CN103058446B - Method for removing pesticide residues in water body by using magnetic titanium oxide micellar system - Google Patents
Method for removing pesticide residues in water body by using magnetic titanium oxide micellar system Download PDFInfo
- Publication number
- CN103058446B CN103058446B CN 201310026883 CN201310026883A CN103058446B CN 103058446 B CN103058446 B CN 103058446B CN 201310026883 CN201310026883 CN 201310026883 CN 201310026883 A CN201310026883 A CN 201310026883A CN 103058446 B CN103058446 B CN 103058446B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- pesticide residues
- water body
- water
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
一种利用磁性氧化钛胶束体系去除水体中农药残留的方法,它涉及一种去除水体中农药残留的方法。本发明的目的是要解决水体中的农药残留去除技术存在工艺繁琐、处理成本高以及去除效率低的问题。方法:一、制备Fe3O4磁流体;二、制备磁性氧化钛纳米颗粒;三、去除农药残留,即完成待处理水体中农药残留的去除,得到处理后水体。本发明主要用于去除水体中农药残留。
The invention discloses a method for removing pesticide residues in water by using a magnetic titanium oxide micelle system, which relates to a method for removing pesticide residues in water. The object of the invention is to solve the problems of cumbersome process, high treatment cost and low removal efficiency in the removal technology of pesticide residues in water bodies. Methods: 1. Preparation of Fe 3 O 4 magnetic fluid; 2. Preparation of magnetic titanium oxide nanoparticles; 3. Removal of pesticide residues, that is, the removal of pesticide residues in the water to be treated is completed, and the treated water is obtained. The invention is mainly used for removing pesticide residues in water bodies.
Description
技术领域technical field
本发明涉及一种去除水体中农药残留的方法。The invention relates to a method for removing pesticide residues in water bodies.
背景技术Background technique
随着现代农业的发展,世界范围内使用的农药品种越来越多,用量不断增加,农药残留导致环境污染,造成生态系统结构和功能的破坏,早已受到国内外的广泛关注。据相关报道,化学农药在施用过程中,只有约20%直接残留在作物上,其余的则通过自然沉降、降水进入土壤、地下水,相当一部分在随地表径流进入湖泊、河流。长期、大量使用的各类农药进入水环境后,引起了诸多水环境污染、生态系统破坏、食品安全等一系列问题。因此研究简单方便快捷的水环境中农药的去除方法对于保护生态环境和人类健康生存都十分必要。目前,农药污染物的去除方法主要有活性炭吸附法、生物降解法和氧化法等。然而,这些方法大多存在处理工艺繁琐、处理成本高以及去除效率低等缺点。With the development of modern agriculture, more and more types of pesticides are used in the world, and the dosage is increasing. Pesticide residues lead to environmental pollution and damage to the structure and function of the ecosystem, which has long been widely concerned at home and abroad. According to relevant reports, only about 20% of chemical pesticides remain directly on crops during the application process, and the rest enters soil and groundwater through natural sedimentation and precipitation, and a considerable part enters lakes and rivers with surface runoff. After long-term and large-scale use of various pesticides entered the water environment, it caused a series of problems such as water environment pollution, ecosystem damage, and food safety. Therefore, it is very necessary to study simple, convenient and quick methods of removing pesticides in the water environment for the protection of the ecological environment and human health and survival. At present, the removal methods of pesticide pollutants mainly include activated carbon adsorption, biodegradation and oxidation. However, most of these methods have disadvantages such as cumbersome treatment process, high treatment cost and low removal efficiency.
近年来离子型表面活性剂吸附在金属氧化物表面的自组装行为为物理化学家所关注,离子型表面活性剂可在氧化铝、二氧化硅、氧化铁等金属氧化物的表面形成混合胶束自组装体系,有关研究表明基于这种单分子/双分子混合胶束吸附体系建立起来的固相萃取法对于疏水型、两亲型和离子型有机化合物普遍具有很强的吸附能力。In recent years, the self-assembly behavior of ionic surfactants adsorbed on the surface of metal oxides has attracted the attention of physical chemists. Ionic surfactants can form mixed micelles on the surface of metal oxides such as alumina, silica, and iron oxide. Self-assembly system, related studies have shown that the solid-phase extraction method based on this single-molecule/bimolecular mixed micelle adsorption system generally has a strong adsorption capacity for hydrophobic, amphiphilic and ionic organic compounds.
综上所述,现有的环境水样中的农药残留去除技术存在工艺繁琐、处理成本高以及去除效率低的问题。To sum up, the existing pesticide residue removal technologies in environmental water samples have the problems of cumbersome process, high processing cost and low removal efficiency.
发明内容Contents of the invention
本发明的目的是要解决水体中的农药残留去除技术存在工艺繁琐、处理成本高以及去除效率低的问题,而提供一种利用磁性氧化钛胶束体系去除水体中农药残留的方法。The purpose of the present invention is to solve the problems of cumbersome process, high processing cost and low removal efficiency in the removal technology of pesticide residues in water, and provide a method for removing pesticide residues in water using a magnetic titanium oxide micelle system.
一种利用磁性氧化钛胶束体系去除水体中农药残留的方法,具体是按以下步骤完成的:一、制备Fe3O4磁流体:首先将FeCl2·4H2O和FeCl3·6H2O完全溶解于蒸馏水中,并在搅拌速度为400rmp~600rmp下从室温升温至80℃~90℃,然后加入NH3·H2O,并在温度为80℃~90℃和搅拌速度为400rmp~600rmp条件下反应0.5h~1.5h,然后利用磁铁进行磁性分离,得到黑色固体产物,采用蒸馏水洗涤黑色固体产物,洗涤至洗涤后的废水pH呈中性为止,即得到Fe3O4磁流体;步骤一中所述的FeCl2·4H2O与FeCl3·6H2O的摩尔比为1:(1.9~2);步骤一中所述的FeCl2·4H2O与NH3·H2O的摩尔比为1:(8~9);A method for removing pesticide residues in water by using a magnetic titanium oxide micelle system, which is specifically completed by the following steps: 1. Preparation of Fe 3 O 4 magnetic fluid: first, FeCl 2 4H 2 O and FeCl 3 6H 2 O Completely dissolve in distilled water, and heat up from room temperature to 80°C-90°C at a stirring speed of 400rmp-600rmp, then add NH 3 ·H 2 O, and stir at a temperature of 80°C-90°C and a stirring speed of 400rmp-600rmp React under the conditions for 0.5h to 1.5h, and then use a magnet for magnetic separation to obtain a black solid product, wash the black solid product with distilled water until the pH of the washed wastewater is neutral, and then obtain Fe 3 O 4 magnetic fluid; steps The molar ratio of FeCl 2 .4H 2 O to FeCl 3 .6H 2 O described in
二、制备磁性氧化钛纳米颗粒:首先将Fe3O4磁流体加入到蒸馏水中,然后加入TiCl4,并在搅拌速度为400rmp~600rmp下搅拌10min~20min,再加入氢氧化钠水溶液将pH值调节至8.5~9.5,继续在搅拌速度为400rmp~600rmp下搅拌5min~15min,然后在温度为140℃~160℃下反应5h~8h,即得到褐色固体产物,采用蒸馏水洗涤褐色固体产物,洗涤至洗涤后的废水pH呈中性为止,得到洗涤后褐色固体产物,然后在温度为80℃~100℃下对洗涤后褐色固体产物进行烘干,烘干至恒重后即得到磁性氧化钛纳米颗粒;步骤二中所述的Fe3O4磁流体的质量与蒸馏水的体积比为1g:(30mL~80mL);步骤二中所述的Fe3O4磁流体的质量与TiCl4的体积比为1g:(1mL~2mL);2. Preparation of magnetic titanium oxide nanoparticles: firstly add Fe 3 O 4 magnetic fluid into distilled water, then add TiCl 4 , and stir at a stirring speed of 400rmp-600rmp for 10min-20min, then add aqueous sodium hydroxide solution to adjust the pH value Adjust to 8.5~9.5, continue to stir at a stirring speed of 400rmp~600rmp for 5min~15min, then react at a temperature of 140°C~160°C for 5h~8h to obtain a brown solid product, wash the brown solid product with distilled water, and wash until The pH of the washed wastewater is neutral until the washed brown solid product is obtained, and then the washed brown solid product is dried at a temperature of 80 ° C to 100 ° C, and the magnetic titanium oxide nanoparticles are obtained after drying to constant weight ; The Fe 3 O 4 magnetic fluid described in
三、去除农药残留:首先将磁性氧化钛纳米颗粒和表面活性剂加入到待处理水体中,然后在搅拌速度为300rmp~600rmp下搅拌1min~40min,然后利用磁铁进行磁性分离,吸取上清液,采用0.2μm滤膜对上清液进行过滤,过滤后即完成待处理水体中农药残留的去除,得到处理后水体;所述的磁性氧化钛纳米颗粒与表面活性剂质量比为1:(0.5~1.5);所述的磁性氧化钛纳米颗粒的质量与待处理水体的体积比为1g:(2L~10L)。3. Removal of pesticide residues: First, add magnetic titanium oxide nanoparticles and surfactants to the water body to be treated, then stir for 1min to 40min at a stirring speed of 300rmp to 600rmp, then use a magnet for magnetic separation, absorb the supernatant, Adopt 0.2 μm filter membrane to filter the supernatant, finish the removal of pesticide residues in the water body to be treated after filtration, obtain the water body after treatment; The mass ratio of described magnetic titanium oxide nanoparticles and surfactant is 1:(0.5~ 1.5); the volume ratio of the mass of the magnetic titanium oxide nanoparticles to the water body to be treated is 1g:(2L-10L).
本发明优点:一、本发明制备磁性氧化钛纳米颗粒的方法简单、条件易于控制,本发明制备的磁性氧化钛纳米颗粒具有很好的超顺磁性,其饱和磁化强度可到20emu·g-1~35emu·g-1;二、本发明制备的磁性氧化钛纳米颗粒与表面活性剂进行结合,形成磁性氧化钛胶束体系,磁性氧化钛胶束体系是一种新型的去除剂,该去除剂兼得了纳米材料的大比表面积,磁性材料的超顺磁性,TiO2的良好稳定性以及混合胶束的较强去除能力,用于去除水体中的农药残留时,在短时间内,去除率即可达95%以上,且该方法操作简单,处理成本低,并且通过优化控制选择表面活性剂的浓度、溶液pH等条件,可用于不同种类农药残留的去除。Advantages of the present invention: 1. The method for preparing magnetic titanium oxide nanoparticles in the present invention is simple and the conditions are easy to control. The magnetic titanium oxide nanoparticles prepared in the present invention have good superparamagnetism, and its saturation magnetization can reach 20emu·g -1 ~35emu·g -1 ; 2. The magnetic titanium oxide nanoparticles prepared by the present invention are combined with surfactants to form a magnetic titanium oxide micelle system, which is a novel remover, and the remover It has both the large specific surface area of nanomaterials, the superparamagnetism of magnetic materials, the good stability of TiO 2 and the strong removal ability of mixed micelles. When it is used to remove pesticide residues in water, the removal rate is It can reach more than 95%, and the method is simple to operate and low in processing cost, and can be used for the removal of different types of pesticide residues by optimizing the selection of conditions such as the concentration of the surfactant and the pH of the solution.
附图说明Description of drawings
图1是试验一步骤二制备的磁性氧化钛纳米颗粒SEM图;图2为试验一步骤二制备的磁性氧化钛纳米颗粒的傅立叶红外光谱图;图3试验一步骤二制备的磁性氧化钛纳米颗粒的磁滞回线;图4为液相色谱图,图中A表示试验十所述的待处理水体的液相色谱图,图中B表示试验十所述的处理后水体的液相色谱图,图中a表示功夫菊酯的吸收峰;图5为试验六至十一形成的磁性氧化钛混合胶束体系对农药功夫菊酯的动力学吸附曲线;图6是试验六至十一形成的磁性氧化钛胶束体系吸附功夫菊酯的一级动力学拟合曲线;图7是试验六至十一形成的磁性氧化钛胶束体系吸附功夫菊酯的二级动力学拟合曲线。Fig. 1 is the SEM picture of the magnetic titanium oxide nanoparticle prepared in test one step two; Fig. 2 is the Fourier transform infrared spectrogram of the magnetic titanium oxide nanoparticle prepared in test one step two; Fig. 3 is the magnetic titanium oxide nanoparticle prepared in test one step two Hysteresis loop; Fig. 4 is a liquid chromatogram, among the figure A represents the liquid chromatogram of the water body to be treated described in test ten, among the figure B represents the liquid chromatogram of water body after the treatment described in test ten, Among the figure, a represents the absorption peak of kaufthrin; Fig. 5 is the kinetic adsorption curve of the magnetic titanium oxide mixed micelle system formed by test six to eleven to the pesticide kaufthrin; Fig. 6 is the magnetic adsorption curve formed by test six to eleven The first-order kinetic fitting curve of the adsorption of kaufthrin by the titanium oxide micellar system; Figure 7 is the second-order kinetic fitting curve of the adsorption of kaufthrin by the magnetic titanium oxide micellar system formed in
具体实施方式Detailed ways
具体实施方式一:本实施方式是一种利用磁性氧化钛胶束体系去除水体中农药残留的方法,具体是按以下步骤完成的:一、制备Fe3O4磁流体:首先将FeCl2·4H2O和FeCl3·6H2O完全溶解于蒸馏水中,并在搅拌速度为400rmp~600rmp下从室温升温至80℃~90℃,然后加入NH3·H2O,并在温度为80℃~90℃和搅拌速度为400rmp~600rmp条件下反应0.5h~1.5h,然后利用磁铁进行磁性分离,得到黑色固体产物,采用蒸馏水洗涤黑色固体产物,洗涤至洗涤后的废水pH呈中性为止,即得到Fe3O4磁流体;Specific embodiment 1: This embodiment is a method for removing pesticide residues in water using a magnetic titanium oxide micelle system, specifically as follows: 1. Preparation of Fe 3 O 4 magnetic fluid: first FeCl 2 4H 2 O and FeCl 3 ·6H 2 O are completely dissolved in distilled water, and the temperature is raised from room temperature to 80°C-90°C at a stirring speed of 400rmp-600rmp, then NH 3 ·H 2 O is added, and the temperature is 80°C- React at 90°C and a stirring speed of 400rmp to 600rmp for 0.5h to 1.5h, then use a magnet for magnetic separation to obtain a black solid product, wash the black solid product with distilled water until the pH of the washed wastewater is neutral, that is Obtain Fe 3 O 4 magnetic fluid;
二、制备磁性氧化钛纳米颗粒:首先将Fe3O4磁流体加入到蒸馏水中,然后加入TiCl4,并在搅拌速度为400rmp~600rmp下搅拌10min~20min,再加入氢氧化钠水溶液将pH值调节至8.5~9.5,继续在搅拌速度为400rmp~600rmp下搅拌5min~15min,然后在温度为140℃~160℃下反应5h~8h,即得到褐色固体产物,采用蒸馏水洗涤褐色固体产物,洗涤至洗涤后的废水pH呈中性为止,得到洗涤后褐色固体产物,然后在温度为80℃~100℃下对洗涤后褐色固体产物进行烘干,烘干至恒重后即得到磁性氧化钛纳米颗粒;2. Preparation of magnetic titanium oxide nanoparticles: firstly add Fe 3 O 4 magnetic fluid into distilled water, then add TiCl 4 , and stir at a stirring speed of 400rmp-600rmp for 10min-20min, then add aqueous sodium hydroxide solution to adjust the pH value Adjust to 8.5~9.5, continue to stir at a stirring speed of 400rmp~600rmp for 5min~15min, then react at a temperature of 140°C~160°C for 5h~8h to obtain a brown solid product, wash the brown solid product with distilled water, and wash until The pH of the washed wastewater is neutral until the washed brown solid product is obtained, and then the washed brown solid product is dried at a temperature of 80 ° C to 100 ° C, and the magnetic titanium oxide nanoparticles are obtained after drying to constant weight ;
三、去除农药残留:首先将磁性氧化钛纳米颗粒和表面活性剂加入到待处理水体中,然后在搅拌速度为300rmp~600rmp下搅拌1min~40min,然后利用磁铁进行磁性分离,吸取上清液,采用0.2μm滤膜对上清液进行过滤,过滤后即完成待处理水体中农药残留的去除,得到处理后水体。3. Removal of pesticide residues: First, add magnetic titanium oxide nanoparticles and surfactants to the water body to be treated, then stir for 1min to 40min at a stirring speed of 300rmp to 600rmp, then use a magnet for magnetic separation, absorb the supernatant, The supernatant is filtered with a 0.2 μm filter membrane, and after filtration, the removal of pesticide residues in the water to be treated is completed, and the treated water is obtained.
本实施方式步骤一中所述的FeCl2·4H2O与FeCl3·6H2O的摩尔比为1:(1.9~2);本实施方式步骤一中所述的FeCl2·4H2O与NH3·H2O的摩尔比为1:(8~9)。The molar ratio of FeCl 2 .4H 2 O to FeCl 3 .6H 2 O in
本实施方式步骤二中所述的Fe3O4磁流体的质量与蒸馏水的体积比为1g:(30mL~80mL);本实施方式步骤二中所述的Fe3O4磁流体的质量与TiCl4的体积比为1g:(1mL~2mL)。The volume ratio of the mass of Fe 3 O 4 magnetic fluid described in
本实施方式步骤三中所述的磁性氧化钛纳米颗粒与表面活性剂质量比为1:(0.5~1.5);本实施方式步骤三中所述的磁性氧化钛纳米颗粒的质量与待处理水体的体积比为1g:(2L~10L)。The mass ratio of the magnetic titanium oxide nanoparticles described in
本实施方式制备磁性氧化钛纳米颗粒的方法简单、条件易于控制,本实施方式制备的磁性氧化钛纳米颗粒具有很好的超顺磁性,其饱和磁化强度可到20emu·g-1~35emu·g-1。The method for preparing magnetic titanium oxide nanoparticles in this embodiment is simple, and the conditions are easy to control. The magnetic titanium oxide nanoparticles prepared in this embodiment have very good superparamagnetism, and their saturation magnetization can reach 20emu·g -1 ~ 35emu·g -1 .
具体实施方式二:本实施方式与具体实施方式一的不同点是:步骤一中在搅拌速度为450rmp~550rmp下从室温升温至80℃~88℃。其他与具体实施方式一相同。Embodiment 2: The difference between this embodiment and
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中在温度为80℃~88℃和搅拌速度为450rmp~550rmp条件下反应0.8h~1.2h。其他与具体实施方式一或二相同。Embodiment 3: The difference between this embodiment and
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中将Fe3O4磁流体加入到蒸馏水中,然后加入TiCl4,并在搅拌速度为450rmp~550rmp下搅拌12min~18min。其他与具体实施方式一至三相同。Embodiment 4: The difference between this embodiment and
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中加入氢氧化钠水溶液将pH值调节至8.6~9.4,继续在搅拌速度为450rmp~550rmp下搅拌8min~12min,然后在温度为145℃~155℃下反应5.5h~7.5h,即得到褐色固体产物。其他与具体实施方式一至四相同。Embodiment 5: The difference between this embodiment and
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤三中所述的磁性氧化钛纳米颗粒与表面活性剂质量比为1:(0.8~1.2)。其他与具体实施方式一至五相同。Embodiment 6: This embodiment differs from
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三中所述的表面活性剂为十六烷基三甲基溴化铵、十二烷基硫酸钠或十八烷基三甲基溴化铵。其他与具体实施方式一至六相同。Specific embodiment seven: the difference between this embodiment and specific embodiment one to six is: the surfactant described in
采用下述试验验证本发明效果:Adopt following test to verify effect of the present invention:
试验一:一种利用磁性氧化钛胶束体系去除水体中农药残留的方法,具体是按以下步骤完成的:一、制备Fe3O4磁流体:首先将10mmol的FeCl2·4H2O和20mmol的FeCl3·6H2O完全溶解于蒸馏水中,并在搅拌速度为500rmp下从室温升温至80℃,然后加入80mmol的NH3·H2O,并在温度为80℃和搅拌速度为500rmp条件下反应1h,然后利用磁铁进行磁性分离,得到黑色固体产物,采用蒸馏水洗涤黑色固体产物,洗涤至洗涤后的废水pH呈中性为止,即得到Fe3O4磁流体;Experiment 1: A method for removing pesticide residues in water using a magnetic titanium oxide micelle system, specifically as follows: 1. Preparation of Fe 3 O 4 magnetic fluid: first, 10 mmol of FeCl 2 4H 2 O and 20 mmol FeCl 3 6H 2 O was completely dissolved in distilled water, and the temperature was raised from room temperature to 80°C at a stirring speed of 500rmp, then 80mmol of NH 3 ·H 2 O was added, and the temperature was 80°C and the stirring speed was 500rmp. React for 1 hour, and then use a magnet for magnetic separation to obtain a black solid product, wash the black solid product with distilled water, and wash until the pH of the washed wastewater is neutral, that is, Fe 3 O 4 magnetic fluid is obtained;
二、制备磁性氧化钛纳米颗粒:首先将1g的Fe3O4磁流体加入到50mL的蒸馏水中,然后加入1mL的TiCl4,并在搅拌速度为500rmp下搅拌10min,再加入氢氧化钠水溶液将pH值调节至9±0.1,继续在搅拌速度为500rmp下搅拌10min,然后在温度为150℃下反应6h,即得到褐色固体产物,采用蒸馏水洗涤褐色固体产物,洗涤至洗涤后的废水pH呈中性为止,得到洗涤后褐色固体产物,然后在温度为100℃下对洗涤后褐色固体产物进行烘干,烘干至恒重后即得到磁性氧化钛纳米颗粒;2. Preparation of magnetic titanium oxide nanoparticles: First, 1g of Fe 3 O 4 magnetic fluid was added to 50mL of distilled water, then 1mL of TiCl 4 was added, and stirred at a stirring speed of 500rmp for 10min, and then sodium hydroxide aqueous solution was added to dissolve Adjust the pH value to 9±0.1, continue to stir at a stirring speed of 500rmp for 10 minutes, and then react at a temperature of 150°C for 6 hours to obtain a brown solid product. Wash the brown solid product with distilled water until the pH of the washed wastewater is neutral. To obtain a brown solid product after washing, and then dry the brown solid product after washing at a temperature of 100 ° C, and obtain magnetic titanium oxide nanoparticles after drying to constant weight;
三、去除农药残留:首先将100mg的磁性氧化钛纳米颗粒和100mg的十六烷基三甲基溴化铵加入到500mL的待处理水体中,然后在搅拌速度为500rmp下搅拌30min,利用磁铁进行磁性分离,吸取上清液,采用0.2μm滤膜对上清液进行过滤,过滤后即完成待处理水体中农药残留的去除,得到处理后水体。3. Removal of pesticide residues: First, add 100mg of magnetic titanium oxide nanoparticles and 100mg of cetyltrimethylammonium bromide into 500mL of water to be treated, then stir for 30min at a stirring speed of 500rmp, using a magnet Magnetic separation, absorb the supernatant, and filter the supernatant with a 0.2μm filter membrane. After filtration, the removal of pesticide residues in the water to be treated is completed, and the treated water is obtained.
