[go: up one dir, main page]

CN103051331A - Phase locking circuit for ultrasonic power supply - Google Patents

Phase locking circuit for ultrasonic power supply Download PDF

Info

Publication number
CN103051331A
CN103051331A CN2012105419027A CN201210541902A CN103051331A CN 103051331 A CN103051331 A CN 103051331A CN 2012105419027 A CN2012105419027 A CN 2012105419027A CN 201210541902 A CN201210541902 A CN 201210541902A CN 103051331 A CN103051331 A CN 103051331A
Authority
CN
China
Prior art keywords
flip
flop
output
pin
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105419027A
Other languages
Chinese (zh)
Other versions
CN103051331B (en
Inventor
杜贵平
罗杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201210541902.7A priority Critical patent/CN103051331B/en
Publication of CN103051331A publication Critical patent/CN103051331A/en
Application granted granted Critical
Publication of CN103051331B publication Critical patent/CN103051331B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明涉及一种用于超声波电源的锁相电路,包括第一比较器和第二比较器,比较器输出产生的电压电流同步方波信号接入到第一至第四单稳态触发器,和异或门以及第二D触发器和第三D触发。第一至第四单稳态触发器和异或门的输出接入第二、第三D触发器,第二、第三D触发器输出的两路脉冲信号分别经过参数相同的第一、第二RC滤波电路,输入到第三比较器中,第三比较器的输出可以决定频率增大减小的方向。本发明公开的锁相电路可以用于占空比不同的电压、电流同步方波信号,达到锁相频率跟踪的目的。

Figure 201210541902

The invention relates to a phase-locked circuit for an ultrasonic power supply, which includes a first comparator and a second comparator, and the voltage and current synchronous square wave signal generated by the output of the comparator is connected to the first to fourth monostable triggers, And XOR gate and the second D flip-flop and the third D flip-flop. The outputs of the first to fourth monostable flip-flops and XOR gates are connected to the second and third D flip-flops, and the two-way pulse signals output by the second and third D flip-flops respectively pass through the first and third D flip-flops with the same parameters. The second RC filter circuit is input to the third comparator, and the output of the third comparator can determine the direction of frequency increase and decrease. The phase-locking circuit disclosed by the invention can be used for voltage and current synchronous square wave signals with different duty ratios to achieve the purpose of phase-locking frequency tracking.

Figure 201210541902

Description

一种用于超声波电源的锁相电路A phase-locked circuit for ultrasonic power supply

技术领域 technical field

本发明涉及一种用于超声波电源的锁相电路 The invention relates to a phase-locked circuit for ultrasonic power supply

背景技术 Background technique

超声波电源通常称为超声波发生源,它的作用是把电能转换成与超声波换能器相匹配的高频交流电信号。超声波电源一般必须有频率跟踪系统,当换能器工作在谐振频率点时其效率最高,工作最稳定,而换能器的谐振频率点会由于装配原因和工作老化后改变,称为谐振频率点漂移,频率跟踪系统的作用就是让输出的交流信号始终工作在换能器的谐振频率,使换能器工作效率最高。 The ultrasonic power supply is usually called the ultrasonic generating source, and its function is to convert electrical energy into a high-frequency alternating current signal that matches the ultrasonic transducer. Ultrasonic power supplies generally must have a frequency tracking system. When the transducer works at the resonant frequency point, its efficiency is the highest and the work is the most stable. However, the resonant frequency point of the transducer will change due to assembly reasons and work aging, which is called the resonant frequency point. Drift, the function of the frequency tracking system is to make the output AC signal always work at the resonant frequency of the transducer, so that the transducer works with the highest efficiency.

目前,超声波电源的频率跟踪系统常采用锁相频率跟踪,而传统的锁相频率跟踪方法,适用于输出电压、电流同步信号占空比相等的情况,而当输出电压与电流同步信号的占空比不同时,例如通过改变移相角控制输出电压的PS-PWM控制方法,其输出电压、电流同步信号的占空比不相等,如果仍然使用传统的锁相频率跟踪方法,则不能达到输出电压电流同相的目的。 At present, the frequency tracking system of ultrasonic power supply often adopts phase-locked frequency tracking, and the traditional phase-locked frequency tracking method is suitable for the case where the output voltage and current synchronization signal duty ratios are equal, and when the duty ratio of the output voltage and current synchronization signals When the ratio is different, such as the PS-PWM control method that controls the output voltage by changing the phase shift angle, the duty cycle of the output voltage and current synchronization signal is not equal. If the traditional phase-locked frequency tracking method is still used, the output voltage cannot be reached. The purpose of the current in phase.

发明内容 Contents of the invention

本发明目的在于克服现有技术存在的不足,公开一种用于超声波电源的锁相电路。本发明公开一种用于超声波电源的锁相电路,适用于输出电压、电流同步方波信号的占空比不等的情况下实现锁相频率跟踪的效果。所述的超声波电源锁相电路通过采样输出电压、电流同步方波信号处于不同电平的时刻,并通过脉冲的形式表示。通过控制D触发器环节输出的两路脉冲信号脉宽相等,来达到频率锁相跟踪的目的。 The purpose of the invention is to overcome the shortcomings of the prior art, and disclose a phase-locked circuit for ultrasonic power supply. The invention discloses a phase-locked circuit for an ultrasonic power supply, which is suitable for realizing the effect of phase-locked frequency tracking under the condition that the duty ratios of output voltage and current synchronous square wave signals are not equal. The phase-locked circuit of the ultrasonic power supply samples the time when the output voltage and current synchronous square wave signals are at different levels, and expresses them in the form of pulses. By controlling the pulse width of the two pulse signals output by the D flip-flop link to be equal, the purpose of frequency phase-locked tracking is achieved.

本发明的目的可采用以下技术方案实现: Object of the present invention can adopt following technical scheme to realize:

一种用于超声波电源的锁相电路,其包括两个比较器、异或门、四个单稳态触发器、三个D触发器和两个RC滤波电路,其中,第一比较器的输出接入第二单稳态触发器和第三单稳态触发器,第二比较器的输出端接入第一单稳态触发器和第四单稳态触发器,第一比较器和第二比较器的输出端还与异或门和第一D触发器的输入连接,第一至第四单稳态触发器和异或门的输出接入第二D触发器和第三D触发器,第二D触发器、第三D触发器输出的两路脉冲信号分别各自经过一个RC滤波电路,最后输入到第三比较器中。 A phase-locked circuit for ultrasonic power supply, which includes two comparators, exclusive OR gates, four monostable flip-flops, three D flip-flops and two RC filter circuits, wherein the output of the first comparator The second monostable flip-flop and the third monostable flip-flop are connected, the output terminal of the second comparator is connected to the first monostable flip-flop and the fourth monostable flip-flop, the first comparator and the second The output terminal of the comparator is also connected with the input of the XOR gate and the first D flip-flop, and the outputs of the first to fourth monostable flip-flops and the XOR gate are connected to the second D flip-flop and the third D flip-flop, The two pulse signals output by the second D flip-flop and the third D flip-flop respectively pass through an RC filter circuit, and are finally input into the third comparator.

进一步优化的,第一比较器的正输入端脚和第二比较器的正输入端脚分别接电压、电流采样信号,第一比较器的负输入端脚和第二比较器的负输入端脚都接地;第一比较器的输出端脚接入异或门的第一输入端脚,第二比较器的输出端脚接入异或门的第二输入端脚。第一比较的输出端脚接入第一D触发器的时钟端脚,第二比较器的输出端脚接第一D触发器的D输入端口脚。 Further optimized, the positive input pin of the first comparator and the positive input pin of the second comparator are respectively connected to the voltage and current sampling signals, and the negative input pin of the first comparator and the negative input pin of the second comparator Both are grounded; the output terminal pin of the first comparator is connected to the first input terminal pin of the exclusive OR gate, and the output terminal pin of the second comparator is connected to the second input terminal pin of the exclusive OR gate. The output terminal pin of the first comparator is connected to the clock terminal pin of the first D flip-flop, and the output terminal pin of the second comparator is connected to the D input port pin of the first D flip-flop.

进一步优化的,第一D触发器的Q非输出端悬空,第一比较器的输出端脚分别接第二单稳态触发器上升沿脚和第三单稳态触发器的下降沿脚,第二比较器的输出端脚分别接第一单稳态触发器的上升沿脚和第四单稳态触发器下降沿脚,第一单稳态触发器的Q输出端脚和第二单稳态触发器的Q输出端脚分别经过一个二极管接入到第二D触发器的时钟端口脚;第三单稳态触发器的Q输出端脚和第四单稳态触发器的Q输出端脚分别经过一个二极管输入到第三D触发器的时钟端脚;第一单稳态触发器和第二单稳态触发器的下降沿输入端接地,第三单稳态触发器和第四单稳态触发器的上升沿输入端接地;第一至第四单稳态触发器的Q非输出悬空;异或门的输出端分别接入第二D触发器的D输入端脚和第三D触发器的D输入端脚脚;第二D触发器和第三D触发器的输出分别经过参数相同的第一、第二RC滤波电路输入到第三比较器的负输入端脚和正输入端脚;第二、第三D触发器的Q非输出端悬空。 For further optimization, the Q non-output end of the first D flip-flop is suspended, and the output pins of the first comparator are respectively connected to the rising edge pin of the second monostable trigger and the falling edge pin of the third monostable trigger. The output pins of the two comparators are respectively connected to the rising edge pin of the first monostable trigger and the falling edge pin of the fourth monostable trigger, and the Q output pin of the first monostable trigger is connected to the second monostable trigger The Q output pins of the flip-flop are respectively connected to the clock port pins of the second D flip-flop through a diode; the Q output pins of the third monostable flip-flop and the Q output pins of the fourth monostable flip-flop are respectively Input to the clock pin of the third D flip-flop through a diode; the falling edge input terminals of the first monostable trigger and the second monostable trigger are grounded, and the third monostable trigger and the fourth monostable The rising edge input of the flip-flop is grounded; the Q non-output of the first to fourth monostable flip-flops is suspended; the output of the XOR gate is respectively connected to the D input pin of the second D flip-flop and the third D flip-flop D input terminal pin; the output of the second D flip-flop and the third D flip-flop are respectively input to the negative input terminal pin and the positive input terminal pin of the third comparator through the first and second RC filter circuits with the same parameters; 2. The Q non-output end of the third D flip-flop is suspended.

进一步优化的,两个RC滤波电路中,第一RC滤波电路由第一电阻和第一电容组成,第二RC滤波电路由第二电阻和第二电容组成。 Further optimized, among the two RC filter circuits, the first RC filter circuit is composed of a first resistor and a first capacitor, and the second RC filter circuit is composed of a second resistor and a second capacitor.

进一步优化的,第一RC滤波电路和第二RC滤波电路参数相同。 For further optimization, the parameters of the first RC filter circuit and the second RC filter circuit are the same.

进一步优化的,第一至第四单稳态触发器的Q输出端分别经过一个二极管接入第二、第三D触发器的时钟端. Further optimized, the Q output terminals of the first to fourth monostable flip-flops are respectively connected to the clock terminals of the second and third D flip-flops through a diode.

进一步优化的,通过控制第二、第三D触发器输出的两路脉冲信号脉宽相等,来使输出电压、电流同相位。 Further optimized, the output voltage and current are in phase by controlling the pulse widths of the two pulse signals output by the second and third D flip-flops to be equal.

本发明与已有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:

本发明所提出的超声波电源锁相电路与传统的锁相电路不同,传统的锁相电路,是使得输出电压、电流同步方波信号的第一个上升沿同步,从而达到电压、电流同相位的效果。这种方法只适用于电压、电流同步方波信号的占空比相等的情况。若电压、电流同步方波信号占空比不同时,这种方法就会遇到问题。 The ultrasonic power supply phase-locked circuit proposed by the present invention is different from the traditional phase-locked circuit. The traditional phase-locked circuit makes the first rising edge of the output voltage and current synchronous square wave signal synchronized, so as to achieve the same phase of voltage and current. Effect. This method is only applicable to the case where the duty ratios of the voltage and current synchronous square wave signals are equal. This method will encounter problems if the duty ratios of the voltage and current synchronous square wave signals are different.

本发明所提出的超声波电源锁相电路适用于当输出电压、电流同步方波信号的占空比不等的情况下。一个周期中,电压、电流采样信号,分别经过所述锁相电路中的第一、第二比较器、异或门、第一至第四单稳态触发器以及第二、第三D触发器可以得到两路输出脉冲信号,只要控制这两路脉冲信号的脉宽相等,就可以实现输出电压、电流同步方波信号的占空比不等时的锁相频率跟踪效果。 The ultrasonic power supply phase-locked circuit proposed by the present invention is suitable for situations where the duty ratios of output voltage and current synchronous square wave signals are not equal. In one cycle, the voltage and current sampling signals respectively pass through the first and second comparators, XOR gates, first to fourth monostable flip-flops and second and third D flip-flops in the phase-locked circuit Two output pulse signals can be obtained. As long as the pulse widths of the two pulse signals are controlled to be equal, the phase-locked frequency tracking effect can be achieved when the duty ratios of the output voltage and current synchronous square wave signals are not equal.

附图说明 Description of drawings

图1是所述锁相电路的结构示意图。 FIG. 1 is a schematic structural diagram of the phase-locked circuit.

图2是传统的锁相电路的结构示意图。 FIG. 2 is a schematic structural diagram of a traditional phase-locked circuit.

图3是异或门XOR1的输出波形和第一、第二D触发器的Q输出端输出波形。 Fig. 3 is the output waveform of the XOR gate XOR1 and the output waveform of the Q output terminal of the first and second D flip-flops.

图4是所述锁相电路应用于超声波电源的输出电压电流同步方波波形。 Fig. 4 is a synchronous square wave waveform of the output voltage and current of the ultrasonic power supply when the phase-locked circuit is applied.

图5是所述锁相电路应用于超声波电源,其输出电压、电流的采样波形。 Fig. 5 is a sampling waveform of the output voltage and current of the phase-locked circuit applied to an ultrasonic power supply.

图6是传统锁相电路应用于超声波电源,其输出电压电流同步方波占空比不同时的同步方波波形以及输出电压、电流波形。 Fig. 6 shows the synchronous square wave waveform and the output voltage and current waveforms when the traditional phase-locked circuit is applied to the ultrasonic power supply, and the duty ratio of the output voltage and current synchronous square wave is different.

具体实施方式 Detailed ways

以下结合附图对本发明的实施作进一步的详细叙述,但本发明的实施和保护范围不限于此。 The implementation of the present invention will be further described in detail below in conjunction with the accompanying drawings, but the implementation and protection scope of the present invention are not limited thereto.

本发明公开的锁相电路主要应用于输出电压电流的同步方波信号具有不同占空比的情况下。如图1所示,电压采样信号与电流采样信号分别经过第一比较器COMP1和第二比较器COMP2,得到与电压电流同步的方波信号。首先,将同步信号输入到异或门XOR1中,当电压电流同步信号处于不同电平时,XOR1门将输出高电平,这样可以得到一系列的脉冲信号,对应于电压电流同步信号处于不同电平的时刻。然后将XOR1门的输出信号接入第二D触发器DFF2和第三D触发器DFF3的D输入端,然后将电压电流的同步信号,按图中的接线方式,接入第一~第四单稳态触发器(MONO5、MONO6、MONO7、MONO8),将第一~第四单稳态触发器的Q输出端按图中的接线方式接入第二D触发器DFF2和第三D触发器DFF3的时钟端,这样可以将异或门XOR1输出的一路脉冲,分成对应于输出电流、电压信号几何中心点的两路脉冲信号,如图3中,异或门输出信号V11,通过第一、第二D触发器环节后,可以得到V43、V44的两路分立的脉冲信号。只要控制V43和V44两路脉冲信号的脉宽相等,就可以得到电压电流锁相同步的效果。所以,将这两路脉冲信号,通过参数相等的第一、第二RC滤波电路,如图1所示,可以得到与脉宽成正比的直流电压信号,控制两个电压信号的大小相等就能得到脉宽相等的效果。如图4中,V8,V9是电压电流同步的方波信号,可以看出,其几何中心点还是比较同步的。图5所示的是,电压电流的采样信号,VP7是电压采样信号,V7是电流采样信号,为了清楚的比较电压电流信号,V7的电流信号时经过放大的。可以看出,锁相还是比较好的。 The phase-locked circuit disclosed in the present invention is mainly used in the case where the synchronous square wave signals of the output voltage and current have different duty ratios. As shown in FIG. 1 , the voltage sampling signal and the current sampling signal respectively pass through the first comparator COMP1 and the second comparator COMP2 to obtain a square wave signal synchronized with the voltage and current. First, input the synchronous signal into the XOR gate XOR1. When the voltage and current synchronous signals are at different levels, the XOR1 gate will output a high level, so that a series of pulse signals can be obtained, corresponding to the voltage and current synchronous signals at different levels. time. Then connect the output signal of the XOR1 gate to the D input terminals of the second D flip-flop DFF2 and the third D flip-flop DFF3, and then connect the synchronization signal of voltage and current to the first ~ fourth units according to the wiring method in the figure. Steady-state flip-flops (MONO5, MONO6, MONO7, MONO8), connect the Q output terminals of the first to fourth monostable flip-flops to the second D flip-flop DFF2 and the third D flip-flop DFF3 according to the wiring method in the figure In this way, one pulse output by the XOR gate XOR1 can be divided into two pulse signals corresponding to the geometric center point of the output current and voltage signal. As shown in Figure 3, the XOR gate output signal V11 passes through the first and second After the two-D flip-flop link, two separate pulse signals of V43 and V44 can be obtained. As long as the pulse widths of the two pulse signals of V43 and V44 are controlled to be equal, the effect of voltage and current phase-locked synchronization can be obtained. Therefore, the two pulse signals are passed through the first and second RC filter circuits with equal parameters, as shown in Figure 1, a DC voltage signal proportional to the pulse width can be obtained, and the magnitude of the two voltage signals can be controlled to be equal. The effect of equal pulse width is obtained. As shown in Figure 4, V8 and V9 are square wave signals with synchronous voltage and current. It can be seen that their geometric center points are relatively synchronous. Figure 5 shows the sampling signal of voltage and current, VP7 is the sampling signal of voltage, and V7 is the sampling signal of current. In order to compare the voltage and current signals clearly, the current signal of V7 is amplified. It can be seen that the phase lock is still relatively good.

本电路元器件连接关系如图1所示:电压、电流采样信号分别接入第一比较器COMP1的正输入端脚3和第二比较器COMP2的正输入端脚1,第一比较器COMP1的负输入端脚4和第二比较器COMP2的负输入端脚2都接地。第一比较器COMP1的输出端脚6接入异或门XOR1的第一输入端脚8,第二比较器COMP2的输出端脚5接入异或门XOR1的第二输入端脚7。第一比较器COMP1的输出端脚6接入第一D触发器DFF1的时钟端脚9,第二比较器COMP2的输出端脚5接第一D触发器DFF1的D输入端口脚10。第一D触发器的Q非输出端悬空。第一比较器COMP1的输出端脚6分别接第二单稳态触发器MONO6上升沿脚12和第三单稳态触发器MONO7的下降沿脚13。第二比较器COMP2的输出端脚5分别接第一单稳态触发器MONO5的上升沿脚11和第四单稳态触发器MONO8下降沿脚14。第一单稳态触发器MONO5的Q输出端脚15和第二单稳态触发器MONO6的Q输出端脚16分别经过一个二极管接入到第二D触发器DFF2的时钟端口脚20。第三单稳态触发器MONO7的Q输出端脚17和第四单稳态触发器MONO8的Q输出端脚18分别经过一个二极管输入到第三D触发器DFF3的时钟端脚22。第一单稳态触发器MONO5和第二单稳态触发器MONO6的下降沿输入端接地,第三单稳态触发器MONO7和第四单稳态触发器MONO8的上升沿输入端接地。第一至第四单稳态触发器的Q非输出悬空。异或门XOR1的输出端分别接入第二D触发器DFF2的D输入端脚19和第三D触发器DFF3的D输入端脚脚21。第二D触发器DFF2和第三D触发器DFF3的Q输出分别经过参数相同的第一、第二RC滤波电路输入到第三比较器COMP11的负输入端脚26和正输入端脚25。第二、第三D触发器的Q非输出端悬空。两个RC滤波电路中,第一RC滤波电路由第一电阻R34和第一电容C34组成,第二RC滤波电路由第二电阻R35和第二电容C35组成。 The connection relationship of the circuit components is shown in Figure 1: the voltage and current sampling signals are respectively connected to the positive input terminal pin 3 of the first comparator COMP1 and the positive input terminal pin 1 of the second comparator COMP2, and the positive input terminal pin 1 of the first comparator COMP1. Both the negative input pin 4 and the negative input pin 2 of the second comparator COMP2 are grounded. The output pin 6 of the first comparator COMP1 is connected to the first input pin 8 of the exclusive OR gate XOR1, and the output pin 5 of the second comparator COMP2 is connected to the second input pin 7 of the exclusive OR gate XOR1. The output terminal pin 6 of the first comparator COMP1 is connected to the clock terminal pin 9 of the first D flip-flop DFF1, and the output terminal pin 5 of the second comparator COMP2 is connected to the D input port pin 10 of the first D flip-flop DFF1. The Q non-output terminal of the first D flip-flop is suspended. The output pin 6 of the first comparator COMP1 is respectively connected to the rising edge pin 12 of the second monostable flip-flop MONO6 and the falling edge pin 13 of the third monostable flip-flop MONO7. The output pin 5 of the second comparator COMP2 is respectively connected to the rising edge pin 11 of the first monostable flip-flop MONO5 and the falling edge pin 14 of the fourth monostable flip-flop MONO8. The Q output pin 15 of the first monostable flip-flop MONO5 and the Q output pin 16 of the second monostable flip-flop MONO6 are respectively connected to the clock port pin 20 of the second D flip-flop DFF2 through a diode. The Q output terminal pin 17 of the third monostable flip-flop MONO7 and the Q output terminal pin 18 of the fourth monostable flip-flop MONO8 are respectively input to the clock terminal pin 22 of the third D flip-flop DFF3 through a diode. The falling edge input ends of the first monostable flip-flop MONO5 and the second monostable flip-flop MONO6 are grounded, and the rising edge input ends of the third monostable flip-flop MONO7 and the fourth monostable flip-flop MONO8 are grounded. The Q non-outputs of the first to fourth monostable flip-flops are suspended. The output terminal of the XOR gate XOR1 is connected to the D input terminal pin 19 of the second D flip-flop DFF2 and the D input terminal pin 21 of the third D flip-flop DFF3 respectively. The Q outputs of the second D flip-flop DFF2 and the third D flip-flop DFF3 are respectively input to the negative input pin 26 and the positive input pin 25 of the third comparator COMP11 through the first and second RC filter circuits with the same parameters. The Q non-output terminals of the second and third D flip-flops are suspended. Among the two RC filter circuits, the first RC filter circuit is composed of a first resistor R34 and a first capacitor C34, and the second RC filter circuit is composed of a second resistor R35 and a second capacitor C35.

传统的锁相电路如图2所示,电压采样信号和电流采样信号分别通过比较器第四比较器C1和第五比较器C2,产生与电压、电流信号同步的方波信号。C1输出的与电压同步的方波信号接入D触发器的时钟端,C2输出的电压信号接入D触发器的D输入端。当电压信号与电流信号不同相位时,异或门能输出与相差相等脉宽的脉冲信号。传统锁相电路得到的D触发器Q输出端的输出电平,用于决定增加或者减小频率,通过异或门XOR输出脉宽的大小,用于决定频率改变的快慢,以达到换能器谐振的目的。它只是根据电流电压的同步信号的上升沿同步,来达到电流电压信号同步的目的。如果电压电流同步信号的脉宽不相等的话,同步信号上升沿同步,是不能达到电压电流同相效果的,特别是在PS-PWM控制方法的情况下。 The traditional phase-locking circuit is shown in Figure 2. The voltage sampling signal and the current sampling signal pass through the fourth comparator C1 and the fifth comparator C2 respectively to generate a square wave signal synchronized with the voltage and current signals. The voltage-synchronized square wave signal output by C1 is connected to the clock terminal of the D flip-flop, and the voltage signal output by C2 is connected to the D input terminal of the D flip-flop. When the voltage signal and the current signal have different phases, the XOR gate can output a pulse signal with the same pulse width as the phase difference. The output level of the D flip-flop Q output terminal obtained by the traditional phase-locked circuit is used to determine whether to increase or decrease the frequency, and the XOR output pulse width is used to determine the speed of frequency change to achieve transducer resonance the goal of. It is only synchronized according to the rising edge of the synchronization signal of current and voltage to achieve the purpose of synchronization of current and voltage signals. If the pulse width of the voltage and current synchronous signal is not equal, the rising edge of the synchronous signal is synchronous, and the voltage and current in-phase effect cannot be achieved, especially in the case of the PS-PWM control method.

PS-PWM调控方法是通过改变移相全桥的移相角来改变输出电压的有效值,从而达到调压的目的。因此,通过PS-PWM方式调控的桥臂电压输出不是标准的方波信号,而是占空比可调的方波输出。而桥臂信号施加于换能器系统上,其谐振电流是正弦信号,因此正弦电流的同步信号是占空比为0.5的标准方波信号。如果使用传统的锁相电路,不能达到电压电流同相的目的。 The PS-PWM control method is to change the effective value of the output voltage by changing the phase shift angle of the phase shift full bridge, so as to achieve the purpose of voltage regulation. Therefore, the bridge arm voltage output regulated by the PS-PWM method is not a standard square wave signal, but a square wave output with an adjustable duty cycle. The bridge arm signal is applied to the transducer system, and its resonant current is a sinusoidal signal, so the synchronous signal of the sinusoidal current is a standard square wave signal with a duty ratio of 0.5. If the traditional phase-locked circuit is used, the purpose of the same phase of voltage and current cannot be achieved.

如果采用传统的控制方法,使得第一个电压、电流信号的第一个上升沿同步,其输出电压电流如图6所示,所以,传统的控制方法无法使得PS-PWM控制方法的输出电压电流同相位。其中,VP1,V7分别是输出电压和输出电流的采样波形,V8,V9分别是电流、电压的同步方波波形。 If the traditional control method is used to synchronize the first rising edge of the first voltage and current signals, the output voltage and current are shown in Figure 6. Therefore, the traditional control method cannot make the output voltage and current of the PS-PWM control method same phase. Among them, VP1 and V7 are sampling waveforms of output voltage and output current respectively, and V8 and V9 are synchronous square wave waveforms of current and voltage respectively.

Claims (7)

1.一种用于超声波电源的锁相电路,其特征在于包括两个比较器、异或门、四个单稳态触发器、三个D触发器和两个RC滤波电路,其中,第一比较器(COMP1)的输出接入第二单稳态触发器和第三单稳态触发器,第二比较器(COMP2)的输出端接入第一单稳态触发器和第四单稳态触发器,第一比较器和第二比较器的输出端还与异或门和第一D触发器(DFF1)的输入连接,第一至第四单稳态触发器和异或门的输出接入第二D触发器(DFF2)和第三D触发器(DFF3),第二D触发器、第三D触发器输出的两路脉冲信号分别各自经过一个RC滤波电路,最后输入到第三比较器(COMP11)中。 1. A phase-locked circuit for ultrasonic power supply, characterized in that it comprises two comparators, exclusive OR gates, four monostable flip-flops, three D flip-flops and two RC filter circuits, wherein the first The output of the comparator (COMP1) is connected to the second monostable flip-flop and the third monostable flip-flop, and the output of the second comparator (COMP2) is connected to the first monostable flip-flop and the fourth monostable flip-flop flip-flop, the output terminals of the first comparator and the second comparator are also connected with the input of the XOR gate and the first D flip-flop (DFF1), and the outputs of the first to fourth monostable flip-flops are connected with the XOR gate Input the second D flip-flop (DFF2) and the third D flip-flop (DFF3), the two pulse signals output by the second D flip-flop and the third D flip-flop respectively pass through an RC filter circuit, and finally input to the third comparator device (COMP11). 2.根据权利要求1所述的一种用于超声波电源的锁相电路,其特征在于第一比较器的正输入端脚和第二比较器的正输入端脚分别接电压、电流采样信号,第一比较器的负输入端脚和第二比较器的负输入端脚都接地;第一比较器的输出端脚接入异或门的第一输入端脚,第二比较器的输出端脚接入异或门的第二输入端脚; 2. A kind of phase-locked circuit for ultrasonic power supply according to claim 1, it is characterized in that the positive input terminal pin of the first comparator and the positive input terminal pin of the second comparator are respectively connected to voltage and current sampling signals, Both the negative input pin of the first comparator and the negative input pin of the second comparator are grounded; the output pin of the first comparator is connected to the first input pin of the XOR gate, and the output pin of the second comparator Connect to the second input pin of the XOR gate; 第一比较的输出端脚接入第一D触发器的时钟端脚,第二比较器的输出端脚接第一D触发器的D输入端口脚。 The output terminal pin of the first comparator is connected to the clock terminal pin of the first D flip-flop, and the output terminal pin of the second comparator is connected to the D input port pin of the first D flip-flop. 3.根据权利要求2所述的一种用于超声波电源的锁相电路,其特征在于第一D触发器的Q非输出端悬空,第一比较器的输出端脚分别接第二单稳态触发器上升沿脚和第三单稳态触发器的下降沿脚,第二比较器的输出端脚分别接第一单稳态触发器的上升沿脚和第四单稳态触发器下降沿脚,第一单稳态触发器的Q输出端脚和第二单稳态触发器的Q输出端脚分别经过一个二极管接入到第二D触发器的时钟端口脚;第三单稳态触发器的Q输出端脚和第四单稳态触发器的Q输出端脚分别经过一个二极管输入到第三D触发器的时钟端脚;第一单稳态触发器和第二单稳态触发器的下降沿输入端接地,第三单稳态触发器和第四单稳态触发器的上升沿输入端接地;第一至第四单稳态触发器的Q非输出悬空;异或门的输出端分别接入第二D触发器的D输入端脚和第三D触发器的D输入端脚脚;第二D触发器和第三D触发器的输出分别经过参数相同的第一、第二RC滤波电路输入到第三比较器的负输入端脚和正输入端脚;第二、第三D触发器的Q非输出端悬空。 3. A kind of phase-locked circuit for ultrasonic power supply according to claim 2, it is characterized in that the Q non-output end of the first D flip-flop is suspended in the air, and the output terminal pins of the first comparator are respectively connected to the second monostable state The rising edge pin of the flip-flop and the falling edge pin of the third monostable trigger, the output pins of the second comparator are respectively connected to the rising edge pin of the first monostable trigger and the falling edge pin of the fourth monostable trigger , the Q output terminal pin of the first monostable trigger and the Q output terminal pin of the second monostable trigger are respectively connected to the clock port pin of the second D flip-flop through a diode; the third monostable trigger The Q output pin of the fourth monostable flip-flop and the Q output pin of the fourth monostable trigger are respectively input to the clock pin of the third D flip-flop through a diode; the first monostable trigger and the second monostable flip-flop The falling edge input terminal is grounded, the rising edge input terminals of the third monostable flip-flop and the fourth monostable flip-flop are grounded; the Q non-output of the first to fourth monostable flip-flops is suspended; the output of the XOR gate Respectively connect the D input pin of the second D flip-flop and the D input pin of the third D flip-flop; the output of the second D flip-flop and the third D flip-flop respectively pass through the first and second RC with the same parameters The filtering circuit is input to the negative input terminal pin and the positive input terminal pin of the third comparator; the Q non-output terminals of the second and third D flip-flops are suspended. 4.根据权利要求2或3所述的所述的一种用于超声波电源的锁相电路,其特征在于两个RC滤波电路中,第一RC滤波电路由第一电阻和第一电容组成,第二RC滤波电路由第二电阻和第二电容组成。 4. according to claim 2 or 3 described a kind of phase-locked circuit for ultrasonic power supply, it is characterized in that in two RC filter circuits, the first RC filter circuit is made up of the first resistor and the first capacitor, The second RC filter circuit is composed of a second resistor and a second capacitor. 5.根据权利要求1所述的所述的一种用于超声波电源的锁相电路,其特征在于第一RC滤波电路和第二RC滤波电路参数相同。 5. The phase-locked circuit for ultrasonic power supply according to claim 1, characterized in that the parameters of the first RC filter circuit and the second RC filter circuit are the same. 6.根据权利要求1或2所述的所述的一种用于超声波电源的锁相电路,其特征在于第一至第四单稳态触发器的Q输出端分别经过一个二极管接入第二、第三D触发器的时钟端。 6. The phase-locked circuit for ultrasonic power supply according to claim 1 or 2, characterized in that the Q output terminals of the first to fourth monostable triggers are connected to the second through a diode respectively. , the clock terminal of the third D flip-flop. 7.根据权利要求1所述的所述的一种用于超声波电源的锁相电路,其特征在于通过控制第二、第三D触发器输出的两路脉冲信号脉宽相等,来使输出电压、电流同相位。 7. A phase-locked circuit for an ultrasonic power supply according to claim 1, wherein the pulse width of the two pulse signals output by controlling the second and third D flip-flops is equal to make the output voltage , The current is in phase.
CN201210541902.7A 2012-12-14 2012-12-14 A kind of phase lock circuitry for ultrasonic power Active CN103051331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210541902.7A CN103051331B (en) 2012-12-14 2012-12-14 A kind of phase lock circuitry for ultrasonic power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210541902.7A CN103051331B (en) 2012-12-14 2012-12-14 A kind of phase lock circuitry for ultrasonic power

Publications (2)

Publication Number Publication Date
CN103051331A true CN103051331A (en) 2013-04-17
CN103051331B CN103051331B (en) 2015-10-28

Family

ID=48063847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210541902.7A Active CN103051331B (en) 2012-12-14 2012-12-14 A kind of phase lock circuitry for ultrasonic power

Country Status (1)

Country Link
CN (1) CN103051331B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401530A (en) * 2013-07-31 2013-11-20 华南理工大学 Impedance stepless matching network used for ultrasonic power supply and control method
CN104811055A (en) * 2015-04-22 2015-07-29 华南理工大学 High power wideband ultrasonic power supply based on silicon carbide device and control method thereof
CN107786202A (en) * 2017-11-09 2018-03-09 上海华力微电子有限公司 A kind of lock indicator circuit that function is eliminated with error code
CN108227541A (en) * 2016-12-14 2018-06-29 中国航空工业集团公司西安航空计算技术研究所 A kind of discontinuous analog difference signal frequency and phase acquisition method
CN111865241A (en) * 2020-06-15 2020-10-30 芯创智(北京)微电子有限公司 Ultra-wideband low-distortion signal processing circuit and method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113116A (en) * 1989-10-05 1992-05-12 Firma J. Eberspacher Circuit arrangement for accurately and effectively driving an ultrasonic transducer
CN2160473Y (en) * 1993-05-15 1994-04-06 温有奎 Automatic frequency trancking power ultrasonic generator
CN2248118Y (en) * 1995-11-28 1997-02-26 宣浩 Phase-locked frequency tracking ultrasonic polishing machine
CN1812246A (en) * 2006-01-04 2006-08-02 天津大学 Non-contact liquid medium ultrasound wave electric machine frequency tracking speed control system
CN1929283A (en) * 2005-08-23 2007-03-14 精工爱普生株式会社 Drive control method for a piezoelectric actuator, drive control apparatus for a piezoelectric actuator, and electronic device
JP2007195992A (en) * 2007-02-19 2007-08-09 Olympus Corp Ultrasonic surgical apparatus and method for controlling ultrasonic surgical apparatus
CN101145778A (en) * 2007-10-31 2008-03-19 江南大学 Frequency Tracking Circuit Structure in Ultrasonic Power Supply
CN101468347A (en) * 2007-12-28 2009-07-01 北京奥麦特科技有限公司 Automatic frequency tracking method of supersonic transducer and system thereof
CN201304720Y (en) * 2008-12-05 2009-09-09 东莞市长江超声波机有限公司 Frequency tracking circuit structure in ultrasonic plastic welding machine
CN101574757A (en) * 2009-05-01 2009-11-11 台州巨龙超声设备有限公司 Control system of ultrasonic welding machine
JP4512721B2 (en) * 2000-09-22 2010-07-28 本多電子株式会社 Oscillation control circuit of multi-frequency ultrasonic cleaner
CN203219281U (en) * 2012-12-14 2013-09-25 华南理工大学 A phase-locked circuit for ultrasonic power supply

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113116A (en) * 1989-10-05 1992-05-12 Firma J. Eberspacher Circuit arrangement for accurately and effectively driving an ultrasonic transducer
CN2160473Y (en) * 1993-05-15 1994-04-06 温有奎 Automatic frequency trancking power ultrasonic generator
CN2248118Y (en) * 1995-11-28 1997-02-26 宣浩 Phase-locked frequency tracking ultrasonic polishing machine
JP4512721B2 (en) * 2000-09-22 2010-07-28 本多電子株式会社 Oscillation control circuit of multi-frequency ultrasonic cleaner
CN1929283A (en) * 2005-08-23 2007-03-14 精工爱普生株式会社 Drive control method for a piezoelectric actuator, drive control apparatus for a piezoelectric actuator, and electronic device
CN1812246A (en) * 2006-01-04 2006-08-02 天津大学 Non-contact liquid medium ultrasound wave electric machine frequency tracking speed control system
JP2007195992A (en) * 2007-02-19 2007-08-09 Olympus Corp Ultrasonic surgical apparatus and method for controlling ultrasonic surgical apparatus
CN101145778A (en) * 2007-10-31 2008-03-19 江南大学 Frequency Tracking Circuit Structure in Ultrasonic Power Supply
CN101468347A (en) * 2007-12-28 2009-07-01 北京奥麦特科技有限公司 Automatic frequency tracking method of supersonic transducer and system thereof
CN101468347B (en) * 2007-12-28 2010-12-08 北京奥麦特科技有限公司 Automatic frequency tracking method of supersonic transducer and system thereof
CN201304720Y (en) * 2008-12-05 2009-09-09 东莞市长江超声波机有限公司 Frequency tracking circuit structure in ultrasonic plastic welding machine
CN101574757A (en) * 2009-05-01 2009-11-11 台州巨龙超声设备有限公司 Control system of ultrasonic welding machine
CN203219281U (en) * 2012-12-14 2013-09-25 华南理工大学 A phase-locked circuit for ultrasonic power supply

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
余泽洋: "超声波金属焊接频率跟踪仿真控制研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》, 15 October 2005 (2005-10-15), pages 31 - 49 *
吴秀玲: "超声波焊接机频率跟踪控制的一种方法", 《电子科技》, no. 9, 30 September 2005 (2005-09-30), pages 41 - 44 *
张继东: "一种超声波电源的频率搜索与跟踪系统的设计", 《计算机测量与控制》, no. 10, 25 October 2008 (2008-10-25) *
梁校勇: "超声电源频率跟踪电路的改进", 《电加工与模具》, no. 1, 20 February 2009 (2009-02-20), pages 38 - 40 *
甘云华: "超声波电机自激振荡驱动电路的变频控制特性", 《中国电机工程学报》, no. 9, 25 March 2008 (2008-03-25), pages 93 - 97 *
鲍善惠: "用锁相环电路跟踪压电换能器并联谐振频率区", 《应用声学》, vol. 20, no. 3, 30 May 2001 (2001-05-30) *
鲍善惠: "超声波发生器的频率跟踪电路", 《洗净技术》, no. 10, 30 October 2003 (2003-10-30) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401530A (en) * 2013-07-31 2013-11-20 华南理工大学 Impedance stepless matching network used for ultrasonic power supply and control method
CN103401530B (en) * 2013-07-31 2016-04-13 华南理工大学 The stepless matching network of a kind of impedance for ultrasonic power
CN104811055A (en) * 2015-04-22 2015-07-29 华南理工大学 High power wideband ultrasonic power supply based on silicon carbide device and control method thereof
CN104811055B (en) * 2015-04-22 2017-08-25 华南理工大学 Large-power broadband ultrasonic power and its control method based on silicon carbide device
CN108227541A (en) * 2016-12-14 2018-06-29 中国航空工业集团公司西安航空计算技术研究所 A kind of discontinuous analog difference signal frequency and phase acquisition method
CN107786202A (en) * 2017-11-09 2018-03-09 上海华力微电子有限公司 A kind of lock indicator circuit that function is eliminated with error code
CN107786202B (en) * 2017-11-09 2021-10-01 上海华力微电子有限公司 Locking indicator circuit with error code eliminating function
CN111865241A (en) * 2020-06-15 2020-10-30 芯创智(北京)微电子有限公司 Ultra-wideband low-distortion signal processing circuit and method
CN111865241B (en) * 2020-06-15 2024-04-12 芯创智(北京)微电子有限公司 Ultra-wideband low-distortion signal processing circuit and method

Also Published As

Publication number Publication date
CN103051331B (en) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103051331B (en) A kind of phase lock circuitry for ultrasonic power
CN103501555B (en) Digital phase locking and frequency tracking electromagnetic induction heating power controller
CN102868309B (en) A kind of pulse width modulation PWM rectifier control method and PWM rectifier
CN101860251A (en) A PWM Complementary Output Method Inserting Variable Dead Time
CN104868769A (en) PWM carrier wave self-synchronizing control method based on power grid voltage zero crossing point and synchronous modulation
CN103973262B (en) A kind of ultrasonic power for transducer cascade
CN102645576A (en) Device and method for detecting zero crossing point of inductive current
TWI604697B (en) Phase-locked loop method for a utility parallel system
CN103986458B (en) A kind of single-phase grid-connected phase locking loop controlling method of the micro-capacitance sensor based on Repetitive controller
CN104638957A (en) Grid-connected inverter zero crossing point current distortion suppression method of unipolar critical current continuous control strategy
CN103595320B (en) A kind of high speed for three-phase electricity excitation biconvex electrode electric machine is without position operation method
CN104201938B (en) Frequency converter soft start method based on CPLD
CN108964499A (en) Modified repetitive control suitable for three-phase PWM inverter
CN101435710B (en) Electromagnetic flowmeter
CN102916604A (en) One-phase inverter modulation method
CN202406005U (en) Field programmable gate array (FPGA) technology-based single-phase synchronous frequency tracking digital phase-shift trigger
CN103532170A (en) Fixed control method for switching period for grid-connected current hysteresis control algorithm
CN107294412B (en) A Modulation Method for Improving the Number of Output Levels of a Half-Bridge Modular Multilevel Converter
Yin et al. Electronic ballast control IC with digital phase control and lamp current regulation
CN116247946B (en) Low-harmonic high-robustness alternating current electronic load sliding mode control method and device
CN108306527A (en) A method of inhibit unidirectional three-phase star to connect controlled rectifier line current Zero-crossing Distortion
CN104569551B (en) A kind of DC component detection method being applied to inverter voltage
CN102095932A (en) Detection method of voltage phase at access point of photovoltaic inverter
CN105471120B (en) The current constant control and circulation inhibition method of the inductive electric energy transmission system of multi-inverter parallel
CN206727899U (en) Shunt chopper carrier signal sychronisation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant