low-temperature J-T throttling refrigerator for precooling by a Stirling/pulse tube composite refrigerator. In this embodiment, the precooling unit adopts a three-stage Stirling/pulse tube composite refrigeration mechanism. The difference from Embodiment 1 is that : The pre-cooling unit also includes a third-stage regenerator 24 communicated with the outlet of the second-stage cold-end heat exchanger 10 at the same time, and a third-stage cold-end exchanger communicated with the outlet of the third-stage regenerator 24 sequentially through pipelines Heater 25 , third-stage pulse tube 27 , third-stage pulse tube hot-end heat exchanger 28 , third-stage inertia tube 29 and third-stage gas storage 30 . The refrigeration unit also includes a third-stage counter-flow heat exchanger 31 and a third-stage pre-cooling heat exchanger 32, and the outlet of the second-stage pre-cooling heat exchanger 20 passes through the high-temperature side pipeline of the third-stage counter-flow heat exchanger 31 in turn The third-stage precooling heat exchanger 32 communicates with the high-temperature side pipeline inlet of the pre-throttling heat exchanger 21, and the low-temperature side pipeline outlet of the pre-throttling heat exchanger 21 passes through the third-stage counterflow heat exchanger 31. The low-temperature side pipeline communicates with the low-temperature side pipeline inlet of the second-stage regenerative heat exchanger 19; The refrigerant is pre-cooled.
实施例3Example 3
一种斯特林/脉管复合型制冷机预冷的低温J-T节流制冷机,预冷单元为三级斯特林/脉管复合制冷机机构,包括预冷机压缩机1、排出器驱动电机2、膨胀机组3和两级排出器33,以及与预冷机压缩机出口依次连通的热端换热器5、第一级斯特林气缸6、第一级冷端换热器7、第二级斯特林气缸34、第二级冷端换热器10、第三级回热器24、第三级冷端换热器25、第三级脉管27、第三级脉管热端换热器28、第三级惯性管29和第三级气库30。排出器驱动电机2布置在膨胀机组3内且与两级排出器33连接,两级排出器穿过热端换热器5和第一级冷端换热器7,布置在第一级斯特林气缸6和第二级斯特林气缸34中,且与两者壁面保证间隙密封。第一级和第二级回热填料填充在两级排出器33中。A low-temperature J-T throttling refrigerator precooled by a Stirling/pulse tube composite refrigerator, the precooling unit is a three-stage Stirling/pulse tube composite refrigerator mechanism, including a precooler compressor 1, and an ejector drive Motor 2, expansion unit 3, two-stage ejector 33, and hot-end heat exchanger 5, first-stage Stirling cylinder 6, first-stage cold-end heat exchanger 7, The second-stage Stirling cylinder 34, the second-stage cold-end heat exchanger 10, the third-stage regenerator 24, the third-stage cold-end heat exchanger 25, the third-stage pulse tube 27, and the third-stage pulse tube heat exchanger End heat exchanger 28, third-stage inertia tube 29 and third-stage gas storage 30. The ejector driving motor 2 is arranged in the expansion unit 3 and is connected to the two-stage ejector 33. The two-stage ejector passes through the hot end heat exchanger 5 and the first stage cold end heat exchanger 7, and is arranged in the first stage Stirling Cylinder 6 and the second stage Stirling cylinder 34, and guarantee gap seal with both wall surfaces. The first-stage and second-stage regenerative fillers are filled in the two-stage ejector 33 .
