[go: up one dir, main page]

CN103050162B - A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance - Google Patents

A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance Download PDF

Info

Publication number
CN103050162B
CN103050162B CN201310021276.3A CN201310021276A CN103050162B CN 103050162 B CN103050162 B CN 103050162B CN 201310021276 A CN201310021276 A CN 201310021276A CN 103050162 B CN103050162 B CN 103050162B
Authority
CN
China
Prior art keywords
boron nitride
nano
tantalum
coupling agent
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310021276.3A
Other languages
Chinese (zh)
Other versions
CN103050162A (en
Inventor
李兴冀
杨剑群
芮二明
高峰
何世禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Xingxin Technology Co ltd
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201310021276.3A priority Critical patent/CN103050162B/en
Publication of CN103050162A publication Critical patent/CN103050162A/en
Application granted granted Critical
Publication of CN103050162B publication Critical patent/CN103050162B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,本发明涉及复合材料。本发明是要解决现有应用于航天器中的空间辐射防护材料对于中子辐照的防护效果差的技术问题。材料由聚乙烯树脂、纳米钽、纳米氮化硼、偶联剂和无水乙醇制成;方法:一、称取;二、制备混合液;三、制得改性的纳米钽/纳米氮化硼;四、制得纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。本发明得到的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能好,对中子的空间防护能力优异。本发明制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料用于航天器辐射防护领域。

A nano tantalum/nano boron nitride-polyethylene space neutron radiation protection composite material, the invention relates to a composite material. The invention aims to solve the technical problem that the existing space radiation protection materials used in spacecraft have poor protection effect on neutron radiation. The material is made of polyethylene resin, nano-tantalum, nano-boron nitride, coupling agent and absolute ethanol; method: 1. Weigh; 2. Prepare mixed solution; 3. Prepare modified nano-tantalum/nano-nitride Boron; 4. Prepare nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material. The nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material obtained by the invention has good thermal stability and excellent space protection ability to neutrons. The nano tantalum/nano boron nitride-polyethylene space neutron radiation protection composite material prepared by the invention is used in the field of spacecraft radiation protection.

Description

一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料A nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material

技术领域technical field

本发明涉及复合材料。The present invention relates to composite materials.

背景技术Background technique

航天技术的飞速发展,要求航天器系统能够经得住空间的各种辐照环境,因此,对空间辐射防护材料的研究具有日益重要的意义。传统的辐射防护材料以铝为主,由于铝经过质子或重离子辐照后会产生二次中子,生物学数据研究表明,中子的出现极大地危害着宇航员的健康,甚至导致癌症。研究表明,由于低原子序数的材料(含氢量高的材料)单位体积内含有少量的中子,经过辐照后产生更少的二次中子,因此,含氢量高的材料具有最好的辐射防护效果。The rapid development of aerospace technology requires the spacecraft system to be able to withstand various radiation environments in space. Therefore, the research on space radiation protection materials has increasingly important significance. The traditional radiation protection material is mainly aluminum, because aluminum will produce secondary neutrons after being irradiated by protons or heavy ions, biological data research shows that the appearance of neutrons will greatly endanger the health of astronauts, and even cause cancer. Studies have shown that because materials with low atomic number (materials with high hydrogen content) contain a small amount of neutrons per unit volume, fewer secondary neutrons are produced after irradiation, so materials with high hydrogen content have the best radiation protection effect.

聚乙烯分子中含有一个碳原子、两个氢原子,含量氢高,具有较高的辐射防护效率。因此,在航天器辐射防护方面具有广阔的应用前景。然而,在空间环境中,聚乙烯用做辐射防护材料时,热稳定性能差,大大地限制了聚乙烯作为辐射防护材料在航天器上的应用。Polyethylene molecules contain one carbon atom and two hydrogen atoms, with high hydrogen content and high radiation protection efficiency. Therefore, it has broad application prospects in spacecraft radiation protection. However, in the space environment, when polyethylene is used as a radiation protection material, its thermal stability is poor, which greatly limits the application of polyethylene as a radiation protection material in spacecraft.

在本领域研究中,发明名称为《一种氮化硼—聚乙烯空间辐射防护复合材料及其制备方法》,申请号为201210379636.2的专利公开了一种防护空间辐射的复合材料;发明名称为《辐射可检测和防护制品》,申请号为200580047071.6的专利公开了一种形成辐射不透性聚合物制品的组合物和方法;但目前应用于航天器中的空间辐射防护材料仍存在对于中子辐照的防护效果差的技术问题。In this field of research, the invention name is "A boron nitride-polyethylene space radiation protection composite material and its preparation method", and the patent application number is 201210379636.2 discloses a composite material for space radiation protection; the invention name is " Radiation Detectable and Protective Articles", the patent application number 200580047071.6 discloses a composition and method for forming radiopaque polymer articles; but the space radiation protection materials currently used in spacecraft still exist for neutron radiation The technical problem of the poor protective effect of the photo.

发明内容Contents of the invention

本发明是要解决现有应用于航天器中的空间辐射防护材料对于中子辐照的防护效果差的技术问题,而提供一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。The present invention aims to solve the technical problem that the existing space radiation protection materials used in spacecraft have poor protection effect against neutron radiation, and provides a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection compound Material.

一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料按质量份数由30份~90份的聚乙烯树脂、5份~50份的纳米钽、1份~10份的纳米氮化硼、1份~15份的偶联剂和2份~280份的无水乙醇制成;其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的一种或几种混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中的一种或几种混合;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.2nm~10nm,面积为1μm2~20μm2;纳米钽的粒径为1nm~1000nm。A nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material consists of 30-90 parts of polyethylene resin, 5-50 parts of nano-tantalum, 1-10 parts of nano- It is made of boron nitride, 1-15 parts of coupling agent and 2-280 parts of absolute ethanol; among them, the polyethylene resin is low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin. One or more mixed; the coupling agent is silane coupling agent, titanate coupling agent, aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and borate coupling agent One or more mixtures; nano-boron nitride is a two-dimensional nano-boron nitride single layer, the thickness of the two-dimensional nano-boron nitride single layer is 0.2nm-10nm, and the area is 1μm 2 -20μm 2 ; the particle size of nano-tantalum 1 nm to 1000 nm.

其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的几种混合时,以任意比例混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中几种混合时,以任意比例混合。Among them, when the polyethylene resin is mixed with low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin, it is mixed in any proportion; the coupling agent is a silane coupling agent, a titanate coupling agent, When mixing several kinds of aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and borate coupling agent, they are mixed in any proportion.

一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:A preparation method of nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, specifically prepared according to the following steps:

一、按质量份数称取30份~90份的聚乙烯树脂、5份~50份的纳米钽、1份~10份的纳米氮化硼、1份~15份的偶联剂和2份~280份的无水乙醇;其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的一种或几种混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中的一种或几种混合;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.2nm~10nm,面积为1μm2~20μm2;纳米钽的粒径为1nm~1000nm;1. Weigh 30-90 parts of polyethylene resin, 5-50 parts of nano-tantalum, 1-10 parts of nano-boron nitride, 1-15 parts of coupling agent and 2 parts by mass. ~280 parts of absolute ethanol; wherein, the polyethylene resin is one or more mixtures of low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin; the coupling agent is a silane coupling agent, titanic acid One or more mixtures of ester coupling agent, aluminate coupling agent, metal composite coupling agent, phosphate ester coupling agent and borate coupling agent; nano boron nitride is a two-dimensional nano boron nitride Single-layer, two-dimensional nano-boron nitride monolayer has a thickness of 0.2nm to 10nm and an area of 1μm 2 to 20μm 2 ; the particle size of nano-tantalum is 1nm to 1000nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为80r/min~120r/min,保持1h~12h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the rotation speed at 80r/min-120r/min, keep it for 1h-12h, and obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为50℃~120℃条件下,控制搅拌速度为80r/min~120r/min,保持1h~15h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, mix evenly to obtain mixed solution B, and control the stirring speed of mixed solution B at 50°C to 120°C at a stirring speed of 80r/ min~120r/min, keep it for 1h~15h, and then filter and dry to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为80r/min~120r/min,保持5min~60min,得到混合物,再将混合物加入模具中,在压力机的温度为175℃~240℃,压力为5MPa~45MPa条件下,压制1min~40min,得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high mixer, control the speed at 80r/min-120r/min, keep it for 5min-60min, and obtain the mixture , and then put the mixture into the mold, under the conditions of the temperature of the press at 175°C to 240°C and the pressure at 5MPa to 45MPa, press for 1min to 40min to obtain nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection compound Material.

其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的几种混合时,以任意比例混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中几种混合时,以任意比例混合。Among them, when the polyethylene resin is mixed with low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin, it is mixed in any proportion; the coupling agent is a silane coupling agent, a titanate coupling agent, When mixing several kinds of aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and borate coupling agent, they are mixed in any proportion.

本发明的有益效果是:本发明以聚乙烯树脂作为载体树脂,并添加常规的功能性助剂以及纳米钽和纳米氮化硼,得到的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能指标得到很大提升,普通聚乙烯的初始分解温度一般为310℃~390℃,而本发明制备的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的初始分解温度为400℃~520℃,其热稳定性能好,此外传统的辐射防护材料纯铝,满足了航天器对材料热稳定性的要求,但相同质量厚度下纯铝过滤中子的效率低,为了达到防辐射效果,必须增加铝防护层的厚度,从而使航天器的重量增加,本发明制备的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,不仅具有良好的热稳定性,且在相同质量厚度下,与纯铝相比,相同能量的中子经过纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料后吸收剂量降低了0.1~0.7倍,综合性能优异,且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用前景。The beneficial effects of the present invention are: the present invention uses polyethylene resin as the carrier resin, and adds conventional functional additives, nano-tantalum and nano-boron nitride, and obtains a nano-tantalum/nano-boron nitride-polyethylene space The thermal stability performance index of the sub-radiation protection composite material has been greatly improved. The initial decomposition temperature of ordinary polyethylene is generally 310°C to 390°C, while the nano-tantalum/nano-boron nitride-polyethylene space neutron The initial decomposition temperature of the radiation protection composite material is 400°C to 520°C, and its thermal stability is good. In addition, the traditional radiation protection material pure aluminum meets the requirements of the spacecraft for thermal stability of the material, but under the same mass thickness, pure aluminum filter The efficiency of neutrons is low. In order to achieve the radiation protection effect, the thickness of the aluminum protective layer must be increased, thereby increasing the weight of the spacecraft. A nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection compound prepared by the present invention The material not only has good thermal stability, but at the same mass thickness, compared with pure aluminum, the absorbed dose of neutrons with the same energy is reduced after passing through the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material 0.1 to 0.7 times higher, excellent overall performance, and has the characteristics of light weight, good dispersibility, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature, and has broad application prospects in spacecraft radiation protection .

本发明制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料用于航天器辐射防护领域。The nano tantalum/nano boron nitride-polyethylene space neutron radiation protection composite material prepared by the invention is used in the field of spacecraft radiation protection.

附图说明Description of drawings

图1为实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图,其中,“——”代表实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;Fig. 1 is the thermal stability curve graph of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared in Example 1, wherein "—" represents the nano-tantalum/nano-boron nitride prepared in Example 1 The thermal stability curve of nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the thermal stability curve of polyethylene;

图2为实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图,其中,“——”代表实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;Fig. 2 is the thermal stability curve graph of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared in embodiment two, wherein, "—" represents the nano-tantalum/nano-boron nitride prepared in embodiment two The thermal stability curve of nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the thermal stability curve of polyethylene;

图3为实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图,其中,“——”代表实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;Fig. 3 is the thermal stability curve graph of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared in embodiment three, wherein, "—" represents the nano-tantalum/nano-boron nitride prepared in embodiment three The thermal stability curve of nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the thermal stability curve of polyethylene;

图4为实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图,其中,“——”代表实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;Fig. 4 is the thermal stability curve graph of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared in embodiment four, wherein, "—" represents the nano-tantalum/nano-boron nitride prepared in embodiment four The thermal stability curve of nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the thermal stability curve of polyethylene;

图5为实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图,其中,“——”代表实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;Figure 5 is the test curve of absorbed dose after neutron irradiation of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 1 and pure aluminum, wherein "—" represents the preparation in Example 1 The test curve of absorbed dose after neutron irradiation of nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the test curve of absorbed dose after neutron irradiation of pure aluminum;

图6为实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图,其中,“——”代表实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;Figure 6 is the test curve of absorbed dose after neutron irradiation of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and pure aluminum prepared in Example 2, wherein "—" represents the preparation in Example 2 The test curve of absorbed dose after neutron irradiation of nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the test curve of absorbed dose after neutron irradiation of pure aluminum;

图7为实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图,其中,“——”代表实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;Fig. 7 is the test curve of absorbed dose after neutron irradiation of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 3 and pure aluminum, wherein "—" represents the preparation in Example 3 The test curve of absorbed dose after neutron irradiation of nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the test curve of absorbed dose after neutron irradiation of pure aluminum;

图8为实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图示,其中,“——”代表实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线。Fig. 8 is a graphical representation of the absorbed dose test curves of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 4 and pure aluminum after neutron irradiation, wherein "—" represents Example 4 The absorbed dose test curve after neutron irradiation of the prepared nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the absorbed dose test curve after neutron irradiation of pure aluminum.

具体实施方式Detailed ways

本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。The technical solution of the present invention is not limited to the specific embodiments listed below, but also includes any combination of the specific embodiments.

具体实施方式一:本实施方式一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料按质量份数由30份~90份的聚乙烯树脂、5份~50份的纳米钽、1份~10份的纳米氮化硼、1份~15份的偶联剂和2份~280份的无水乙醇制成;其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的一种或几种混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中的一种或几种混合;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.2nm~10nm,面积为1μm2~20μm2;纳米钽的粒径为1nm~1000nm。Specific embodiment one: In this embodiment, a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material consists of 30-90 parts of polyethylene resin, 5-50 parts of nano-tantalum , 1-10 parts of nano-boron nitride, 1-15 parts of coupling agent and 2-280 parts of absolute ethanol; wherein, the polyethylene resin is low-density polyethylene, high-density polyethylene and One or several kinds of ultra-high molecular weight polyethylene resins are mixed; the coupling agents are silane coupling agents, titanate coupling agents, aluminate coupling agents, metal composite coupling agents, phosphate ester coupling agents and One or more mixtures of borate coupling agents; nano-boron nitride is a two-dimensional nano-boron nitride monolayer, the thickness of the two-dimensional nano-boron nitride monolayer is 0.2nm~10nm, and the area is 1μm 2 ~ 20 μm 2 ; the particle size of nano tantalum is 1nm-1000nm.

其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的几种混合时,以任意比例混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中几种混合时,以任意比例混合。Among them, when the polyethylene resin is mixed with low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin, it is mixed in any proportion; the coupling agent is a silane coupling agent, a titanate coupling agent, When mixing several kinds of aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and borate coupling agent, they are mixed in any proportion.

本实施方式以聚乙烯树脂作为载体树脂,并添加常规的功能性助剂以及纳米钽和纳米氮化硼,得到的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能指标得到很大提升,普通聚乙烯的初始分解温度一般为310℃~390℃,而本实施方式制备的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的初始分解温度为400℃~520℃,其热稳定性能好,此外传统的辐射防护材料纯铝,满足了航天器对材料热稳定性的要求,但相同质量厚度下纯铝过滤中子的效率低,为了达到防辐射效果,必须增加铝防护层的厚度,从而使航天器的重量增加,本实施方式制备的一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,不仅具有良好的热稳定性,且在相同质量厚度下,与纯铝相比,相同能量的中子经过纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料后吸收剂量降低了0.1~0.7倍,综合性能优异,且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用前景。In this embodiment, polyethylene resin is used as the carrier resin, and conventional functional additives, nano-tantalum and nano-boron nitride are added to obtain a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, The thermal stability performance index has been greatly improved. The initial decomposition temperature of ordinary polyethylene is generally 310°C to 390°C, while the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in this embodiment is The initial decomposition temperature is 400 ° C ~ 520 ° C, and its thermal stability is good. In addition, the traditional radiation protection material pure aluminum meets the requirements of spacecraft for thermal stability of materials, but the efficiency of pure aluminum filtering neutrons is low under the same mass thickness , in order to achieve the radiation protection effect, the thickness of the aluminum protective layer must be increased, thereby increasing the weight of the spacecraft. A nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in this embodiment not only has Good thermal stability, and at the same mass thickness, compared with pure aluminum, the absorbed dose of neutrons with the same energy after passing through nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is reduced by 0.1-0.7 times, excellent overall performance, and has the characteristics of light weight, good dispersion, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature, and has broad application prospects in spacecraft radiation protection.

具体实施方式二:本实施方式与具体实施方式一不同的是:一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:Embodiment 2: This embodiment differs from Embodiment 1 in that: a method for preparing a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is specifically prepared according to the following steps:

一、按质量份数称取30份~90份的聚乙烯树脂、5份~50份的纳米钽、1份~10份的纳米氮化硼、1份~15份的偶联剂和2份~280份的无水乙醇;其中,聚乙烯树脂为低密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯树脂中的一种或几种混合;偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂和硼酸酯偶联剂中的一种或几种混合;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.2nm~10nm,面积为1μm2~20μm2;纳米钽的粒径为1nm~1000nm;1. Weigh 30-90 parts of polyethylene resin, 5-50 parts of nano-tantalum, 1-10 parts of nano-boron nitride, 1-15 parts of coupling agent and 2 parts by mass. ~280 parts of absolute ethanol; wherein, the polyethylene resin is one or more mixtures of low-density polyethylene, high-density polyethylene and ultra-high molecular weight polyethylene resin; the coupling agent is a silane coupling agent, titanic acid One or more mixtures of ester coupling agent, aluminate coupling agent, metal composite coupling agent, phosphate ester coupling agent and borate coupling agent; nano boron nitride is a two-dimensional nano boron nitride Single-layer, two-dimensional nano-boron nitride monolayer has a thickness of 0.2nm to 10nm and an area of 1μm 2 to 20μm 2 ; the particle size of nano-tantalum is 1nm to 1000nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为80r/min~120r/min,保持1h~12h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the rotation speed at 80r/min-120r/min, keep it for 1h-12h, and obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为50℃~120℃条件下,控制搅拌速度为80r/min~120r/min,保持1h~15h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, mix evenly to obtain mixed solution B, and control the stirring speed of mixed solution B at 50°C to 120°C at a stirring speed of 80r/ min~120r/min, keep it for 1h~15h, and then filter and dry to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为80r/min~120r/min,保持5min~60min,得到混合物,再将混合物加入模具中,在压力机的温度为175℃~240℃,压力为5MPa~45MPa条件下,压制1min~40min,得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high mixer, control the speed at 80r/min-120r/min, keep it for 5min-60min, and obtain the mixture , and then put the mixture into the mold, under the conditions of the temperature of the press at 175°C to 240°C and the pressure at 5MPa to 45MPa, press for 1min to 40min to obtain nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection compound Material.

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中无水乙醇质量与纳米钽和纳米氮化硼总质量比为2~4:1。其它与具体实施方式一或二相同。Specific embodiment 3: The difference between this embodiment and specific embodiment 1 or 2 is that in step 1, the mass ratio of absolute ethanol to the total mass of nano-tantalum and nano-boron nitride is 2-4:1. Others are the same as in the first or second embodiment.

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中无水乙醇质量与纳米钽和纳米氮化硼总质量比为3:1。其它与具体实施方式一至三之一相同。Embodiment 4: This embodiment differs from Embodiments 1 to 3 in that the ratio of the mass of absolute ethanol to the total mass of nano-tantalum and nano-boron nitride in step 1 is 3:1. Others are the same as those in the first to third specific embodiments.

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤三中混合液B在温度为80℃~90℃条件下搅拌。其它与具体实施方式一至四之一相同。Embodiment 5: This embodiment is different from Embodiment 1 to Embodiment 4 in that: in Step 3, the mixed solution B is stirred at a temperature of 80°C to 90°C. Others are the same as one of the specific embodiments 1 to 4.

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤三中混合液B在温度为85℃条件下搅拌。其它与具体实施方式一至五之一相同。Embodiment 6: This embodiment is different from Embodiment 1 to Embodiment 5 in that: in step 3, the mixed liquid B is stirred at a temperature of 85°C. Others are the same as one of the specific embodiments 1 to 5.

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤四中在高混机中保持15min~30min。其它与具体实施方式一至六之一相同。Embodiment 7: This embodiment is different from one of Embodiments 1 to 6 in that: in step 4, keep it in the high mixer for 15 minutes to 30 minutes. Others are the same as one of the specific embodiments 1 to 6.

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中在高混机中保持25min。其它与具体实施方式一至七之一相同。Embodiment 8: This embodiment is different from one of Embodiments 1 to 7 in that: in step 4, keep it in the high mixer for 25 minutes. Others are the same as one of the specific embodiments 1 to 7.

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤四中在压力机中,温度为180℃~190℃,压力为15MPa~25MPa。其它与具体实施方式一至八之一相同。Embodiment 9: This embodiment differs from Embodiment 1 to Embodiment 8 in that: in step 4, in the press, the temperature is 180° C. to 190° C., and the pressure is 15 MPa to 25 MPa. Others are the same as one of the specific embodiments 1 to 8.

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料作为防护中子材料在航天器防辐射中的应用。Embodiment 10: This embodiment is different from Embodiment 1 to Embodiment 9 in that: a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is used as a protective neutron material in spacecraft radiation protection Applications.

采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:

实施例一:Embodiment one:

本实施例一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:In this embodiment, a method for preparing a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is specifically prepared according to the following steps:

一、按质量份数称取84份的聚乙烯树脂、10份的纳米钽、5份的纳米氮化硼、1份的偶联剂和45份的无水乙醇;其中,聚乙烯树脂为低密度聚乙烯;偶联剂为钛酸酯偶联剂;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.5nm,面积为4μm2;纳米钽的粒径为50nm;1. Take by weight 84 parts of polyethylene resin, 10 parts of nano-tantalum, 5 parts of nano-boron nitride, 1 part of coupling agent and 45 parts of dehydrated alcohol; wherein, polyethylene resin is low Density polyethylene; coupling agent is titanate coupling agent; nano-boron nitride is a two-dimensional nano-boron nitride monolayer, the thickness of the two-dimensional nano-boron nitride monolayer is 0.5nm, and the area is 4μm 2 ; nano-tantalum The particle size is 50nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为120r/min,保持10h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the rotating speed at 120r/min, keep for 10h, and obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为90℃条件下,控制搅拌速度为120r/min,保持10h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, and mix evenly to obtain mixed solution B. When the temperature of mixed solution B is 90°C, the stirring speed is controlled to be 120r/min, and kept 10h, and then dried by suction filtration to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为120r/min,保持20min,得到混合物,再将混合物加入模具中,在压力机的温度为180℃,压力为20MPa条件下,压制30min,得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high-mixer, control the speed at 120r/min, and keep it for 20min to obtain a mixture, and then add the mixture to the mold In the process, the temperature of the press is 180° C. and the pressure is 20 MPa, and the press is pressed for 30 minutes to obtain the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material.

其中,低密度聚乙烯密度为0.92g/cm2,熔融指数为2g/10min。Among them, low-density polyethylene has a density of 0.92g/cm 2 and a melt index of 2g/10min.

本实施例以低密度聚乙烯树脂作为载体树脂,并添加钛酸酯偶联剂、纳米钽、纳米氮化硼,得到的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能好,对中子的空间防护能力优异,而且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用。In this embodiment, low-density polyethylene resin is used as the carrier resin, and a titanate coupling agent, nano-tantalum, and nano-boron nitride are added to obtain a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, It has good thermal stability, excellent space protection against neutrons, and has the characteristics of light weight, good dispersion, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature. Wide range of applications.

