[go: up one dir, main page]

CN103060350A - Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance - Google Patents

Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance Download PDF

Info

Publication number
CN103060350A
CN103060350A CN2011103215707A CN201110321570A CN103060350A CN 103060350 A CN103060350 A CN 103060350A CN 2011103215707 A CN2011103215707 A CN 2011103215707A CN 201110321570 A CN201110321570 A CN 201110321570A CN 103060350 A CN103060350 A CN 103060350A
Authority
CN
China
Prior art keywords
gene
ssoxdc2
sclerotinia
plant
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103215707A
Other languages
Chinese (zh)
Inventor
姜道宏
付艳苹
程家森
谢甲涛
岳吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN2011103215707A priority Critical patent/CN103060350A/en
Publication of CN103060350A publication Critical patent/CN103060350A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention belongs to the technical field of plant pathology and molecular biology thereof, and relates to the plant transgene technology. A sclerotinia oxalic acid decarboxylase gene SsOXDC2 capable of resisting sclerotiniose is obtained by utilizing the plant gene cloning technology, wherein the nucleotide sequence of the gene SsOXDC2 is shown in SEQ ID NO: 1 in a sequence table; and the coded protein sequence of the gene SsOXDC2 is shown inSEQ ID NO: 3 in the sequence table. The invention further discloses a method for obtaining a transgenic plant by the clone, the vector construction and the screening of the sclerotinia oxalic acid decarboxylase gene SsOXDC2. The gene SsOXDC2 provided by the invention is suitable for the genetic improvement in enhancement of the capability of the soybeans for resisting the sclerotiniose.

Description

核盘菌草酸脱羧酶基因SsOXDC2及其在大豆抗病改良中的应用Sclerotinia oxalate decarboxylase gene SsOXDC2 and its application in improvement of soybean disease resistance

技术领域 technical field

本发明属于植物基因工程技术领域。具体涉及一个源自核盘菌的草酸脱羧酶基因SsOXDC2的分离克隆和功能验证。草酸脱羧酶基因SsOXDC2能够赋予大豆抵抗由核盘菌引起的大豆菌核病的能力。  The invention belongs to the technical field of plant genetic engineering. It specifically relates to the isolation, cloning and functional verification of an oxalate decarboxylase gene SsOXDC2 derived from Sclerotinia sclerotiorum. The oxalate decarboxylase gene SsOXDC2 can endow soybean with the ability to resist soybean sclerotinia caused by Sclerotinia sclerotiorum. the

背景技术 Background technique

核盘菌(Sclerotinia sclerotiorum)是一种重要的植物病原真菌,寄主范围广泛,可以侵染75个科、450多种植物,主要是草本和多肉质的木本植物,引起植物菌核病(Purdy,1979;Boland et al,1994;Bolton et al,2006),给多种经济作物的生产造成巨大损失。在我国,菌核病对大豆的生产成了巨大危害。  Sclerotinia sclerotiorum is an important plant pathogenic fungus with a wide range of hosts, which can infect 75 families and more than 450 kinds of plants, mainly herbaceous and succulent woody plants, causing plant sclerotinia (Purdy , 1979; Boland et al, 1994; Bolton et al, 2006), causing huge losses to the production of a variety of commercial crops. In my country, Sclerotinia has become a huge hazard to soybean production. the

核盘菌在致病过程中会分泌大量草酸,近年来的研究大都认为草酸与核盘菌的致病作用密不可分,草酸是其致病的决定因子(Maxwell et al.,1970;Godoy et al.,1990;吴纯仁等,1991)。草酸为核盘菌的侵染提供了一个酸性的微环境,侵染部位草酸聚集,pH值下降到4.5左右,酸性环境可以提高细胞降解酶活性,如多聚半乳糖醛酸酶(polygactu-ronase,PG)、纤维素酶和半纤维素酶(Riou et al.,1991)等。同时,草酸可以抑制植物抗性有关物质的活性(Noyes and Hancock,1981;Magro et al.,1984)。  Sclerotinia can secrete a large amount of oxalic acid in the process of pathogenicity. Most of the researches in recent years believe that oxalic acid is inseparable from the pathogenicity of Sclerotinia, and oxalic acid is the determinant of its pathogenicity (Maxwell et al., 1970; Godoy et al ., 1990; Wu Chunren et al., 1991). Oxalic acid provides an acidic microenvironment for the infection of S. sclerotiorum, where oxalic acid accumulates at the site of infection, and the pH value drops to about 4.5. The acidic environment can increase the activity of cell degradation enzymes, such as polygalacturonase (polygactu-ronase , PG), cellulase and hemicellulase (Riou et al., 1991) and so on. At the same time, oxalic acid can inhibit the activity of substances related to plant resistance (Noyes and Hancock, 1981; Magro et al., 1984). the

生物体内,草酸可以通过氧化和脱羧两条途径分解。参与草酸代解的酶主要有以下三类。草酸氧化酶(EC 1.2.3.4),氧化草酸产生2分子CO2和1分子H2O2,可从高等植物及少数微生物中克隆到。乙酰CoA脱羧酶(EC 4.1.1.8)系统主要与微生物有关。通过乙酰CoA脱羧酶,使草酸转化为草酰CoA和CO2。草酸脱羧酶(Oxalate Decarboxylase,OXDC)(EC 4.1.1.2),使草酸脱羧,产生1分子CO2和1分子甲酸。草酸脱羧酶,最早发现于木腐担子菌冬菇(Collybia velutipes)及毛革盖菌(Coriolus hirsutus)的菌丝中,是一种含锰的酶。最近从枯草芽孢杆菌(Bacillussubtilis)中得到了的草酸脱羧酶由酸性介质诱导,并非必需由草酸诱导。与其它草酸降解酶性比,草酸脱羧酶特异性地针对草酸,过程简单,在低pH值时具有活性。  In organisms, oxalic acid can be decomposed by oxidation and decarboxylation. There are three main types of enzymes involved in the hydrolysis of oxalate. Oxalate oxidase (EC 1.2.3.4), which oxidizes oxalic acid to produce 2 molecules of CO 2 and 1 molecule of H 2 O 2 , can be cloned from higher plants and a few microorganisms. The acetyl-CoA decarboxylase (EC 4.1.1.8) system is mainly associated with microorganisms. Oxalate is converted to oxalyl-CoA and CO2 by acetyl-CoA decarboxylase. Oxalate Decarboxylase (OXDC) (EC 4.1.1.2) decarboxylates oxalate to produce 1 molecule of CO 2 and 1 molecule of formic acid. Oxalate decarboxylase, which was first discovered in the hyphae of the wood-rot basidiomycetes Collybia velutipes and Coriolus hirsutus, is a manganese-containing enzyme. Oxalate decarboxylase, recently obtained from Bacillus subtilis, is induced by acidic media, but not necessarily by oxalate. Compared with other oxalate degrading enzymes, oxalate decarboxylase is specific for oxalate, the process is simple, and it is active at low pH.

随着组织培养和农杆菌介导的植物转基因技术(Agrobacterium tumefaciens mediated transformation,ATMT)的建立和发展,植物基因工程取得了丰硕的成果。目前关于大豆转基因研究,主要集中于对其抗虫性、抗逆性、抗除草剂、提高品质等特性,使用的基因主要包括Bt抗虫基因Cry1A、阿特拉津抗性基因、植酸酶基因、r-胱硫醚合成酶基因等,而关于大豆生产中最为主要的菌核病的抗性研究较少。表1列出了最近几年植物转草酸代谢酶取得的主要成果,仅少数基因曾尝试进行大豆的转化(Donaldson et al.,2001;Cunhaab et al.,2010)。由于酶催化的草酸降解反应发生在核盘菌侵染所创造的酸性环境中,而酶的效率受环境的影响非常大,因此源自于植物的草酸氧化酶的活性很可能会受到环境的影响而降低。而源自于核盘菌的草酸脱羧酶,对核盘菌侵染所创造的酸性环境有非常好的适应性,并且不会受到核盘菌分泌的与抑制酶活性有关物质的影响,因此可能在核盘菌与大豆互作中具有更好的表现。  With the establishment and development of tissue culture and Agrobacterium tumefaciens mediated transformation (ATMT), plant genetic engineering has achieved fruitful results. At present, research on soybean transgenics mainly focuses on its insect resistance, stress resistance, herbicide resistance, and quality improvement. The genes used mainly include Bt insect resistance gene Cry1A, atrazine resistance gene, phytase gene, r-cystathionine synthase gene, etc., but there are few studies on the resistance of sclerotinia, which is the most important soybean production. Table 1 lists the main achievements of plant oxalate metabolizing enzymes in recent years. Only a few genes have been tried to transform soybean (Donaldson et al., 2001; Cunhaab et al., 2010). Since the enzyme-catalyzed oxalate degradation reaction occurs in the acidic environment created by S. sclerotiorum infection, and the efficiency of the enzyme is greatly affected by the environment, the activity of plant-derived oxalate oxidase is likely to be affected by the environment And lower. The oxalate decarboxylase derived from S. sclerotiorum has very good adaptability to the acidic environment created by S. sclerotiorum infection, and will not be affected by substances related to the inhibition of enzyme activity secreted by S. sclerotiorum, so it may It has better performance in the interaction between Sclerotinia and soybean. the

表1草酸代谢相关的基因在转基因植物中的应用  Table 1 Application of genes related to oxalate metabolism in transgenic plants

Figure BSA00000595948100021
Figure BSA00000595948100021

发明内容 Contents of the invention

本发明的目的是分离克隆核盘菌中草酸脱羧酶基因,并采用病毒介导的表达策略在大豆中超量表达,高效利用此基因改良大豆品种抗菌核病的能力。  The purpose of the present invention is to isolate and clone the oxalate decarboxylase gene in Sclerotinia sclerotiorum, and adopt virus-mediated expression strategy to overexpress in soybean, and efficiently use this gene to improve the anti-sclerotinia ability of soybean varieties. the

本发明涉及分离和应用包含SsOXDC2基因的DNA片段,它的核苷酸序列如序列表SEQ ID NO:1所示,它编码的蛋白质的序列如序列表SEQ ID NO:3所示。该基因(片段)赋予大豆对由核盘菌所引起的菌核病产生特异性的抗病反应能力。这一发明适用于所有对该病原菌敏感的植物。这些植物包括大豆、油菜等主要的油料作物和蔬菜作物。除上述所述的如SEQ ID NO:1所示的DNA片段外,本发明所定义的基因还包括基本上相当于SEQ ID NO:1所示的DNA序列,或者其功能相当于SEQ IDNO:1所示序列的亚片段。  The present invention relates to the separation and application of a DNA fragment containing the SsOXDC2 gene, its nucleotide sequence is shown in the sequence table SEQ ID NO: 1, and the sequence of its encoded protein is shown in the sequence table SEQ ID NO: 3. The gene (fragment) endows soybean with specific disease-resistant response to Sclerotinia sclerotiorum caused by Sclerotinia sclerotiorum. This invention is applicable to all plants sensitive to the pathogenic bacteria. These plants include major oil crops such as soybeans and canola and vegetable crops. In addition to the above-mentioned DNA fragment shown in SEQ ID NO: 1, the gene defined in the present invention also includes a DNA sequence substantially equivalent to that shown in SEQ ID NO: 1, or its function is equivalent to SEQ ID NO: 1 Subfragments of the indicated sequences. the

可以采用已经克隆的SsOXDC2基因作探针,从cDNA和基因组文库中筛选到本发明的基因或同源基因。同样,采用PCR(polymerase chain reaction)技术,也可以从基因组、mRNA和cDNA中扩增得到本发明的SsOXDC2基因以及任何感兴趣的一段DNA或与其同源的一段DNA。采用以上技术,可以分离得到包含SsOXDC2基因的序列或者包含一段SsOXDC2基因的序列,将这一序列与合适的载体连接,可以转入植物细胞提高植物抗菌核病的能力。  The cloned SsOXDC2 gene can be used as a probe to screen the gene or homologous gene of the present invention from cDNA and genome libraries. Similarly, using PCR (polymerase chain reaction) technology, the SsOXDC2 gene of the present invention and any piece of DNA of interest or a piece of DNA homologous thereto can also be amplified from the genome, mRNA and cDNA. Using the above techniques, a sequence containing the SsOXDC2 gene or a sequence containing a segment of the SsOXDC2 gene can be isolated, and this sequence can be connected with a suitable vector to be transferred into plant cells to improve the ability of plants to resist sclerotinia. the

在本发明的实施例部分,我们阐述了基因SsOXDC2的分离、功能验证和应用过程以及该基因的特点。  In the example part of the present invention, we described the isolation, functional verification and application process of the gene SsOXDC2 and the characteristics of the gene. the

附图说明 Description of drawings

序列表SEQ ID NO:1.本发明克隆核盘菌草酸脱羧酶基因SsOXDC2核苷酸序列,该基因来源于核盘菌菌株Ep-1PNAa367的基因组。  Sequence Listing SEQ ID NO: 1. The present invention clones the Sclerotinia oxalate decarboxylase gene SsOXDC2 nucleotide sequence, which is derived from the genome of Sclerotinia bacterial strain Ep-1PNAa367. the

序列表SEQ ID NO:3.是草酸脱羧酶基因SsOXDC2编码的蛋白质的序列。  Sequence Listing SEQ ID NO: 3. is the sequence of the protein encoded by the oxalate decarboxylase gene SsOXDC2. the

图1.本发明分离克隆草酸脱羧酶基因SsOXDC2以及功能验证的流程图。  Fig. 1. The flow chart of the separation and cloning of the oxalate decarboxylase gene SsOXDC2 and functional verification of the present invention. the

图2.自核盘菌菌株Ep-1PNAa367的基因组中克隆草酸脱羧酶基因SsOXDC2。图中:泳道2为空白对照,泳道2和泳道3模板为Ep-1PNAa367的基因组DNA样品。  Figure 2. Cloning of the oxalate decarboxylase gene SsOXDC2 from the genome of Sclerotinia strain Ep-1 PNAa367. In the figure: lane 2 is a blank control, and lane 2 and lane 3 templates are genomic DNA samples of Ep-1PNAa367. the

图3.基因克隆及转化载体pMD18T、T-AON、pGR106和pGR106O+的图谱。其中图3A是转化载体pMD18T和T-AON;图3B转化载体是pGR106;图3C是转化载体pGR106O+。  Figure 3. Maps of gene cloning and transformation vectors pMD18T, T-AON, pGR106 and pGR106O+. Figure 3A is the transformation vector pMD18T and T-AON; Figure 3B is the transformation vector pGR106; Figure 3C is the transformation vector pGR106O+. the

图4.大豆中黄18转基因植株中草酸脱羧酶基因SsOXDC2的表达。图中:泳道1为空白对照,泳道2-5模板为转基因大豆植株的RNA样品。  Figure 4. Expression of oxalate decarboxylase gene SsOXDC2 in soybean Zhonghuang 18 transgenic plants. In the figure: Swimming lane 1 is a blank control, and swimming lanes 2-5 templates are RNA samples of transgenic soybean plants. the

图5.转基因植株叶片抗菌核病病斑扩展分析结果(量化测试)。  Fig. 5. Analysis results of antibacterial sclerotinia lesion expansion on leaves of transgenic plants (quantitative test). the

图6.转基因植株叶片抗菌核病病斑扩展(病斑的直观图)。图中:第一行是大豆品种中黄18;第二行是转空白pGR106;第三行是转pGR106O+。  Figure 6. The expansion of antibacterial sclerotinia lesions on the leaves of transgenic plants (visual diagram of lesions). In the figure: the first row is the soybean variety Zhonghuang 18; the second row is the transformation of blank pGR106; the third row is the transformation of pGR106O+. the

图7.转基因植株叶柄抗菌核病扩展。图中:图左是转pGR106O+;图右是转空白pGR106。  Figure 7. Anti-sclerotinia expansion of petioles of transgenic plants. In the picture: the left side of the picture is transformed into pGR106O+; the right side of the picture is transformed into blank pGR106. the

具体实施方式 Detailed ways

本发明基于对核盘菌基因组序列的分析和预测,以核盘菌Ep-1PNAa367菌株为研究材料,通过RT-PCR技术分离克隆SsOXDC2基因的全长编码区序列,与病毒PVX载体pGR106融合,农杆菌介导在大豆中表达,使大豆抗菌核病能力明显提高(如图1流程图所示)。为了更好的理解本发明,以下通过实施例予以进一步说明,但并非对本发明的限制。  The present invention is based on the analysis and prediction of the genome sequence of Sclerotinia sclerotiorum, using the Sclerotinia sclerotiorum Ep-1PNAa367 bacterial strain as research material, isolating and cloning the full-length coding region sequence of the SsOXDC2 gene by RT-PCR technology, and merging it with the viral PVX vector pGR106 for agricultural production. Bacillus-mediated expression in soybean significantly improves the anti-sclerotinia ability of soybean (as shown in the flow chart of Figure 1). In order to better understand the present invention, the following examples are used to further illustrate, but not to limit the present invention. the

根据以下实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。  According to the following examples, those skilled in the art can ascertain the basic characteristics of the present invention, and without departing from the spirit and scope of the present invention, various changes and modifications can be made to the present invention so that it is applicable to various uses and conditions . the

以下具体实施例,除非特别说明,所有培养基及无菌试验用品均采用常规的高压蒸汽法灭菌(121℃,高压灭菌30min),并于室温存放。除非特别说明,所有限制性内切酶及聚合酶均购自宝生物工程(大连)有限公司。  In the following specific examples, unless otherwise specified, all culture media and sterile test supplies were sterilized by conventional high-pressure steam method (121° C., high-pressure sterilization for 30 minutes), and stored at room temperature. Unless otherwise specified, all restriction endonucleases and polymerases were purchased from Bao Biological Engineering (Dalian) Co., Ltd. the

实施例1:核盘菌草酸脱羧酶基因SsOXDC2的分离克隆  Embodiment 1: the isolated clone of sclerotinia oxalate decarboxylase gene SsOXDC2

从真菌基因组数据库(http://www.broadinstitute.org/scientific-community/data)中得到核盘菌草酸脱羧酶基因的一些信息,核盘菌基因组中含有两个草酸脱羧酶基因位点,分别是SS1G_08814和SS1G_10796,分别位于不同的染色体区段。SS1G_08814转录区含有4个外显子,3个内含子,全长1575bp,cDNA编码区含有1368bp,编码455个氨基酸;SS1G_10796转录区含有3个外显子,2个内含子,全长1665bp,cDNA编码区含有1515bp,编码504个氨基酸。通过TargetP 1.1Server对两个氨基酸序列分析发现,两个氨基端都含有信号肽序列。  Obtain some information of the sclerotinia oxalate decarboxylase gene from the fungal genome database (http://www.broadinstitute.org/scientific-community/data), containing two oxalate decarboxylase gene sites in the sclerotinia genome, respectively are SS1G_08814 and SS1G_10796, located on different chromosome segments. The SS1G_08814 transcribed region contains 4 exons, 3 introns, the full length is 1575bp, the cDNA coding region contains 1368bp, encoding 455 amino acids; the SS1G_10796 transcribed region contains 3 exons, 2 introns, the full length is 1665bp , the cDNA coding region contains 1515bp, encoding 504 amino acids. Analysis of the two amino acid sequences by TargetP 1.1Server found that both amino-terminals contained signal peptide sequences. the

本发明对核盘菌菌株Ep-1PNAa367在不同生长阶段的Solexa表达谱分析显示,这两个基因在核盘菌的不同生长阶段表达水平有很大变化,其中菌核形成阶段两个基因的表达水平均达到最高,两个基因在不同的生长阶段,表达水平也具有明显的差异(见表2)。鉴于表达水平的差异,本发明选择SS1G_10796基因作为研究的对象。下面提到的草酸脱羧酶基因SsOXDC2均指此基因。  The present invention shows that the Solexa expression profile analysis of Sclerotinia strain Ep-1PNAa367 in different growth stages shows that the expression levels of these two genes have great changes in the different growth stages of Sclerotinia, and the expression of the two genes in the sclerotinia formation stage The levels reached the highest, and the expression levels of the two genes also had obvious differences in different growth stages (see Table 2). In view of the differences in expression levels, the present invention selects the SS1G_10796 gene as the research object. The oxalate decarboxylase gene SsOXDC2 mentioned below refers to this gene. the

表2草酸脱羧酶基因在核盘菌不同生长阶段的表达水平  Table 2 Expression levels of oxalate decarboxylase gene in different growth stages of Sclerotinia

Figure BSA00000595948100031
Figure BSA00000595948100031

1.核盘菌总RNA抽提  1. Sclerotinia total RNA extraction

将核盘菌菌株Ep-1PNAa367(姜道宏等采集自黑龙江佳木斯市,Liu et al.,2009)接种到铺有玻璃纸的PDA平板(90cm培养皿)上,20℃培养3-4d,收集菌丝。取菌丝100mg,在液氮中充分研磨,迅速转移到1ml的RNArose(购自宝生物工程大连有限公司)中,冰上放置15min,使核酸蛋白复合物完全分离。4℃12,000r/min离心10min,上清小心地转移到新的离心管中。每使用1ml RNArose加0.2ml氯仿,剧烈振荡15s,室温放置3min。4℃12,000r/min离心10-15min,弃沉淀,水相溶液中加入等体积异丙醇,混匀,-20℃放置20-30min。4℃12,000r/min离心10min,去上清。之后加入1ml 75%乙醇洗涤沉淀。4℃5,000r/min离心3min。弃上清,室温晾干,加入30μl无RNase水,充分溶解RNA,将获得的RNA样品贮存在-80℃的冰箱中备用。  Sclerotinia strain Ep-1PNAa367 (collected by Jiang Daohong et al. from Jiamusi City, Heilongjiang, Liu et al., 2009) was inoculated on a PDA plate (90cm petri dish) covered with cellophane, cultured at 20°C for 3-4d, and mycelium was collected . Take 100 mg of mycelium, grind it fully in liquid nitrogen, quickly transfer it to 1 ml of RNArose (purchased from Bao Biological Engineering Dalian Co., Ltd.), and place it on ice for 15 minutes to completely separate the nucleic acid-protein complex. Centrifuge at 12,000r/min at 4°C for 10min, and carefully transfer the supernatant to a new centrifuge tube. Add 0.2ml chloroform to every 1ml RNArose used, shake vigorously for 15s, and place at room temperature for 3min. Centrifuge at 12,000r/min at 4°C for 10-15min, discard the precipitate, add an equal volume of isopropanol to the aqueous phase solution, mix well, and place at -20°C for 20-30min. Centrifuge at 12,000r/min at 4°C for 10min, and discard the supernatant. Then add 1ml 75% ethanol to wash the precipitate. Centrifuge at 5,000r/min for 3min at 4°C. Discard the supernatant, dry it at room temperature, add 30 μl RNase-free water to fully dissolve the RNA, and store the obtained RNA sample in a -80°C refrigerator for later use. the

其中:PDA培养基(即马铃薯葡萄糖琼脂培养基配方为:新鲜马铃薯(去皮)200g加水煮沸取汁液,再向其中添加葡萄糖20g,琼脂17-20g,补水至1000ml,按照上述说明的常规方法灭菌。  Wherein: PDA medium (i.e., the formula of potato dextrose agar medium is: fresh potato (peeled) 200g, add water and boil to get juice, then add glucose 20g, agar 17-20g, replenish water to 1000ml, kill according to the conventional method described above Bacteria.

2.核盘菌草酸脱羧酶基因SsOXDC2编码区全长的克隆  2. Cloning of the full-length coding region of the sclerotinia oxalate decarboxylase gene SsOXDC2

使用RevertAidTM First Strand cDNA Synthesis Kit(反转录试剂盒;购自Fermentas公司),合成cDNA第一条链:在冰上用无菌、焦碳酸二乙酯(DEPC)处理的Eppendorf管配制以下体系:RNA10ng-0.5μg、oligo(dT)18引物1μl、DEPC-处理的ddH2O补足到12μl。轻轻混匀,离心,65℃水浴5min使RNA中的二级结构充分解离,冰上骤冷。之后按照以下顺序加入:5×缓冲液4μl、RiboLockTM RNA抑制剂(20U/μl)1μl、10mM dNTP 2μl、RevertAidTMM-MuLV反转录酶(200U/μl)1μl,轻轻混匀,离心。42℃孵育60min。最后70℃处理5min终止反应。  Use the RevertAid First Strand cDNA Synthesis Kit (reverse transcription kit; purchased from Fermentas) to synthesize the first strand of cDNA: prepare the following system on ice with sterile, diethylpyrocarbonate (DEPC)-treated Eppendorf tubes : RNA 10 ng-0.5 μg, oligo(dT) 18 primer 1 μl, DEPC-treated ddH 2 O to make up to 12 μl. Gently mix, centrifuge, 65 ° C water bath for 5 minutes to fully dissociate the secondary structure in the RNA, and quench on ice. Then add in the following order: 5× buffer 4μl, RiboLock TM RNA inhibitor (20U/μl) 1μl, 10mM dNTP 2μl, RevertAid TM M-MuLV reverse transcriptase (200U/μl) 1μl, mix gently, and centrifuge . Incubate at 42°C for 60min. Finally, the reaction was terminated by treating at 70°C for 5 min.

以上一步PCR产物为模板,引物OXDCFP(5’GGTACCTGATGCATTCCAAAACTTTCC3’)和引物OXDCRP(5’GAGCTCTCCCACAACTCTACTCATAAGCAC 3’)为引物,克隆基因SsOXDC2的编码区。PCR体系如下:反应总体积50μl,上步反应产物2μl、10×PCR缓冲液5μl、10mM dNTP 1μl、引物OXDCFP 1μl、引物OXDCRP 1μl、ddH2O 39.5μl、5U/μl Taq 0.5μl。PCR程序:95℃3min,95℃30s,56℃30s,72℃2min,30cycles,72℃7min。  The PCR product of the previous step was used as a template, primers OXDCFP (5'GGTACCTGATGCATTCCAAAACTTTCC3') and primer OXDCRP (5'GAGCTCTCCCACAACTCTACTCATAAGCAC 3') were used as primers, and the coding region of the gene SsOXDC2 was cloned. The PCR system is as follows: a total reaction volume of 50 μl, 2 μl of the reaction product from the previous step, 5 μl of 10×PCR buffer, 1 μl of 10 mM dNTP, 1 μl of primer OXDCFP, 1 μl of primer OXDCRP, 39.5 μl of ddH 2 O, and 0.5 μl of 5U/μl Taq. PCR program: 95°C for 3min, 95°C for 30s, 56°C for 30s, 72°C for 2min, 30cycles, 72°C for 7min.

用AxyPrep DNA凝胶回收试剂盒(购自Axygen公司)回收上述PCR产物,连入pMD18-T载体(购自宝生物工程大连有限公司),体系为:PCR回收产物2μl、pMD18-T 1μl、ddH2O2μl、Solution I 5μl。16℃水浴过夜。加至50μl感受态细胞中,轻轻混匀后冰浴放置20-30min。42℃水浴加热45s后,立刻放回冰上,再在冰中放置2min。加入890μl SOC培养基,37℃振荡培养60min。经含有氨苄青霉素(Amp,50μg/ml)的LB-琼脂平板筛选,获得载体T-OXDC。  The above PCR products were recovered with the AxyPrep DNA Gel Recovery Kit (purchased from Axygen), and connected to the pMD18-T vector (purchased from Bao Bio-Engineering Dalian Co., Ltd.). The system was: 2 μl of PCR recovered products, 1 μl of pMD18-T, 2 O2 μl, Solution I 5 μl. 16°C water bath overnight. Add to 50μl competent cells, mix gently and place in ice bath for 20-30min. After heating in a water bath at 42°C for 45 seconds, immediately put it back on the ice, and then place it in the ice for 2 minutes. Add 890 μl of SOC medium, shake and culture at 37°C for 60min. The carrier T-OXDC was obtained by screening on LB-agar plates containing ampicillin (Amp, 50 μg/ml).

其中:LB培养基:蛋白胨10g,酵母粉5g,NaCl10g,用5M NaOH调节pH至7.0,加蒸馏水至1000ml,固体培养基加2%琼脂;  Among them: LB medium: peptone 10g, yeast powder 5g, NaCl 10g, adjust the pH to 7.0 with 5M NaOH, add distilled water to 1000ml, add 2% agar to the solid medium;

SOB培养基:胰蛋白胨20g,酵母粉5g,NaCl 0.5g,完全溶解后加入10ml 250mM KCl,加5M NaOH 0.2ml调至pH 7.0,加水至1000ml,使用前加入5ml 2M MgCl2;1L SOB加20ml1M葡萄糖即为SOC培养基。  SOB medium: tryptone 20g, yeast powder 5g, NaCl 0.5g, add 10ml 250mM KCl after complete dissolution, add 5M NaOH 0.2ml to adjust to pH 7.0, add water to 1000ml, add 5ml 2M MgCl 2 before use; 1L SOB add 20ml 1M Glucose is the SOC medium.

实施例3:核盘菌的草酸脱羧酶基因SsOXDC2的功能验证  Example 3: Functional verification of the oxalate decarboxylase gene SsOXDC2 of Sclerotinia sclerotiorum

pGR106是由植物单链RNA病毒-马铃薯X病毒(Potato Virus X,PVX)改造而来的侵染载体(见图3B),外源基因插入到载体PVX外壳蛋白(CP)启动子之后,与CP蛋白以融合蛋白的形式表达。pGR106经农杆菌介导的转化整合进植物基因组中后,会表达编码马铃薯X病毒,外源基因同时被表达。外源基因可以随病毒基因组一同包装,伴随着病毒的复制传播而在植物其它组织中表达。具体步骤如下所述:  pGR106 is an infection vector transformed from a plant single-stranded RNA virus-Potato Virus X (PVX) (see Figure 3B). Proteins are expressed as fusion proteins. After pGR106 is integrated into the plant genome through Agrobacterium-mediated transformation, it will express the coding potato X virus, and the foreign gene will be expressed at the same time. The exogenous gene can be packaged together with the viral genome, and expressed in other plant tissues along with the replication and transmission of the virus. The specific steps are as follows:

1.转化载体构建  1. Transformation vector construction

病毒介导的核盘菌草酸脱羧酶基因SsOXDC2的表达载体,以质粒pGR106(见图3B)为基础进行构建。首先以T-OXDC为模板,以OXDC-AscI(5’AGGCGCGCCATGCATTCCAAAACTTTC CTG 3’)和OXDC-NotI(5’AGCGGCCGCTACTCATAAGCACCACTTCCCTTCTCA 3’)为引物,克隆草酸脱羧酶基因的编码区。扩增体系如下:T-OXDC 0.5μl、10×PCR buffer 5μl、10mM dNTP 1μl、OXDC-AscI 1μl、OXDC-NotI 1μl、ddH2O 41μl、5U/μl Taq 0.5μl。PCR程序如下:95℃3min,95℃30s,55℃30s,72℃2min,30cycles,72℃7min。PCR产物连接到pMD18-T(见图3A)上,将得到载体命名为T-AON(见图3A)。  The virus-mediated expression vector of S. sclerotiorum oxalate decarboxylase gene SsOXDC2 was constructed on the basis of plasmid pGR106 (see FIG. 3B ). Firstly, T-OXDC was used as a template and OXDC-AscI (5'A GGCGCGCC ATGCATTCCAAAACTTTC CTG 3') and OXDC-NotI (5'A GCGGCCGC TACTCATAAGCACCACTTCCCTTTCCA 3') were used as primers to clone the coding region of the oxalate decarboxylase gene. The amplification system was as follows: T-OXDC 0.5 μl, 10×PCR buffer 5 μl, 10 mM dNTP 1 μl, OXDC-AscI 1 μl, OXDC-NotI 1 μl, ddH 2 O 41 μl, 5U/μl Taq 0.5 μl. The PCR program is as follows: 95°C for 3min, 95°C for 30s, 55°C for 30s, 72°C for 2min, 30 cycles, 72°C for 7min. The PCR product was ligated to pMD18-T (see FIG. 3A ), and the obtained vector was named T-AON (see FIG. 3A ).

将载体pGR106(见图3B)和T-AON(见图3A)分别用酶Not I 37℃酶切3h,纯化回收后再用Asc I(New England Biolabs)37℃酶切3h。纯化回收,T4-DNA ligase连接,连接体系如下:10×T4-DNAligase buffer 1μl、pGR106回收片段1μl、T-AON回收片段3μl、ddH2O4.5μl、T4-DNA ligase 0.5μl。16℃过夜,转化大肠杆菌DH5α,PCR验证挑取阳性克隆抽提质粒,命名为pGR106O+。将质粒pGR106和pGR106O+(见图3C)通过电击的方法转化至农杆菌EHA105中,具体方法如下:  The vectors pGR106 (see FIG. 3B ) and T-AON (see FIG. 3A ) were digested with enzyme Not I at 37°C for 3 h, purified and recovered, and then digested with Asc I (New England Biolabs) at 37°C for 3 h. Purification and recovery, T 4 -DNA ligase ligation, the ligation system is as follows: 10×T 4 -DNA ligase buffer 1 μl, pGR106 recovered fragment 1 μl, T-AON recovered fragment 3 μl, ddH 2 O 4.5 μl, T 4 -DNA ligase 0.5 μl. After overnight at 16°C, transform Escherichia coli DH5α, and PCR verified that positive clones were picked to extract the plasmid, which was named pGR106O+. The plasmids pGR106 and pGR106O+ (see Figure 3C) were transformed into Agrobacterium EHA105 by electric shock, the specific method is as follows:

将2μl TE溶解的质粒样品(pGR106和pGR106O+)分别转到1.5ml无菌EP管中。放置到冰上。每个样品准备1ml LB培养基,室温放置。0.1cm的电击杯在冰上预冷。在冰上溶解农杆菌EHA105感受态细胞,每个含样品的EP管中加入20μl感受态细胞,轻轻混匀。把BioRadmicropulser (Bio-Rad)调到“Agr”。调节参数分别为电压2.5kv、电容25mF和电阻200欧姆。将质粒与感受态细胞的混合物转移到电击杯的底部,并把电击杯放置到电击室的滑槽上,把滑槽推到电击室内部,使电击杯与电极良好接触。按pulse键。取出电击杯,迅速加入准备好的LB培养基。混匀后重新转移到EP管中。28℃,250r/min振荡培养3h。取200μl的培养液涂布到含有相应抗生素(卡那霉素50μg/ml、利福平50μg/ml、链霉素50μg/ml)的LB平板上。28℃培养2d,挑取单菌落进行PCR验证。最后得到二株相应农杆菌Agr(含pGR106质粒)和Agr(含pGR106O+质粒)。将二株农杆菌菌株在15%甘油中于-70℃保存备用。  Transfer 2 μl of TE-dissolved plasmid samples (pGR106 and pGR106O+) to 1.5ml sterile EP tubes, respectively. Place on ice. Prepare 1ml LB medium for each sample and store at room temperature. The 0.1cm shock cup was pre-cooled on ice. Dissolve Agrobacterium EHA105 competent cells on ice, add 20 μl competent cells to each EP tube containing samples, and mix gently. Turn the BioRadmicropulser (Bio-Rad) to "Agr". The adjustment parameters are voltage 2.5kv, capacitance 25mF and resistance 200 ohms. Transfer the mixture of plasmid and competent cells to the bottom of the electric shock cup, and place the electric shock cup on the chute of the electric shock chamber, push the chute into the electric shock chamber, so that the electric shock cup is in good contact with the electrodes. Press the pulse key. Take out the electric shock cup and quickly add the prepared LB medium. After mixing, transfer to EP tube again. Incubate at 28°C with shaking at 250r/min for 3h. Take 200 μl of the culture solution and spread it on the LB plate containing corresponding antibiotics (kanamycin 50 μg/ml, rifampin 50 μg/ml, streptomycin 50 μg/ml). After culturing at 28°C for 2 days, a single colony was picked for PCR verification. Finally, two corresponding strains of Agrobacterium Agr (containing pGR106 plasmid) and Agr (containing pGR106O+ plasmid) were obtained. The two Agrobacterium strains were stored in 15% glycerol at -70°C for future use. the

2.大豆的转化  2. Transformation of soybean

2.1大豆转化培养基的制备  2.1 Preparation of soybean transformation medium

按照表3所示的各种培养基的成分,取适量的母液稀释配制而成。固体培养基根据培养基硬度加入适量琼脂溶解混匀,调节pH值后分装在500ml三角瓶中,高压蒸汽灭菌(121℃,30min)。有机成分在倒培养基平板之前添加。  According to the components of various culture media shown in Table 3, take an appropriate amount of mother liquor and dilute it to prepare. Add an appropriate amount of agar to the solid medium according to the hardness of the medium to dissolve and mix evenly, adjust the pH value and distribute it into 500ml Erlenmeyer flasks, and sterilize by high pressure steam (121°C, 30min). Organic components were added prior to pouring the media plates. the

表3各种培养基的成分  Table 3 The composition of various media

Figure BSA00000595948100061
Figure BSA00000595948100061

其中,MS大量元素母液、B5大量元素母液、MS微量元素母液、B5微量元素母、MS铁盐母液的成分分别见表4-表8所示,各成分蒸馏水分别溶解,按顺序逐步混合,4℃冰箱保存。  Among them, the components of MS macroelement mother liquor, B5 macroelement mother liquor, MS trace element mother liquor, B5 trace element mother liquor, and MS iron salt mother liquor are shown in Table 4-Table 8 respectively, each component is dissolved in distilled water respectively, and mixed step by step in order, 4 ℃ refrigerator. the

表4MS大量元素母液的成分  Table 4 Composition of MS macroelement mother liquor

Figure BSA00000595948100062
Figure BSA00000595948100062

试剂配齐后用蒸馏水补充至1L。  After the reagents are complete, add distilled water to 1L. the

表5B5培养基大量元素母液的成分  Table 5B5 The composition of the macroelement mother solution of the medium

Figure BSA00000595948100063
Figure BSA00000595948100063

试剂配齐后用蒸馏水补充至1L。  After the reagents are complete, add distilled water to 1L. the

表6MS微量元素母液的成分  Table 6 Composition of MS trace element mother liquor

Figure BSA00000595948100071
Figure BSA00000595948100071

试剂配齐后用蒸馏水补充至1L。  After the reagents are complete, add distilled water to 1L. the

表7B5微量元素母液的成分  Table 7B5 Composition of trace element mother liquor

Figure BSA00000595948100072
Figure BSA00000595948100072

试剂配齐后用蒸馏水补充至1L。  After the reagents are complete, add distilled water to 1L. the

表8MS铁盐母液的配制  The preparation of table 8MS iron salt mother liquor

Figure BSA00000595948100073
Figure BSA00000595948100073

试剂配齐后用蒸馏水补充至1L。  After the reagents are complete, add distilled water to 1L. the

为避免FeSO4和乙二胺四乙酸二钠(Na2-EDTA)螯合不彻底,冷藏时有FeSO4结晶,FeSO4和Na2-EDTA应分别加热溶解后混合,调节pH值至5.5,室温放置冷却后,再冷藏。  In order to avoid incomplete chelation of FeSO 4 and disodium ethylenediaminetetraacetic acid (Na 2 -EDTA), FeSO 4 crystallizes when refrigerated, FeSO 4 and Na 2 -EDTA should be heated and dissolved separately and then mixed to adjust the pH value to 5.5. Let cool at room temperature, then refrigerate.

表9维生素母液成分  Table 9 Vitamin Mother Liquid Components

表10其他成分  Table 10 other ingredients

Figure BSA00000595948100075
Figure BSA00000595948100075

将200粒大豆“中黄18号”(来自中国农业科学院作物科学研究所审定的大豆品种)种子装入密封容器中,根据容器大小使用适量次氯酸钠溶液(约10ml)和浓盐酸(约3.5ml)制备氯气,把氯气导入盛有种子的容器中,处理5h;移至GM培养基平板上,每个培养皿(90mm)6-8粒。25℃培养14d,直到第一片叶子刚刚从子叶中露出变绿,见图6。  Put 200 soybean "Zhonghuang No. 18" (soybean variety approved by the Institute of Crop Science, Chinese Academy of Agricultural Sciences) seeds into a sealed container, and use appropriate amount of sodium hypochlorite solution (about 10ml) and concentrated hydrochloric acid (about 3.5ml) according to the size of the container Prepare chlorine gas, introduce chlorine gas into a container containing seeds, and treat for 5 hours; transfer to GM medium plate, 6-8 seeds per Petri dish (90mm). Cultivate at 25°C for 14 days until the first leaf emerges from the cotyledons and turns green, as shown in Figure 6. the

2.2农杆菌介导的大豆转化  2.2 Agrobacterium-mediated soybean transformation

将携带质粒pGR106和pGR106+的农杆菌分别加入到含有100ml LB液体培养基(内含卡那霉素(Kan)50μg/ml、利福平(Rif)50μg/ml、链霉素(Str)50μg/ml)的250ml三角瓶中,28℃,250r/min振荡培养至OD650=0.8-1.0,50ml培养基7000r/min离心10min,沉淀用25ml液体CCM悬浮,室温孵育30min。  Agrobacteria carrying plasmids pGR106 and pGR106+ were added to 100ml LB liquid medium (containing Kanamycin (Kan) 50 μg/ml, Rifampicin (Rif) 50 μg/ml, Streptomycin (Str) 50 μg/ml, respectively. ml) in a 250ml Erlenmeyer flask, 28°C, shake culture at 250r/min until OD650 =0.8-1.0, centrifuge 50ml of medium at 7000r/min for 10min, suspend the precipitate with 25ml of liquid CCM, and incubate at room temperature for 30min.

在萌发种子子叶节下约2-5mm处剪掉下胚轴和胚根,在子叶节处将两片子剖开,用刀片在子叶节上垂直纵轴划约5-10条伤痕,去掉上胚轴。把处理好的外植体约50粒放在25ml农杆菌中,25℃培养30min。将植外体移至共培养平板上,子叶节切面向下,25℃暗培养5d;外植体用液体SIM(不加潮霉素)清洗表面的农杆菌菌液,转入SIM(Amp 50ug/ml、头孢霉素500ug/ml)平板上,为保证组织的正常生长子叶节下胚轴应插入培养基内,诱导生芽。于25℃,90-150μmol photons m-2s-1,18h(光)/6h(暗)的条件下培养14d后去掉下胚轴,把外植体(愈伤组织或芽)转移到添加的固体SIM(内含潮霉素5ug/ml、Amp 50ug/ml、头孢霉素500ug/ml)平板上进行筛选,培养14d后进一步加大潮霉素用量至10ug/ml,培养14d。诱导培养32d后,去除子叶,把得到的新芽和愈伤组织转移到含有10ug/ml潮霉素的SEM(含有头孢霉素500ug/ml)上,进一步筛选转化子,由于植物对潮霉素的耐受力较弱,每培养14d更换培养基时,应递减潮霉素用量(10ug/ml、5ug/ml、0ug/ml)。当芽的长度长至4cm时,将外植体转移到RM培养基(配方同GM培养基,但NH4NO3的含量为4950mg/L,KH2PO4为510mg/L)上诱导生根。将生根后的新植株转入土壤中栽培。  Cut off the hypocotyl and radicle at about 2-5mm below the cotyledon node of the germinated seeds, split the two pieces at the cotyledon node, use a blade to draw about 5-10 scars on the vertical longitudinal axis of the cotyledon node, and remove the epigerm axis. About 50 treated explants were placed in 25ml of Agrobacterium, and incubated at 25°C for 30min. Move the explants to the co-culture plate, with the cotyledon section down, and culture in the dark at 25°C for 5 days; wash the Agrobacterium liquid on the surface of the explants with liquid SIM (without adding hygromycin), and transfer to SIM (Amp 50ug /ml, cephalosporin 500ug/ml) plate, in order to ensure the normal growth of the tissue, the cotyledon hypocotyls should be inserted into the culture medium to induce germination. Cultured at 25°C, 90-150μmol photons m -2 s -1 , 18h (light)/6h (dark) for 14 days, removed the hypocotyls, and transferred the explants (callus or buds) to the added The solid SIM (containing hygromycin 5ug/ml, Amp 50ug/ml, cephalosporin 500ug/ml) plate was used for screening, and after 14 days of culture, the dosage of hygromycin was further increased to 10ug/ml, and cultured for 14 days. After induction culture 32d, remove cotyledon, the new shoot that obtains and callus are transferred on the SEM (containing cephalosporin 500ug/ml) that contains 10ug/ml hygromycin, further screening transformant, because plant is to hygromycin The tolerance is weak, and the dosage of hygromycin should be reduced (10ug/ml, 5ug/ml, 0ug/ml) when the culture medium is changed every 14 days. When the length of the shoots reached 4 cm, the explants were transferred to RM medium (the formulation was the same as GM medium, but the content of NH 4 NO 3 was 4950 mg/L, and KH 2 PO 4 was 510 mg/L) to induce rooting. The new plants after rooting are transferred to the soil for cultivation.

2.3.大豆转化植株中基因ScOXDC2表达的检测  2.3. Detection of gene ScOXDC2 expression in soybean transformed plants

转化植株总RNA的提取和反转录参照实施例1中所述的方法。以反转录产物为模板,以根据ScOXDC2的mRNA为模板设计的特异引物SF(5’CTGGATGAGGGCTGTGAGTT 3’)和引物SR(5’AATAACATCATCCGGCAAGC 3’)为引物,PCR检测基因SsOXDC2在转化植株听的表达。PCR体系如下:反应总体积50μl,上步反应产物产物2μl、10×PCR缓冲液5μl、10mM dNTP 1μl、引物SF 1μl、引物SR 1μl、ddH2O 39.5μl、5U/μl Taq 0.5μl。PCR程序:95℃3min,95℃30s,56℃30s,72℃2min,30cycles,72℃7min。电泳检测发现,四株转化植株体内基因ScOXDC2都可以检测到mRNA的积累,结果参见图4。  The extraction and reverse transcription of total RNA from transformed plants refer to the method described in Example 1. Using the reverse transcription product as a template, using the specific primer SF (5'CTGGATGAGGGCTGTGAGTT 3') and primer SR (5'AATAACATCATCCGGCAAGC 3') designed according to the ScOXDC2 mRNA as a template, the expression of the gene SsOXDC2 in the transformed plants was detected by PCR . The PCR system is as follows: a total reaction volume of 50 μl, 2 μl of the reaction product from the previous step, 5 μl of 10×PCR buffer, 1 μl of 10 mM dNTP, 1 μl of primer SF, 1 μl of primer SR, 39.5 μl of ddH 2 O, and 0.5 μl of 5U/μl Taq. PCR program: 95°C for 3min, 95°C for 30s, 56°C for 30s, 72°C for 2min, 30cycles, 72°C for 7min. Electrophoresis detection found that the gene ScOXDC2 in the four transformed plants could detect the accumulation of mRNA, the results are shown in Figure 4.

2.4.大豆转化植株对菌核病的抗病性评价  2.4. Evaluation of the resistance of soybean transformed plants to Sclerotinia sclerotiorum

在PDA平板上活化核盘菌菌株Ep-1PNAa367,将活化的核盘菌转接到1/2PDA平板上(正常PDA浓度的一半)平板上培养2d,用5mm打孔器打取菌落边缘旺盛生长的菌丝块。将菌丝块接种到活体叶片上。用喷壶轻轻在叶片表面喷一层清水,保湿培养,48h后记录病斑的面积,可见与转空白载体pGR106植株性比,转核盘菌草酸脱羧酶基因SsOXDC2的植株可以显著抑制大豆叶片菌核病病斑的扩展,使病斑面积缩小12倍,并且接种在活体植株叶柄 的核盘菌不能扩展至邻近的叶柄,阻止病害进一步蔓延。结果见图6和附图7。  Activate the Sclerotinia strain Ep-1PNAa367 on the PDA plate, transfer the activated Sclerotinia to a 1/2 PDA plate (half of the normal PDA concentration) and cultivate it on the plate for 2 days, use a 5mm hole punch to punch out the edge of the colony and grow vigorously mycelium blocks. Inoculate mycelium clumps onto living leaves. Gently spray a layer of water on the surface of the leaves with a watering can, moisturize and cultivate, and record the area of the lesion after 48 hours. It can be seen that compared with the plant sex of the blank vector pGR106, the plants of the S. sclerotinia oxalate decarboxylase gene SsOXDC2 can significantly inhibit soybean leaf bacteria The expansion of sclerotinia lesions reduces the area of sclerotinia by 12 times, and the sclerotinia inoculated on the petioles of living plants cannot expand to adjacent petioles, preventing the disease from spreading further. The results are shown in Figure 6 and accompanying drawing 7. the

参考文献  references

1.吴纯仁,刘后利.油菜菌核病的致病机制III.罹病组织内草酸毒素积累和分布的初步分析,植物病理学报,1991,21:135-145  1. Wu Chunren, Liu Houli. Pathogenic Mechanism of Rapeseed Sclerotinia III. Preliminary Analysis of Accumulation and Distribution of Oxalic Acid Toxin in Diseased Tissues, Acta Phytopathology, 1991, 21: 135-145

2.Boland GF,Hall R.An index of plant hosts susceptible to Sclerotinia sclerotiorum.Can J Plant Pathol,1994,16:93-108.  2. Boland GF, Hall R. An index of plant hosts susceptible to Sclerotinia sclerotiorum. Can J Plant Pathol, 1994, 16: 93-108.

3.Bolton MD,Thomma BPHJ,Nelson BD.Sclerotinia sclerotiorum(Lib.)de Bary:biology and molecular traits of a cosmopolitan pathogen.Molecular Plant Pathology,2006,7:1-16.  3. Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7: 1-16.

4.Cunhaab WG,Tinoco MLP,Pancoti HL,Ribeiro RE,Aragao FJL.High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalatede carboxylase gene.Plant Pathology,2010,59:654-660.  4. Cunhaab WG, Tinoco MLP, Pancoti HL, Ribeiro RE, Aragao FJL. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalatede carboxylase gene. Plant Pathology, 2010, 59: 654-660.

5.Dias BBA,Cunha WG,Morais LS,Vianna GR,Rech EL,de Capdeville G, 

Figure BSA00000595948100091
FJL.Expression of an oxalate decarboxylase gene from Flammulina sp.in transgenic lettuce (Lactuca sativa)plants and resistance to Sclerotinia sclerotiorum.Plant Pathology,2006,55:187-193.  5. Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G,
Figure BSA00000595948100091
FJL. Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathology, 2006, 55: 187-193.

6.Donaldson PA,Anderson T,Lane BG,Davidson AL,Simmonds DH.Soybean plants expressing an active olygomeric oxadase oxidase from the wheat gf-2.8gene are resistant to the S.sclerotiorum.Physiological and Molecular Plant Pathology,2001,59:297-307.  6. Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH. Soybean plants expressing an active olygomeric oxadase oxidase from the wheat gf-2.8gene are resistant to the S. sclerotiorum. Physiological and Molecular Plant Pathology, 5:9 297-307.

7.Dong XB,Ji R Q,Guo XL,Foster SJ,Chen H,Dong CH,Liu YY,Hu Q,Liu SY.Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape.Planta,2008,228:331-340.  7.Dong XB, Ji R Q, Guo XL, Foster SJ, Chen H, Dong CH, Liu YY, Hu Q, Liu SY.Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape.Planta, 2008, 228:331-340.

8.Godoy G,Steadman J R,Dickman et al.Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris.Physiological and Molecular Plant Pathology,1990,37:179-191.  8. Godoy G, Steadman J R, Dickman et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 1990, 37:1.79-1

9.Hu X,Bidney DL,Yalpani N,Duvick JP,Crasta O,Folkerts O,Lu GH.Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower.Plant Physiology,2003,133:170-181.  9. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu GH. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 2003, 133: 170- .

10.Huiquan Liu,Yanping Fu,Daohong Jiang,Guoqing Li,Jun Xie,Youliang Peng,Xianhong Yi,and Said A.Ghabrial.A novel mycovirus that is related to the human pathogen Hepatitis E virus and Rubi-like viruses.Journal of Virology,2009,1981-1991.  10. Huiquan Liu, Yanping Fu, Daohong Jiang, Guoqing Li, Jun Xie, Youliang Peng, Xianhong Yi, and Said A.Ghabrial. A novel mycovirus that is related to the human pathogen Hepatitis E virus and Rubi-like viruses. Journal of Virology, 2009, 1981-1991. 

11.Kesarwani M,Azam M,Natarajan K,Mehta A,Datta A.Oxalate decarboxylase from Collybia velutipes.The Journal Of Biological Chemistry,2000,275:7230-7238.  11. Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A. Oxalate decarboxylase from Collybia velutipes. The Journal Of Biological Chemistry, 2000, 275: 7230-7238.

12.Liang HY,Maynard CA,Allen RD,Powell WA.Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene.Plant Molecular Biology,2001,45:619-629.  12. Liang HY, Maynard CA, Allen RD, Powell WA. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 2001, 45: 619-629.

13.Livingstone DM,Hampton JL,Phipps PM,Grabau EA.Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene.Plant Physiology,2005,137:1354-1362.  13. Livingstone DM, Hampton JL, Phipps PM, Grabau EA. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiology, 2005, 137: 1354-1362.

14.Magro P,Marciano P,Di Lenna P.Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum.FEMS Microbiology Letters,1984,24:9-12.  14. Magro P, Marciano P, Di Lenna P. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiology Letters, 1984, 24: 9-12.

15.Maxwell DP and Lumsden RD.Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture.Phytopathology,1970,60,1395-1398.  15. Maxwell DP and Lumsden RD. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 1970, 60, 1395-1398.

16.Noyes RD and Hancock JG.Role of oxalic acid in the sclerotinia wilt of sunflower.Physiol.Plant Pathol.1981,18:123-132.  16.Noyes RD and Hancock JG.Role of oxalic acid in the sclerotinia wilt of sunflower.Physiol.Plant Pathol.1981,18:123-132.

17.Purdy LH.Sclerotinia sclerotiorum:History,diseases and symptomatology,host range,geographic distribution,and impact.Phytopathology,1979,69:875-880.  17. Purdy LH. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 1979, 69: 875-880.

18.Riou C,Fraissinet-Tachet L,Freyssinet G,Fèvre M.Secretion of pectic isoenzymes by Sclerotinia sclerotiorum.FEMS Microbiology Letters,1992,91,231-237.  18. Riou C, Fraissinet-Tachet L, Freyssinet G, Fèvre M. Secretion of pectic isoenzymes by Sclerotinia sclerotiorum. FEMS Microbiology Letters, 1992, 91, 231-237.

19.Schneider M,Droz E,Malnoe P,Chatot C,Bonnel E,Metraux J P.Transgenic potato plants expressing oxalate oxidase have increase dresistance to oomycete and bacterial pathogens.Potato Research,2002,45:177-185.  19. Schneider M, Droz E, Malnoe P, Chatot C, Bonnel E, Metraux J P. Transgenic potato plants expressing oxalate oxidase have increase resistance to oomycete and bacterial pathogens. Potato Research, 2002, 45: 177-185.

20.Thompson C,Dunwell JM,Johnstone CE,Lay V,Ray J,Schmitt M,Watson H,Nisbet G.Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase.Euphytica,1995,85:169-172.  20. Thompson C, Dunwell JM, Johnstone CE, Lay V, Ray J, Schmitt M, Watson H, Nisbet G. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85: 169-172.

21.Walz A,Zingen-Sell I,Loeffler M,Sauer M.Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum.Plant Pathology,2008,57:453-458。 21. Walz A, Zingen-Sell I, Loeffler M, Sauer M. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathology, 2008, 57: 453-458.

Figure ISA00000595948300011
Figure ISA00000595948300011

Figure ISA00000595948300031
Figure ISA00000595948300031

Figure ISA00000595948300051
Figure ISA00000595948300051

Figure ISA00000595948300061
Figure ISA00000595948300061

Claims (3)

  1. A separation sclerotium disease is produced the sclerotinite oxalate decarboxylase gene SsOXDC2 of resistance, its nucleotide sequence is shown in sequence table SEQ ID NO:1.
  2. A separation sclerotium disease is produced the sclerotinite oxalate decarboxylase gene SsOXDC2 of resistance, the sequence of the protein of its coding is shown in sequence table SEQ IDNO:3.
  3. 3. claim 1 or 2 described genes are increasing soybean to the application in the resistance to sclerotinia sclerotiorum.
CN2011103215707A 2011-10-21 2011-10-21 Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance Pending CN103060350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103215707A CN103060350A (en) 2011-10-21 2011-10-21 Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103215707A CN103060350A (en) 2011-10-21 2011-10-21 Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance

Publications (1)

Publication Number Publication Date
CN103060350A true CN103060350A (en) 2013-04-24

Family

ID=48103245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103215707A Pending CN103060350A (en) 2011-10-21 2011-10-21 Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance

Country Status (1)

Country Link
CN (1) CN103060350A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065683A (en) * 1991-03-05 1992-10-28 罗纳-普朗克农业化学公司 Plant through the anti-sclerotinia blight of mulberry sclerotinia sclerotiorum attack of the genes produce of introducing the coding Oxalate oxidase
CN101603009A (en) * 2009-06-05 2009-12-16 华中农业大学 A biocontrol fungus ZS-1SB for preventing and treating sclerotinia and its preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065683A (en) * 1991-03-05 1992-10-28 罗纳-普朗克农业化学公司 Plant through the anti-sclerotinia blight of mulberry sclerotinia sclerotiorum attack of the genes produce of introducing the coding Oxalate oxidase
CN101603009A (en) * 2009-06-05 2009-12-16 华中农业大学 A biocontrol fungus ZS-1SB for preventing and treating sclerotinia and its preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIRREN,B. ET.AL: "XP_001588349.1", 《GENPEPT》 *
W. G. CUNHA.ET.AL: "High resistance to Sclerotinia sclerotiorum in transgenic", 《PLANT PATHOLOGY》 *

Similar Documents

Publication Publication Date Title
US10633669B2 (en) Herbicide-resistant protein, encoding gene and use thereof
CN102884195B (en) Increasing plant growth by modulating omega-amidase expression in plants
CN116064586B (en) Papaya CpWRKY50 gene and application thereof in improving papaya anthracnose resistance
CN105861517A (en) Panax notoginseng antimicrobial peptide gene PnSN1 and application thereof
CN103966235B (en) Eggplant anthocyanidin synthesis related gene SmMYB1 and recombinant expression vector thereof and cultivating the application in purple solanum lycopersicum
CN110804090A (en) Protein CkWRKY33 and its encoding gene and application
EP3257936A1 (en) Herbicide resistance protein, and encoding genes and application thereof
CN103361365B (en) Coniothyrium-minitans siderophore transporter (CmSit1) gene as well as preparation method and application thereof
US10562944B2 (en) Herbicide-resistant protein, encoding gene and use thereof
CN106496313A (en) Disease-resistance-related protein IbSWEET10 and its encoding gene and application
CN106011098A (en) Resistance-related cotton protein GaGSTF2, as well as coding gene and application thereof
CN119192310A (en) Tobacco antiviral protein gene NbSRC2 and its application in inhibiting plant virus infection of tobacco
CN114317570A (en) A gene RcAOS encoding rose allene oxide synthase and its application in resistance to rose botrytis
CN102676540B (en) Pyricularia oryzae resistant oryza sativa gene OsWRKY47 and application thereof
CN110791487B (en) Rice receptor kinase gene LOC _ Os11g47290, and coding protein and application thereof
CN115820722B (en) Cotton Verticillium wilt resistance-related gene GhCBL3 and its encoding protein and application
WO2024077110A2 (en) Uorf::reporter gene fusions to select sequence changes to gene edit into uorfs to regulate ascorbate genes
CN105367665A (en) Fungus pathogenesis-related protein PcCAT1 and its coding gene and use
CN103060350A (en) Sclerotia oxalic acid decarboxylase gene SsOXDC2 and application thereof in improvement in soybeans for disease resistance
CN104878027A (en) Juglans sigillata Dode ribonuclease gene JsRNase and application thereof
CN104651373B (en) The albumen and application of sweet wormwood AaGTD1 genes and its coding
CN105254729B (en) Rubber tree dead skin related protein HbMC1 and encoding gene and application thereof
CN110643617A (en) Rice grain weight related OsGASR9 gene, application thereof, protein, expression vector and transgenic rice method
CN117777262B (en) Application of wheat TaALDHase gene in regulating wheat stem rot resistance
CN117757802B (en) Vitis spinosa VdERF054 gene and encoding protein and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130424