制冷单元与实施例1区别在于还包括第三级逆流式换热器31和第三级预冷换热器32,第二级预冷换热器20出口依次通过第三级逆流式换热器31的高温侧管路和第三级预冷换热器32与节流前换热器21的高温侧管路入口连通,节流前换热器21的低温侧管路出口通过第三级逆流式换热器31的低温侧管路与第二级回热式换热器19的低温侧管路入口连通;第三级冷端换热器25通过第三级热桥26对第三级预冷换热器32内的制冷剂进行预冷。The difference between the refrigeration unit and Embodiment 1 is that it also includes a third-stage counter-flow heat exchanger 31 and a third-stage pre-cooling heat exchanger 32, and the outlet of the second-stage pre-cooling heat exchanger 20 passes through the third-stage counter-flow heat exchanger in turn. The high-temperature side pipeline of 31 and the third-stage pre-cooling heat exchanger 32 communicate with the high-temperature side pipeline inlet of the pre-throttle heat exchanger 21, and the low-temperature side pipeline outlet of the pre-throttle heat exchanger 21 passes through the third-stage reverse flow The low-temperature side pipeline of the type heat exchanger 31 communicates with the low-temperature side pipeline inlet of the second-stage regenerative heat exchanger 19; The refrigerant in the cold heat exchanger 32 is pre-cooled.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310031962.9A CN103062951B (en) | 2013-01-25 | 2013-01-25 | Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310031962.9A CN103062951B (en) | 2013-01-25 | 2013-01-25 | Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103062951A CN103062951A (en) | 2013-04-24 |
CN103062951B true CN103062951B (en) | 2015-03-25 |
Family
ID=48105689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310031962.9A Active CN103062951B (en) | 2013-01-25 | 2013-01-25 | Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103062951B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792056B (en) * | 2015-04-22 | 2017-05-31 | 浙江大学 | A kind of JT j-t refrigerators coupled with philip refrigerator gas |
CN107421153B (en) * | 2017-08-22 | 2022-07-12 | 中国电子科技集团公司第十六研究所 | Stirling-pulse tube mixed cold finger adopting column spring phase modulation |
CN107560226B (en) * | 2017-09-26 | 2020-09-25 | 浙江大学 | Precooling type direct throttling JT refrigerating machine in liquid hydrogen temperature zone |
CN107940790B (en) * | 2017-12-15 | 2019-12-17 | 中国科学院理化技术研究所 | A mixed cycle cryogenic refrigerator |
CN117092568A (en) * | 2018-01-19 | 2023-11-21 | 北京绪水互联科技有限公司 | Method for monitoring cold head efficiency |
CN108302837B (en) * | 2018-02-10 | 2023-10-20 | 中国电子科技集团公司第十六研究所 | Split Stirling refrigerator ejector purification and circulation device and control method thereof |
CN108413641B (en) * | 2018-05-09 | 2020-04-03 | 上海理工大学 | Frame and pulse tube type free piston Stirling refrigerator |
CN108800644B (en) * | 2018-05-09 | 2020-04-03 | 上海理工大学 | Frame and pulse tube type free piston Stirling refrigerator |
CN108375234B (en) * | 2018-05-09 | 2020-04-03 | 上海理工大学 | Expansion machine unit and pulse tube type free piston Stirling refrigerator |
CN108826730B (en) * | 2018-05-09 | 2020-04-03 | 上海理工大学 | Frame and pulse tube type free piston Stirling refrigerator |
CN108954889B (en) * | 2018-08-27 | 2020-01-21 | 浙江大学 | Phase modulation device, pulse tube refrigerator and phase modulation method based on eddy current damping |
CN108954888B (en) * | 2018-08-27 | 2019-12-24 | 浙江大学 | Low temperature J-T throttling refrigerator precooled by pulse tube refrigerator |
CN108954890B (en) * | 2018-08-27 | 2019-12-24 | 浙江大学 | Low temperature J-T throttling refrigerator precooled by Stirling/pulse tube composite refrigerator |
CN110470068B (en) * | 2019-08-22 | 2021-01-22 | 上海理工大学 | Multi-stage porous micro-channel throttling refrigerator |
CN110553416A (en) * | 2019-09-11 | 2019-12-10 | 中国科学院上海技术物理研究所 | Active control alternating current-direct current composite deep low-temperature mechanical refrigeration system |
CN110749115B (en) * | 2019-11-11 | 2023-12-26 | 中国科学院上海技术物理研究所 | Multifunctional low-temperature vortex coil precooling heat exchanger |
CN113803905B (en) * | 2021-07-20 | 2024-05-31 | 同济大学 | Efficient precooling and liquefying system of gap type refrigerator |
CN114396738B (en) * | 2022-02-10 | 2024-06-18 | 中国科学院上海技术物理研究所 | JT throttling refrigeration system adopting low-temperature driver |
CN115235136B (en) * | 2022-06-20 | 2023-06-27 | 浙江大学 | G-M/J-T hybrid internal liquefaction system adopting multi-pressure air supplementing |
CN115200247B (en) * | 2022-07-11 | 2024-05-07 | 中国科学院上海技术物理研究所 | A low temperature structure and implementation method of a throttling refrigeration coupled adiabatic demagnetization refrigerator |
CN115264988B (en) * | 2022-07-11 | 2024-08-09 | 中国科学院上海技术物理研究所 | A low temperature structure of a throttling refrigerator coupled with an adsorption refrigerator and a method for implementing the same |
CN115615029A (en) * | 2022-09-26 | 2023-01-17 | 中国科学院上海技术物理研究所 | sub-Kelvin temperature zone refrigerating mechanism |
CN115854651B (en) * | 2022-11-25 | 2023-09-15 | 浙江大学 | A hydrogen liquefaction method and device using refrigerator pre-cooling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1503154A1 (en) * | 2003-07-28 | 2005-02-02 | Raytheon Company | Stirling/pulse tube hybrid cryocooler with gas flow shunt |
CN101561196A (en) * | 2009-05-18 | 2009-10-21 | 浙江大学 | High-power pulse tube refrigerator based on Stirling refrigerator |
JP2011137584A (en) * | 2009-12-28 | 2011-07-14 | Masahiro Miyauchi | Stirling engine |
CN102313395A (en) * | 2010-07-06 | 2012-01-11 | 浙江大学 | Two-stage Stirling and single-stage pulse tube gas coupling cascaded multi-stage low temperature refrigerator |
CN203231579U (en) * | 2013-01-25 | 2013-10-09 | 浙江大学 | Low temperature J-T throttling refrigerator precooled by Stirling/pulse tube composite refrigerator |
-
2013
- 2013-01-25 CN CN201310031962.9A patent/CN103062951B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1503154A1 (en) * | 2003-07-28 | 2005-02-02 | Raytheon Company | Stirling/pulse tube hybrid cryocooler with gas flow shunt |
CN101561196A (en) * | 2009-05-18 | 2009-10-21 | 浙江大学 | High-power pulse tube refrigerator based on Stirling refrigerator |
JP2011137584A (en) * | 2009-12-28 | 2011-07-14 | Masahiro Miyauchi | Stirling engine |
CN102313395A (en) * | 2010-07-06 | 2012-01-11 | 浙江大学 | Two-stage Stirling and single-stage pulse tube gas coupling cascaded multi-stage low temperature refrigerator |
CN203231579U (en) * | 2013-01-25 | 2013-10-09 | 浙江大学 | Low temperature J-T throttling refrigerator precooled by Stirling/pulse tube composite refrigerator |
Non-Patent Citations (1)
Title |
---|
空间液氦温区机械式制冷技术发展现状及趋势;甘智华,王博,刘东立,王任卓,张学军;《浙江大学学报(工学版)》;20130108;第46卷(第12期);第2160-2177页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103062951A (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103062951B (en) | Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler | |
Qian et al. | A review of regenerative heat exchange methods for various cooling technologies | |
CN105783319B (en) | The low temperature J T j-t refrigerators of philip refrigerator precooling | |
CN103808056B (en) | The vascular of recovery sound merit and the compound Cryo Refrigerator of J-T throttling | |
CN104913541B (en) | Stirling cycle and the direct-coupled refrigeration machine of Vapor Compression Refrigeration Cycle and method | |
CN104197591B (en) | Use helium as the deep hypothermia regenerator of backheat medium and vascular refrigerator thereof | |
CN106642837B (en) | A regenerative refrigerator with built-in liquefier | |
CN103047788B (en) | J-T throttling refrigeration circulating system driven by low-temperature linear compressor | |
CN113803905B (en) | Efficient precooling and liquefying system of gap type refrigerator | |
WO2022042457A1 (en) | Efficient liquefaction system of regenerative refrigerator using direct flow | |
CN114353366B (en) | High-efficiency precooling and liquefaction system with coupled expansion mechanism and regenerative refrigerator | |
CN102313395B (en) | Two-stage Stirling and single-stage pulse tube gas coupling cascaded multi-stage low temperature refrigerator | |
CN103017395B (en) | Composite multi-stage pulse tube refrigerator working in 1-2K temperature zone | |
CN104792056B (en) | A kind of JT j-t refrigerators coupled with philip refrigerator gas | |
CN203231579U (en) | Low temperature J-T throttling refrigerator precooled by Stirling/pulse tube composite refrigerator | |
CN217303237U (en) | Efficient precooling and liquefying system of clearance type refrigerating machine | |
CN103075834B (en) | 1-2K composite multistage pulse pipe refrigerating machine for utilizing redundant cold quantity | |
CN203258916U (en) | Free piston type pulse tube refrigerator | |
CN104534721B (en) | Refrigerating system adopting multistage thermal coupling V-M type pulse tube refrigerator | |
CN107560226B (en) | Precooling type direct throttling JT refrigerating machine in liquid hydrogen temperature zone | |
CN103216966B (en) | Free piston type pulse tube refrigerator | |
CN103267383B (en) | Free-piston pulse tube refrigerator using all-carbon aerogel regenerative filler | |
CN203132192U (en) | J-T throttle cooling cycle system driven by low-temperature linear compressor | |
CN204593940U (en) | A kind of Stirling cycle and the direct-coupled refrigeration machine of Vapor Compression Refrigeration Cycle | |
CN108413705A (en) | Use the cascade back-heating type natural gas liquefaction system of pulse type sterlin refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |