CN103059059B - The preparation method of catalyst of ethylene trimerization and application thereof - Google Patents
The preparation method of catalyst of ethylene trimerization and application thereof Download PDFInfo
- Publication number
- CN103059059B CN103059059B CN201310027073.5A CN201310027073A CN103059059B CN 103059059 B CN103059059 B CN 103059059B CN 201310027073 A CN201310027073 A CN 201310027073A CN 103059059 B CN103059059 B CN 103059059B
- Authority
- CN
- China
- Prior art keywords
- add
- catalyst
- ind
- hexene
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CIC1=C(*)*C(C(*)(*)C2=CCc3c2cccc3)=C1* Chemical compound CIC1=C(*)*C(C(*)(*)C2=CCc3c2cccc3)=C1* 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
本发明涉及乙烯三聚催化剂,公开了一种侧链含悬垂芳香杂环基取代的茚钛金属络合物及其制备方法和在烯烃齐聚中的应用。本发明所阐述的茚钛金属催化剂(I)具有如下特征:R1和R2为相同或不同的C1~C12直链、支链或环状结构的烷基,或由两者相连构成的C4~C12的环状烷基;R3~R4为氢;R5为氢,C1~C12直链、支链或环状结构的烷基或硅烷基;X为卤原子;Y为硫。本发明所设计的侧链含悬垂芳香杂环基取代的茚钛络合物催化剂对乙烯齐聚具有好的催化效果,在助催化剂存在下可以高活性催化乙烯三聚,三聚产物中没有其他C6异构体,避免了后续分离环节,降低了工业化成本,能够满足工业部分的需要。 The invention relates to an ethylene trimerization catalyst, and discloses an indene-titanium metal complex substituted by a pendant aromatic heterocyclic group in a side chain, a preparation method thereof and an application in olefin oligomerization. The indene-titanium metal catalyst (I) described in the present invention has the following characteristics: R 1 and R 2 are the same or different C 1 -C 12 linear, branched or cyclic alkyl groups, or are formed by connecting the two C 4 ~ C 12 cyclic alkyl; R 3 ~ R 4 is hydrogen; R 5 is hydrogen, C 1 ~ C 12 linear, branched or cyclic alkyl or silyl; X is a halogen atom ; Y is sulfur. The indene-titanium complex catalyst with pendant aromatic heterocyclic group substitution in the side chain designed by the present invention has a good catalytic effect on ethylene oligomerization, and can catalyze ethylene trimerization with high activity in the presence of a co-catalyst, and there is no other catalyst in the trimerization product. The C6 isomer avoids the subsequent separation process, reduces the cost of industrialization, and can meet the needs of the industrial sector.
Description
技术领域 technical field
本发明涉及一种烯烃三聚催化剂,特别是侧链含悬垂芳香杂环基取代的茚钛金属催化剂的合成方法及在α-烯烃齐聚中的应用。 The invention relates to an olefin trimerization catalyst, in particular to a synthesis method of an indene-titanium metal catalyst substituted by a pendant aromatic heterocyclic group in the side chain and its application in alpha-olefin oligomerization.
背景技术 Background technique
以乙烯为原料的后加工产业是石油工业的一个重要领域,乙烯的高聚物产品现已广泛应用于日常生活中各个领域;而乙烯的齐聚产物中线性α-烯烃(LAOs),在工业上也有着重要的应用价值,它们广泛用于制备洗洁剂、润滑剂和增塑剂,尤其是1-己烯和1-辛烯作为一种共聚单体用来制备工业价值巨大的线性低密度聚乙烯(LLDPE),广泛应用于化学化工领域。目前大多数过渡金属络合物催化剂催化的乙烯齐聚反应主要得到一个多组分的烯烃,不符合市场的需求,尤其是对单一组分α-烯烃的需求。另一方面现有的单一组分烯烃齐聚催化剂对催化乙烯成1-己烯的活性和选择性对温度比较敏感。因此开发耐温好、活性和选择性对温度影响较小的乙烯齐聚催化剂具有重要的研究价值和工业应用价值(J.Org.Chem,2004,689(23),3641-3668)。 The post-processing industry using ethylene as raw material is an important field in the petroleum industry. Ethylene polymer products have been widely used in various fields in daily life; linear α-olefins (LAOs), which are oligomerized products of ethylene, are used in industry They also have important application value, they are widely used in the preparation of detergents, lubricants and plasticizers, especially 1-hexene and 1-octene are used as a comonomer to prepare linear low Density polyethylene (LLDPE) is widely used in chemical and chemical fields. At present, the ethylene oligomerization reaction catalyzed by most transition metal complex catalysts mainly obtains a multi-component olefin, which does not meet the market demand, especially the demand for single-component α-olefin. On the other hand, the activity and selectivity of existing single-component olefin oligomerization catalysts for catalyzing ethylene to 1-hexene are relatively sensitive to temperature. Therefore, it is of great research value and industrial application value to develop ethylene oligomerization catalysts with good temperature resistance and little influence of activity and selectivity on temperature (J.Org.Chem, 2004, 689(23), 3641-3668).
1-己烯是制备LLDPE的重要共聚单体,可由乙烯选择性三聚制得。Phillips公司于2003年在卡塔尔建立了首个生产1-己烯的工业流程,它是基于铬的催化剂。铬催化剂是目前研究最多、发展最为广泛的一类乙烯三聚催化剂(Coord.Chem.Rev.,2011,255,861-880),但鉴于铬系催化剂的高毒性,铬催化剂的使用不可避免地带来了环保问题,寻找基于其他低毒性金属的高活性、高选择性催化剂成为各国科学家者的研究热点。这其中以侧链含有弱配位基团的三氯一茂钛体系为代表,研究的较为广泛。2001年,Hessen等利用侧链含苯环的环戊二烯基三氯化钛络合物经MAO活化,可以催化乙烯三聚,催化活性可达到131kg/(g-Ti·h),其中1-己烯选择性达到86%(Angew.Chem.Int.Ed.,2001,40,2516-25)。之后,Hessen课题组对通式为[η5-C5H3R-(B)-Ar)]TiCl3/MAO的催化体系中的各个组分进行不同的取代研究(Organometallics,2002,21,5122-5135),发现环戊二烯上有三甲硅基大位阻取代基时,络合物催化乙烯三聚的活性有所提高,活性最高的是悬垂基团为3,5-二甲基苯、环戊二烯基上有三甲硅基取代的钛络合物,催化活性可以达到21kg/(g-Ti·h),但选择性下降为84%,C10产品增加,没有达到在高活性下使选择性提高到一个新的高度。黄吉玲课题组最近发现侧链含悬垂芳基的茚基钛络合物活性要高于环戊二烯体系(CN102161676A,2011)。但他们共同点都是活性和选择性只有在低温下保持较高,高温下则迅速下降。2003年,黄吉玲课题组合成并报道了一组茂环侧链上带有噻吩基的三氯一茂钛络合物,此类催化剂催化乙烯只产生1-己烯和少量聚乙烯,其他低碳烯烃几乎没有,催化乙烯三聚结果表明最高活性为220kg/(mol-Tih),1-己烯选择性为86%,当降低温度使选择性提高时则伴随着活性的下降(Chem.Commun.,2003,22,2816-2817)。对该类络合物进行进一步修饰发现,当噻吩环4-位连有大取代基三甲硅基时,催化活性最高为485kg/(mol-Ti·h),1-己烯选择性为90%(CN101062961A,2007),此类化合物虽然选择性较好,但最高活性出现在30℃。 1-Hexene is an important comonomer for the preparation of LLDPE, which can be obtained by selective trimerization of ethylene. Phillips established the first industrial process for the production of 1-hexene in Qatar in 2003, based on a chromium catalyst. Chromium catalysts are currently the most studied and widely developed class of ethylene trimerization catalysts (Coord.Chem.Rev., 2011, 255, 861-880), but in view of the high toxicity of chromium-based catalysts, the use of chromium catalysts inevitably brings When it comes to environmental protection, finding highly active and highly selective catalysts based on other low-toxicity metals has become a research hotspot for scientists from all over the world. Among them, the trichloro-titanocene system with weak coordinating groups in the side chain is the most widely studied. In 2001, Hessen et al. used a cyclopentadienyl titanium trichloride complex with a benzene ring in the side chain to be activated by MAO to catalyze the trimerization of ethylene, and the catalytic activity could reach 131kg/(g-Ti h), of which 1 The -hexene selectivity reaches 86% (Angew. Chem. Int. Ed., 2001, 40, 2516-25). Afterwards, the Hessen research group conducted different substitution studies on the various components in the catalytic system with the general formula [η 5 -C 5 H 3 R-(B)-Ar)]TiCl 3 /MAO (Organometallics, 2002, 21, 5122-5135), it was found that when there were trimethylsilyl large steric hindrance substituents on cyclopentadiene, the activity of the complex to catalyze ethylene trimerization was improved, and the most active pendant group was 3,5-dimethyl Benzene and cyclopentadienyl have trimethylsilyl-substituted titanium complexes, the catalytic activity can reach 21kg/(g-Ti h), but the selectivity drops to 84%, and the C 10 product increases, which does not reach the high The selectivity is raised to a new height under the activity. Huang Jiling's research group recently found that indenyl titanium complexes with pendant aryl groups in their side chains are more active than cyclopentadiene systems (CN102161676A, 2011). But what they have in common is that the activity and selectivity are kept high only at low temperature, and then drop rapidly at high temperature. In 2003, Huang Jiling's research group synthesized and reported a group of trichloro-titanocene complexes with thienyl groups on the side chains of the cyclocene ring. This type of catalyst catalyzes ethylene to produce only 1-hexene and a small amount of polyethylene, and other low-carbon olefins Almost none, the catalytic ethylene trimerization results show that the highest activity is 220kg/(mol-Tih), and the 1-hexene selectivity is 86%. When the temperature is lowered and the selectivity is improved, then the decline of activity is accompanied by (Chem.Commun., 2003, 22, 2816-2817). Further modification of this type of complex found that when a large substituent trimethylsilyl is attached to the 4-position of the thiophene ring, the highest catalytic activity is 485 kg/(mol-Ti h), and the selectivity of 1-hexene is 90%. (CN101062961A, 2007), although the selectivity of these compounds is better, the highest activity occurs at 30°C.
随着科学技术的发展,人们希望能够开发活性更高、选择性更高、并且在较高温度下仍能保持较高活性和乙烯三聚选择性的金属络合物催化剂,以满足烯烃选择性齐聚生产的需求。 With the development of science and technology, people hope to develop metal complex catalysts with higher activity and higher selectivity, which can still maintain high activity and ethylene trimerization selectivity at higher temperatures to meet the olefin selectivity. Gather production needs.
发明内容 Contents of the invention
本发明所要解决的技术问题是耐温性好的高选择性乙烯三聚催化剂的制备及其应用,以克服现有技术存在的问题,满足工业上的需要。 The technical problem to be solved by the invention is the preparation and application of a high-selectivity ethylene trimerization catalyst with good temperature resistance, so as to overcome the problems existing in the prior art and meet the needs of the industry.
本发明目的之一在于公开一类侧链含悬垂芳香杂环基取代的茚钛金属化合物。 One of the objectives of the present invention is to disclose a class of indene-titanium metal compounds with pendant aromatic heterocyclic group substitutions in their side chains.
本发明目的之二在于公开侧链含悬垂芳香杂环基取代的茚钛金属化合物的制备方法。 The second object of the present invention is to disclose the preparation method of the indene-titanium metal compound substituted with a pendant aromatic heterocyclic group in the side chain.
本发明目的之三在于公开侧链含悬垂芳香杂环基取代的茚钛金属化合物作为催化剂在乙烯齐聚中的应用。 The third object of the present invention is to disclose the application of the indene titanium metal compound substituted with a pendant aromatic heterocyclic group in the side chain as a catalyst in ethylene oligomerization.
本发明的高选择性、高活性乙烯三聚催化剂的结构通式如下: The general structural formula of high selectivity of the present invention, highly active ethylene trimerization catalyst is as follows:
式(I)中,R1和R2为相同或不同的C1~C12直链、支链或环状结构的烷基,或由两者相连构成的C4~C12的环状烷基;R3~R5为氢,相同或不同的C1~~C12直链、支链或环状结构的烷基或硅烷基;X为卤原子;Y为氧、硫或硒。 In formula (I), R 1 and R 2 are the same or different C 1 -C 12 linear, branched or cyclic alkyl groups, or C 4 -C 12 cyclic alkanes formed by connecting the two R 3 to R 5 are hydrogen, the same or different C 1 to C 12 linear, branched or cyclic alkyl or silyl groups; X is a halogen atom; Y is oxygen, sulfur or selenium.
R1和R2为相同或不同的C1~C6直链、支链或环状结构的烷基,或由两者相连构成的C4~C7的环状烷基;R3~R5为氢,相同或不同的C1~C6直链、支链或环状结构的烷基或硅烷基;X为氯;Y为氧或硫。 R 1 and R 2 are the same or different C 1 to C 6 linear, branched or cyclic alkyl groups, or C 4 to C 7 cyclic alkyl groups formed by connecting the two; R 3 to R 5 is hydrogen, the same or different C 1 -C 6 linear, branched or cyclic alkyl or silyl groups; X is chlorine; Y is oxygen or sulfur.
更为特征的,R1和R2为由两者构成的环己基;R3为甲基或氢;R4为氢,R5为甲基或氢或三甲硅基。 More characteristically, R 1 and R 2 are cyclohexyl composed of both; R 3 is methyl or hydrogen; R 4 is hydrogen, R 5 is methyl or hydrogen or trimethylsilyl.
本发明的侧链含悬垂芳香杂环基取代的茚钛金属催化剂的制备方法,包括如下步骤: The preparation method of the indene titanium metal catalyst that the pendant aromatic heterocyclic group is substituted in the side chain of the present invention comprises the following steps:
在惰性气体保护下,将侧链含悬垂芳香杂环基取代的茚配体化合物及其异构体和烷基碱金属化合物在有机介质中反应,生成悬垂芳香杂环基取代茚配体的碱金属盐;之后加入一定量TiCl4与该碱金属盐反应,抽干溶剂,用有机溶剂对剩下的固体进行洗涤、溶解、过滤后,将滤液进行重结晶得到目标催化剂产品。 Under the protection of an inert gas, the pendant aromatic heterocyclic group-substituted indene ligand compound and its isomers in the side chain are reacted with an alkyl alkali metal compound in an organic medium to generate a pendant aromatic heterocyclic group-substituted indene ligand base A metal salt; then add a certain amount of TiCl4 to react with the alkali metal salt, drain the solvent, wash, dissolve and filter the remaining solid with an organic solvent, and then recrystallize the filtrate to obtain the target catalyst product.
所说的烷基碱金属化合物选自C1~C4烷基锂,更优选丁基锂。 Said alkyl alkali metal compound is selected from C 1 -C 4 alkyllithium, more preferably butyllithium.
悬垂芳香杂环基取代茚配体化合物与烷基碱金属化合物的摩尔比为:1∶1~1.25。 The molar ratio of the pendant aromatic heterocyclic group substituted indene ligand compound to the alkyl alkali metal compound is 1:1-1.25.
悬垂芳香杂环基取代茚配体的碱金属盐与TiCl4的摩尔比为:1∶1~1.25。 The molar ratio of the alkali metal salt of the pendant aromatic heterocyclic group substituted indene ligand to the TiCl4 is: 1:1-1.25.
反应温度为78~25℃,反应时间为2~48h。 The reaction temperature is 78-25°C, and the reaction time is 2-48 hours.
所用有机溶剂选自四氢呋喃、乙醚、甲苯、苯、氯仿、二氯甲烷、戊烷、正己烷和石油醚中的一种或几种。 The organic solvent used is selected from one or more of tetrahydrofuran, diethyl ether, toluene, benzene, chloroform, methylene chloride, pentane, n-hexane and petroleum ether.
所说侧链含悬垂芳香杂环基取代的茚配体化合物为具有如下结构通式的化合物: The indene ligand compound substituted by a pendant aromatic heterocyclic group in the side chain is a compound with the following general structural formula:
式(I)中,R1和R2为相同或不同的C1~C12直链、支链或环状结构的烷基,或由两者相连构成的C4~C12的环状烷基;R3~R5为氢,相同或不同的C1~C12直链、支链或环状结构的烷基或硅烷基;Y为氧、硫或硒。 In formula (I), R 1 and R 2 are the same or different C 1 -C 12 linear, branched or cyclic alkyl groups, or C 4 -C 12 cyclic alkanes formed by connecting the two R 3 -R 5 are hydrogen, the same or different C 1 -C 12 linear, branched or cyclic alkyl or silyl groups; Y is oxygen, sulfur or selenium.
R1和R2为相同或不同的C1~C6直链、支链或环状结构的烷基,或由两者相连构成的C4~C7的环状烷基;R3~R5为氢,相同或不同的C1~C6直链、支链或环状结构的烷基或硅烷基;Y为氧或硫。 R 1 and R 2 are the same or different C 1 to C 6 linear, branched or cyclic alkyl groups, or C 4 to C 7 cyclic alkyl groups formed by connecting the two; R 3 to R 5 is hydrogen, the same or different C 1 -C 6 linear, branched or cyclic alkyl or silyl groups; Y is oxygen or sulfur.
更为特征的,R1和R2为由两者构成的环己基;R3为甲基或氢;R4为氢,R5为甲基或氢或三甲硅基。 More characteristically, R 1 and R 2 are cyclohexyl composed of both; R 3 is methyl or hydrogen; R 4 is hydrogen, R 5 is methyl or hydrogen or trimethylsilyl.
本发明还提供了上述催化剂在烯烃聚合中的应用和聚合方法。 The present invention also provides the application and polymerization method of the above-mentioned catalyst in olefin polymerization.
上述催化剂在助催化剂作用下,可以使相同的或不同的C2~C20的烯烃在0℃~110℃、0.1~1.0MPa条件下齐聚,聚合时助催化剂中的铝和主催化剂中的钛的摩尔比Al∶Ti=100~8000∶1。 Under the action of the co-catalyst, the above-mentioned catalyst can make the same or different C 2 -C 20 olefins oligomerize under the conditions of 0°C-110°C and 0.1-1.0 MPa. During the polymerization, the aluminum in the co-catalyst and the aluminum in the main catalyst The molar ratio of titanium Al:Ti=100-8000:1.
助催化剂包括烷基铝氧烷和路易斯酸类型催化剂B(C6F5)3。 Cocatalysts include alkylaluminoxanes and Lewis acid type catalysts B(C 6 F 5 ) 3 .
烷基铝氧烷优选甲基铝氧烷(MAO)。 The alkylaluminoxane is preferably methylaluminoxane (MAO).
聚合时助催化剂中的铝和主催化剂中的钛的摩尔比,优选Al∶Ti=1000~4000∶1。 The molar ratio of aluminum in the cocatalyst to titanium in the main catalyst during polymerization is preferably Al:Ti=1000˜4000:1.
用于聚合的C2~C20的烯烃,可以是乙烯、丙烯、丁烯、苯乙烯等α-烯烃中的一种或几种。其中,优选乙烯。 The C 2 -C 20 olefin used for polymerization may be one or more of α-olefins such as ethylene, propylene, butylene, and styrene. Among them, ethylene is preferable.
催化剂可以用于均相聚合,也可以经负载后用于多相聚合。当采用均相聚合时,溶剂选择脂肪烃或芳香烃,优选甲苯。 Catalysts can be used for homogeneous polymerization, and can also be used for heterogeneous polymerization after being supported. When using homogeneous polymerization, the solvent is selected from aliphatic or aromatic hydrocarbons, preferably toluene.
实验表明本发明所设计的侧链含芳香杂环基取代茚钛络合物用于乙烯齐聚具有很好的催化效果,尤其是乙烯选择性三聚;在助催化剂存在下可以高活性催化乙烯三聚,最高活性达7×105g/(mol-Ti·h),1-己烯选择性最高达99%,并且有较好的耐温性,在0~80℃之间选择性保持稳定,其中1-己烯选择性定义为:1-己烯的质量/(1-己烯的质量+其他低碳烯烃质量+聚乙烯的质量)。避免了许多后续分离操作环节,降低了工业化成本,可以满足工业生产的需要。 Experiments show that the designed side chain containing aromatic heterocyclic group-substituted indene-titanium complex has a good catalytic effect for ethylene oligomerization, especially ethylene selective trimerization; it can catalyze ethylene with high activity in the presence of a cocatalyst. Trimerization, the highest activity is 7×10 5 g/(mol-Ti·h), the selectivity of 1-hexene is as high as 99%, and it has good temperature resistance, and the selectivity is maintained between 0 and 80 °C Stable, wherein the selectivity of 1-hexene is defined as: the mass of 1-hexene/(the mass of 1-hexene + the mass of other low-carbon olefins + the mass of polyethylene). Many subsequent separation operation links are avoided, the industrialization cost is reduced, and the needs of industrial production can be met.
具体实施方式 Detailed ways
实施例1 Example 1
制备取代茚钛络合物C1 Preparation of Substituted Indene Titanium Complex C1
(1)制备配体化合物L1 (1) Preparation of Ligand Compound L1
~78℃下,将7.8g(40mmol)6,6-亚戊基苯并富烯逐滴加到2-噻吩锂盐(40mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到浅黄色固体2.23g,产率20%。结构式如下: At ~78°C, add 7.8g (40mmol) 6,6-pentylidene benzofulvene dropwise to 40mL ether solution of 2-thiophene lithium salt (40mmol), react at room temperature for 1 day, hydrolyze, and use 50mL petroleum The organic layer was extracted with ether, and purified by column chromatography (petroleum ether as a developing solvent) to obtain 2.23 g of a light yellow solid with a yield of 20%. The structural formula is as follows:
1HNMR(δ,ppm,CDCl3):7.43-7.41(m,1H,Ind-H),7.24-7.22(m,1H,Ind-H),7.11-7.08(m,3H,thienyl-H,Ind-H),6.89-6.87(m,2H,thienyl-H,Ind-H),6.42(t,J=2.0Hz,1H,Ind-H),3.38(d,J=2.0Hz,2H,Ind-H),2.50-2.42(m,2H,(CH2)5),2.25-2.17(m,2H,(CH2)5),1.70-1.60(m,4H,(CH2)5),1.57-1.47(m,2H,(CH2)5) 1 HNMR (δ, ppm, CDCl 3 ): 7.43-7.41 (m, 1H, Ind-H), 7.24-7.22 (m, 1H, Ind-H), 7.11-7.08 (m, 3H, thienyl-H, Ind -H), 6.89-6.87(m, 2H, thienyl-H, Ind-H), 6.42(t, J=2.0Hz, 1H, Ind-H), 3.38(d, J=2.0Hz, 2H, Ind- H), 2.50-2.42 (m, 2H, (CH 2 ) 5 ), 2.25-2.17 (m, 2H, (CH 2 ) 5 ), 1.70-1.60 (m, 4H, (CH 2 ) 5 ), 1.57- 1.47 (m, 2H, (CH 2 ) 5 )
(2)制备络合物C1 (2) Preparation of complex C1
0℃下将n-BuLi(6mmol)滴加到配体L1(1.68g,0.006mol)的50mL正己烷溶液中,反应过夜,在-78℃下加入TiCl4(0.006mol),反应12~24h。抽去溶剂,加入正己烷洗涤,过滤,对滤液浓缩低温放置重结晶,得到深红色晶体390mg,产率15%。C1分子结构式如下: Add n-BuLi (6mmol) dropwise to ligand L1 (1.68g, 0.006mol) in 50mL n-hexane solution at 0°C, react overnight, add TiCl 4 (0.006mol) at -78°C, react for 12-24h . The solvent was removed, washed with n-hexane, filtered, and the filtrate was concentrated at low temperature for recrystallization to obtain 390 mg of dark red crystals with a yield of 15%. The molecular structure of C1 is as follows:
1HNMR(δ,ppm,CDCl3):7.95(dd,J=8.8Hz,J=1.0Hz1H,Ind-H),7.70(d,J=8.8Hz,1H,Ind-H),7.47(ddd,J=8.4Hz,J=6.8Hz,J=1.0Hz,1H,Ind-H),7.35(ddd,J=8.4Hz,J=6.8Hz,J=1.0Hz,1H,Ind-H),7.20(dd,J=5.2,J=1.0Hz,1H,thienyl-H),7.18-7.15(m,2H,Ind-H,thienyl-H),7.00(d,J=3.6Hz,1H,Ind-H),6.97(dd,J=5.2Hz,J=3.6Hz,1H,thienyl-H),2.91(dd,J=13.8,J=1.6Hz,1H,(CH2)5),2.77(td,J=13.8,J=3.6Hz,1H,(CH2)5),2.68-2.54(m,1H,(CH2)5),2.33-2.20(m,1H,(CH2)5),1.87-1.65(m,4H,(CH2)5),1.57-1.39(m,2H,(CH2)5).Anal.Calcd.forC19H19Cl3STi·0.25(C6H14):C,54.09;H,4.98.FoundC,53.67;H,4.94%. 1 HNMR (δ, ppm, CDCl 3 ): 7.95 (dd, J=8.8Hz, J=1.0Hz 1H, Ind-H), 7.70 (d, J=8.8Hz, 1H, Ind-H), 7.47 (ddd, J=8.4Hz, J=6.8Hz, J=1.0Hz, 1H, Ind-H), 7.35(ddd, J=8.4Hz, J=6.8Hz, J=1.0Hz, 1H, Ind-H), 7.20( dd, J=5.2, J=1.0Hz, 1H, thienyl-H), 7.18-7.15(m, 2H, Ind-H, thienyl-H), 7.00(d, J=3.6Hz, 1H, Ind-H) , 6.97(dd, J=5.2Hz, J=3.6Hz, 1H, thienyl-H), 2.91(dd, J=13.8, J=1.6Hz, 1H, (CH 2 ) 5 ), 2.77(td, J= 13.8, J=3.6Hz, 1H, (CH 2 ) 5 ), 2.68-2.54 (m, 1H, (CH 2 ) 5 ), 2.33-2.20 (m, 1H, (CH 2 ) 5 ), 1.87-1.65 ( m, 4H, (CH 2 ) 5 ), 1.57-1.39 (m, 2H, (CH 2 ) 5 ). Anal. Calcd. for C 19 H 19 Cl 3 STi·0.25 (C 6 H 14 ): C, 54.09; H, 4.98. Found C, 53.67; H, 4.94%.
实施例2 Example 2
制备取代茚钛络合物C2 Preparation of Substituted Indene Titanium Complex C2
(1)制备配体化合物L2 (1) Preparation of Ligand Compound L2
78℃下,将9.4g(48mmol)6,6-亚戊基苯并富烯逐滴加到5-甲基-2-噻吩锂盐(48mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到浅黄色固体4.2g,产率30%。结构式如下: At 78°C, add 9.4g (48mmol) of 6,6-pentylidene benzofulvene dropwise to 40mL of ether solution of 5-methyl-2-thiophene lithium salt (48mmol), react at room temperature for 1 day, and hydrolyze , the organic layer was extracted with 50 mL of petroleum ether, and purified by column chromatography (petroleum ether was used as a developing solvent) to obtain 4.2 g of a light yellow solid with a yield of 30%. The structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.47-7.41(m,1H,Ind-H),7.36-7.31(m,1H,Ind-H),7.16-7.01(m,2H,Ind-H),6.72-6.68(m,1H,thienyl-H),6.54(s,1H,thienyl-H),6.42(s,1H,Ind-H),3.39(s,2H,Ind-H),2.47-2.37(m,5H,2(CH2)5,thienyl-CH3),2.27-2.10(m,2H,(CH2)5),1.75-1.46(m,6H,(CH2)5). 1 HNMR (400MHz, CDCl 3 ): δ7.47-7.41 (m, 1H, Ind-H), 7.36-7.31 (m, 1H, Ind-H), 7.16-7.01 (m, 2H, Ind-H), 6.72-6.68 (m, 1H, thienyl-H), 6.54 (s, 1H, thienyl-H), 6.42 (s, 1H, Ind-H), 3.39 (s, 2H, Ind-H), 2.47-2.37 ( m, 5H, 2(CH 2 ) 5 , thienyl-CH 3 ), 2.27-2.10 (m, 2H, (CH 2 ) 5 ), 1.75-1.46 (m, 6H, (CH 2 ) 5 ).
(2)制备络合物C2 (2) Preparation of complex C2
0℃下将n-BuLi(6mmol)在滴加到配体L3(1.7g,0.006mol)的50mL石油醚溶液中,反应过夜,在-78℃下加入TiCl4(0.006mol),反应12~24h。抽去溶剂,加入石油醚洗涤,对滤液浓缩低温放置重结晶,得到深红色晶体1.4g,产率52%。C2分子结构式如下: Add n-BuLi (6mmol) dropwise to ligand L3 (1.7g, 0.006mol) in 50mL petroleum ether solution at 0°C, react overnight, add TiCl 4 (0.006mol) at -78°C, react for 12~ 24h. The solvent was removed, petroleum ether was added to wash, and the filtrate was concentrated at low temperature for recrystallization to obtain 1.4 g of deep red crystals with a yield of 52%. The molecular structure of C2 is as follows:
1HNMR(400MHz,CDCl3):δ7.99(d,J=8.8Hz,1H,Ind-H),7.71(d,J=8.8Hz,1H,Ind-H),7.53-7.45(m,1H,Ind-H),7.40-7.31(m,1H,Ind-H),7.16(d,J=3.6Hz,1H,Ind-H),7.01(d,J=3.6Hz,1H,Ind-H),6.94(d,J=3.6Hz,1H,thienyl-H),6.60(dd,J=3.6,0.8Hz,1H,thienyl-H),2.86(dd,J=14.0,2.8Hz,1H,(CH2)5),2.73(td,J=12.8,3.6Hz,1H,(CH2)5),2.54(dd,12.8,3.6HZ,1H,(CH2)5),2.40-2.37(m,3H,thienyl-CH3),2.27-2.16(m,1H,(CH2)5),1.85-1.65(m,4H,(CH2)5),1.59-1.45(m,1H,(CH2)5),1.44-1.31(m,1H,(CH2)5).Anal.Calcd.forC20H21TiCl3S:C,53.66;H,4.73;found:C,54.10;H,5.03%. 1 HNMR (400MHz, CDCl 3 ): δ7.99 (d, J=8.8Hz, 1H, Ind-H), 7.71 (d, J=8.8Hz, 1H, Ind-H), 7.53-7.45 (m, 1H , Ind-H), 7.40-7.31 (m, 1H, Ind-H), 7.16 (d, J=3.6Hz, 1H, Ind-H), 7.01 (d, J=3.6Hz, 1H, Ind-H) , 6.94 (d, J=3.6Hz, 1H, thienyl-H), 6.60 (dd, J=3.6, 0.8Hz, 1H, thienyl-H), 2.86 (dd, J=14.0, 2.8Hz, 1H, (CH 2 ) 5 ), 2.73(td, J=12.8, 3.6Hz, 1H, (CH 2 ) 5 ), 2.54(dd, 12.8, 3.6HZ, 1H, (CH 2 ) 5 ), 2.40-2.37(m, 3H , thienyl-CH 3 ), 2.27-2.16 (m, 1H, (CH 2 ) 5 ), 1.85-1.65 (m, 4H, (CH 2 ) 5 ), 1.59-1.45 (m, 1H, (CH 2 ) 5 ), 1.44-1.31 (m, 1H, (CH 2 ) 5 ). Anal. Calcd. for C 20 H 21 TiCl 3 S: C, 53.66; H, 4.73; found: C, 54.10; H, 5.03%.
实施例3 Example 3
制备取代茚钛络合物C3 Preparation of Substituted Indene Titanium Complex C3
(1)制备配体化合物L3 (1) Preparation of Ligand Compound L3
78℃下,将9.4g(48mmol)6,6-亚戊基苯并富烯逐滴加到3-甲基-2-噻吩锂盐(48mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到浅黄色固体2.4g,产率17%。结构式如下: At 78°C, 9.4g (48mmol) of 6,6-pentylidene benzofulvene was added dropwise to 40mL of ether solution of 3-methyl-2-thiophene lithium salt (48mmol), reacted at room temperature for 1 day, and hydrolyzed , the organic layer was extracted with 50 mL of petroleum ether, and purified by column chromatography (petroleum ether was used as a developing solvent) to obtain 2.4 g of a light yellow solid with a yield of 17%. The structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.43(d,J=7.2,1H,Ind-H),7.14-7.01(m,4H,3Ind-H,thienyl-H),6.69-6.61(m,1H,thienyl-H),6.55-6.38(m,1H,Ind-H),3.41(s,2H,Ind-H),2.56-2.45(m,2H,(CH2)5),2.21-2.11(m,2H,(CH2)5),1.92-1.80(m,3H,thienyl-CH3),1.75-1.56(m,5H,(CH2)5),1.51-1.41(m,1H,(CH2)5). 1 HNMR (400MHz, CDCl 3 ): δ7.43 (d, J=7.2, 1H, Ind-H), 7.14-7.01 (m, 4H, 3Ind-H, thienyl-H), 6.69-6.61 (m, 1H , thienyl-H), 6.55-6.38(m, 1H, Ind-H), 3.41(s, 2H, Ind-H), 2.56-2.45(m, 2H, (CH 2 ) 5 ), 2.21-2.11(m , 2H, (CH 2 ) 5 ), 1.92-1.80 (m, 3H, thienyl-CH 3 ), 1.75-1.56 (m, 5H, (CH 2 ) 5 ), 1.51-1.41 (m, 1H, (CH 2 ) 5 ).
(2)制备络合物C3 (2) Preparation of complex C3
0℃下将n-BuLi(6mmol)在滴加到配体L3(1.7g,0.006mol)的石油醚溶液中,反应过夜,在-78℃下加入TiCl4(0.006mol),反应12~24h。抽去溶剂,加入正己烷洗涤,对滤液浓缩低温放置重结晶,得到深红色晶体350mg,产率13%。C3分子结构式如下: Add n-BuLi (6mmol) dropwise to the petroleum ether solution of ligand L3 (1.7g, 0.006mol) at 0°C, react overnight, add TiCl 4 (0.006mol) at -78°C, and react for 12-24h . The solvent was removed, n-hexane was added to wash, and the filtrate was concentrated at low temperature for recrystallization to obtain 350 mg of dark red crystals with a yield of 13%. The molecular structure of C3 is as follows:
1HNMR(400MHz,CDCl3):δ=7.75(d,J=8.8,1H,Ind-H),7.69(d,J=8.8,1H,Ind-H),7.44-7.37(m,1H,Ind-H),7.37-7.31(m,1H,Ind-H),7.26-7.24(m,1H,thienyl-H),7.19(d,J=3.6,1H,Ind-H),7.12(d,J=5.2,1H,Ind-H),6.60(d,J=5.2,1H,thienyl-H),3.07-2.99(m,1H,(CH2)5),2.80-2.70(m,1H,(CH2)5),2.69-2.60(m,1H,(CH2)5),2.33-2.07(m,3H,(CH2)5),1.90-1.73(m,4H,(CH2)5),1.70(s,3H,thienyl-CH3).Anal.Calcd.forC20H21TiCl3S·0.4(C5H12):C,55.45;H,5.46;found:C,55.72;H,5.48%. 1 HNMR (400MHz, CDCl 3 ): δ=7.75 (d, J=8.8, 1H, Ind-H), 7.69 (d, J=8.8, 1H, Ind-H), 7.44-7.37 (m, 1H, Ind-H) -H), 7.37-7.31 (m, 1H, Ind-H), 7.26-7.24 (m, 1H, thienyl-H), 7.19 (d, J=3.6, 1H, Ind-H), 7.12 (d, J =5.2, 1H, Ind-H), 6.60 (d, J=5.2, 1H, thienyl-H), 3.07-2.99 (m, 1H, (CH 2 ) 5 ), 2.80-2.70 (m, 1H, (CH 2 ) 5 ), 2.69-2.60 (m, 1H, (CH 2 ) 5 ), 2.33-2.07 (m, 3H, (CH 2 ) 5 ), 1.90-1.73 (m, 4H, (CH 2 ) 5 ), 1.70 (s, 3H, thienyl-CH 3 ). Anal. Calcd. for C 20 H 21 TiCl 3 S 0.4 (C 5 H 12 ): C, 55.45; H, 5.46; found: C, 55.72; H, 5.48% .
实施例4 Example 4
制备取代茚钛络合物C4 Preparation of Substituted Indene Titanium Complex C4
(1)制备配体化合物L4 (1) Preparation of Ligand Compound L4
78℃下,将7.1g(36mmol)6,6-亚戊基苯并富烯逐滴加到5-三甲硅基-2-噻吩锂盐(36mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到浅黄色固体3.1g,产率24%。结构式如下: At 78°C, 7.1 g (36 mmol) of 6,6-pentylidene benzofulvene was added dropwise to a solution of 5-trimethylsilyl-2-thiophene lithium salt (36 mmol) in 40 mL of ether, and reacted at room temperature for 1 day. After hydrolysis, the organic layer was extracted with 50 mL of petroleum ether, and purified by column chromatography (petroleum ether was used as a developing solvent) to obtain 3.1 g of light yellow solid with a yield of 24%. The structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.48-7.40(m,1H,Ind-H),7.35-7.27(m,1H,Ind-H),7.17-7.10(m,2H,Ind-H),7.06-7.01(m,1H,thienyl-H),6.96-6.90(m,1H,thienyl-H),6.42(s,1H,Ind-H),3.40(s,2H),2.55-2.44(m,2H,(CH2)5),2.30-2.17(m,2H,(CH2)5),1.75-1.45(m,6H,(CH2)5),0.28(s,9H,thienyl-SiMe3). 1 HNMR (400MHz, CDCl 3 ): δ7.48-7.40 (m, 1H, Ind-H), 7.35-7.27 (m, 1H, Ind-H), 7.17-7.10 (m, 2H, Ind-H), 7.06-7.01(m, 1H, thienyl-H), 6.96-6.90(m, 1H, thienyl-H), 6.42(s, 1H, Ind-H), 3.40(s, 2H), 2.55-2.44(m, 2H, (CH 2 ) 5 ), 2.30-2.17 (m, 2H, (CH 2 ) 5 ), 1.75-1.45 (m, 6H, (CH 2 ) 5 ), 0.28 (s, 9H, thienyl-SiMe 3 ) .
(2)制备络合物C4 (2) Preparation of complex C4
0℃下将n-BuLi(3.6mmol)在滴加到配体L4(1.3g,3.6mmol)的50mL正己烷溶液中,反应过夜,在-78℃下加入TiCl4(3.6mmol),反应12~24h。抽去溶剂,加入正己烷洗涤,对滤液浓缩低温放置重结晶,得到深红色晶体870mg,产率48%。C4分子结构式如下: Add n-BuLi (3.6mmol) dropwise to ligand L4 (1.3g, 3.6mmol) in 50mL n-hexane solution at 0°C, react overnight, add TiCl 4 (3.6mmol) at -78°C, react 12 ~24h. The solvent was removed, n-hexane was added to wash, and the filtrate was concentrated at low temperature for recrystallization to obtain 870 mg of dark red crystals with a yield of 48%. The molecular structure of C4 is as follows:
1HNMR(400MHz,CDCl3):δ7.96(d,J=8.8Hz,1H),7.71(d,J=8.8Hz,1H),7.51-7.44(m,1H),7.39-7.32(m,1H),7.18(d,J=3.2Hz,1H),7.16(d,J=3.2Hz,1H),7.09(d,J=3.6Hz,1H),6.99(d,J=3.6Hz,1H),2.91(d,J=13.2Hz,1H),2.76(td,J=13.2,3.2Hz,1H),2.68-2.58(m,1H),2.32-2.18(m,1H),1.84-1.64(m,5H),1.55-1.45(m,1H),0.25(s,9H).Anal.Calcd.forC22H27Cl3SSiTi·0.8C5H12:C,55.41;H,6.55;found:C,55.79;H,6.35%. 1 HNMR (400MHz, CDCl 3 ): δ7.96(d, J=8.8Hz, 1H), 7.71(d, J=8.8Hz, 1H), 7.51-7.44(m, 1H), 7.39-7.32(m, 1H), 7.18(d, J=3.2Hz, 1H), 7.16(d, J=3.2Hz, 1H), 7.09(d, J=3.6Hz, 1H), 6.99(d, J=3.6Hz, 1H) , 2.91(d, J=13.2Hz, 1H), 2.76(td, J=13.2, 3.2Hz, 1H), 2.68-2.58(m, 1H), 2.32-2.18(m, 1H), 1.84-1.64(m , 5H), 1.55-1.45 (m, 1H), 0.25 (s, 9H). Anal. Calcd. for C 22 H 27 Cl 3 SSiTi 0.8C 5 H 12 : C, 55.41; H, 6.55; found: C, 55.79; H, 6.35%.
实施例5 Example 5
制备取代茚钛络合物C5 Preparation of Substituted Indene Titanium Complex C5
(1)制备配体化合物L5 (1) Preparation of Ligand Compound L5
78℃下,将9.4g(48mmol)6,6-亚戊基苯并富烯逐滴加到2-呋喃锂盐(48mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到白色固体2.3g,产率18%。结构式如下: At 78°C, add 9.4g (48mmol) 6,6-pentylidenebenzofulvene dropwise to 40mL ether solution of 2-furyl lithium salt (48mmol), react at room temperature for 1 day, hydrolyze, and use 50mL petroleum ether The organic layer was extracted and purified by column chromatography (petroleum ether as the developing solvent) to obtain 2.3 g of a white solid with a yield of 18%. The structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.45(d,J=6.8Hz,1H,Ind-H),7.39(d,J=7.2Hz,1H,Ind-H),7.34-7.30(m,1H,fury-H),7.20-7.09(m,2H,Ind-H),6.35-6.28(m,2H,Ind-H,fury-H),6.23-6.20(m,1H,fury-H),3.33(s,2H,Ind-H),2.44-2.35(m,2H,(CH2)5),2.20-2.10(m,2H,(CH2)5),1.70-1.50(m,6H,(CH2)5). 1 HNMR (400MHz, CDCl 3 ): δ7.45 (d, J=6.8Hz, 1H, Ind-H), 7.39 (d, J=7.2Hz, 1H, Ind-H), 7.34-7.30 (m, 1H , fury-H), 7.20-7.09 (m, 2H, Ind-H), 6.35-6.28 (m, 2H, Ind-H, fury-H), 6.23-6.20 (m, 1H, fury-H), 3.33 (s, 2H, Ind-H), 2.44-2.35 (m, 2H, (CH 2 ) 5 ), 2.20-2.10 (m, 2H, (CH 2 ) 5 ), 1.70-1.50 (m, 6H, (CH 2 ) 5 ).
(2)制备络合物C5 (2) Preparation of complex C5
0℃下将n-BuLi(3.6mmol)在滴加到配体L5(0.95g,3.6mmol)的50mL石油醚溶液中,反应过夜,在-78℃下加入TiCl4(3.6mmol),反应12~24h。抽去溶剂,加入石油醚洗涤,对滤液重结晶,得到深红色晶体810mg,产率54%。 Add n-BuLi (3.6mmol) dropwise to ligand L5 (0.95g, 3.6mmol) in 50mL petroleum ether solution at 0°C, react overnight, add TiCl 4 (3.6mmol) at -78°C, react 12 ~24h. The solvent was removed, petroleum ether was added to wash, and the filtrate was recrystallized to obtain 810 mg of dark red crystals with a yield of 54%.
分子结构式如下: The molecular structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.96(d,J=8.8Hz,1H,Ind-H),7.71(d,J=8.8Hz,1H,Ind-H),7.53-7.46(m,1H,Ind-H),7.42-7.33(m,2H,Ind-H,fury-H),7.15(d,J=3.6Hz,1H,fury-H),6.96(d,J=3.6Hz,1H,Ind-H),6.44-6.34(m,2H,Ind-H,fury-H),2.91(d,J=13.2Hz,1H,(CH2)5),2.68(d,J=13.2Hz,1H,(CH2)5),2.34(td,J=12.8,3.6Hz,1H,(CH2)5),2.14(td,J=12.8,3.6Hz,1H,(CH2)5),1.85-1.65(m,3H,(CH2)5),1.62-1.35(m,3H,(CH2)5).Anal.Calcd.forC19H19TiCl3O:C,54.65;H,4.59;found:C,54.21;H,5.10%. 1 HNMR (400MHz, CDCl3): δ7.96 (d, J=8.8Hz, 1H, Ind-H), 7.71 (d, J=8.8Hz, 1H, Ind-H), 7.53-7.46 (m, 1H, Ind-H), 7.42-7.33 (m, 2H, Ind-H, fury-H), 7.15 (d, J=3.6Hz, 1H, fury-H), 6.96 (d, J=3.6Hz, 1H, Ind -H), 6.44-6.34(m, 2H, Ind-H, fury-H), 2.91(d, J=13.2Hz, 1H, (CH 2 ) 5 ), 2.68(d, J=13.2Hz, 1H, (CH 2 ) 5 ), 2.34 (td, J=12.8, 3.6Hz, 1H, (CH 2 ) 5 ), 2.14 (td, J=12.8, 3.6Hz, 1H, (CH 2 ) 5 ), 1.85-1.65 (m, 3H, (CH 2 ) 5 ), 1.62-1.35 (m, 3H, (CH 2 ) 5 ). Anal. Calcd. for C 19 H 19 TiCl 3 O: C, 54.65; H, 4.59; found: C , 54.21; H, 5.10%.
实施例6 Example 6
制备取代茚钛络合物C6 Preparation of Substituted Indene Titanium Complex C6
(1)制备配体化合物L6 (1) Preparation of Ligand Compound L6
78℃下,将9.4g(48mmol)6,6-亚戊基苯并富烯逐滴加到5-甲基-2-呋喃锂盐(48mmol)的40mL乙醚溶液中,常温反应1天,水解,用50mL石油醚萃取有机层,经柱层析(石油醚为展开剂)提纯,得到白色固体1.1g,产率8%。结构式如下: At 78°C, 9.4g (48mmol) of 6,6-pentylidene benzofulvene was added dropwise to 40mL of ether solution of 5-methyl-2-furyl lithium salt (48mmol), reacted at room temperature for 1 day, and hydrolyzed , the organic layer was extracted with 50 mL of petroleum ether, and purified by column chromatography (petroleum ether was used as a developing solvent) to obtain 1.1 g of a white solid with a yield of 8%. The structural formula is as follows:
1HNMR(400MHz,CDCl3):δ7.52-7.40(m,2H,Ind-H),7.22-7.10(m,2H,Ind-H),6.30(s,1H,Ind-H),6.07(s,1H,fury-H),5.90(s,1H,fury-H),3.34(s,2H,Ind-H),2.45-2.35(m,2H,(CH2)5),2.30-2.20(m,3H,fury-CH3),2.19-2.09(m,2H,(CH2)5),1.73-1.38(m,6H,(CH2)5). 1 HNMR (400MHz, CDCl 3 ): δ7.52-7.40 (m, 2H, Ind-H), 7.22-7.10 (m, 2H, Ind-H), 6.30 (s, 1H, Ind-H), 6.07 ( s, 1H, fury-H), 5.90 (s, 1H, fury-H), 3.34 (s, 2H, Ind-H), 2.45-2.35 (m, 2H, (CH 2 ) 5 ), 2.30-2.20 ( m, 3H, fury-CH 3 ), 2.19-2.09 (m, 2H, (CH 2 ) 5 ), 1.73-1.38 (m, 6H, (CH 2 ) 5 ).
(2)制备络合物C6 (2) Preparation of complex C6
0℃下将n-BuLi(3.6mmol)在滴加到配体L6(1.0g,3.6mmol)的50mL石油醚溶液中,反应过夜,在-78℃下加入TiCl4(3.6mmol),反应12~24h。抽去溶剂,加入石油醚洗涤,对滤液重结晶,得到深红色晶体650mg,产率42%。C6分子结构式如下: Add n-BuLi (3.6mmol) dropwise to ligand L6 (1.0g, 3.6mmol) in 50mL petroleum ether solution at 0°C, react overnight, add TiCl 4 (3.6mmol) at -78°C, react 12 ~24h. The solvent was removed, petroleum ether was added to wash, and the filtrate was recrystallized to obtain 650 mg of dark red crystals with a yield of 42%. The molecular structure of C6 is as follows:
1HNMR(400MHz,CDCl3):δ8.02(d,J=8.8Hz,1H,Ind-H),7.71(d,J=8.8Hz,1H,Ind-H),7.56-7.46(m,1H,Ind-H),7.44-7.33(m,1H,Ind-H),7.15(d,J=3.6Hz,1H,fury-H),7.00(d,J=3.6Hz,1H,Ind-H),6.25(d,J=2.4Hz,1H,fury-H),5.94(d,J=2.4Hz,1H,Ind-H),2.89(d,J=13.2Hz,1H,(CH2)5),2.65(d,J=13.2Hz,1H,(CH2)5),2.32-2.16(m,4H,(CH2)5,fury-CH3),2.11(td,J=13.2,3.6Hz,1H,(CH2)5),1.81-1.64(m,3H,(CH2)5),1.63-1.37(m,3H,(CH2)5).Anal.Calcd.forC20H21Cl3OTi·0.3(C5H12):C,56.97;H,5.47;found:C,57.59;H,5.42%. 1 HNMR (400MHz, CDCl 3 ): δ8.02 (d, J=8.8Hz, 1H, Ind-H), 7.71 (d, J=8.8Hz, 1H, Ind-H), 7.56-7.46 (m, 1H , Ind-H), 7.44-7.33 (m, 1H, Ind-H), 7.15 (d, J=3.6Hz, 1H, fury-H), 7.00 (d, J=3.6Hz, 1H, Ind-H) , 6.25(d, J=2.4Hz, 1H, fury-H), 5.94(d, J=2.4Hz, 1H, Ind-H), 2.89(d, J=13.2Hz, 1H, (CH 2 ) 5 ) , 2.65(d, J=13.2Hz, 1H, (CH 2 ) 5 ), 2.32-2.16(m, 4H, (CH 2 ) 5 , fury-CH 3 ), 2.11(td, J=13.2, 3.6Hz, 1H, (CH 2 ) 5 ), 1.81-1.64 (m, 3H, (CH 2 ) 5 ), 1.63-1.37 (m, 3H, (CH 2 ) 5 ). Anal. Calcd. for C 20 H 21 Cl 3 OTi 0.3(C 5 H 12 ): C, 56.97; H, 5.47; found: C, 57.59; H, 5.42%.
实施例7 Example 7
向50mL高压釜中加入20mL甲苯,在0℃下加入C1催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是20kg/(mol-Ti·h),1-己烯选择性大于98%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C1 catalyst at 0 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, and react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract the supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 20kg/(mol-Ti h), and the selectivity of 1-hexene is greater than 98%.
实施例8 Example 8
向50mL高压釜中加入20mL甲苯,在30℃下加入C1催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力8atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是77kg/(mol-Ti·h),1-己烯选择性为89%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C1 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 8 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g of n-heptane as an internal standard, extract the supernatant for gas chromatography, and calculate the catalytic activity for generating 1-hexene to be 77kg/(mol-Ti·h), and the selectivity of 1-hexene to be 89%.
实施例9 Example 9
向50mL高压釜中加入20mL甲苯,在30℃下加入C1催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力8atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是107kg/(mol-Ti·h),1-己烯选择性为79%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C1 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 8 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract the supernatant liquid for gas chromatography, calculate the catalytic activity of generating 1-hexene to be 107kg/(mol-Ti·h), and the selectivity of 1-hexene is 79%.
实施例10 Example 10
向50mL高压釜中加入20mL甲苯,在80℃下加入C1催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是161kg/(mol-Ti·h),1-己烯选择性为88%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C1 catalyst at 80 ° C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as an internal standard, extract the supernatant liquid for gas chromatography, and calculate the catalytic activity of generating 1-hexene to be 161kg/(mol-Ti·h), and the selectivity of 1-hexene is 88%.
实施例11 Example 11
向50mL高压釜中加入20mL甲苯,在0℃下加入C2催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是112kg/(mol-Ti·h),1-己烯选择性为大于98%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C2 catalyst at 0 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 112kg/(mol-Ti h), and the selectivity of 1-hexene is greater than 98%.
实施例12 Example 12
向50mL高压釜中加入20mL甲苯,在30℃下加入C2催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是413kg/(mol-Ti·h),1-己烯选择性为97%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C2 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract the supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 413kg/(mol-Ti·h), and the selectivity of 1-hexene is 97%.
实施例13 Example 13
向50mL高压釜中加入20mL甲苯,在30℃下加入C2催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力8atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是476kg/(mol-Ti·h),1-己烯选择性为94%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C2 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 8 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g of n-heptane as an internal standard, extract the supernatant for gas chromatography, and calculate the catalytic activity of generating 1-hexene to be 476kg/(mol-Ti·h), and the selectivity of 1-hexene is 94%.
实施例14 Example 14
向50mL高压釜中加入20mL甲苯,在80℃下加入C2催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是697kg/(mol-Ti·h),1-己烯选择性为95%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C2 catalyst at 80 ° C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 697kg/(mol-Ti·h), and the selectivity of 1-hexene is 95%.
实施例15 Example 15
向50mL高压釜中加入20mL甲苯,在0℃下加入C3催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是11kg/(mol-Ti·h),1-己烯选择性大于98%。 Add 20 mL of toluene into a 50 mL autoclave, add 1.5 μmol of C3 catalyst at 0°C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 11kg/(mol-Ti h), and the selectivity of 1-hexene is greater than 98%.
实施例16 Example 16
向50mL高压釜中加入20mL甲苯,在30℃下加入C3催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是20kg/(mol-Ti·h),1-己烯选择性为68%。 Add 20 mL of toluene into a 50 mL autoclave, add 1.5 μmol of C3 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g of n-heptane as an internal standard, extract the supernatant for gas chromatography, calculate the catalytic activity to generate 1-hexene is 20kg/(mol-Ti·h), and the selectivity of 1-hexene is 68%.
实施例17 Example 17
向50mL高压釜中加入20mL甲苯,在30℃下加入C3催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力8atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是27kg/(mol-Ti·h),1-己烯选择性为67%。 Add 20 mL of toluene into a 50 mL autoclave, add 1.5 μmol of C3 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 8 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as an internal standard, extract the supernatant liquid for gas chromatography, calculate the catalytic activity to generate 1-hexene is 27kg/(mol-Ti·h), and the selectivity of 1-hexene is 67%.
实施例18 Example 18
向50mL高压釜中加入20mL甲苯,在80℃下加入C3催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是51kg/(mol-Ti·h),1-己烯选择性为32%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C3 catalyst at 80 ° C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g of n-heptane as an internal standard, extract the supernatant for gas chromatography, and calculate the catalytic activity for generating 1-hexene to be 51kg/(mol-Ti·h), and the selectivity of 1-hexene to be 32%.
实施例19 Example 19
向50mL高压釜中加入20mL甲苯,在0℃下加入C4催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是53kg/(mol-Ti·h),1-己烯选择性大于98%。 Add 20mL of toluene to a 50mL autoclave, add 1.5μmol of C4 catalyst at 0°C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5atm, react for 30 minutes, open the autoclave, and add 1mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 53kg/(mol-Ti·h), and the selectivity of 1-hexene is greater than 98%.
实施例20 Example 20
向50mL高压釜中加入20mL甲苯,在30℃下加入C4催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是328kg/(mol-Ti·h),1-己烯选择性为94%。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C4 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 328kg/(mol-Ti·h), and the selectivity of 1-hexene is 94%.
实施例21 Example 21
向50mL高压釜中加入20mL甲苯,在0℃下加入C4催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力8atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是448kg/(mol-Ti·h),1-己烯选择性为82%。 Add 20mL of toluene to a 50mL autoclave, add 1.5μmol of C4 catalyst at 0°C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 8atm, and react for 30 minutes, open the autoclave, and add 1mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as an internal standard, extract the supernatant liquid for gas chromatography, calculate the catalytic activity of generating 1-hexene to be 448kg/(mol-Ti·h), and the selectivity of 1-hexene is 82%.
实施例22 Example 22
向50mL高压釜中加入20mL甲苯,在80℃下加入C4催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是403kg/(mol-Ti·h),1-己烯选择性为66%。反应液中加入含5%HCl的乙醇,收集沉淀、洗至中性,干燥称重,得聚乙烯158mg,催化活性210kg/(mol-Ti·h)。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C4 catalyst at 80 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as an internal standard, extract the supernatant liquid for gas chromatography, and calculate the catalytic activity of generating 1-hexene to be 403kg/(mol-Ti·h), and the selectivity of 1-hexene is 66%. Ethanol containing 5% HCl was added to the reaction solution, the precipitate was collected, washed until neutral, dried and weighed to obtain 158 mg of polyethylene with a catalytic activity of 210 kg/(mol-Ti·h).
实施例23 Example 23
向50mL高压釜中加入20mL甲苯,在30℃下加入C5催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是3kg/(mol-Ti·h),1-己烯选择性小于10%。反应液中加入含5%HCl的乙醇,收集沉淀、洗至中性,干燥称重,得聚乙烯59mg,催化活性78kg/(mol-Ti·h)。 Add 20mL of toluene to a 50mL autoclave, add 1.5μmol of C5 catalyst at 30°C, adjust the polymerization pressure to 5atm, and react for 30 minutes, then add 1mL of ethanol to the reaction mixture to terminate the reaction. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 3kg/(mol-Ti·h), and the selectivity of 1-hexene is less than 10%. Ethanol containing 5% HCl was added to the reaction solution, the precipitate was collected, washed until neutral, dried and weighed to obtain 59 mg of polyethylene with a catalytic activity of 78 kg/(mol-Ti·h).
实施例24 Example 24
向50mL高压釜中加入20mL甲苯,在80℃下加入C5催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇终止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是8kg/(mol-Ti·h),1-己烯选择性小于10%。反应液中加入含5%HCl的乙醇,收集沉淀、洗至中性,干燥称重,得聚乙烯62mg,催化活性82kg/(mol-Ti·h)。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C5 catalyst at 80 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to terminate. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 8kg/(mol-Ti·h), and the selectivity of 1-hexene is less than 10%. Ethanol containing 5% HCl was added to the reaction solution, the precipitate was collected, washed until neutral, dried and weighed to obtain 62 mg of polyethylene with a catalytic activity of 82 kg/(mol-Ti·h).
实施例25 Example 25
向50mL高压釜中加入20mL甲苯,在30℃下加入C6催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入1mL乙醇中止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是4kg/(mol-Ti·h),1-己烯选择性小于10%。反应液中加入含5%HCl的乙醇,收集沉淀、洗至中性,干燥称重,得聚乙烯140mg,催化活性186kg/(mol-Ti·h)。 Add 20 mL of toluene into a 50 mL autoclave, add 1.5 μmol of C6 catalyst at 30 ° C, and add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to stop. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 4kg/(mol-Ti·h), and the selectivity of 1-hexene is less than 10%. Ethanol containing 5% HCl was added to the reaction solution, the precipitate was collected, washed until neutral, dried and weighed to obtain 140 mg of polyethylene with a catalytic activity of 186 kg/(mol-Ti·h).
实施例26 Example 26
向50mL高压釜中加入20mL甲苯,在80℃下加入C6催化剂1.5μmol,按铝钛比1000,加入MAO,调节聚合压力5atm,反应30分钟,打开高压釜,向反应混合物中加入lmL乙醇中止,加入0.068g正庚烷做内标,提取上层清液做气相色谱,计算出生成1-己烯的催化活性是11kg/(mol-Ti·h),1-己烯选择性小于10%。反应液中加入含5%HCl的乙醇,收集沉淀、洗至中性,干燥称重,得聚乙烯222mg,催化活性296kg/(mol-Ti·h)。 Add 20 mL of toluene to a 50 mL autoclave, add 1.5 μmol of C6 catalyst at 80 ° C, add MAO according to the aluminum-titanium ratio of 1000, adjust the polymerization pressure to 5 atm, react for 30 minutes, open the autoclave, and add 1 mL of ethanol to the reaction mixture to stop. Add 0.068g n-heptane as internal standard, extract supernatant liquid and do gas chromatography, calculate the catalytic activity of generating 1-hexene to be 11kg/(mol-Ti·h), and the selectivity of 1-hexene is less than 10%. Ethanol containing 5% HCl was added to the reaction solution, the precipitate was collected, washed until neutral, dried and weighed to obtain 222 mg of polyethylene with a catalytic activity of 296 kg/(mol-Ti·h).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310027073.5A CN103059059B (en) | 2013-01-24 | 2013-01-24 | The preparation method of catalyst of ethylene trimerization and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310027073.5A CN103059059B (en) | 2013-01-24 | 2013-01-24 | The preparation method of catalyst of ethylene trimerization and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103059059A CN103059059A (en) | 2013-04-24 |
CN103059059B true CN103059059B (en) | 2015-12-02 |
Family
ID=48101987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310027073.5A Expired - Fee Related CN103059059B (en) | 2013-01-24 | 2013-01-24 | The preparation method of catalyst of ethylene trimerization and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103059059B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108686706B (en) | 2018-06-22 | 2020-12-01 | 中国石油天然气股份有限公司 | Ethylene selective oligomerization method and catalyst |
CN113816989B (en) * | 2021-09-15 | 2023-09-19 | 惠生(中国)投资有限公司 | Suspension pyrrolyl amino-indenyl titanium dichloride compound and application thereof in olefin high-temperature polymerization |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155605C (en) * | 2001-10-22 | 2004-06-30 | 中国石油化工股份有限公司 | Substituted indenyl metal titanium compound and its preparation method and use |
US6531619B1 (en) * | 2002-01-08 | 2003-03-11 | Boulder Scientific Company | Preparation of cyclopentadienyl or indenyl titanium trihalides |
CN100509873C (en) * | 2006-04-28 | 2009-07-08 | 华东理工大学 | High-selective ethylene trimer and polyphenylacetylene catalyst and preparation method and application thereof |
CN102161676B (en) * | 2011-02-23 | 2014-01-15 | 华东理工大学 | High activity and high selectivity ethylene trimerization catalyst and its preparation method and application |
JP2012224617A (en) * | 2011-03-30 | 2012-11-15 | Sumitomo Chemical Co Ltd | Method for producing 1-hexene |
-
2013
- 2013-01-24 CN CN201310027073.5A patent/CN103059059B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
含悬垂噻吩基、苯基取代的茚钛、茚茂锆络合物的合成;何乐;《华东理工大学硕士学位论文》;20111231;第14-20和24-25页, 尤其是第14-15页2.1部分和图2.2、第24-25页2.3.3.1部分 * |
Also Published As
Publication number | Publication date |
---|---|
CN103059059A (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102280005B1 (en) | Ligand based chromium catalyst and application in catalyzing ethylene oligomerization | |
Hou et al. | 2-Substituted 8-(2-benzhydrylarylimino)-5, 6, 7-trihydroquinoline-N, N′ nickel dichlorides: Synthesis, characterization and catalytic behavior towards ethylene | |
CN106853378B (en) | Ternary Catalyst System Containing PNN Structural Skeleton Ligand and Its Application | |
KR20040002868A (en) | Catalyst system for the trimerisation of olefins | |
CA2954836C (en) | Catalyst composition and process for oligomerization of ethylene to produce 1-hexene and/or 1-octene | |
CN104781266A (en) | Ligand compound, organochromium compound, catalyst system for ethylene oligomerization, method for preparing same and ethylene oligomerization method using same | |
EP3286202A1 (en) | Bridged bi-aromatic ligands and transition metal compounds prepared therefrom | |
US20190111414A1 (en) | Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom | |
US20110294972A1 (en) | Olefin Polymerization Catalysts | |
CN103059059B (en) | The preparation method of catalyst of ethylene trimerization and application thereof | |
US7595413B2 (en) | Phosphine-substituted vinyl containing metallocene catalyst, preparation process and the application of the same | |
Wang et al. | Propyl substituted 4-arylimino-1, 2, 3-trihydroacridylnickel complexes: Their synthesis, characterization and catalytic behavior toward ethylene | |
CN102443082A (en) | Novel chromium catalyst and application thereof in catalysis of olefin oligomerization and polymerization | |
JP2006511625A5 (en) | ||
EP2800753A1 (en) | Process for the preparation of metallocene complexes | |
CN102161676B (en) | High activity and high selectivity ethylene trimerization catalyst and its preparation method and application | |
CN108503735A (en) | A kind of preparation and application of chromium metallic catalyst | |
CN102190749B (en) | Ethylene/alpha-olefin copolymerization method | |
CN102260284B (en) | Ethylene bridged indene fluorene zirconium compound and its preparation method and highly selective catalysis of propylene dimerization | |
EP3288953B1 (en) | Bis(aminophenylphenol) ligands and transition metal compounds prepared therefrom | |
CN115746181B (en) | IVB-group tridentate catalyst, synthesis method and application | |
CN104860999A (en) | dinuclear metallocene compound for olefin polymerization and preparation method and application thereof | |
CN110922286B (en) | Asymmetric aryl substituted fulvene compound and preparation method and application thereof | |
CN102153595B (en) | Cyclopentadiene chrome complex with side chain containing drape thienyl substitute, preparation method and application thereof | |
CN104860983A (en) | titanium compound for ethylene polymerization and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151202 Termination date: 20190124 |