本试验步骤三中所述的待处理水体为功夫菊酯的浓度0.1mg·L-1的水样。The water body to be treated in the third step of this test is a water sample with a concentration of 0.1 mg·L -1 of kaufthrin.
本试验步骤三中所述的磁性氧化钛纳米颗粒与十六烷基三甲基溴化铵进行结合,形成磁性氧化钛胶束体系,该磁性氧化钛胶束体系是一种新型的去除剂,该去除剂兼得了纳米材料的大比表面积,磁性材料的超顺磁性,TiO2的良好稳定性以及混合胶束的较强去除能力。The magnetic titanium oxide nanoparticles described in step three of this test are combined with cetyltrimethylammonium bromide to form a magnetic titanium oxide micelle system, which is a new type of remover. The remover has both the large specific surface area of nanomaterials, the superparamagnetism of magnetic materials, the good stability of TiO2 and the strong removal ability of mixed micelles.
采用扫描电子显微镜观察试验一步骤二制备的磁性氧化钛纳米颗粒,检测结果如图1所示,图1是试验一步骤二制备的磁性氧化钛纳米颗粒SEM图,通过图1可知试验一步骤二制备的磁性氧化钛纳米颗粒为纳米级,因而具有大的比表面积,吸附能力也会随之增强。Using a scanning electron microscope to observe the magnetic titanium oxide nanoparticles prepared in the first step two of the test, the detection results are shown in Figure 1, and Figure 1 is the SEM image of the magnetic titanium oxide nanoparticles prepared in the second step of the test one step, and it can be known from Figure 1 that the first step two of the test The prepared magnetic titanium oxide nanoparticles are nanoscale, so they have a large specific surface area, and the adsorption capacity will also be enhanced accordingly.
采用傅里叶红外光谱仪检测试验一步骤二制备的磁性氧化钛纳米颗粒,检测结果如图2所示,图2为试验一步骤二制备的磁性氧化钛纳米颗粒的傅立叶红外光谱图,通过图2可知在580cm-1处存在Fe-O的吸收峰,在1390cm-1处存在Ti-O键的吸收峰,在3430cm-1处存在O-H的吸收峰,因此可知试验一步骤二制备的磁性氧化钛纳米颗粒中TiO2已经成功与Fe3O4结合。The magnetic titanium oxide nanoparticles prepared by Fourier transform infrared spectrometer detection test one step two, the test results are as shown in Figure 2, and Figure 2 is the Fourier infrared spectrogram of the magnetic titanium oxide nanoparticles prepared by test one step two, through Figure 2 It can be seen that there is an absorption peak of Fe-O at 580cm -1 , an absorption peak of Ti-O bond at 1390cm -1 , and an absorption peak of OH at 3430cm -1 , so it can be seen that the magnetic titanium oxide prepared in
采用振动样品磁强计检测试验一步骤二制备的磁性氧化钛纳米颗粒,检测结果如图3所示,图3试验一步骤二制备的磁性氧化钛纳米颗粒的磁滞回线,通过图3可知试验一步骤二制备的磁性氧化钛纳米颗粒的饱和磁场强度为28.6emu·g-1,因而试验一步骤二制备的磁性氧化钛纳米颗粒可以在外加磁场的作用下实现快速分离。Vibrating sample magnetometer is used to detect the magnetic titanium oxide nanoparticles prepared in the first step two of the test, and the test results are as shown in Figure 3, and the hysteresis loop of the magnetic titanium oxide nanoparticles prepared in the second step of the test in Figure 3 is shown by Figure 3. The saturation magnetic field strength of the magnetic titanium oxide nanoparticles prepared in the second step of the first test is 28.6 emu·g -1 , so the magnetic titanium oxide nanoparticles prepared by the second step of the first test can realize rapid separation under the action of an external magnetic field.
采用高效液相色谱检测处理后水体,可知处理后水体中功夫菊酯的浓度为几乎为0mg·L-1,通过计算可知功夫菊酯的去除率为100%。High performance liquid chromatography was used to detect the treated water body. It can be seen that the concentration of kaufenthrin in the treated water body is almost 0 mg·L -1 , and the removal rate of kaufthrin is 100% through calculation.
试验二:本试验与试验一的不同点是:步骤三中所述的待处理水体为功夫菊酯的浓度0.5mg·L-1的水样。其他与试验一相同。Test 2: The difference between this test and
采用高效液相色谱检测处理后水体,可知处理后水体中功夫菊酯的浓度为几乎为0mg·L-1,通过计算可知功夫菊酯的去除率为100%。High performance liquid chromatography was used to detect the treated water body. It can be seen that the concentration of kaufenthrin in the treated water body is almost 0 mg·L -1 , and the removal rate of kaufthrin is 100% through calculation.
试验三:本试验与试验一的不同点是:步骤三中所述的待处理水体为功夫菊酯的浓度1.0mg·L-1的水样。其他与试验一相同。Test 3: The difference between this test and
采用高效液相色谱检测处理后水体,可知处理后水体中功夫菊酯的浓度为0.007mg·L-1,通过计算可知功夫菊酯的去除率为99.3%。High performance liquid chromatography was used to detect the treated water body. It can be seen that the concentration of kaufthrin in the treated water body is 0.007mg·L -1 , and the removal rate of kaufrin is 99.3% through calculation.
试验四:本试验与试验一的不同点是:步骤三中所述的待处理水体为功夫菊酯的浓度5.0mg·L-1的水样。其他与试验一相同。Test 4: The difference between this test and
采用高效液相色谱检测处理后水体,可知处理后水体中功夫菊酯的浓度为0.145mg·L-1,通过计算可知功夫菊酯的去除率为97.1%。High performance liquid chromatography was used to detect the treated water body. It can be seen that the concentration of kaufthrin in the treated water body is 0.145mg·L -1 , and the removal rate of kaufrin is 97.1% through calculation.
试验五:本试验与试验一的不同点是:步骤三中所述的待处理水体为功夫菊酯的浓度10.0mg·L-1的水样。其他与试验一相同。Test 5: The difference between this test and
采用高效液相色谱检测处理后水体,可知处理后水体中功夫菊酯的浓度为0.460mg·L-1,通过计算可知功夫菊酯的去除率为95.4%。High performance liquid chromatography was used to detect the treated water body. It can be seen that the concentration of kaufthrin in the treated water body is 0.460mg·L -1 , and the removal rate of kaufrin is 95.4% through calculation.
试验六:一种利用磁性氧化钛胶束体系去除水体中农药残留的方法,具体是按以下步骤完成的:一、制备Fe3O4磁流体:首相将10mmol的FeCl2·4H2O和20mmol的FeCl3·6H2O完全溶解于蒸馏水中,并在搅拌速度为500rmp下从室温升温至80℃,然后加入80mmol的NH3·H2O,并在温度为80℃和搅拌速度为500rmp条件下反应1h,然后利用磁铁进行磁性分离,得到黑色固体产物,采用蒸馏水洗涤黑色固体产物,洗涤至洗涤后的废水pH呈中性为止,即得到Fe3O4磁流体;Experiment 6: A method for removing pesticide residues in water by using a magnetic titanium oxide micelle system, which is specifically completed in the following steps: 1. Preparation of Fe 3 O 4 magnetic fluid: the prime minister mixes 10 mmol of FeCl 2 4H 2 O and 20 mmol of
二、制备磁性氧化钛纳米颗粒:首先将1g的Fe3O4磁流体加入到50mL的蒸馏水中,然后加入1mL的TiCl4,并在搅拌速度为500rmp下搅拌10min,再加入氢氧化钠水溶液将pH值调节至9±0.1,继续在搅拌速度为500rmp下搅拌10min,然后在温度为150℃下反应6h,即得到褐色固体产物,采用蒸馏水洗涤褐色固体产物,洗涤至洗涤后的废水pH呈中性为止,得到洗涤后褐色固体产物,然后在温度为100℃下对洗涤后褐色固体产物进行烘干,烘干至恒重后即得到磁性氧化钛纳米颗粒;2. Preparation of magnetic titanium oxide nanoparticles: First, 1g of Fe 3 O 4 magnetic fluid was added to 50mL of distilled water, then 1mL of TiCl 4 was added, and stirred at a stirring speed of 500rmp for 10min, and then sodium hydroxide aqueous solution was added to dissolve Adjust the pH value to 9±0.1, continue to stir at a stirring speed of 500rmp for 10 minutes, and then react at a temperature of 150°C for 6 hours to obtain a brown solid product. Wash the brown solid product with distilled water until the pH of the washed wastewater is neutral. To obtain a brown solid product after washing, and then dry the brown solid product after washing at a temperature of 100 ° C, and obtain magnetic titanium oxide nanoparticles after drying to constant weight;
三、去除农药残留:首先将100mg的磁性氧化钛纳米颗粒和100mg的十六烷基三甲基溴化铵加入到500mL的待处理水体中,然后在搅拌速度为500rmp下搅拌1min,利用磁铁进行磁性分离,吸取上清液,采用0.2μm滤膜对上清液进行过滤,过滤后即完成待处理水体中农药残留的去除,得到处理后水体。3. Removal of pesticide residues: First, add 100mg of magnetic titanium oxide nanoparticles and 100mg of cetyltrimethylammonium bromide into 500mL of water to be treated, then stir for 1min at a stirring speed of 500rmp, and use a magnet to Magnetic separation, absorb the supernatant, and filter the supernatant with a 0.2μm filter membrane. After filtration, the removal of pesticide residues in the water to be treated is completed, and the treated water is obtained.
本试验步骤三中所述的待处理水体为功夫菊酯的浓度2.0mg·L-1的水样。The water body to be treated in the third step of this test is a water sample with a concentration of 2.0 mg·L -1 of kaufenthrin.
本试验步骤三中所述的磁性氧化钛纳米颗粒与十六烷基三甲基溴化铵进行结合,形成磁性氧化钛胶束体系,该磁性氧化钛胶束体系是一种新型的去除剂,该去除剂兼得了纳米材料的大比表面积,磁性材料的超顺磁性,TiO2的良好稳定性以及混合胶束的较强去除能力。The magnetic titanium oxide nanoparticles described in step three of this test are combined with cetyltrimethylammonium bromide to form a magnetic titanium oxide micelle system, which is a new type of remover. The remover has both the large specific surface area of nanomaterials, the superparamagnetism of magnetic materials, the good stability of TiO2 and the strong removal ability of mixed micelles.
试验七:本试验与试验六的不同点是:在搅拌速度为500rmp下搅拌5min。其他与试验六相同。Experiment 7: The difference between this experiment and
试验八:本试验与试验六的不同点是:在搅拌速度为500rmp下搅拌10min。其他与试验六相同。Experiment 8: The difference between this experiment and
试验九:本试验与试验六的不同点是:在搅拌速度为500rmp下搅拌20min。其他与试验六相同。Test 9: The difference between this test and
试验十:本试验与试验六的不同点是:在搅拌速度为500rmp下搅拌30min。其他与试验六相同。Experiment 10: The difference between this experiment and
采用高效液相色谱检测试验十所述的待处理水体和试验十得到的处理后水体,在流动相为85%乙腈水溶液,流速为1.0mL·min-1,检测波长为243nm,温度为室温条件进行检测,检测结果如图4所示,图4为液相色谱图,图中A表示试验十所述的待处理水体的液相色谱图,图中B表示试验十所述的处理后水体的液相色谱图,图中a表示功夫菊酯的吸收峰;通过图4可知,试验十利用磁性氧化钛胶束体系去除水体中农药残留的方法去除效果很好。Use high-performance liquid chromatography to detect the water to be treated described in
试验十一:本试验与试验六的不同点是:在搅拌速度为500rmp下搅拌40min。其他与试验六相同。Experiment 11: The difference between this experiment and
采用液相色谱检测试验六至十一得到的处理后水体,根据公式计算Qt(磁性氧化钛胶束体系在不同时间对功夫菊酯的吸附量),其中C0为功夫菊酯的初始浓度,Ce为功夫菊酯的平衡浓度,V为样品溶液的体积,m为磁性氧化钛纳米颗粒的质量,经计算可得试验六至十一的Qt分别为1.67mg·g-1,8.23mg·g-1,8.65mg·g-1,9.61mg·g-1,9.73mg·g-1和9.96mg·g-1。以Qt为纵坐标、以时间为横坐标绘制成动力学吸附曲线图,结果如图5所示,图5为试验六至十一形成的磁性氧化钛混合胶束体系对农药功夫菊酯的动力学吸附曲线。通过图5可以得知本实验合成的聚合物对功夫菊酯的吸附动力学较快,在20min内即可达到吸附平衡。The treated water body obtained by liquid chromatography detection test six to eleven, according to the formula Calculation of Q t (the adsorption amount of stilthrin in the magnetic titanium oxide micellar system at different times), where C 0 is the initial concentration of stilthrin, C e is the equilibrium concentration of slavin, and V is the volume of the sample solution, m is the mass of magnetic titanium oxide nanoparticles, and the Q t of
根据动力学一级方程对图5中的吸附动力学曲线进行拟合,其中,Qe表示磁性氧化钛胶束体系对功夫菊酯的平衡吸附量,Qt表示磁性氧化钛胶束体系在不同时间的吸附量,Q1cal表示动力学一级反应方程的理论吸附量,k1表示动力学一级反应速率常数,t表示时间。以ln(Qe-Qt)为纵坐标、以时间为横坐标进行拟合,结果如图6所示,图6是试验六至十一形成的磁性氧化钛胶束体系吸附功夫菊酯的一级动力学拟合曲线,通过Origin7.5作图软件进行拟合,得到一级动力学拟合曲线的线性方程的相关系数R2为0.9224。According to the kinetic equation Fitting the adsorption kinetics curve in Fig. 5, wherein, Q e represents the equilibrium adsorption capacity of the magnetic titania micelles system to kaufthrin, Q t represents the adsorption capacity of the magnetic titania micelles system at different times, Q 1cal represents the theoretical adsorption amount of the kinetic first-order reaction equation, k 1 represents the kinetic first-order reaction rate constant, and t represents time. Taking ln(Q e -Q t ) as the ordinate and time as the abscissa for fitting, the results are shown in Figure 6. Figure 6 shows the absorption of kaufrin by the magnetic titanium oxide micellar system formed in
根据动力学二级方程对图5中的吸附动力学曲线图进行拟合,其中,Qt表示磁性氧化钛胶束体系在不同时间的吸附量,Q2cal表示动力学二级反应方程的理论吸附量,k2表示动力学一级反应速率常数,t表示时间。以t/Qt为纵坐标、以时间为横坐标进行拟合,结果如图7所示,图7是试验六至十一形成的磁性氧化钛胶束体系吸附功夫菊酯的二级动力学拟合曲线,通过Origin7.5作图软件进行拟合,得到二级动力学拟合曲线的线性方程的相关系数R2为0.9902,因此可知本发明利用磁性氧化钛胶束体系去除水体中农药残留功夫菊酯的方法符合二级动力学拟合结果。According to the second order equation of kinetics Fit the adsorption kinetics curve in Figure 5, where Qt represents the adsorption amount of the magnetic titanium oxide micellar system at different times, Q2cal represents the theoretical adsorption amount of the kinetic second-order reaction equation, and k2 represents the kinetic energy First order reaction rate constant, t is time. Taking t/Q t as the ordinate and time as the abscissa for fitting, the results are shown in Figure 7, and Figure 7 is the second-order kinetics of the adsorption of kaufrin by the magnetic titanium oxide micelles system formed in
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201310026883 CN103058446B (en) | 2013-01-24 | 2013-01-24 | Method for removing pesticide residues in water body by using magnetic titanium oxide micellar system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201310026883 CN103058446B (en) | 2013-01-24 | 2013-01-24 | Method for removing pesticide residues in water body by using magnetic titanium oxide micellar system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103058446A CN103058446A (en) | 2013-04-24 |
CN103058446B true CN103058446B (en) | 2013-10-30 |
Family
ID=48101384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201310026883 Expired - Fee Related CN103058446B (en) | 2013-01-24 | 2013-01-24 | Method for removing pesticide residues in water body by using magnetic titanium oxide micellar system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103058446B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004052533A1 (en) * | 2002-12-12 | 2004-06-24 | Henkel Kommanditgesellschaft Auf Aktien | Production of magnetic titanium dioxide particles |
CN101816937A (en) * | 2009-07-29 | 2010-09-01 | 兰州理工大学 | Method for manufacturing magnetic loading type nanometer catalyst TiO2/Fe2O4 |
CN102580783A (en) * | 2012-01-09 | 2012-07-18 | 兰州交通大学 | Method for preparing TiO2/PS/Fe3O4 magnetic nanoparticle photocatalyst |
CN102580782A (en) * | 2012-01-09 | 2012-07-18 | 兰州交通大学 | Preparation Method of Magnetic Catalyst TiO2/PPY/Fe3O4 |
-
2013
- 2013-01-24 CN CN 201310026883 patent/CN103058446B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004052533A1 (en) * | 2002-12-12 | 2004-06-24 | Henkel Kommanditgesellschaft Auf Aktien | Production of magnetic titanium dioxide particles |
CN101816937A (en) * | 2009-07-29 | 2010-09-01 | 兰州理工大学 | Method for manufacturing magnetic loading type nanometer catalyst TiO2/Fe2O4 |
CN102580783A (en) * | 2012-01-09 | 2012-07-18 | 兰州交通大学 | Method for preparing TiO2/PS/Fe3O4 magnetic nanoparticle photocatalyst |
CN102580782A (en) * | 2012-01-09 | 2012-07-18 | 兰州交通大学 | Preparation Method of Magnetic Catalyst TiO2/PPY/Fe3O4 |
Also Published As
Publication number | Publication date |
---|---|
CN103058446A (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Adsorption of Cr (VI) on nano Uio-66-NH2 MOFs in water | |
Elwakeel et al. | The synergistic effect of ultrasound power and magnetite incorporation on the sorption/desorption behavior of Cr (VI) and As (V) oxoanions in an aqueous system | |
Ahmed et al. | Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La (OH) 3 nanocomposite | |
Yu et al. | One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal | |
Meng et al. | Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method | |
Choi et al. | Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions | |
Shi et al. | Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution | |
Chang et al. | Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline | |
CN103920472B (en) | A kind of preparation method of composite magnetic chitosan microballoon spheres adsorbent | |
Chen et al. | Synthesis of magnetic carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper from aqueous solution | |
Pena-Mendez et al. | Metal organic framework composite, nano-Fe3O4@ Fe-(benzene-1, 3, 5-tricarboxylic acid), for solid phase extraction of blood lipid regulators from water | |
CN107096494A (en) | A kind of preparation and application method of magnetic core-shell nano-compound adsorbent | |
CN108456530B (en) | Magnetic carboxylated hollow microsphere soil remediation agent, preparation method and application thereof | |
CN106076271B (en) | A kind of nano-magnetic polylysine/(Graphene oxide-carbon nanotube)The preparation method and application of biological adsorption material | |
Xiao et al. | Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water | |
CN103599751A (en) | Preparation method of thiol-functionalized magnetic silica nano-material | |
CN104262536A (en) | Active/controllable graphene oxide surface ion imprinted polymer, and preparation method and application thereof | |
CN103627022A (en) | Method for preparing magnetic porous polystyrene microspheres on basis of suspension polymerization | |
CN103881023A (en) | Method for preparing magnetic molecularly imprinted polymer through suspension polymerization | |
CN1751783A (en) | Composite adsorption material for removing arsenic in water and preparation method thereof | |
CN105597714B (en) | A kind of preparation of the magnetic graphene of phenyl modification/meso-porous titanium dioxide silicon composite and the application as solid extracting agent | |
CN104043396A (en) | Preparation method and application of magnetic aminated graphene oxide | |
CN105921114A (en) | Paraquat magnetic adsorbent and preparation method thereof | |
CN104258816A (en) | Preparation method of magnetic stripping type montmorillonite nanocomposite material for wastewater treatment | |
CN105921763A (en) | Preparation method of sodium alginate/inorganic mineral linked load type nanometer zero-valent iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131030 Termination date: 20160124 |
|
EXPY | Termination of patent right or utility model |