实施例二:Embodiment two:

本实施例一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:In this embodiment, a method for preparing a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is specifically prepared according to the following steps:

一、按质量份数称取73份的聚乙烯树脂、20份的纳米钽、5份的纳米氮化硼、2份的偶联剂和75份的无水乙醇;其中,聚乙烯树脂为低密度聚乙烯;偶联剂为钛酸酯偶联剂;氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.5nm,面积为3μm2;纳米钽的粒径为50nm;One, take by weight 73 parts of polyethylene resin, 20 parts of nano-tantalum, 5 parts of nano-boron nitride, 2 parts of coupling agent and 75 parts of dehydrated alcohol; wherein, polyethylene resin is low Density polyethylene; coupling agent is titanate coupling agent; boron nitride is a two-dimensional nano-boron nitride monolayer, the thickness of the two-dimensional nano-boron nitride monolayer is 0.5nm, and the area is 3μm 2 ; nanometer tantalum The particle size is 50nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为120r/min,保持10h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the rotation speed to 120r/min, and keep it for 10h to obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为80℃条件下,控制搅拌速度为120r/min,保持10h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, mix evenly to obtain mixed solution B, and control the stirring speed of mixed solution B to 120r/min at a temperature of 80°C to keep 10h, and then dried by suction filtration to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为120r/min,保持25min,得到混合物,再将混合物加入模具中,在压力机的温度为185℃,压力为20MPa条件下,压制30min,得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high-mixer, control the speed at 120r/min, and keep it for 25min to obtain a mixture, and then add the mixture to the mold In the process, the temperature of the press is 185° C. and the pressure is 20 MPa, and the press is pressed for 30 minutes to obtain the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material.

其中,低密度聚乙烯密度为0.92g/cm2,熔融指数为2g/10min。Among them, low-density polyethylene has a density of 0.92g/cm 2 and a melt index of 2g/10min.

本实施例以低密度聚乙烯树脂作为载体树脂,并添加钛酸酯偶联剂、纳米钽、纳米氮化硼,得到的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能好,对中子的空间防护能力优异,而且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用。In this embodiment, low-density polyethylene resin is used as the carrier resin, and a titanate coupling agent, nano-tantalum, and nano-boron nitride are added to obtain a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, It has good thermal stability, excellent space protection against neutrons, and has the characteristics of light weight, good dispersion, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature. Wide range of applications.

实施例三:Embodiment three:

本实施例一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:In this embodiment, a method for preparing a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is specifically prepared according to the following steps:

一、按质量份数称取63份的聚乙烯树脂、30份的纳米钽、5份的纳米氮化硼、2份的偶联剂和105份的无水乙醇;其中,聚乙烯树脂为低密度聚乙烯;偶联剂为钛酸酯偶联剂;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.5nm,面积为3μm2;纳米钽的粒径为50nm;One, take by weight 63 parts of polyethylene resin, 30 parts of nano-tantalum, 5 parts of nano-boron nitride, 2 parts of coupling agent and 105 parts of dehydrated alcohol; wherein, polyethylene resin is low Density polyethylene; coupling agent is titanate coupling agent; nano-boron nitride is a two-dimensional nano-boron nitride single layer, the thickness of the two-dimensional nano-boron nitride single layer is 0.5nm, and the area is 3μm 2 ; nano-tantalum The particle size is 50nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为120r/min,保持8h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the speed at 120r/min, and keep it for 8h to obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为85℃条件下,控制搅拌速度为120r/min,保持8h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, mix evenly to obtain mixed solution B, and control the stirring speed of mixed solution B to 120r/min at a temperature of 85°C to keep 8h, and then dried by suction filtration to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为120r/min,保持30min,得到混合物,再将混合物加入模具中,在压力机的温度为190℃,压力为25MPa条件下,压制30min,得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high-mixer, control the speed at 120r/min, and keep it for 30min to obtain a mixture, and then add the mixture to the mold In the process, the temperature of the press is 190° C. and the pressure is 25 MPa, and the press is pressed for 30 minutes to obtain the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material.

其中,低密度聚乙烯密度为0.92g/cm2,熔融指数为2g/10min。Among them, low-density polyethylene has a density of 0.92g/cm 2 and a melt index of 2g/10min.

本实施例以低密度聚乙烯树脂作为载体树脂,并添加钛酸酯偶联剂、纳米钽、纳米氮化硼,得到的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能好,对中子的空间防护能力优异,而且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用。In this embodiment, low-density polyethylene resin is used as the carrier resin, and a titanate coupling agent, nano-tantalum, and nano-boron nitride are added to obtain a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, It has good thermal stability, excellent space protection against neutrons, and has the characteristics of light weight, good dispersion, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature. Wide range of applications.

实施例四:Embodiment four:

本实施例一种纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的制备方法,具体是按照以下步骤制备的:In this embodiment, a method for preparing a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material is specifically prepared according to the following steps:

一、按质量份数称取50份的聚乙烯树脂、40份的纳米钽、8份的纳米氮化硼、3份的偶联剂和144份的无水乙醇;其中,聚乙烯树脂为高密度聚乙烯;偶联剂为钛酸酯偶联剂;纳米氮化硼为二维纳米氮化硼单层,二维纳米氮化硼单层的厚度为0.5nm,面积为3μm2;纳米钽的粒径为50nm;1. Take by weight 50 parts of polyethylene resin, 40 parts of nano-tantalum, 8 parts of nano-boron nitride, 3 parts of coupling agent and 144 parts of dehydrated alcohol; wherein, polyethylene resin is high Density polyethylene; coupling agent is titanate coupling agent; nano-boron nitride is a two-dimensional nano-boron nitride single layer, the thickness of the two-dimensional nano-boron nitride single layer is 0.5nm, and the area is 3μm 2 ; nano-tantalum The particle size is 50nm;

二、将步骤一称取的纳米钽、纳米氮化硼和无水乙醇混合均匀,放入分散器中,控制转速为120r/min,保持12h,得到混合液A;2. Mix the nano-tantalum, nano-boron nitride and absolute ethanol weighed in step 1 evenly, put them into the disperser, control the speed at 120r/min, and keep it for 12h to obtain the mixed solution A;

三、向步骤二得到的混合液A中加入步骤一称取的偶联剂,混合均匀,得到混合液B,将混合液B在温度为90℃条件下,控制搅拌速度为120r/min,保持12h,再抽滤烘干,得到改性的纳米钽/纳米氮化硼;3. Add the coupling agent weighed in step 1 to the mixed solution A obtained in step 2, and mix evenly to obtain mixed solution B. When the temperature of mixed solution B is 90°C, the stirring speed is controlled to be 120r/min, and kept 12h, and then dried by suction filtration to obtain modified nano-tantalum/nano-boron nitride;

四、将步骤三得到的改性的纳米钽/纳米氮化硼和步骤一称取的聚乙烯树脂加入高混机中,控制转速为120r/min,保持20min,得到混合物,再将混合物加入模具中,在压力机的温度为180℃,压力为20MPa条件下,压制30min,1得到纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料。4. Add the modified nano-tantalum/nano-boron nitride obtained in step 3 and the polyethylene resin weighed in step 1 into the high-mixer, control the speed at 120r/min, and keep it for 20min to obtain a mixture, and then add the mixture to the mold In the press, the temperature of the press is 180°C and the pressure is 20 MPa, and the press is pressed for 30 minutes to obtain nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material.

其中,高密度聚乙烯密度为0.96g/cm2,熔融指数为5g/10min。Among them, the high density polyethylene has a density of 0.96g/cm 2 and a melt index of 5g/10min.

本实施例以高密度聚乙烯树脂作为载体树脂,并添加钛酸酯偶联剂、纳米钽、纳米氮化硼,得到的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,热稳定性能好,对中子的空间防护能力优异,而且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用。In this embodiment, high-density polyethylene resin is used as the carrier resin, and a titanate coupling agent, nano-tantalum, and nano-boron nitride are added to obtain a nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material, It has good thermal stability, excellent space protection against neutrons, and has the characteristics of light weight, good dispersion, good melt fluidity, excellent processing performance and excellent impact resistance at room temperature and low temperature. Wide range of applications.

上述实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与聚乙烯进行热稳定性对比测试,测试过程按以下步骤进行:The thermal stability of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Examples 1 to 4 above is compared with that of polyethylene for thermal stability comparison test, and the test process is carried out according to the following steps:

分别将质量均为10mg的实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和质量为10mg聚乙烯,放在热重/差热分析仪中,在氮气气氛下,以升温速率为10℃/min的速度,升温至温度为800℃,进行热稳定性的测试,采集实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的实时质量,得出实时质量与初始质量之比随温度的变化曲线,实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图如图1所示,其中,“——”代表实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图如图2所示,其中,“——”代表实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图如图3所示,其中,“——”代表实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和聚乙烯的热稳定性曲线图如图4所示,其中,“——”代表实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的热稳定性曲线,“---”代表聚乙烯的热稳定性曲线;其中热重/差热分析仪为美国PerkinElmer公司的Diamond TG/DTA热重/差热分析仪。The nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and the quality of 10mg of polyethylene prepared in Examples 1 to 4 that are 10 mg were placed in a thermogravimetric/differential thermal analyzer. Under a nitrogen atmosphere, the temperature was raised to 800° C. at a rate of 10° C./min to conduct a thermal stability test, and the nano-tantalum/nano-boron nitride-polyethylene space neutrons prepared in Examples 1 to 4 were collected. The real-time mass of the radiation protection composite material and polyethylene is obtained, and the ratio of the real-time mass to the initial mass varies with temperature. The nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and poly The thermal stability curve of ethylene is shown in Figure 1, wherein, "—" represents the thermal stability curve of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 1, "- -- "represents the thermal stability curve of polyethylene; the thermal stability curve figure of nanometer tantalum/nanometer boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared by embodiment two is as shown in Figure 2, wherein , "—" represents the thermal stability curve of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 2, and "---" represents the thermal stability curve of polyethylene; embodiment The thermal stability curves of the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and polyethylene prepared in the third step are shown in Figure 3, wherein, "—" represents the nano-tantalum/nano-boron nitride prepared in the third embodiment The thermal stability curve of nano-boron nitride-polyethylene space neutron radiation protection composite material, "---" represents the thermal stability curve of polyethylene; the nano-tantalum/nano-boron nitride-polyethylene space prepared in Example 4 The thermal stability curves of the neutron radiation protection composite material and polyethylene are shown in Figure 4, where "—" represents the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Example 4 The thermal stability curve, "---" represents the thermal stability curve of polyethylene; the thermogravimetric/differential thermal analyzer is the Diamond TG/DTA thermogravimetric/differential thermal analyzer from PerkinElmer, USA.

从图1~4可以看出,聚乙烯的初始分解温度为365℃,而实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料的初始分解温度依次为407℃、417℃、432℃和443℃,热稳定性能指标得到很大提升,且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用前景。As can be seen from Figures 1 to 4, the initial decomposition temperature of polyethylene is 365 ° C, while the initial decomposition temperature of the nanometer tantalum/nano boron nitride-polyethylene space neutron radiation protection composite material prepared in Examples 1 to 4 is successively 407°C, 417°C, 432°C and 443°C, the thermal stability index has been greatly improved, and it has the characteristics of light weight, good dispersion, good melt fluidity, excellent processability and excellent impact resistance at room temperature and low temperature. It has broad application prospects in spacecraft radiation protection.

上述实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝进行中子防护效率的测试,测试过程按以下步骤进行:The nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and pure aluminum prepared in the above embodiments 1-4 are tested for neutron protection efficiency, and the test process is carried out according to the following steps:

分别将实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和纯铝置于4.5MV单极静电加速器的中子源(能量为1MeV,通量为1×109中子/cm2·s,辐照时间为4000s)和能量探测器之间,入射中子能量固定不变,使用剂量探测器收集1MeV中子穿过实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和纯铝之后的吸收剂量,将1MeV中子穿过纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料和纯铝吸收剂量之差与纯铝吸收剂量之比作为纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料对中子辐照防护效率,实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图如图5所示,其中,“——”代表实施例一制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图如图6所示,其中,“——”代表实施例二制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图如图7所示,其中,“——”代表实施例三制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线;实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料与纯铝中子辐照后吸收剂量测试曲线图如图8所示,其中,“——”代表实施例四制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料中子辐照后吸收剂量测试曲线,“---”代表纯铝中子辐照后吸收剂量测试曲线。The nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material and pure aluminum prepared in Examples 1 to 4 were respectively placed in the neutron source of a 4.5MV unipolar electrostatic accelerator (energy is 1MeV, flux is 1 ×10 9 neutrons/cm 2 s, the irradiation time is 4000s) and the energy detector, the incident neutron energy is fixed, and the dose detector is used to collect 1MeV neutrons passing through the nanometers prepared in Examples 1-4. Absorbed dose after tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite and pure aluminum, passing a 1MeV neutron through nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite and pure aluminum The ratio of the difference of the absorbed dose to the absorbed dose of pure aluminum is used as the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material to the neutron radiation protection efficiency, the nano-tantalum/nano-boron nitride prepared in Example 1- The test curve of absorbed dose of polyethylene space neutron radiation protection composite material and pure aluminum after neutron irradiation is shown in Figure 5, where "—" represents the nano-tantalum/nano-boron nitride-polyethylene prepared in Example 1 The test curve of absorbed dose after neutron irradiation of space neutron radiation protection composite material, "---" represents the test curve of absorbed dose after neutron irradiation of pure aluminum; nano-tantalum/nano-boron nitride-polyethylene prepared in Example 2 The test curve of absorbed dose after neutron irradiation of space neutron radiation protection composite material and pure aluminum is shown in Fig. The absorbed dose test curve after neutron irradiation of the radiation protection composite material, "---" represents the absorbed dose test curve of pure aluminum after neutron irradiation; the nano-tantalum/nano-boron nitride-polyethylene space prepared in Example 3 The absorbed dose test curve of the neutron radiation protection composite material and pure aluminum is shown in Figure 7, where "—" represents the neutron radiation of nano-tantalum/nano-boron nitride-polyethylene prepared in Example 3 The absorbed dose test curve of the protective composite material after neutron irradiation, "---" represents the absorbed dose test curve of pure aluminum after neutron irradiation; the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation prepared in Example 4 The test curve of absorbed dose after neutron irradiation of the protective composite material and pure aluminum is shown in Figure 8, where "—" represents the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection compound prepared in Example 4 Absorbed dose test curve after material neutron irradiation, "---" stands for absorbed dose test curve after neutron irradiation of pure aluminum.

从图5~8可以看出,与纯铝相比,在相同质量厚度下,实施例1~4制备的纳米钽/纳米氮化硼-聚乙烯空间中子辐射防护复合材料,经过相同能量的中子辐照后,其吸收剂量依次降低了约0.10、0.14、0.18和0.22倍,中子防护性能优异,且具有质轻、分散性好、熔体流动性好、加工性能优良和常温及低温抗冲击性能优良的特点,在航天器辐射防护上有广泛的应用前景。It can be seen from Figures 5 to 8 that, compared with pure aluminum, under the same mass thickness, the nano-tantalum/nano-boron nitride-polyethylene space neutron radiation protection composite material prepared in Examples 1-4, after the same energy After neutron irradiation, its absorbed dose is reduced by about 0.10, 0.14, 0.18 and 0.22 times in turn. It has excellent neutron protection performance, and has light weight, good dispersibility, good melt fluidity, excellent processing performance and normal temperature and low temperature. The characteristics of excellent impact resistance have broad application prospects in spacecraft radiation protection.

Claims (8)

1. nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance, is characterized in that a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance is made by the absolute ethyl alcohol of mass fraction by the polyvinyl resin of 30 parts ~ 90 parts, the nanometer tantalum of 5 parts ~ 50 parts, the nm-class boron nitride of 1 part ~ 10 parts, the coupling agent of 1 part ~ 15 parts and 2 parts ~ 280 parts; Wherein, polyvinyl resin is one or more mixing in Low Density Polyethylene, high density polyethylene and polyvinyl resin with super-high molecular weight; Coupling agent is one or more mixing in silane coupling agent, titanate coupling agent, aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and boric acid ester coupler; Nm-class boron nitride is two-dimensional nano boron nitride individual layer, and the thickness of two-dimensional nano boron nitride individual layer is 0.2nm ~ 10nm, and area is 1 μm 2~ 20 μm 2; The particle diameter of nanometer tantalum is 1nm ~ 1000nm;
Specifically prepare according to following steps:
One, the absolute ethyl alcohol of the polyvinyl resin of 30 parts ~ 90 parts, the nanometer tantalum of 5 parts ~ 50 parts, the nm-class boron nitride of 1 part ~ 10 parts, the coupling agent of 1 part ~ 15 parts and 2 parts ~ 280 parts is taken by mass fraction; Wherein, polyvinyl resin is one or more mixing in Low Density Polyethylene, high density polyethylene and polyvinyl resin with super-high molecular weight; Coupling agent is one or more mixing in silane coupling agent, titanate coupling agent, aluminate coupling agent, metal composite coupling agent, phosphate coupling agent and boric acid ester coupler; Nm-class boron nitride is two-dimensional nano boron nitride individual layer, and the thickness of two-dimensional nano boron nitride individual layer is 0.2nm ~ 10nm, and area is 1 μm 2~ 20 μm 2; The particle diameter of nanometer tantalum is 1nm ~ 1000nm;
Two, the nanometer tantalum, nm-class boron nitride and the absolute ethyl alcohol that step one are taken mix, and put into decollator, and controlling rotating speed is 80r/min ~ 120r/min, keep 1h ~ 12h, obtain mixed liquor A;
Three, the coupling agent that step one takes is added in the mixed liquor A obtained to step 2, mix, obtain mixed liquid B, by mixed liquid B under temperature is 50 DEG C ~ 120 DEG C conditions, control stirring rate is 80r/min ~ 120r/min, keep 1h ~ 15h, then suction filtration is dried, and obtains the nanometer tantalum/nm-class boron nitride of modification;
The polyvinyl resin that the nanometer tantalum/nm-class boron nitride of the modification four, step 3 obtained and step one take adds in high mixer, control rotating speed is 80r/min ~ 120r/min, keep 5min ~ 60min, obtain potpourri, add in mould by potpourri again, be 175 DEG C ~ 240 DEG C in the temperature of pressing machine, pressure is under 5MPa ~ 45MPa condition, compacting 1min ~ 40min, obtains nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance;
The application of described a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance is as the application of protection nuclear material in spacecraft radiation proof.
2. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 1, is characterized in that in step one, absolute ethyl alcohol quality and nanometer tantalum and nm-class boron nitride total mass ratio are 2 ~ 4:1.
3. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 2, is characterized in that absolute ethyl alcohol quality and nanometer tantalum and nm-class boron nitride total mass ratio 3:1 in step one.
4. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 3, is characterized in that in step 3, mixed liquid B stirs under temperature is 80 DEG C ~ 90 DEG C conditions.
5. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 4, is characterized in that in step 3, mixed liquid B stirs under temperature is 85 DEG C of conditions.
6. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 5, is characterized in that in high mixer, keeping 15min ~ 30min in step 4.
7. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 6, is characterized in that in high mixer, keeping 25min in step 4.
8. a kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance according to claim 7, to is characterized in that in step 4 that in a press, temperature is 180 DEG C ~ 190 DEG C, and pressure is 15MPa ~ 25MPa.
CN201310021276.3A 2013-01-21 2013-01-21 A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance Active CN103050162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310021276.3A CN103050162B (en) 2013-01-21 2013-01-21 A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310021276.3A CN103050162B (en) 2013-01-21 2013-01-21 A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance

Publications (2)

Publication Number Publication Date
CN103050162A CN103050162A (en) 2013-04-17
CN103050162B true CN103050162B (en) 2015-10-07

Family

ID=48062773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310021276.3A Active CN103050162B (en) 2013-01-21 2013-01-21 A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance

Country Status (1)

Country Link
CN (1) CN103050162B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629615B (en) * 2015-02-26 2017-03-01 河南科技大学 A kind of wood board product surface-coated UV gloss oil and its painting method
CN108877976A (en) * 2018-07-02 2018-11-23 中国科学院新疆理化技术研究所 A kind of space high energy proton combination radiation safeguard structure suitable for long-term manned task
CN111479377A (en) * 2020-04-22 2020-07-31 吉林大学 D-D neutron tube target film protective layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE611784A (en) * 1960-12-21
DE10340124A1 (en) * 2002-12-17 2004-07-01 Bayer Ag Lead-free mixture as a radiation protection additive
EP2270085B1 (en) * 2003-11-14 2019-02-06 Wild River Consulting Group, LLC Metal polymer composite, a method for its extrusion and shaped articles made therefrom
CA2591994C (en) * 2004-12-20 2015-12-15 Meridian Research And Development Radiation detectable and protective articles
CN102693767B (en) * 2012-05-21 2015-03-25 北京富迪创业科技有限公司 Preparation method for ultra-thin neutron radiation preventive composite shielding material
CN102867557B (en) * 2012-10-09 2015-08-05 哈尔滨工业大学 A kind of preparation method of boron nitride-polyethylenespace space radiation protection compound substance

Also Published As

Publication number Publication date
CN103050162A (en) 2013-04-17

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance
Song et al. Tailoring nanocomposite interfaces with graphene to achieve high strength and toughness
Chen et al. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding
Wang et al. Effect of nanoclay grafting onto flax fibers on the interfacial shear strength and mechanical properties of flax/epoxy composites
Zhou et al. An Al@ Al2O3@ SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores
Fan et al. RGO-supported core-shell SiO2@ SiO2/carbon microsphere with adjustable microwave absorption properties
CN103050162B (en) A kind of nanometer tantalum/nm-class boron nitride-tygon space neutron shielding compound substance
KR20100047510A (en) Radiation shielding members including nano-particles as a radiation shielding materials and preparation method thereof
KR101589692B1 (en) Radiation shielding meterial including tungsten or boron nano-particles and preparation method thereof
CN104704577A (en) Radiation shielding material including radiation absorbing material and method of forming the same
Gao et al. Ferrocene decorative phenolic epoxy resin as lightweight thermal-stable dielectric relaxor for electromagnetic wave absorption
CN102867557B (en) A kind of preparation method of boron nitride-polyethylenespace space radiation protection compound substance
CN103657546A (en) Method for preparing nuclear shell type magnetic composite resin microballoons
Li et al. Hybrid filler with nanoparticles grown in situ on the surface for the modification of thermal conductive and insulating silicone rubber
Xu et al. Synthesis and characterization of silica nanocomposite in situ photopolymerization
Wei et al. Enhanced wide energy regions gamma ray shielding property for Bi2O3-Gd2O (CO3) 2∙ H2O/EP composites with strong electron cloud overlap
Han et al. Robust 2D layered MXene matrix–boron carbide hybrid films for neutron radiation shielding
Zhang et al. Fabrication of lead borate single crystal nanosheets for attenuating both neutron and gamma radiations
CN103073773B (en) For the composite polyethylene material and its preparation method and application of the radiation proof doped carbon nanometer pipe of Spacial Proton
CN111825911B (en) Polymer composite material for space neutron shielding and preparation method thereof
CN106750551A (en) A kind of nano barium sulfate/cellulose composite membrane and its production and use
Liang et al. Preparation and physical properties of CeO2 doped and modified epoxy resin composites
CN108877975B (en) A kind of neutron shielding protection material
CN103093844B (en) For the application of the composite polyethylene material of the radiation proof doped carbon nanometer pipe of space charged particle and nanometer tantalum
Xu et al. A novel graphene hybrid for reducing fire hazard of epoxy resin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230816

Address after: Room 305-5, Building 16, No. 1616 Chuangxin Road, Songbei District, Harbin City, Heilongjiang Province, 150028

Patentee after: Harbin Xingxin Technology Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY