CN103018796A - Double-film PC (Polycarbonate) lens for optical display and preparation method thereof - Google Patents
Double-film PC (Polycarbonate) lens for optical display and preparation method thereof Download PDFInfo
- Publication number
- CN103018796A CN103018796A CN2012104241737A CN201210424173A CN103018796A CN 103018796 A CN103018796 A CN 103018796A CN 2012104241737 A CN2012104241737 A CN 2012104241737A CN 201210424173 A CN201210424173 A CN 201210424173A CN 103018796 A CN103018796 A CN 103018796A
- Authority
- CN
- China
- Prior art keywords
- film
- lens
- index material
- reflection
- eyeglass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 230000003287 optical effect Effects 0.000 title abstract description 21
- 239000004417 polycarbonate Substances 0.000 title description 50
- 229920000515 polycarbonate Polymers 0.000 title description 49
- 238000000576 coating method Methods 0.000 claims abstract description 61
- 239000011248 coating agent Substances 0.000 claims abstract description 59
- 239000010408 film Substances 0.000 claims description 61
- 239000000463 material Substances 0.000 claims description 38
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 238000000869 ion-assisted deposition Methods 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims 2
- 238000005566 electron beam evaporation Methods 0.000 claims 1
- 230000000007 visual effect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 25
- 238000001228 spectrum Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Eyeglasses (AREA)
- Optical Filters (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
本发明涉及一种光学显示用双膜系PC镜片及其制备方法;其特征在于PC镜片依次由反射膜、PC基底和增透膜三层组成;其中,PC基底是一块有弧度的镜片;采用PC|(HL)nH|作为基本膜系的设计镀上反射膜,将反射膜沉积在PC镜片的凹面,其厚度为300nm-2000nm;采用PC|(LH)mL|或PC|(LH)m|作为基本膜系的设计镀上增透膜,将增透膜沉积在PC镜片的凸面,其厚度为300nm-2000nm。本发明提供的光学显示用PC镜片具有凹凸两面,凹面镀制的反射膜能够反射大部分的可见光,凸面的增透膜可以讲未反射的可见光更好的透射出去,从而尽量的减少了二次反射,增强了PC镜片的可视效果。The invention relates to a double-film PC lens for optical display and a preparation method thereof; it is characterized in that the PC lens is composed of three layers: a reflection film, a PC base and an anti-reflection film; wherein, the PC base is a curved lens; PC|(HL) n H| is designed as a basic film system and coated with a reflective film, and the reflective film is deposited on the concave surface of the PC lens with a thickness of 300nm-2000nm; PC|(LH) m L| or PC|(LH ) m |As the basic film system, anti-reflection coating is applied, and the anti-reflection coating is deposited on the convex surface of the PC lens, with a thickness of 300nm-2000nm. The PC lens for optical display provided by the present invention has two concave and convex surfaces, the reflective film plated on the concave surface can reflect most of the visible light, and the antireflection film on the convex surface can transmit the unreflected visible light better, thereby reducing the secondary Reflection enhances the visual effect of the PC lens.
Description
技术领域 technical field
本发明属于光学薄膜材料技术领域,涉及一种光学显示用双膜系PC镜片及其制备方法。 The invention belongs to the technical field of optical thin film materials, and relates to a double-film PC lens for optical display and a preparation method thereof. the
背景技术 Background technique
显示技术的任务是根据人的心理和生理特点,采用适当的方法改变光的强弱、光的波长(即颜色)和光的其他特征,组成不同形式的视觉信息。在军用方面,平视显示器是目前普遍运用在航空器上的一种飞行辅助显示仪器。平视显示器的工作原理与显示器表面的薄膜关系紧密,国外一直没有停止对平视显示器的研究,其目的是开发出清晰度、可靠性和分辨率更高,寿命更长,性价比更高的显示器。在显示器上镀膜,改善显示器的视觉性能,在复杂的环境氛围中,可以帮助士兵获得先发制人的优势,或在战场上更好地掌握不断变化的战况。 The task of display technology is to use appropriate methods to change the intensity of light, the wavelength of light (ie color) and other characteristics of light according to the psychological and physiological characteristics of people to form different forms of visual information. In terms of military use, the head-up display is a kind of flight auxiliary display instrument commonly used on aircraft. The working principle of the head-up display is closely related to the film on the surface of the display. Foreign countries have not stopped research on the head-up display. The purpose is to develop a display with higher clarity, reliability and resolution, longer life, and higher cost performance. Coating on the display can improve the visual performance of the display. In a complex environment, it can help soldiers gain a preemptive advantage or better grasp the changing battle situation on the battlefield. the
平视显示器的显示屏工作原理是将内部仪器发射的绿色光谱反射回飞行员的眼睛里面,飞行员能够在屏幕上能清晰的看到绿色的图文数据。传统的平视显示器均采用玻璃作为显示屏,虽然玻璃屏幕的光学性能比较优异,但其机械性能却不能够很好的适应特殊的环境氛围。 The working principle of the display screen of the head-up display is to reflect the green spectrum emitted by the internal instruments back to the pilot's eyes, and the pilot can clearly see the green graphic data on the screen. Traditional head-up displays use glass as the display screen. Although the optical performance of the glass screen is relatively excellent, its mechanical performance cannot be well adapted to the special environment. the
PC材料具有很好的透明度和可视性,在光学性能方面和机械性能方面均适合作为光学显示镜片,在显示元器件上具有很大的应用前景。目前,国外对光学显示薄膜在PC材料表面上的应用的研究相对成熟,已经有多家公司能够进行系列产品的生产,GE先进材料集团近日推出了以聚碳酸酯(PC)树脂为原料的新型光学显示薄膜—LEXAN ILLUMINEXTM薄膜,产品具有极佳的光学特性,薄膜的品质和性能均达到前所未有的高水平,但其作为显示用表面介质的相关报道目前还没有。在国内,薄膜材料起步较晚,采用真空镀膜的方式在PC表面镀膜的相关研究比较少,但是相关的研制工作也在积极的开展。张其土等人(复合型多波段激光防护PC材料[J].激光与红外,2008,38(5):421-423.)研制了用于激光防护的具有特定可见光波段吸收特性的复合PC镀膜材料,但是在PC显示器镜片上镀制反射膜在国内相关领域还没有相关的资料。 PC material has good transparency and visibility, and is suitable as an optical display lens in terms of optical and mechanical properties, and has great application prospects in display components. At present, foreign research on the application of optical display films on the surface of PC materials is relatively mature, and many companies have been able to produce series products. GE Advanced Materials Group recently launched a new type of polycarbonate (PC) resin as raw material. Optical display film—LEXAN ILLUMINEX TM film, the product has excellent optical characteristics, and the quality and performance of the film have reached an unprecedented high level, but there are no related reports about it being used as a surface medium for display. In China, thin-film materials started late, and there are relatively few related researches on PC surface coating by vacuum coating, but related research and development work is also actively carried out. Zhang Qitu et al. (Composite multi-band laser protection PC material [J]. Laser and Infrared, 2008, 38(5): 421-423.) developed a composite PC coating material with specific visible light band absorption characteristics for laser protection , but there is no relevant information in the relevant domestic fields on the PC display mirror plated reflective film.
发明内容 Contents of the invention
本发明的目的是为了改进现有技术的不足而提供了一种光学显示用双膜系PC镜片,本发明的另一目的是提供上述光学显示用双膜系PC镜片的制备方法。以聚碳酸酯(PC)为基体,HfO2和SiO2为高低折射率薄膜材料,制备出光学显示用双膜系PC镜片,所制备的光学显示用双膜系PC镜片可以满足平视显示器屏 幕的技术要求。 The object of the present invention is to provide a dual-film PC lens for optical display in order to improve the deficiencies of the prior art. Another object of the present invention is to provide a method for preparing the above-mentioned dual-film PC lens for optical display. Using polycarbonate (PC) as the matrix, HfO 2 and SiO 2 as high and low refractive index film materials, a dual-film PC lens for optical display is prepared. The prepared dual-film PC lens for optical display can meet the requirements of the head-up display screen. skills requirement.
本发明的技术方案为:一种光学显示用双膜系PC镜片,其特征在于PC镜片依次由反射膜、PC基底和增透膜三层组成;其中,PC(聚碳酸酯)基底是一块有弧度的镜片;反射膜沉积在PC镜片的凹面,其厚度为300nm-2000nm;增透膜沉积在PC镜片的凸面,其厚度为300nm-2000nm。 The technical solution of the present invention is: a dual-film PC lens for optical display, characterized in that the PC lens is composed of three layers of reflective film, PC base and anti-reflection film in sequence; wherein, the PC (polycarbonate) base is a piece with Curved lens; the reflective film is deposited on the concave surface of the PC lens, and its thickness is 300nm-2000nm; the antireflection film is deposited on the convex surface of the PC lens, and its thickness is 300nm-2000nm. the
优选所述的反射膜为高低折射率材料交替叠加而成的薄膜,在可见光波段(400-700nm)的反射率60%-100%;所述的增透膜为低高折射率材料交替叠加而成的薄膜,在可见光波段(400-700nm)的反射率0.01%-5%;所述的聚碳酸酯(PC)基底为可见光波段(400-700nm)透过率80%-98%,抗弯强度100MPa-200MPa;其中低折射材料采用SiO2或MgF2,高折射材料采用HfO2或ZrO2。 Preferably, the reflective film is a thin film formed by alternately stacking high and low refractive index materials, and the reflectivity in the visible light band (400-700nm) is 60%-100%; The formed film has a reflectance of 0.01%-5% in the visible light band (400-700nm); the polycarbonate (PC) substrate has a visible light band (400-700nm) transmittance of 80%-98%, and is resistant to bending The strength is 100MPa-200MPa; the low refraction material is SiO 2 or MgF 2 , and the high refraction material is HfO 2 or ZrO 2 .
本发明还提供了上述的光学显示用双膜系PC镜片的方法,其具体步骤如下: The present invention also provides the method for the above-mentioned dual-film PC lens for optical display, and its specific steps are as follows:
(1)反射膜的制备:在PC基底的凹面,采用PC|(HL)nH|作为基本膜系的设计镀上反射膜,控制反射膜的总厚度为300nm-2000nm;其中H代表高折射率材料HfO2或ZrO2,L代表低折射率材料SiO2或MgF2,n代表高低折射率材料交替的周期,n=1~5;每层高折射率材料的物理厚度为50nm~100nm,每层低折射率材料的物理厚度250nm~350nm; (1) Preparation of reflective film: On the concave surface of the PC substrate, PC|(HL) n H| is used as the design of the basic film system to coat the reflective film, and the total thickness of the reflective film is controlled to be 300nm-2000nm; where H stands for high refraction HfO 2 or ZrO 2 , L represents low refractive index material SiO 2 or MgF 2 , n represents the alternating period of high and low refractive index materials, n=1~5; the physical thickness of each layer of high refractive index material is 50nm~100nm, The physical thickness of each layer of low refractive index material is 250nm~350nm;
(2)增透膜的制备:在凹面镀上反射膜的PC基底的凸面,采用PC|(LH)mL|或PC|(LH)m|作为基本膜系的设计镀上增透膜,控制增透膜的总厚度为300nm-2000nm;其中H代表高折射率材料HfO2或ZrO2,L代表低折射率材料SiO2或MgF2,m代表高低折射率材料交替的周期,m=1~8;低高折射率材料交替叠加而成的一层薄膜(单层薄膜)的具体物理厚度10nm-500nm;制得光学显示用双膜系PC镜片。 (2) Preparation of anti-reflection coating: on the convex surface of the PC substrate coated with a reflective film on the concave surface, PC|(LH) m L| or PC|(LH) m | is used as the design of the basic film system to coat the anti-reflection coating. Control the total thickness of the anti-reflection coating to 300nm-2000nm; where H represents the high refractive index material HfO 2 or ZrO 2 , L represents the low refractive index material SiO 2 or MgF 2 , m represents the alternating period of high and low refractive index materials, m=1 ~8; The specific physical thickness of a thin film (single-layer thin film) formed by alternately stacking low and high refractive index materials is 10nm-500nm; a double-film PC lens for optical display is produced.
上述步骤(1)和(2)中的镀膜均采用离子辅助沉积和电子束真空镀膜的方法;其中镀膜真空度0.001Pa~0.003Pa,镀膜温度为:50℃~80℃。 The coatings in the above steps (1) and (2) all adopt the method of ion-assisted deposition and electron beam vacuum coating; wherein the coating vacuum is 0.001Pa~0.003Pa, and the coating temperature is: 50°C~80°C. the
有益效果: Beneficial effect:
本发明提供的光学显示用PC镜片具有凹凸两面,凹面镀制的反射膜能够反射大部分的可见光,凸面的增透膜可以讲未反射的可见光更好的透射出去,从而尽量的减少了二次反射,增强了PC镜片的可视效果。 The PC lens for optical display provided by the present invention has two concave and convex surfaces, the reflective film plated on the concave surface can reflect most of the visible light, and the antireflection film on the convex surface can transmit the unreflected visible light better, thereby reducing the secondary Reflection enhances the visual effect of the PC lens. the
具体实施方式 Detailed ways
下面结合实例对本发明进一步的说明,但不应以此限制本发明的保护范围。以下实施例镀膜均采用离子辅助沉积和电子束真空镀膜的方法; Below in conjunction with example the present invention is further described, but should not limit protection scope of the present invention with this. The coatings of the following examples all adopt the methods of ion-assisted deposition and electron beam vacuum coating;
实施例1# Example 1 #
以PC为基底,反射膜采用膜系结构为(HL)^1H共3层。(其中,(HL)^1H表示:每个周期第一层为厚度为1个光学厚度的高折射率材料HfO2,第二层为厚度为3个光学厚度的低折射材料SiO2,共一个周期,最后以H高折射率材料HfO2结束;镀膜温度为50℃,镀膜压力为0.001MPa; Based on PC, the reflective film adopts a film structure of (HL)^1H with a total of 3 layers. (Wherein, (HL)^1H means: the first layer of each period is a high refractive index material HfO 2 with a thickness of 1 optical thickness, and the second layer is a low refractive material SiO 2 with a thickness of 3 optical thicknesses, a total of one The cycle ends with HfO2 , a high refractive index material; the coating temperature is 50°C, and the coating pressure is 0.001MPa;
增透膜采用膜系结构Sub|LHL|共3层。(其中,Sub|LHL|A表示:每个周期第一层为低折射率材料SiO2,第二层为高折射材料HfO2,最后以L低折射率材料SiO2结束;镀膜温度为50℃,镀膜压力为0.002MPa; The anti-reflection coating adopts a film structure Sub|LHL| with a total of 3 layers. (Where, Sub|LHL|A means: the first layer of each cycle is low refractive index material SiO 2 , the second layer is high refractive index material HfO 2 , and finally ends with L low refractive index material SiO 2 ; coating temperature is 50°C , the coating pressure is 0.002MPa;
表1三层反射膜各膜层的折射率与厚度 Table 1 The refractive index and thickness of each layer of the three-layer reflective film
只在PC镜片凹面镀反射膜的反射光谱进行了测试,PC镀膜后的反射膜的反射曲线的最高反射率达到65%。 Only the reflection spectrum of the PC lens concave surface coated with reflective film was tested, and the highest reflectance of the reflection curve of the PC coated reflective film reached 65%. the
表2三层增透膜各膜层的折射率与厚度 Table 2 The refractive index and thickness of each layer of the three-layer AR coating
只在PC镜片凸面镀增透膜的反射光谱进行了测试,PC镀膜后的增透膜的反射曲线的最高反射率不超过2.8%,平均分布在2.5%左右。 Only the reflection spectrum of the anti-reflection coating on the convex surface of the PC lens was tested. The highest reflectance of the reflection curve of the anti-reflection coating after PC coating does not exceed 2.8%, and the average distribution is about 2.5%. the
在PC镜片凹凸面同时镀上反射膜和增透膜后进行反射光谱测试,镜片的反射率曲线最高达到63.2%,比没有镀制增透膜的镜片反射率下降了1.8%,有效的减少了镜片在反射光谱时造成的二次反射。 After coating the concave and convex surface of the PC lens with reflective coating and anti-reflection coating at the same time, the reflection spectrum test shows that the reflectance curve of the lens reaches 63.2%, which is 1.8% lower than that of the lens without anti-reflection coating, which effectively reduces the The secondary reflection caused by the mirror when reflecting the spectrum. the
实施例2# Example 2 #
以PC为基底,反射膜采用膜系结构为(HL)^2H共5层。镀膜温度为80℃,镀膜压力为0.003MPa; Based on PC, the reflective film adopts a film structure of (HL)^2H with a total of 5 layers. The coating temperature is 80°C, and the coating pressure is 0.003MPa;
增透膜采用膜系结构Sub|LHLHLHL|A共7层;镀膜温度为50℃,镀膜压力为0.003MPa; The AR coating adopts a film structure Sub|LHLHLHL|A with a total of 7 layers; the coating temperature is 50°C, and the coating pressure is 0.003MPa;
表3五层膜各膜层的折射率与厚度 Table 3 The refractive index and thickness of each film layer of the five-layer film
只在PC镜片凹面镀反射膜的反射光谱进行了测试,PC镀膜后的反射膜的反射曲线的最高反射率达到72%左右。 Only the reflection spectrum of the PC lens concave surface coated with reflective film was tested, and the highest reflectance of the reflection curve of the PC coated reflective film reached about 72%. the
表4七层增透膜各膜层的折射率与厚度 Table 4 The refractive index and thickness of each layer of the seven-layer anti-reflection coating
只在PC镜片凸面镀增透膜的反射光谱进行了测试,PC镀膜前后的增透膜的反射曲线的最高反射率不超过1%,平均分布在0.8%。 Only the reflection spectrum of the anti-reflection coating on the convex surface of the PC lens was tested. The highest reflectance of the reflection curve of the anti-reflection coating before and after PC coating does not exceed 1%, and the average distribution is 0.8%. the
在PC镜片凹凸面同时镀上反射膜和增透膜后进行反射光谱测试,镜片的反射率曲线最高达到70.7%,比没有镀制增透膜的镜片反射率下降了1.3%,有效的减少了镜片在反射光谱时造成的二次反射。 After coating the concave and convex surface of the PC lens with reflective coating and anti-reflection coating at the same time, the reflectance spectrum test was carried out. The reflectivity curve of the lens reached 70.7%, which was 1.3% lower than that of the lens without anti-reflection coating, which effectively reduced the The secondary reflection caused by the mirror when reflecting the spectrum. the
实施例3# Example 3 #
以PC为基底,反射膜采用膜系结构为(HL)^5H共11层;镀膜温度为80℃,镀膜压力为0.001MPa; With PC as the substrate, the reflective film adopts a film structure of (HL)^5H with a total of 11 layers; the coating temperature is 80°C, and the coating pressure is 0.001MPa;
增透膜采用膜系结构Sub|LHL|A共3层;镀膜温度为80℃,镀膜压力为0.001MPa; The anti-reflection coating adopts a film structure Sub|LHL|A with a total of 3 layers; the coating temperature is 80°C, and the coating pressure is 0.001MPa;
表5七层膜各膜层的折射率与厚度 Table 5 Refractive index and thickness of each film layer of seven-layer film
只在PC镜片凸面镀增透膜的反射光谱进行了测试,PC镀膜后的反射膜的反射曲线的最高反射率达到85%左右。 Only the reflection spectrum of the anti-reflection coating on the convex surface of the PC lens was tested, and the highest reflectance of the reflection curve of the reflection film after PC coating reached about 85%. the
表6三层增透膜各膜层的折射率与厚度 Table 6 The refractive index and thickness of each layer of the three-layer anti-reflection coating
只在PC镜片凸面镀增透膜的反射光谱进行了测试,PC镀膜前后的增透膜的反射曲线的最高反射率不超过2.8%,平均分布在2.5%左右。 Only the reflection spectrum of the anti-reflection coating on the convex surface of the PC lens was tested. The highest reflectance of the reflection curve of the anti-reflection coating before and after PC coating does not exceed 2.8%, and the average distribution is about 2.5%. the
在PC镜片凹凸面同时镀上反射膜和增透膜后进行反射光谱测试,镜片的反射率曲线最高达到83%,比没有镀制增透膜的镜片反射率下降了2%,有效的减少了镜片在反射光谱时造成的二次反射。 After coating the concave and convex surface of the PC lens with reflective coating and anti-reflection coating at the same time, the reflectance spectrum test is carried out. The reflectivity curve of the lens reaches 83%, which is 2% lower than that of the lens without anti-reflection coating, which effectively reduces the The secondary reflection caused by the mirror when reflecting the spectrum. the
上述实例均为本发明较佳的实施方式,但本发明的实施方式不受上述实例的限制,其他任何未背离本发明精神实质与原理下所做的修改、修饰、替代、组合、简化均为等效的置换方式,都包含在本发明的保护范围之内。 The above-mentioned examples are all preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned examples, and any other modifications, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principles of the present invention are all Equivalent replacement methods are all included in the protection scope of the present invention. the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210424173.7A CN103018796B (en) | 2012-10-31 | 2012-10-31 | Double-film PC (Polycarbonate) lens for optical display and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210424173.7A CN103018796B (en) | 2012-10-31 | 2012-10-31 | Double-film PC (Polycarbonate) lens for optical display and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103018796A true CN103018796A (en) | 2013-04-03 |
CN103018796B CN103018796B (en) | 2015-02-18 |
Family
ID=47967608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210424173.7A Active CN103018796B (en) | 2012-10-31 | 2012-10-31 | Double-film PC (Polycarbonate) lens for optical display and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103018796B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017157136A1 (en) * | 2016-03-17 | 2017-09-21 | 异视科技(北京)有限公司 | Display imaging system and method, and vehicle carrying the system |
CN107203042A (en) * | 2016-03-17 | 2017-09-26 | 异视科技(北京)有限公司 | It is shown as system and method, the vehicles with the system |
CN107651864A (en) * | 2017-11-13 | 2018-02-02 | 苏州安洁科技股份有限公司 | A kind of technique for adding anti-fog performance after glass physical vapour deposition anti-reflection film |
CN109884737A (en) * | 2018-12-29 | 2019-06-14 | 瑞声科技(新加坡)有限公司 | A kind of eyeglass and preparation method thereof and camera lens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013134A (en) * | 1989-09-28 | 1991-05-07 | Hughes Aircraft Company | Ghost-free automotive head-up display employing a wedged windshield |
CN101038349A (en) * | 2005-12-26 | 2007-09-19 | 旭硝子株式会社 | Laminated glass for vehicle |
CN201185170Y (en) * | 2007-12-28 | 2009-01-21 | 安徽华东光电技术研究所 | Night vision compatible bright-increasing type horizontal display tube component |
CN101446653A (en) * | 2007-11-26 | 2009-06-03 | 株式会社东芝 | Head-up display optical film, head-up display, and vehicle |
-
2012
- 2012-10-31 CN CN201210424173.7A patent/CN103018796B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013134A (en) * | 1989-09-28 | 1991-05-07 | Hughes Aircraft Company | Ghost-free automotive head-up display employing a wedged windshield |
CN101038349A (en) * | 2005-12-26 | 2007-09-19 | 旭硝子株式会社 | Laminated glass for vehicle |
CN101446653A (en) * | 2007-11-26 | 2009-06-03 | 株式会社东芝 | Head-up display optical film, head-up display, and vehicle |
CN201185170Y (en) * | 2007-12-28 | 2009-01-21 | 安徽华东光电技术研究所 | Night vision compatible bright-increasing type horizontal display tube component |
Non-Patent Citations (1)
Title |
---|
黄强等: "双波段激光防护多层反射膜的设计", 《光学技术》, vol. 33, no. 1, 15 November 2007 (2007-11-15) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017157136A1 (en) * | 2016-03-17 | 2017-09-21 | 异视科技(北京)有限公司 | Display imaging system and method, and vehicle carrying the system |
CN107203042A (en) * | 2016-03-17 | 2017-09-26 | 异视科技(北京)有限公司 | It is shown as system and method, the vehicles with the system |
US10725293B2 (en) | 2016-03-17 | 2020-07-28 | Futurus Technology Co., Ltd. | Displaying system, method, and vehicle including such a displaying system |
US11397323B2 (en) | 2016-03-17 | 2022-07-26 | Futurus Technology Co., Ltd. | Displaying system, method, and vehicle |
CN107651864A (en) * | 2017-11-13 | 2018-02-02 | 苏州安洁科技股份有限公司 | A kind of technique for adding anti-fog performance after glass physical vapour deposition anti-reflection film |
CN109884737A (en) * | 2018-12-29 | 2019-06-14 | 瑞声科技(新加坡)有限公司 | A kind of eyeglass and preparation method thereof and camera lens |
Also Published As
Publication number | Publication date |
---|---|
CN103018796B (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102922825B (en) | Aid-base resistance anti-reflection coated glass | |
CN106537190B (en) | The low contrast antireflective product of scratch and fingerprint visibility with reduction | |
CN204166197U (en) | A kind of head-up-display system | |
EP1892777A2 (en) | A light emitting device including anti-reflection layer(s) | |
WO2022213763A1 (en) | Anti-blue-light resin lens having ultra-low reflection and clear base color, and preparation method therefor | |
CN208207410U (en) | A kind of plated film resin lens containing sieve and silica-sesquioxide layer | |
NZ611198A (en) | Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region | |
CN103018796B (en) | Double-film PC (Polycarbonate) lens for optical display and preparation method thereof | |
WO2022252507A1 (en) | Reflection spectral imaging system for near-to-eye display | |
CN215895150U (en) | Ultra-low reflective clear ground color blue light-proof resin lens | |
CN111381299A (en) | Low-reflection color neutral low-stress resin lens and preparation method thereof | |
CN112114389A (en) | Heat-insulation antireflection film and preparation method and application thereof | |
KR20180094151A (en) | Spectacle lens | |
CN206618874U (en) | A kind of anti-blue light membrane structure and anti-blue light eyeglass | |
CN101493534B (en) | Dereflection screen of display and method for making same | |
CN210506093U (en) | Antireflection film and antireflection glass | |
CN212135086U (en) | Seven-color sunglasses lens | |
CN208156226U (en) | A kind of UV hardening TAC film | |
CN214252637U (en) | Heat-insulation antireflection film | |
CN104932041A (en) | Vacuum plated blue reflection reducing coating nearsighted lens and vacuum plated blue reflection reducing coating presbyopic lens | |
CN105609661B (en) | Oled display and display module | |
Li et al. | Preparation of MgF2, SiO2 and TiO2 optical films | |
CN220829605U (en) | Film-coated lens structure with mirror image layer | |
CN106249428A (en) | Extinction lens and manufacturing method thereof | |
CN209433139U (en) | A kind of glasses film with anti-blue light and anti-fog function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |