CN103040446A - Neural feedback training system and neural feedback training method on basis of optical brain imaging - Google Patents
Neural feedback training system and neural feedback training method on basis of optical brain imaging Download PDFInfo
- Publication number
- CN103040446A CN103040446A CN2012105933129A CN201210593312A CN103040446A CN 103040446 A CN103040446 A CN 103040446A CN 2012105933129 A CN2012105933129 A CN 2012105933129A CN 201210593312 A CN201210593312 A CN 201210593312A CN 103040446 A CN103040446 A CN 103040446A
- Authority
- CN
- China
- Prior art keywords
- task
- neural activity
- training
- neural
- brain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012549 training Methods 0.000 title claims abstract description 121
- 230000001537 neural effect Effects 0.000 title claims abstract description 113
- 238000002610 neuroimaging Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 title abstract description 46
- 210000004556 brain Anatomy 0.000 claims abstract description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- 239000008280 blood Substances 0.000 claims description 15
- 210000004369 blood Anatomy 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 11
- 239000000284 extract Substances 0.000 claims description 8
- 108010064719 Oxyhemoglobins Proteins 0.000 claims description 6
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 claims description 4
- 108010002255 deoxyhemoglobin Proteins 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000007774 longterm Effects 0.000 abstract description 4
- 230000008685 targeting Effects 0.000 abstract description 3
- 108010054147 Hemoglobins Proteins 0.000 description 24
- 102000001554 Hemoglobins Human genes 0.000 description 24
- 230000003797 telogen phase Effects 0.000 description 14
- 238000000537 electroencephalography Methods 0.000 description 12
- 239000004575 stone Substances 0.000 description 11
- 230000004913 activation Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 6
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 5
- 210000000869 occipital lobe Anatomy 0.000 description 5
- 210000001152 parietal lobe Anatomy 0.000 description 5
- 230000003925 brain function Effects 0.000 description 4
- 230000003920 cognitive function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 3
- 230000007177 brain activity Effects 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 210000003710 cerebral cortex Anatomy 0.000 description 3
- 230000000004 hemodynamic effect Effects 0.000 description 3
- 238000006213 oxygenation reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 210000004761 scalp Anatomy 0.000 description 3
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000003930 cognitive ability Effects 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000004326 gyrus cinguli Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008449 language Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明提供了一种基于光学脑成像的神经反馈训练系统和神经反馈训练方法。在该神经反馈训练方法中,受训者通过完成训练任务达到训练目的;在训练任务完成过程中,通过光学脑成像设备采集受训者的神经活动数据;从该神经活动数据中提取出大脑特定功能系统的神经活动强度指标,并将之作为反馈信息呈现给受训者;受训者根据获得的反馈信息调节训练策略,以使其特定功能系统的神经活动得到训练,从而向目标发展。该神经反馈训练方法,通过光学脑成像设备采集受训者的神经活动数据。与脑电图和磁共振成像相比,光学脑成像具有很强的靶向性,而且光学脑成像设备成本较低,适合于长期进行神经反馈训练。
The invention provides a neurofeedback training system and a neurofeedback training method based on optical brain imaging. In this neurofeedback training method, the trainee achieves the training goal by completing the training task; during the completion of the training task, the trainee's neural activity data is collected through the optical brain imaging device; the specific functional system of the brain is extracted from the neural activity data The intensity index of neural activity is presented to the trainee as feedback information; the trainee adjusts the training strategy according to the feedback information obtained, so that the neural activity of its specific functional system can be trained, so as to develop towards the goal. In this neurofeedback training method, the neural activity data of the trainee is collected through an optical brain imaging device. Compared with EEG and MRI, optical brain imaging has strong targeting, and the cost of optical brain imaging equipment is low, which is suitable for long-term neurofeedback training.
Description
技术领域technical field
本发明涉及一种基于光学脑成像的神经反馈训练系统,同时涉及一种基于光学脑成像的神经反馈训练方法。The invention relates to a neurofeedback training system based on optical brain imaging, and at the same time relates to a neurofeedback training method based on optical brain imaging.
背景技术Background technique
神经反馈是通过在线采集个体的大脑神经活动并反馈给其自身,使其能够自主地对大脑活动进行调节,达到改变其认知及行为的目的。通过对特定大脑功能进行干预,从而实现对脑疾病患者的治疗和康复,或是使健康人的认知能力(如学习、记忆等)得到提高。Neurofeedback is to collect the individual's brain neural activity online and feed it back to itself, so that it can autonomously adjust the brain activity and achieve the purpose of changing its cognition and behavior. Through the intervention of specific brain functions, the treatment and rehabilitation of patients with brain diseases can be realized, or the cognitive abilities (such as learning and memory) of healthy people can be improved.
研究者利用脑电图(EEG)或功能磁共振成像(fMR I),观测希望调节的目标脑区的神经活动指标,并将其通过视听觉等通道反馈给受训者,从而指导受训者尝试对该神经活动指标加以自主调节。通过一定时间的反复训练,受训者可以掌握这种自主调节能力。由于被调节的脑区的神经活动与特定认知功能存在关联,因此这种长期的训练可以促进相应认知能力的改善,或是对某些神经与精神疾病起到治疗作用。例如有文献报道通过神经反馈调节视觉皮层的神经活动模式可以显著提高视知觉学习敏感度;而慢性痛患者则可以通过神经反馈调节前扣带皮层的神经活动来减轻疼痛(具体参见Kazuhisa Shibata etal.,Perceptual Learning Incepted by Decoded fMRI NeurofeedbackWithout Stimulus Presentation,SCIENCE,VOL.334(2011)和deCharms etal.,Control over brain activation and pain learnedby using real-time functional MRI,PNAS,VOL.102,NO.51,(2005))。Researchers use electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to observe the neural activity indicators of the target brain area that they want to adjust, and feed them back to the trainees through audiovisual and other channels, so as to guide the trainees to try to adjust The neural activity index is regulated autonomously. Through repeated training for a certain period of time, trainees can master this ability of self-regulation. Since the neural activity of the adjusted brain area is related to specific cognitive functions, this long-term training can promote the improvement of corresponding cognitive abilities, or play a therapeutic role in certain neurological and mental diseases. For example, it has been reported that adjusting the neural activity patterns of the visual cortex through neurofeedback can significantly improve the sensitivity of visual perception learning; while patients with chronic pain can reduce pain through neurofeedback adjustment of the neural activity of the anterior cingulate cortex (see Kazuhisa Shibata et al. ,Perceptual Learning Incepted by Decoded fMRI NeurofeedbackWithout Stimulus Presentation,SCIENCE,VOL.334(2011) and deCharms et al.,Control over brain activation and pain learned by using real-time functional MRI,PNAS,VOL.102,2NO0.51,( )).
用于神经反馈训练的设备主要集中于基于脑电图或基于功能磁共振成像的神经反馈训练系统。例如公开号为CN101912255A的中国发明专利申请中公开的基于实时功能磁共振信号的神经反馈系统,通过功能磁共振信号在线检测大脑的激活状态,并实时反馈给受训练者,通过反复训练调控大脑的认知活动水平,提高或恢复受训者相应的认知功能。又如公开号为CN102319067A的中国发明专利申请中公开的用于大脑记忆功能改善的基于脑电信号的神经反馈训练仪,可利用大脑活动过程采集下来的头皮脑电信号,对记忆力的即时状态进行定量检测,并将表征记忆力水平的脑电节律波呈现给用户,指导用户有意识地调节脑电节律波,达到改善记忆力水平的目的。Devices for neurofeedback training are mainly focused on EEG-based or fMRI-based neurofeedback training systems. For example, the Chinese invention patent application with publication number CN101912255A discloses a neurofeedback system based on real-time functional magnetic resonance signals, which detects the activation state of the brain online through functional magnetic resonance signals, and feeds back to the trainees in real time, and regulates the brain through repeated training. Cognitive activity level, improve or restore the corresponding cognitive function of trainees. Another example is the neurofeedback training instrument based on EEG signals for improving brain memory function disclosed in the Chinese invention patent application with the publication number CN102319067A, which can use the scalp EEG signals collected during the brain activity process to monitor the immediate state of memory. Quantitatively detect and present the EEG rhythm wave representing the memory level to the user, and guide the user to consciously adjust the EEG rhythm wave to achieve the purpose of improving the memory level.
然而,现有的神经反馈系统仍存在很多问题尚待解决。对于基于脑电图的神经反馈系统,由于脑电图的空间分辨率极低使得难以确切定位训练脑区,而且脑电图节律成分与认知功能的关系也尚不明确,因此训练的靶向性差,其应用受到很大局限。而基于磁共振成像的神经反馈系统虽然一定程度上克服了脑电图系统的不足,但由于磁共振成像设备成本和使用成本及其昂贵,设备体积巨大不能随意移动,只能用于实验室研究,根本不可能用于临床长期治疗训练使用。However, there are still many problems to be solved in the existing neurofeedback system. For the neurofeedback system based on EEG, because the spatial resolution of EEG is extremely low, it is difficult to locate the training brain area, and the relationship between EEG rhythm components and cognitive function is not yet clear, so the training target performance is poor, and its application is greatly limited. Although the neurofeedback system based on magnetic resonance imaging overcomes the shortcomings of the EEG system to a certain extent, due to the high cost and use cost of magnetic resonance imaging equipment, the equipment is huge and cannot be moved at will, so it can only be used for laboratory research. , It is impossible to be used for clinical long-term treatment training.
发明内容Contents of the invention
本发明所要解决的首要技术问题在于提供一种基于光学脑成像的神经反馈训练方法。The primary technical problem to be solved by the present invention is to provide a neurofeedback training method based on optical brain imaging.
本发明所要解决的另一技术问题在于提供一种基于光学脑成像的神经反馈训练系统。Another technical problem to be solved by the present invention is to provide a neurofeedback training system based on optical brain imaging.
为了达到上述的发明目的,本发明采用下述的技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention adopts following technical scheme:
一种基于光学脑成像的神经反馈训练方法,通过受训者完成训练任务达到训练目的,包括如下步骤:A neurofeedback training method based on optical brain imaging, through which the trainee completes the training task to achieve the training purpose, including the following steps:
(1)在所述训练任务完成过程中,通过光学脑成像设备采集所述受训者的神经活动数据;从所述神经活动数据中提取出大脑特定功能系统的神经活动强度指标;并将所述大脑特定功能系统的神经活动强度指标作为反馈信息呈现给所述受训者;进入步骤(2);(1) During the completion of the training task, the trainee’s neural activity data is collected through optical brain imaging equipment; the neural activity intensity index of the specific functional system of the brain is extracted from the neural activity data; and the The neural activity intensity index of the specific functional system of the brain is presented to the trainee as feedback information; enter step (2);
(2)所述受训者根据步骤(1)中获得的所述反馈信息做出进一步训练;进入步骤(3);(2) The trainee makes further training according to the feedback information obtained in step (1); enter step (3);
(3)重复步骤(1)中的过程;直至所述训练任务结束。(3) Repeat the process in step (1); until the training task ends.
较优地,在所述步骤(1)中,通过分析所述神经活动数据提取出当前时刻的氧合血红蛋白浓度、脱氧血红蛋白浓度、任务记号和时间戳信息,并结合所述训练任务的开始时间和结束时间,计算出所述大脑特定功能系统的神经活动强度指标。Preferably, in the step (1), the concentration of oxyhemoglobin, the concentration of deoxygenated hemoglobin, task marks and time stamp information at the current moment are extracted by analyzing the neural activity data, and combined with the start time of the training task and end time to calculate the neural activity intensity index of the specific functional system of the brain.
较优地,所述训练任务采用组块任务设计范式,包括交替进行的休息阶段和任务阶段,在所述步骤(1)中,所述大脑特定功能系统的神经活动强度指标是指所述任务阶段相对于所述休息阶段的相对血氧浓度值。Preferably, the training task adopts a block task design paradigm, including alternate rest phases and task phases. In the step (1), the neural activity intensity index of the specific brain function system refers to the task The relative SpO2 value of the phase relative to the rest phase.
一种用于实现上述神经反馈训练方法的神经反馈训练系统,包括光学脑成像设备、中央处理单元和显示设备,所述光学脑成像设备用于采集受训者的神经活动数据,并将采集到的所述神经活动数据传输给所述中央处理单元,所述中央处理单元用于结合训练任务分析所述神经活动数据,获得大脑特定功能系统的神经活动强度指标,并将之传输至所述显示设备,所述显示设备用于向所述受训者呈现反馈信息。A neurofeedback training system for realizing the above-mentioned neurofeedback training method, comprising an optical brain imaging device, a central processing unit and a display device, the optical brain imaging device is used to collect the neural activity data of the trainee, and the collected The neural activity data is transmitted to the central processing unit, and the central processing unit is used to analyze the neural activity data in combination with the training task, obtain the neural activity intensity index of the specific functional system of the brain, and transmit it to the display device , the display device is used to present feedback information to the trainee.
较优地,所述中央处理单元包括任务模块、采集模块、解码模块和反馈模块;其中,所述任务模块用于基于所述训练任务生成任务流程,并控制其他模块的执行情况;所述采集模块用于实时从所述光学脑成像设备中获取所述神经活动数据,并将所述神经活动数据传输至所述解码模块;所述解码模块用于对所述神经活动数据进行预处理,并提取出所述大脑特定功能系统的神经活动强度指标;所述反馈模块用于把所述大脑特定功能系统的神经活动强度指标反馈至所述显示设备。Preferably, the central processing unit includes a task module, an acquisition module, a decoding module and a feedback module; wherein, the task module is used to generate a task flow based on the training task and control the execution of other modules; the acquisition The module is used to obtain the neural activity data from the optical brain imaging device in real time, and transmit the neural activity data to the decoding module; the decoding module is used to preprocess the neural activity data, and The neural activity intensity index of the specific brain function system is extracted; the feedback module is used to feed back the neural activity intensity index of the brain specific functional system to the display device.
较优地,所述采集模块用于实时从所述光学脑成像设备中提取出当前时刻的氧合血红蛋白浓度、脱氧血红蛋白浓度、任务记号和时间戳信息,并将所述氧合血红蛋白浓度、所述脱氧血红蛋白浓度、所述任务记号和所述时间戳信息传输至所述解码模块。Preferably, the acquisition module is used to extract the oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, task mark and time stamp information at the current moment from the optical brain imaging device in real time, and store the oxygenated hemoglobin concentration, the The deoxygenated hemoglobin concentration, the task mark and the time stamp information are transmitted to the decoding module.
较优地,所述训练任务包括交替进行的休息阶段和任务阶段,所述任务模块用于通知所述反馈模块交替进入休息阶段或者任务阶段;并且所述任务模块用于将所述休息阶段和所述任务阶段的时间开始点和结束时间点通知所述解码模块。Preferably, the training task includes alternate rest phases and task phases, the task module is used to notify the feedback module to alternately enter the rest phase or task phase; and the task module is used to combine the rest phase and the task phase The time start point and the end time point of the task phase are notified to the decoding module.
较优地,所述解码模块用于对所述神经活动数据进行预处理;并从预处理得到的结果中提取出大脑特定功能系统的对应区域的平均信号强度,再根据来自所述任务模块的任务开始时间信息和任务结束时间信息,计算出所述大脑特定功能系统的神经活动强度指标,所述大脑特定功能系统的神经活动强度指标是指所述任务阶段相对于所述休息阶段的相对血氧浓度值。Preferably, the decoding module is used to preprocess the neural activity data; and extract the average signal intensity of the corresponding area of the brain specific functional system from the result obtained by the preprocessing, and then according to the information from the task module The task start time information and the task end time information are used to calculate the neural activity intensity index of the specific brain functional system, and the neural activity intensity index of the specific brain functional system refers to the relative blood pressure of the task stage relative to the rest stage. Oxygen concentration value.
较优地,所述反馈模块用于把所述解码模块中得到的所述大脑特定功能系统的神经活动强度指标以画面的形式反馈至所述显示设备。Preferably, the feedback module is used to feed back the neural activity intensity index of the specific brain function system obtained in the decoding module to the display device in the form of a picture.
较优地,所述光学脑成像设备是功能近红外光谱仪。Preferably, the optical brain imaging device is a functional near-infrared spectrometer.
本发明所提供的神经反馈训练系统和神经反馈训练方法,在训练过程中通过光学脑成像设备采集受训者的神经活动数据,并将受训者大脑特定功能系统的神经活动强度指标反馈给受训者,从而使受训者能够根据获得的反馈信息调节训练策略,以使其特定功能系统的神经活动得到训练,向目标发展。其中,光学脑成像设备,利用脑组织血红蛋白对不同波长的近红外光吸收率的差异特性,可以无损地检测大脑皮层的血液动力学活动,进而研究大脑神经活动。与脑电图相比,光学脑成像具有一定的空间分辨率(1~3cm),能对观测到的脑信号进行较为精确的定位,提高了训练的靶向性。与磁共振成像相比,光学脑成像价格便宜,设备轻便可移动,可以在医院、家庭、学校等环境使用;扫描环境安全舒适,能够进行反复多次测量,适合需要长期多次扫描的反馈训练。In the neurofeedback training system and neurofeedback training method provided by the present invention, the neural activity data of the trainee is collected through the optical brain imaging device during the training process, and the neural activity intensity index of the specific functional system of the brain of the trainee is fed back to the trainee, So that the trainee can adjust the training strategy according to the feedback information obtained, so that the neural activity of its specific functional system can be trained and develop towards the goal. Among them, the optical brain imaging equipment can non-destructively detect the hemodynamic activity of the cerebral cortex by using the difference in the absorption rate of near-infrared light of different wavelengths by hemoglobin in brain tissue, and then study the neural activity of the brain. Compared with EEG, optical brain imaging has a certain spatial resolution (1-3cm), which can more accurately locate the observed brain signals and improve the targeting of training. Compared with magnetic resonance imaging, optical brain imaging is cheap, and the equipment is light and mobile, and can be used in hospitals, homes, schools, etc.; the scanning environment is safe and comfortable, and can be repeated for multiple measurements, suitable for feedback training that requires long-term multiple scans .
附图说明Description of drawings
图1为本发明所提供的基于光学脑成像的神经反馈训练系统构成示意图;Fig. 1 is a schematic diagram of the composition of the neurofeedback training system based on optical brain imaging provided by the present invention;
图2为本发明实施例中,神经反馈训练游戏的运行界面示例;Fig. 2 is an example of the running interface of the neurofeedback training game in the embodiment of the present invention;
图3为本发明实施例中,实验任务设计示例;Fig. 3 is an example of experimental task design in an embodiment of the present invention;
图4为图3所示实验任务中,受训者的第12号导的相对氧合血红蛋白浓度时序图;Fig. 4 is in the experimental task shown in Fig. 3, the trainee's No. 12 relative oxyhemoglobin concentration sequence diagram;
图5为图3所示实验任务中,受训者的顶叶光极片的空间激活图;Fig. 5 is in the experimental task shown in Fig. 3, the spatial activation diagram of the parietal lobe optode of the trainee;
图6为图3所示实验任务中,受训者的枕叶光极片的空间激活图。Fig. 6 is the spatial activation map of the occipital lobe optode of the trainee in the experimental task shown in Fig. 3 .
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明的发明内容做详细说明。The content of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明所提供的基于光学脑成像(fNIRS)的神经反馈训练系统通过受训者完成训练任务实现训练目的。在受训者完成训练任务的过程中,光学脑成像设备实时捕获受训者大脑中特定功能系统的神经活动,并将特定功能系统的神经活动强度以友好的方式呈现给受训者。受训者根据获得的反馈信息调节训练策略,以使其特定功能系统的神经活动得到训练,从而向目标发展。该神经反馈训练方法可以应用于运动、语言、情绪等认知功能的调节,也可以用于脑中风病人的运动康复训练。当然,该基于光学脑成像的神经反馈训练方法,除了具有医用治疗价值外,还可用于改善普通人的神经活动,使普通人的神经活动得到锻炼。The neurofeedback training system based on optical brain imaging (fNIRS) provided by the present invention realizes the training purpose through the trainees completing training tasks. During the process of the trainee completing the training task, the optical brain imaging device captures the neural activity of the specific functional system in the brain of the trainee in real time, and presents the intensity of the neural activity of the specific functional system to the trainee in a friendly manner. The trainee adjusts the training strategy according to the feedback information obtained, so that the neural activity of its specific functional system can be trained, so as to develop towards the goal. The neurofeedback training method can be applied to the regulation of cognitive functions such as movement, language, and emotion, and can also be used for exercise rehabilitation training of stroke patients. Of course, the neurofeedback training method based on optical brain imaging, in addition to having medical treatment value, can also be used to improve the neural activity of ordinary people, so that the neural activity of ordinary people can be exercised.
具体来说,在使用该神经反馈训练系统进行训练时,通过下列步骤实现训练过程:步骤(1):在训练任务完成过程中,通过光学脑成像设备采集受训者的神经活动数据,从神经活动数据中提取出大脑特定功能系统的神经活动强度指标,并将大脑特定功能系统的神经活动强度指标作为反馈信息呈现给受训者,进入步骤(2);步骤(2):受训者根据步骤(1)中获得的反馈信息做出进一步训练,进入步骤(3);步骤(3):重复步骤(1)中的过程,直至训练任务结束。Specifically, when using the neurofeedback training system for training, the training process is realized through the following steps: Step (1): During the completion of the training task, the neural activity data of the trainee is collected through the optical brain imaging device, and the neural activity The neural activity intensity index of the specific functional system of the brain is extracted from the data, and the neural activity intensity index of the specific functional system of the brain is presented to the trainee as feedback information, and enters step (2); step (2): the trainee according to step (1 ) for further training, and enter step (3); step (3): repeat the process in step (1) until the end of the training task.
光学脑成像设备是一种非侵入式的设备,利用脑组织血红蛋白对不同波长的近红外光吸收率的差异特性,可以无损地检测大脑皮层的血液动力学活动,进而研究大脑神经活动。在上述步骤(1)中,通过分析神经活动数据提取出当前时刻的氧合血红蛋白浓度、脱氧血红蛋白浓度、任务记号和时间戳信息,并结合训练任务的开始时间和结束时间,计算出大脑特定功能系统的神经活动强度指标。在该神经反馈训练方法中,训练活动包括交替进行的休息阶段和任务阶段,通过计算任务阶段相对于休息阶段的相对血氧浓度值,可以获得大脑特定功能系统的神经活动强度指标。较优地,在该神经反馈训练方法中,训练任务采用组块任务设计范式(block design),通过采用不同的组快任务设计,研究者能够方便地使用该方法对受训者进行相关的神经反馈训练。Optical brain imaging equipment is a non-invasive device that uses the difference in the absorption rate of near-infrared light of different wavelengths by hemoglobin in brain tissue to non-destructively detect the hemodynamic activity of the cerebral cortex, and then study the neural activity of the brain. In the above step (1), the concentration of oxygenated hemoglobin, deoxygenated hemoglobin, task mark and time stamp information at the current moment are extracted by analyzing the neural activity data, and combined with the start time and end time of the training task, the specific function of the brain is calculated An indicator of the intensity of neural activity of the system. In this neurofeedback training method, the training activity includes alternating rest phases and task phases, and by calculating the relative blood oxygen concentration value of the task phase relative to the rest phase, the neural activity intensity index of the specific functional system of the brain can be obtained. Preferably, in the neurofeedback training method, the training task adopts a block design paradigm (block design), and by adopting different block task designs, researchers can easily use this method to provide trainees with relevant neurofeedback train.
上面对基于光学脑成像的神经反馈训练方法进行了简要介绍,下面将详细介绍本发明所提供的基于光学脑成像的神经反馈训练系统和利用该神经反馈训练系统进行训练的过程。利用该神经反馈训练系统进行训练,目标是能够方便地给受训者反馈其自身的神经活动强度,使其掌握调节该活动的能力,以此带来行为上的改变。The neurofeedback training method based on optical brain imaging has been briefly introduced above, and the neurofeedback training system based on optical brain imaging provided by the present invention and the training process using the neurofeedback training system will be introduced in detail below. The goal of using the neurofeedback training system for training is to conveniently give trainees feedback on their own neural activity intensity so that they can master the ability to regulate this activity, thereby bringing about behavioral changes.
如图1所示,该神经反馈训练系统包括光学脑成像设备1、中央处理单元2和显示设备3。其中,光学脑成像设备1用于采集受训者的神经活动数据,并将采集到的神经活动数据传输给中央处理单元2,中央处理单元2结合执行的训练任务分析神经活动数据获得分析结果,并将分析结果传输至显示设备3,显示设备3用于向受训者呈现反馈信息,该反馈信息是指受训者大脑特定功能系统的神经活动强度指标。As shown in FIG. 1 , the neurofeedback training system includes an optical
其中,光学脑成像设备1可以用功能近红外光谱仪实现,例如可以使用日立的ETG-4000近红外脑功能成像装置;中央处理单元2可以用运行系统软件的电脑主机实现,显示设备3可以用LCD液晶显示屏或其他显示器实现。在中央处理单元2中,又包括任务模块21、采集模块22、解码模块23和反馈模块24;任务模块21用于基于主试提供的组块任务设计生成任务流程,并控制其他模块的执行情况;采集模块22用于实时从光学脑成像设备1中获取神经活动数据,即氧合血红蛋白浓度值和脱氧血红蛋白浓度值,并将神经活动数据传输至解码模块23;解码模块23用于将采集模块22得到的神经活动数据进行预处理,并提取出大脑特定功能系统的神经活动强度指标;反馈模块24用于把解码模块23中得到的神经活动强度指标反馈至显示设备3,从而呈现给受训者。Wherein, the optical
在该中央处理单元2中,各功能模块的具体实现过程如下。任务模块21,基于主试提供的组块任务设计参数,生成时间间隔序列和任务序列,并维护一个定时器。定时器按时间间隔序列里面的时间作为倒计时。当定时器计时完毕,根据任务序列修改当前的实验进行条件,并通知反馈模块24进入休息阶段或者任务阶段;与此同时,通知解码模块23,因为解码模块23计算相对血氧浓度值需要知道休息阶段和任务阶段的时间开始点和结束时间点。采集模块22,通过TCP/IP协议跟光学脑成像设备1建立网络连接并实时接收神经活动数据,将接收到的神经活动数据按照预先设定的数据传输格式进行分析,提取出当前时刻的氧合血红蛋白浓度、脱氧血红蛋白浓度、任务记号和时间戳信息。解码模块23,接收来自采集模块22的神经活动数据,并对其进行滑动窗口平均滤波、氧合减脱氧血红蛋白浓度的预处理过程;并从预处理得到的结果中提取出特定功能系统所对应区域的平均信号强度,再根据来自任务模块21的任务开始时间信息和任务结束时间信息,计算出任务阶段相对于休息阶段的相对血氧浓度值。这个相对血氧浓度值即为大脑特定功能系统的神经活动强度指标。反馈模块24,分为2个阶段循环出现:阶段1为休息阶段,呈现休息提示信息,此时受训者什么都不需要做,放松身心;阶段2为任务阶段,反馈模块24接收来自解码模块23的相对血氧浓度值,并且通过游戏画面等形式友好的方式呈现给受训者。此时,受训者按照预先给定的训练方式做出反应,从而进一步控制游戏的走向。例如,受训者可以按照要求发出预先给定的训练指导语,通过分析受训者在发声练习时的光学脑成像,获得大脑的神经活动数据,进一步控制游戏走向。In the
在这里,以通过神经反馈手段来调节受训者右侧辅助运动区(rSMA)的神经活动的实施例为例,对上述神经反馈训练系统的实现过程进行说明。Here, the implementation process of the above-mentioned neurofeedback training system is described by taking the example of adjusting the neural activity of the trainee's right supplementary motor area (rSMA) by means of neurofeedback.
图2所示的图像是该实施例中显示设备3上呈现的人机交互界面,其中,图中石头所在的区域为右侧辅助运动区在采集区域中所对应的区域,以石头的高度表示该神经区域的神经活动强度,石头的高度越高,表示该区域的神经活动强度越强。从显示设备3上呈现的画面,受训者在训练过程中可以清晰地看到反映自己的右侧辅助运动区的神经活动强度的石头高度,从而了解到该受训练区域的神经活动强度。该人机交互界面,由两部分组成:一部分为信号灯,左侧红灯亮表示休息,右侧绿灯亮表示任务进行;另一部分为石头,石头的高度由采集到的神经活动强度进行输入控制。The image shown in Fig. 2 is the human-computer interaction interface presented on the
在该训练任务中,受训者在身体不活动的情况下,通过运动想象策略把石头高度调高,从而锻炼采集区域所对应的特定神经系统的神经活动能力。在该实施例中,训练任务的组块任务设计范式如图3所示,包括8个组块,每个组块内部有休息阶段和任务阶段两部分,其中休息阶段时长20秒,任务阶段时长20秒。在该训练任务中,使用日立ETG-4000光学脑成像设备完成训练,该光学脑成像设备配置有两片3×5的光极片,分别佩戴在受训者的顶叶和枕叶,其中,顶叶覆盖的部分运动区中包括右侧辅助运动区。通过分析采集到的顶叶所对应区域的神经活动强度,可以获得右侧辅助运动区的神经活动能力,而通过对比顶叶和枕叶分别对应区域的神经活动强度,可以确定神经反馈训练的特异性。In this training task, the trainees adjusted the height of the stone through the motor imagery strategy without physical activity, so as to exercise the neural activity ability of the specific nervous system corresponding to the acquisition area. In this embodiment, the block task design paradigm of the training task is shown in Figure 3, including 8 blocks, and each block has two parts, a rest stage and a task stage, wherein the rest stage is 20 seconds long, and the task stage is 20 seconds long. 20 seconds. In this training task, Hitachi ETG-4000 optical brain imaging equipment was used to complete the training. The optical brain imaging equipment was equipped with two 3×5 optical pole pieces, which were respectively worn on the parietal lobe and occipital lobe of the trainee. Part of the motor area covered by the leaf includes the right supplementary motor area. By analyzing the collected neural activity intensity of the area corresponding to the parietal lobe, the neural activity ability of the right supplementary motor area can be obtained, and by comparing the neural activity intensity of the corresponding areas of the parietal lobe and the occipital lobe, the specificity of neurofeedback training can be determined. sex.
在训练任务完成过程中,受训者看着显示设备3上的游戏画面,当红色信号灯亮,受训者处于休息状态;当绿色信号灯亮,受训者开始运动想象调节使石头的高度尽可能地升高。During the completion of the training task, the trainee looks at the game screen on the
在任务模块21中,基于主试提供的组块任务设计参数,生成时间间隔序列。设定一个定时器,每20秒反应一次,一共运行2*8=16次。当任务模块21采集到定时器反应,就切换训练任务的进行状态。若所切换的训练状态为休息阶段,则通知反馈模块24切换到休息阶段;若所切换的训练状态为任务阶段,则通知反馈模块24进入任务阶段,同时通知编码模块23重新计算基线并开始为反馈模块24提供反馈信息。In the
在受训者完成训练任务的过程中,光学脑成像设备2捕获受训者的神经活动数据。During the process of the trainee completing the training task, the optical
采集模块22通过TCP协议跟ETG-4000建立网络连接并实时接收光学脑成像设备2采集的神经活动数据。先接收4字节的32位整形数据,如果值为12,则表示接下来的是一个格式如表1的数据包,其中,在该数据包中,血氧浓度数据分为两部分,前半部分内容为氧合血红蛋白浓度,后半部分内容为脱氧血红蛋白浓度,每个浓度值为一个8字节的单精度浮点数。采集模块22将接收到的数据按照上述格式进行分析,提取出当前时刻的氧合血红蛋白浓度、脱氧血红蛋白浓度、任务标记和时间戳信息,并将上述数据发送至解码模块23。The
表1数据包中的数据格式Data format in the data packet in Table 1
解码模块23,接收来自采集模块22的数据,并进行滑动窗口平均滤波、氧合减脱氧血红蛋白浓度的预处理过程。其中,滑动窗口平均滤波的窗长参数设定为1秒,氧合减脱氧血红蛋白浓度的预处理公式如下:The decoding module 23 receives the data from the
其中,x是合氧血红蛋白浓度,y是脱氧血红蛋白浓度,α是两种血红蛋白浓度的标准差之比。x0,y0分别是经过预处理的合氧血红蛋白浓度和脱氧血红蛋白浓度。where x is the concentration of oxyhemoglobin, y is the concentration of deoxygenated hemoglobin, and α is the ratio of the standard deviations of the two hemoglobin concentrations. x 0 , y 0 are the concentrations of pretreated oxygenated hemoglobin and deoxygenated hemoglobin, respectively.
从预处理结果中提取出特定脑区(大脑特定功能系统的对应区域)的平均信号强度,根据来自休息结束时计算获得的当时的血氧浓度值,计算出当前血氧浓度值相对与之的相对血氧浓度值。这个相对血氧浓度值即为大脑特定功能系统的神经活动强度。在该实施例中,该特定脑区由解剖定位得知:右侧辅助运动区所在头皮上位置为用于头皮上定位国际10-20定位系统中Cz和C4之间。Extract the average signal intensity of a specific brain region (corresponding to a specific functional system of the brain) from the preprocessing results, and calculate the current blood oxygen concentration value relative to it based on the blood oxygen concentration value calculated at the end of the rest Relative blood oxygen concentration value. This relative blood oxygen concentration value is the neural activity intensity of the specific functional system of the brain. In this embodiment, the specific brain region is known from anatomical positioning: the position of the right supplementary motor area on the scalp is between Cz and C4 in the international 10-20 positioning system for positioning on the scalp.
反馈模块24,与解码模块23通过TCP协议进行通信,用于将解码模块23的分析结果呈现给受训者。在该实施例中,反馈模块24将特定功能系统的神经活动强度指标以一个独立的悬浮石头游戏的画面呈现给受训者。在任务进行阶段,它接收来自解码模块23的结果,将0~1数值范围之内的数据转化为石头的高度。当任务模块21的训练阶段从任务阶段切换到休息阶段时,石头自然掉落到地面。The feedback module 24 communicates with the decoding module 23 through the TCP protocol, and is used to present the analysis result of the decoding module 23 to the trainee. In this embodiment, the feedback module 24 presents the intensity index of the neural activity of the specific functional system to the trainee as an independent floating stone game picture. In the stage of the task, it receives the result from the decoding module 23, and converts the data within the range of 0 to 1 into the height of the stone. When the training phase of the
在该训练任务完成过程中可以获得两个结果:一个是目标脑区活动的时间序列图,用于反映该活动是否与训练任务相关;另一个是脑成像设备观察区域的空间激活图,用于确定神经反馈调试的特异性。Two results can be obtained during the completion of the training task: one is the time series map of the target brain area activity, which is used to reflect whether the activity is related to the training task; the other is the spatial activation map of the observed area of the brain imaging device, which is used to Determining the Specificity of Neurofeedback Debugging.
图4是目标功能区域(即,位于第12号导的右侧辅助运动区)在实验过程中的时间序列图,用于反应活动过程。可以看到,该活动与任务设计有很强的相关性,在任务阶段(灰色背景)血氧浓度增强,而休息阶段(白色背景)血氧浓度减弱,从而说明,通过神经反馈,受训者可以很好地控制大脑特定功能系统的神经活动强度。Figure 4 is a time-series diagram of the target functional area (i.e., the right supplementary motor area located in lead 12) during the experiment for the response activity process. It can be seen that the activity has a strong correlation with the task design, and the blood oxygen concentration is enhanced during the task phase (gray background), while the blood oxygen concentration is weakened during the rest phase (white background), thus indicating that through neurofeedback, trainees can Finely control the intensity of neural activity in specific functional systems of the brain.
图5和图6分别是受训者所佩戴的两个光极片对应区域的空间激活图。可以看到,空间上激活比较强的位置都在目标脑区附近(见图5中顶叶的空间激活图),而与任务无关的枕叶,主要是视觉区域,则没有显示出激活(见图6枕叶的空间激活图)。从上述两幅图中,可以判断出使用该基于光学脑成像的神经反馈训练系统进行训练,可以特异地调节目标脑区的活动。在完成该训练任务的过程中,受训者可以通过运动想象策略来有选择性地调节目标脑区的活动。这种有选择性地调节,可以带来临床和科研上的价值。例如,临床上,对脑卒中病人进行运动康复训练,可以把实际运动和大脑运动功能训练结合起来,有效解决了传统康复训练只训练肌肉而不关注大脑的弊端;科研上,对于研究者,借助这一手段,可以有选择性地让被试脑区活动起来,通过观测其带来的行为改变,可以提供脑活动和行为的因果关联,为认知神经科学研究提供新的思路。Figures 5 and 6 are the spatial activation maps of the corresponding regions of the two optodes worn by the trainee, respectively. It can be seen that the positions with relatively strong activation in space are all near the target brain area (see the spatial activation map of the parietal lobe in Figure 5), while the occipital lobe, which is not related to the task, mainly the visual area, does not show activation (see Figure 6 Spatial activation map of the occipital lobe). From the above two figures, it can be judged that using the optical brain imaging-based neurofeedback training system for training can specifically regulate the activity of the target brain region. In the process of completing the training task, the trainee can selectively adjust the activity of the target brain area through the strategy of motor imagery. This selective regulation can bring clinical and scientific value. For example, clinically, exercise rehabilitation training for stroke patients can combine actual exercise with brain motor function training, effectively solving the drawbacks of traditional rehabilitation training that only trains muscles and does not focus on the brain; in scientific research, for researchers, with the help of This method can selectively activate the brain regions of the subjects, and by observing the behavioral changes it brings about, it can provide a causal relationship between brain activity and behavior, and provide new ideas for cognitive neuroscience research.
综上所述,本发明提供的基于光学脑成像的神经反馈训练系统和神经反馈训练方法,其中,涉及的光学脑成像设备是一种非侵入式的设备,利用脑组织血红蛋白对不同波长的近红外光吸收率的差异特性,可以无损地检测大脑皮层的血液动力学活动,进而研究大脑神经活动。与脑电图相比,光学脑成像具有一定的空间分辨率(1~3cm),能对观测到的脑信号进行较为精确的定位,提高了训练的靶向性。与磁共振成像相比,光学脑成像价格便宜,设备轻便可移动,可以在医院、家庭、学校等环境使用;扫描环境安全舒适,能够进行反复多次测量,适合需要长期多次扫描的反馈训练。To sum up, the neurofeedback training system and neurofeedback training method based on optical brain imaging provided by the present invention, wherein the optical brain imaging device involved is a non-invasive device, which uses brain tissue hemoglobin to react to near The differential characteristics of infrared light absorption rate can non-destructively detect the hemodynamic activity of the cerebral cortex, and then study the neural activity of the brain. Compared with EEG, optical brain imaging has a certain spatial resolution (1-3cm), which can more accurately locate the observed brain signals and improve the targeting of training. Compared with magnetic resonance imaging, optical brain imaging is cheap, and the equipment is light and mobile, and can be used in hospitals, homes, schools, etc.; the scanning environment is safe and comfortable, and can be repeated for multiple measurements, suitable for feedback training that requires long-term multiple scans .
上面对本发明所提供的基于光学脑成像的神经反馈训练系统和神经反馈训练方法进行了详细的介绍。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。The neurofeedback training system and neurofeedback training method based on optical brain imaging provided by the present invention have been introduced in detail above. For those skilled in the art, any obvious changes made to it without departing from the essence of the present invention will constitute an infringement of the patent right of the present invention and will bear corresponding legal responsibilities.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105933129A CN103040446A (en) | 2012-12-31 | 2012-12-31 | Neural feedback training system and neural feedback training method on basis of optical brain imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105933129A CN103040446A (en) | 2012-12-31 | 2012-12-31 | Neural feedback training system and neural feedback training method on basis of optical brain imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103040446A true CN103040446A (en) | 2013-04-17 |
Family
ID=48053468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105933129A Pending CN103040446A (en) | 2012-12-31 | 2012-12-31 | Neural feedback training system and neural feedback training method on basis of optical brain imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103040446A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103301002A (en) * | 2013-06-20 | 2013-09-18 | 北京师范大学 | Central-peripheral nerve recovery training method and system based on optical brain imaging |
CN105662389A (en) * | 2016-01-12 | 2016-06-15 | 崔天利 | System for detecting and evaluating human-brain activity |
CN106725483A (en) * | 2017-02-28 | 2017-05-31 | 中国科学技术大学先进技术研究院 | Nerve signal feedback method and system based on functional MRI reduction smoking craving |
CN107224273A (en) * | 2017-07-25 | 2017-10-03 | 西安交通大学 | A kind of maincenter peripheral nerve closed loop recovery training method and system based on optics Brian Imaging neural feedback |
CN108814594A (en) * | 2018-04-18 | 2018-11-16 | 深圳大学 | A kind of real-time neural feedback device, system, method and computer storage medium |
CN109330609A (en) * | 2018-09-21 | 2019-02-15 | 国家康复辅具研究中心 | An adaptive brain neurofeedback method and system based on near-infrared spectroscopy |
CN109859570A (en) * | 2018-12-24 | 2019-06-07 | 中国电子科技集团公司电子科学研究院 | Brain training method and system |
CN109925582A (en) * | 2019-03-20 | 2019-06-25 | 天津大学 | Bimodal brain-machine interactive movement neural feedback training device and method |
CN110302459A (en) * | 2019-08-09 | 2019-10-08 | 丹阳慧创医疗设备有限公司 | Emotion regulation and control training method, device, equipment and system |
CN110302460A (en) * | 2019-08-09 | 2019-10-08 | 丹阳慧创医疗设备有限公司 | A kind of attention training method, device, equipment and system |
CN110314269A (en) * | 2019-08-09 | 2019-10-11 | 丹阳慧创医疗设备有限公司 | A kind of attention training method, device, equipment and system |
CN110428884A (en) * | 2019-08-09 | 2019-11-08 | 丹阳慧创医疗设备有限公司 | A kind of training method of memory capability, device, equipment and system |
CN110772266A (en) * | 2019-10-15 | 2020-02-11 | 西安电子科技大学 | A method for real-time neurofeedback regulation of cognitive ability based on fNIRS |
CN111281399A (en) * | 2020-02-03 | 2020-06-16 | 国家康复辅具研究中心 | A near-infrared-based multi-band physiological signal feedback system and its using method |
CN112969405A (en) * | 2019-01-23 | 2021-06-15 | 深圳迈瑞生物医疗电子股份有限公司 | Monitoring method and system of integrated physiological parameters and computer storage medium |
CN113521484A (en) * | 2021-08-20 | 2021-10-22 | 华东师范大学 | Neural feedback training system |
CN114947839A (en) * | 2022-05-27 | 2022-08-30 | 华东师范大学 | Training method and device for brain regulation and control and electronic equipment |
CN115188447A (en) * | 2022-09-08 | 2022-10-14 | 浙江强脑科技有限公司 | Memory training method and device based on electroencephalogram signals |
WO2024168994A1 (en) * | 2023-02-17 | 2024-08-22 | 中国科学院自动化研究所 | Optical brain-computer interface system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1833616A (en) * | 2005-12-15 | 2006-09-20 | 西安交通大学 | Multi-conduction brain biological information feedback instrument |
US20070173733A1 (en) * | 2005-09-12 | 2007-07-26 | Emotiv Systems Pty Ltd | Detection of and Interaction Using Mental States |
CN102309380A (en) * | 2011-09-13 | 2012-01-11 | 华南理工大学 | Intelligent wheelchair based on multimode brain-machine interface |
CN102715902A (en) * | 2012-06-15 | 2012-10-10 | 天津大学 | Emotion monitoring method for special people |
-
2012
- 2012-12-31 CN CN2012105933129A patent/CN103040446A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070173733A1 (en) * | 2005-09-12 | 2007-07-26 | Emotiv Systems Pty Ltd | Detection of and Interaction Using Mental States |
CN1833616A (en) * | 2005-12-15 | 2006-09-20 | 西安交通大学 | Multi-conduction brain biological information feedback instrument |
CN102309380A (en) * | 2011-09-13 | 2012-01-11 | 华南理工大学 | Intelligent wheelchair based on multimode brain-machine interface |
CN102715902A (en) * | 2012-06-15 | 2012-10-10 | 天津大学 | Emotion monitoring method for special people |
Non-Patent Citations (1)
Title |
---|
MASAHITO MIHARA等: "Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation", 《PLOS ONE》, vol. 7, no. 3, 2 March 2012 (2012-03-02) * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103301002B (en) * | 2013-06-20 | 2016-04-20 | 北京师范大学 | Based on maincenter-peripheral nervous recovery training method and the system of optics Brian Imaging |
CN103301002A (en) * | 2013-06-20 | 2013-09-18 | 北京师范大学 | Central-peripheral nerve recovery training method and system based on optical brain imaging |
CN105662389A (en) * | 2016-01-12 | 2016-06-15 | 崔天利 | System for detecting and evaluating human-brain activity |
CN106725483B (en) * | 2017-02-28 | 2020-01-17 | 中国科学技术大学先进技术研究院 | Neural signal feedback method and system for reducing smoking craving based on fMRI |
CN106725483A (en) * | 2017-02-28 | 2017-05-31 | 中国科学技术大学先进技术研究院 | Nerve signal feedback method and system based on functional MRI reduction smoking craving |
CN107224273A (en) * | 2017-07-25 | 2017-10-03 | 西安交通大学 | A kind of maincenter peripheral nerve closed loop recovery training method and system based on optics Brian Imaging neural feedback |
CN107224273B (en) * | 2017-07-25 | 2020-10-13 | 西安交通大学 | Central-peripheral nerve closed-loop rehabilitation training method and system based on optical brain imaging nerve feedback |
CN108814594A (en) * | 2018-04-18 | 2018-11-16 | 深圳大学 | A kind of real-time neural feedback device, system, method and computer storage medium |
CN108814594B (en) * | 2018-04-18 | 2021-01-29 | 深圳大学 | A real-time neurofeedback device, system, method and computer storage medium |
CN109330609A (en) * | 2018-09-21 | 2019-02-15 | 国家康复辅具研究中心 | An adaptive brain neurofeedback method and system based on near-infrared spectroscopy |
CN109859570A (en) * | 2018-12-24 | 2019-06-07 | 中国电子科技集团公司电子科学研究院 | Brain training method and system |
CN112969405A (en) * | 2019-01-23 | 2021-06-15 | 深圳迈瑞生物医疗电子股份有限公司 | Monitoring method and system of integrated physiological parameters and computer storage medium |
CN109925582A (en) * | 2019-03-20 | 2019-06-25 | 天津大学 | Bimodal brain-machine interactive movement neural feedback training device and method |
CN109925582B (en) * | 2019-03-20 | 2021-08-03 | 天津大学 | Dual-modal brain-computer interactive motor neurofeedback training device and method |
CN110302460B (en) * | 2019-08-09 | 2022-01-07 | 丹阳慧创医疗设备有限公司 | Attention training method, device, equipment and system |
CN110302460A (en) * | 2019-08-09 | 2019-10-08 | 丹阳慧创医疗设备有限公司 | A kind of attention training method, device, equipment and system |
CN110302459A (en) * | 2019-08-09 | 2019-10-08 | 丹阳慧创医疗设备有限公司 | Emotion regulation and control training method, device, equipment and system |
CN110314269A (en) * | 2019-08-09 | 2019-10-11 | 丹阳慧创医疗设备有限公司 | A kind of attention training method, device, equipment and system |
CN110428884A (en) * | 2019-08-09 | 2019-11-08 | 丹阳慧创医疗设备有限公司 | A kind of training method of memory capability, device, equipment and system |
CN110314269B (en) * | 2019-08-09 | 2022-04-22 | 丹阳慧创医疗设备有限公司 | Attention training method, device, equipment and system |
CN110302459B (en) * | 2019-08-09 | 2022-05-13 | 丹阳慧创医疗设备有限公司 | Training method, device, equipment and system for emotion regulation and control |
CN110772266A (en) * | 2019-10-15 | 2020-02-11 | 西安电子科技大学 | A method for real-time neurofeedback regulation of cognitive ability based on fNIRS |
CN111281399A (en) * | 2020-02-03 | 2020-06-16 | 国家康复辅具研究中心 | A near-infrared-based multi-band physiological signal feedback system and its using method |
CN113521484A (en) * | 2021-08-20 | 2021-10-22 | 华东师范大学 | Neural feedback training system |
CN114947839A (en) * | 2022-05-27 | 2022-08-30 | 华东师范大学 | Training method and device for brain regulation and control and electronic equipment |
CN115188447A (en) * | 2022-09-08 | 2022-10-14 | 浙江强脑科技有限公司 | Memory training method and device based on electroencephalogram signals |
WO2024168994A1 (en) * | 2023-02-17 | 2024-08-22 | 中国科学院自动化研究所 | Optical brain-computer interface system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103040446A (en) | Neural feedback training system and neural feedback training method on basis of optical brain imaging | |
CN115349873B (en) | A closed-loop brain function enhancement training device and method based on brain-computer interface system | |
Herold et al. | Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks | |
CN109925582B (en) | Dual-modal brain-computer interactive motor neurofeedback training device and method | |
CN103054573B (en) | Many people neural feedback training method and many people neural feedback training system | |
KR102014176B1 (en) | Brain training simulation system based on behavior modeling | |
Ayaz et al. | Assessment of cognitive neural correlates for a functional near infrared-based brain computer interface system | |
CN103301002B (en) | Based on maincenter-peripheral nervous recovery training method and the system of optics Brian Imaging | |
KR101566788B1 (en) | Brain computer interface based functional electrical stimulator | |
Rydzik et al. | The use of neurofeedback in sports training: systematic review | |
US20170169714A1 (en) | Methods and Systems for Cognitive Training Using High Frequency Heart Rate Variability | |
CN103169470B (en) | Colony's neural feedback training method and colony's neural feedback training system | |
Cho | Effects of horseback riding exercise on the relative alpha power spectrum in the elderly | |
CN104771255B (en) | The implementation method of motor pattern is recognized based on cortex hemoglobin information | |
Almulla et al. | Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI | |
Zhong et al. | Multi-session delivery of synchronous rTMS and sensory stimulation induces long-term plasticity | |
CN117547731A (en) | Mirror neuron and neuromuscular electrical stimulation combined rehabilitation assessment training system | |
KR100943396B1 (en) | An apparatus and its method of motor imaginary training using electroencephalogram | |
Gu et al. | Research on the intelligent evaluation of addiction degree and new method of rehabilitation of drug addicts | |
CN117524422A (en) | Evaluation system and method for improving stress recovery of human body based on indoor green planting | |
CN115644824A (en) | Multi-mode multi-parameter neural feedback training system and method based on virtual reality | |
Barnstaple et al. | Dance and neurorehabilitation-mixed-methods research models | |
CN107595295A (en) | A kind of recognition methods of the lower extremity movement resistive state based on brain hemoglobin information | |
CN110720909B (en) | Whole rehabilitation training system for waist and abdomen core muscle group based on myoelectric biofeedback and application thereof | |
Wang et al. | Optimization of machine learning method combined with brain-computer interface rehabilitation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130417 |