CN103015166A - Nano-silver antibacterial fabric and preparation method thereof - Google Patents
Nano-silver antibacterial fabric and preparation method thereof Download PDFInfo
- Publication number
- CN103015166A CN103015166A CN2012105396754A CN201210539675A CN103015166A CN 103015166 A CN103015166 A CN 103015166A CN 2012105396754 A CN2012105396754 A CN 2012105396754A CN 201210539675 A CN201210539675 A CN 201210539675A CN 103015166 A CN103015166 A CN 103015166A
- Authority
- CN
- China
- Prior art keywords
- fabric
- zinc oxide
- nano
- silver
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
本发明提供了一种纳米银抗菌织物及其制备方法。该纳米银抗菌织物的特征为,织物上生长有氧化锌纳米线,氧化锌纳米线上沉积有银纳米颗粒。其中氧化锌纳米线是通过溶液化学方法合成的,银纳米颗粒是通过简单的“浸泡-光照”的方法沉积在氧化锌纳米线上的。本发明所获得的纳米银抗菌织物具有极为明显的长效抑菌能力,且银纳米颗粒尺寸小、不发生团聚,合成过程环境友好,同时该纳米银抗菌织物可回收、可重复使用。本发明所提供的纳米银抗菌织物可以用于单点水处理以减少水中的微生物含量,也可以用于医用敷料和医用织物,还可以作为抗菌空气过滤装置以避免生物气溶胶在通风、加热和空调系统上的富集。
The invention provides a nano-silver antibacterial fabric and a preparation method thereof. The nano-silver antibacterial fabric is characterized in that zinc oxide nanowires are grown on the fabric, and silver nanoparticles are deposited on the zinc oxide nanowires. ZnO nanowires are synthesized by solution chemistry, and silver nanoparticles are deposited on ZnO nanowires by a simple "soaking-illumination" method. The nano-silver antibacterial fabric obtained by the present invention has extremely obvious long-term antibacterial ability, and the silver nano-particles are small in size, does not agglomerate, and the synthesis process is environmentally friendly, and at the same time, the nano-silver antibacterial fabric is recyclable and reusable. The nano-silver antibacterial fabric provided by the present invention can be used for single-point water treatment to reduce the microbial content in water, can also be used for medical dressings and medical fabrics, and can also be used as an antibacterial air filter to avoid bioaerosols in ventilation, heating and Enrichment on air conditioning systems.
Description
技术领域technical field
本发明涉及一种银系抗菌织物及其制备方法,属于抗菌纺织品的技术领域。The invention relates to a silver-based antibacterial fabric and a preparation method thereof, belonging to the technical field of antibacterial textiles.
背景技术Background technique
抗生素的发明挽救了无数的生命,是人类历史上最重要的事件之一。然而,抗生素的滥用会通过免疫抑制导致人类对疾病抵抗力下降,同时使得细菌的抗药性不断增强。最近,由于一种新的细菌的出现使得全世界对于抗药性的关注急剧上升,这种名为NDM-1的超级细菌几乎对所有的抗生素都表现出极高的抗药性。2011年的世界卫生日也以“今天不采取行动,明天将无药可用”为主题,关注日益严重的细菌抗药性问题,呼吁全球的政策应对,以对抗抗生素的泛滥。纳米科技的发展,使得人们方便地合成银纳米颗粒。作为抗生素的替代品之一,银作为一种广谱和高效的抗菌剂重新进入人们的视野。虽然银纳米颗粒的抗菌活性的机理还不是特别清楚,但是,现有的研究指出,相比于块体银,银纳米颗粒可以更有效地释放银离子,并且可以与微生物有更好的接触。可能的抑菌机制包括:银纳米颗粒导致的细胞膜破裂、含硫蛋白或含磷DNA功能的抑制和细菌线粒体呼吸系统的破坏,从而进一步导致细菌死亡。The invention of antibiotics has saved countless lives and is one of the most important events in human history. However, the abuse of antibiotics will lead to the decline of human resistance to diseases through immunosuppression, and at the same time, the resistance of bacteria will continue to increase. Recently, due to the emergence of a new type of bacteria, the world's attention to drug resistance has risen sharply. This superbug named NDM-1 has shown extremely high resistance to almost all antibiotics. The theme of World Health Day 2011 is "No Action Today, No Drugs Available Tomorrow", focusing on the increasingly serious problem of bacterial resistance to antibiotics, and calling for global policy responses to combat the flood of antibiotics. The development of nanotechnology makes it convenient for people to synthesize silver nanoparticles. As one of the substitutes of antibiotics, silver has re-entered people's field of vision as a broad-spectrum and highly effective antibacterial agent. Although the mechanism of the antibacterial activity of silver nanoparticles is not particularly clear, existing studies indicate that compared with bulk silver, silver nanoparticles can release silver ions more effectively and have better contact with microorganisms. The possible antibacterial mechanisms include: cell membrane rupture caused by silver nanoparticles, inhibition of sulfur-containing protein or phosphorous DNA function, and disruption of bacterial mitochondrial respiratory system, which further lead to bacterial death.
然而,将银作为一种抗菌材料仍然面临诸多挑战。第一,银纳米颗粒的尺寸最好足够小(<10nm),这样相比于块体银,由于比表面积大和银离子释放效率高,可以获得更高的抗菌效率。第二,银纳米颗粒必须具有长效抑菌活性,这要求银纳米颗粒在储存的时候不能发生团聚,同时在实际使用中要表现出对细菌的长期抑制。第三,抗菌材料应当是可回收和可重复使用的,这样可以有效地减少银在环境中的暴露,从而避免潜在的生物安全性问题,包括环境、细胞毒性和人体健康的问题。第四,银纳米颗粒的合成应该是环境友好的,不使用有毒的或是腐蚀性的还原剂、有机溶剂和稳定剂等,这是避免潜在的生物安全性问题、同时使得抗菌材料可以实际应用的一个基本要求。有许多工作致力于解决上述这些问题。例如,刘等人报道了在甲苯中通过还原硝酸银获得油酸包覆的银纳米颗粒,并通过与石墨烯氧化物混合,获得可回收的银纳米颗粒(New J.Chem,2011,35,1418)。吕及其合作者报道了通过在氢氧化钠中还原银离子,获得硅纳米线和银纳米颗粒的复合物,从而实现对细菌的长效抑制(Adv.Mater.2010,22,5463)。但是,这些工作仍然有着其各自的缺点,人们很难想象,在实际使用的抗菌材料中使用甲苯、硫酸、N,N-二甲基甲酰胺、油酸(获得石墨烯氧化物时使用的化学品)和氢氧化钠等有害化学品,而碳材料和硅材料在人体内难以降解,特别是石墨和二氧化硅粉尘通过呼吸道进入人体后会造成石墨尘肺和硅肺等疾病,其长期的生物安全性仍有待考察。However, the use of silver as an antimicrobial material still faces many challenges. First, the size of silver nanoparticles is preferably small enough (<10nm), so that compared with bulk silver, due to the large specific surface area and high silver ion release efficiency, higher antibacterial efficiency can be obtained. Second, silver nanoparticles must have long-term antibacterial activity, which requires that silver nanoparticles cannot be agglomerated during storage, and at the same time show long-term inhibition of bacteria in actual use. Third, antimicrobial materials should be recyclable and reusable, which can effectively reduce the exposure of silver in the environment, thereby avoiding potential biosafety issues, including environmental, cytotoxicity, and human health issues. Fourth, the synthesis of silver nanoparticles should be environmentally friendly, without the use of toxic or corrosive reducing agents, organic solvents, and stabilizers, etc., which is to avoid potential biosafety problems and make antibacterial materials practical. a basic requirement. There are many works devoted to solving the above-mentioned problems. For example, Liu et al. reported that oleic acid-coated silver nanoparticles were obtained by reducing silver nitrate in toluene, and mixed with graphene oxide to obtain recyclable silver nanoparticles (New J.Chem, 2011, 35, 1418). Lu and his co-workers reported that by reducing silver ions in sodium hydroxide, a composite of silicon nanowires and silver nanoparticles was obtained, thereby achieving long-term inhibition of bacteria (Adv. Mater. 2010, 22, 5463). However, these works still have their own shortcomings, and it is difficult for people to imagine that using toluene, sulfuric acid, N,N-dimethylformamide, oleic acid (the chemical used to obtain graphene oxide) in actual antibacterial materials products) and sodium hydroxide and other harmful chemicals, while carbon materials and silicon materials are difficult to degrade in the human body, especially after graphite and silicon dioxide dust enter the human body through the respiratory tract, it will cause diseases such as graphite pneumoconiosis and silicosis, and its long-term biological Security is still to be investigated.
发明内容Contents of the invention
本发明的一个目的在于提供一种纳米银抗菌织物的制备方法。本发明的另一目的在于提供一种根据所述方法制备的纳米银抗菌织物。本发明的又一个目的在于提供所述纳米银抗菌织物的用途。One object of the present invention is to provide a preparation method of nano-silver antibacterial fabric. Another object of the present invention is to provide a nano-silver antibacterial fabric prepared according to the method. Another object of the present invention is to provide the application of the nano-silver antibacterial fabric.
本发明提供了一种纳米银抗菌织物的制备方法。其中,所述制备方法以织物为衬底,通过在织物上以溶液化学方法生长氧化锌纳米线,获得氧化锌纳米线/织物复合材料;随后将氧化锌纳米线/织物复合材料浸泡在硝酸银溶液中一段时间,通过光照还原银离子,在氧化锌纳米线上获得银纳米颗粒,获得银纳米颗粒/氧化锌纳米线/织物复合材料,即本发明所称的纳米银抗菌织物。The invention provides a preparation method of nano-silver antibacterial fabric. Wherein, the preparation method uses the fabric as the substrate, and the zinc oxide nanowire/fabric composite material is obtained by growing zinc oxide nanowires on the fabric with a solution chemical method; subsequently, the zinc oxide nanowire/fabric composite material is soaked in silver nitrate After being in the solution for a period of time, the silver ions are reduced by light, and silver nanoparticles are obtained on the zinc oxide nanowires, and silver nanoparticles/zinc oxide nanowires/fabric composite materials are obtained, which is the nano-silver antibacterial fabric referred to in the present invention.
所述的纳米银抗菌织物的制备方法包括以下步骤:The preparation method of described nano-silver antibacterial fabric comprises the following steps:
1)清洗织物,并将织物做亲水处理;亲水处理所用方法包括但不限于氧等离子体处理、紫外臭氧清洗;1) Clean the fabric and make the fabric hydrophilic; the methods used for hydrophilic treatment include but are not limited to oxygen plasma treatment, ultraviolet ozone cleaning;
2)配制含有氧化锌纳米颗粒的溶液,将含有氧化锌纳米颗粒的溶液涂布到织物上,涂布所用方法包括但不限于滴涂、旋涂、提拉、浸渍;2) Prepare a solution containing zinc oxide nanoparticles, and apply the solution containing zinc oxide nanoparticles to the fabric. The coating methods include but are not limited to drip coating, spin coating, pulling, and dipping;
3)配制一定浓度的锌盐、六次甲基四胺、聚乙烯亚胺的水溶液;3) Prepare an aqueous solution of a certain concentration of zinc salt, hexamethylenetetramine, and polyethyleneimine;
4)向第3)步所述的混合水溶液中加入一定浓度的氨水,或者铵盐与氢氧化钠的混合物,得到混合水溶液;4) Add a certain concentration of ammonia water or a mixture of ammonium salt and sodium hydroxide to the mixed aqueous solution described in step 3) to obtain a mixed aqueous solution;
5)将第2)步所得织物浸没在第4)步所得的混合水溶液中,在65°C-95°C的温度下反应0.5到24小时,得到生长在织物上的氧化锌纳米线,获得氧化锌纳米线/织物复合材料;5) Submerge the fabric obtained in step 2) in the mixed aqueous solution obtained in step 4), and react at a temperature of 65°C-95°C for 0.5 to 24 hours to obtain zinc oxide nanowires grown on the fabric, and obtain ZnO nanowire/fabric composites;
6)将第5)步所获得的氧化锌纳米线/织物复合材料浸泡在硝酸银溶液中12-72小时,随后通过光照在氧化锌纳米线上获得银纳米颗粒,获得银纳米颗粒/氧化锌纳米线/织物复合材料,即本发明所称的纳米银抗菌织物。6) Soak the zinc oxide nanowire/fabric composite material obtained in step 5) in a silver nitrate solution for 12-72 hours, and then illuminate the zinc oxide nanowire to obtain silver nanoparticles, and obtain silver nanoparticles/zinc oxide The nanowire/fabric composite material is the nano-silver antibacterial fabric referred to in the present invention.
更进一步,根据前述的方法,其中:Further, according to the aforementioned method, wherein:
所述织物包括但不限于棉布、涤纶织物、尼龙织物、聚丙烯纤维织物、碳纤维织物;The fabric includes but not limited to cotton cloth, polyester fabric, nylon fabric, polypropylene fiber fabric, carbon fiber fabric;
第2)步中所述含有氧化锌纳米颗粒的溶液是通过醋酸锌与氢氧化钠反应得到,该反应的化学方程式为Zn(CH3CO2)2+2NaOH→ZnO+2Na(CH3CO2)2+H2O,该反应可以使用各种有机溶剂(有机溶剂有助于上述化学反应的稳定性),包括乙醇、异丙醇、正丁醇等,所述有机溶剂优选为乙醇;The solution containing zinc oxide nanoparticles described in step 2) is obtained by reacting zinc acetate and sodium hydroxide. The chemical equation of the reaction is Zn(CH 3 CO 2 ) 2 +2NaOH→ZnO+2Na(CH 3 CO 2 ) 2 +H 2 O, this reaction can use various organic solvents (organic solvents contribute to the stability of the above-mentioned chemical reaction), including ethanol, isopropanol, n-butanol, etc., and the organic solvent is preferably ethanol;
第3)步中所述锌盐包括硝酸锌、硫酸锌、氯化锌或醋酸锌。The zinc salt in step 3) includes zinc nitrate, zinc sulfate, zinc chloride or zinc acetate.
所述的水溶液中锌盐浓度为10-100mM,优选为25mM,反应原料优选为硝酸锌;六次甲基四胺的浓度为10-100mM,优选为12.5mM;聚乙烯亚胺的浓度为1-20mM,优选为5mM,聚乙烯亚胺的分子量优选为800g/mol;The zinc salt concentration in the aqueous solution is 10-100mM, preferably 25mM, and the reaction raw material is preferably zinc nitrate; the concentration of hexamethylenetetramine is 10-100mM, preferably 12.5mM; the concentration of polyethyleneimine is 1 -20mM, preferably 5mM, the molecular weight of polyethyleneimine is preferably 800g/mol;
第4)步中混合水溶液中氨水的浓度为0.3-0.5mM,优选为0.35mM;所采用铵盐包括硝酸铵、硫酸铵、氯化铵,其在混合水溶液中浓度为0.2-0.3M,优选为0.24M;混合水溶液中氢氧化钠的浓度为100-150mM,优选为125mM;In the 4th step, the concentration of ammonia in the mixed aqueous solution is 0.3-0.5mM, preferably 0.35mM; the ammonium salt used includes ammonium nitrate, ammonium sulfate, and ammonium chloride, and its concentration in the mixed aqueous solution is 0.2-0.3M, preferably 0.24M; the concentration of sodium hydroxide in the mixed aqueous solution is 100-150mM, preferably 125mM;
第5)步中所述氧化锌纳米线的生长温度优选为65°C,生长时间优选为3小时;The growth temperature of the zinc oxide nanowires described in step 5) is preferably 65°C, and the growth time is preferably 3 hours;
第6)步中所述硝酸银溶液的浓度为10-200mM,优选为100mM,所述硝酸银溶液的溶剂为去离子水与乙醇的混合物,去离子水与乙醇的体积比优选为1:9;所述氧化锌纳米线/织物复合材料浸泡在硝酸银溶液中的时间优选为48小时;所述光照条件优选为300W的氙灯,2分钟。Step 6) The concentration of the silver nitrate solution in the step is 10-200mM, preferably 100mM, the solvent of the silver nitrate solution is a mixture of deionized water and ethanol, and the volume ratio of deionized water and ethanol is preferably 1:9 ; The time for the zinc oxide nanowire/fabric composite material to be soaked in the silver nitrate solution is preferably 48 hours; the light conditions are preferably 300W xenon lamp, 2 minutes.
氧化锌纳米线上银纳米颗粒的形成可以用光化学过程来解释。当复合材料受到紫外光照射时,在氧化锌纳米线中将会产生光生的导带电子和价带空穴。在“浸泡”过程中吸附在氧化锌表面的银离子会被束缚在氧化锌表面的电子还原。由于此时硝酸银浓度确定,银离子的总量有限(氧化锌远高于银离子的量),同时在氧化锌表面存在许多反应位点,因此,在氧化锌表面上只能形成小尺寸的银纳米颗粒。氧化锌表面存在的众多的反应位点是由于氧化锌表面原子在长时间的浸泡过程中部分溶解,造成了许多表面缺陷。The formation of silver nanoparticles on ZnO nanowires can be explained by a photochemical process. When the composite material is irradiated by ultraviolet light, photogenerated conduction band electrons and valence band holes will be generated in the ZnO nanowires. The silver ions adsorbed on the ZnO surface during the "soaking" process will be reduced by the electrons bound to the ZnO surface. Since the concentration of silver nitrate is fixed at this time, the total amount of silver ions is limited (zinc oxide is much higher than the amount of silver ions), and there are many reaction sites on the surface of zinc oxide, so only small-sized particles can be formed on the surface of zinc oxide. silver nanoparticles. The numerous reaction sites on the ZnO surface are due to the partial dissolution of ZnO surface atoms during the long-term immersion process, resulting in many surface defects.
另一方面,本发明提供一种根据前述的方法制备的纳米银抗菌织物,其特点为织物上生长有氧化锌纳米线,氧化锌纳米线上沉积有银纳米颗粒。On the other hand, the present invention provides a nano-silver antibacterial fabric prepared according to the aforementioned method, which is characterized in that zinc oxide nanowires are grown on the fabric, and silver nanoparticles are deposited on the zinc oxide nanowires.
又一方面,本发明还提供一种所述纳米银抗菌织物的应用,包括可以用于单点水处理以减少水中的微生物含量,也可以用于医用敷料和医用织物,还可以作为抗菌空气过滤装置以避免生物气溶胶在通风、加热和空调系统上的富集。In yet another aspect, the present invention also provides an application of the nano-silver antibacterial fabric, including that it can be used for single-point water treatment to reduce the microbial content in water, it can also be used for medical dressings and medical fabrics, and it can also be used as an antibacterial air filter. Devices to avoid the accumulation of bioaerosols on ventilation, heating and air conditioning systems.
本发明的优点在于:The advantages of the present invention are:
第一,本发明的制备方法所获得的纳米银抗菌织物上银纳米颗粒尺寸小,由于比表面积大和银离子释放效率的提高,可以获得更好的抗菌效率;First, the size of silver nanoparticles on the nano-silver antibacterial fabric obtained by the preparation method of the present invention is small, and better antibacterial efficiency can be obtained due to the large specific surface area and the improvement of silver ion release efficiency;
第二,本发明所获得纳米银抗菌织物中,由于银纳米颗粒沉积在氧化锌纳米线上,银纳米颗粒在存储时不发生团聚,有助于维持纳米银抗菌织物的抗菌活性,同时在实际使用中表现出对细菌的长期抑制。(通过实验已证明,纳米银抗菌织物72小时的长效抗菌能力优于商品化的纳米银抗菌敷料“爱银康”,并且能够重复使用多次4次,多次使用效果也优于“爱银康”。)Second, in the nano-silver antibacterial fabric obtained by the present invention, since the silver nanoparticles are deposited on the zinc oxide nanowires, the silver nanoparticles do not agglomerate during storage, which helps to maintain the antibacterial activity of the nano-silver antibacterial fabric. Shows long-term inhibition of bacteria in use. (It has been proved by experiments that the long-term antibacterial ability of nano silver antibacterial fabric for 72 hours is better than that of the commercialized nano silver antibacterial dressing "Aiyinkang", and it can be reused for 4 times, and the effect of repeated use is also better than that of "Aiyinkang". Yinkang".)
第三,本发明所获得的抗菌材料可回收、可重复使用,可以有效地减少银在环境中的暴露,从而避免潜在的生物安全性问题,包括环境、细胞毒性和人体健康的问题。Third, the antibacterial material obtained in the present invention is recyclable and reusable, which can effectively reduce the exposure of silver in the environment, thereby avoiding potential biosafety problems, including environmental, cytotoxicity and human health problems.
第四,银纳米颗粒的合成过程是环境友好的,不使用有毒的或是腐蚀性的还原剂和稳定剂,避免了潜在的生物安全性问题。Fourth, the synthesis process of silver nanoparticles is environmentally friendly, without the use of toxic or corrosive reducing agents and stabilizers, avoiding potential biosafety issues.
第五,氧化锌是生物可降解和生物相容的,另外,氧化锌本身也是一种抗菌材料,可以通过协同效应在银纳米颗粒之外提供额外的抗菌能力,因此,使用氧化锌纳米线不但不会带来额外的生物安全性问题,还会提高该复合材料的抗菌能力。Fifth, zinc oxide is biodegradable and biocompatible. In addition, zinc oxide itself is also an antibacterial material that can provide additional antibacterial capabilities in addition to silver nanoparticles through a synergistic effect. Therefore, the use of zinc oxide nanowires not only This does not pose additional biosafety concerns and also increases the antimicrobial capability of the composite.
第六,本发明所获得的纳米银抗菌织物具有极为明显的长效抑菌能力。Sixth, the nano-silver antibacterial fabric obtained by the present invention has very obvious long-term antibacterial ability.
附图说明Description of drawings
以下结合附图对本发明进行详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings.
图1中(a)、(b)、(c)、(d)是实施例1中制备的氧化锌纳米线/涤纶织物复合材料的扫描电子显微镜照片。在织物表面覆盖了氧化锌纳米线之后,由于荷电效应减弱,绝缘的织物可以在电子束辐照下成像。氧化锌纳米线在每一根织物纤维表面均匀生长,其生长方向沿纤维表面向外。(a), (b), (c), and (d) in FIG. 1 are scanning electron micrographs of the zinc oxide nanowire/polyester fabric composite material prepared in Example 1. After the surface of the fabric is covered with ZnO nanowires, the insulating fabric can be imaged under electron beam irradiation due to the weakened charging effect. Zinc oxide nanowires grow uniformly on the surface of each fabric fiber, and the growth direction is outward along the fiber surface.
图2中(a)、(b)、(c)、(d)是实施例2中制备的氧化锌纳米线/棉布织物复合材料的扫描电子显微镜照片。虽然棉纤维织物的表面结构相比于涤纶纤维织物更为复杂,但是如图2所示,用这一方法所生长的氧化锌纳米线可以无缝地覆盖整个棉布,证明了这一生长方法在人工合成纤维和天然纤维、简单表面和复杂表面上应用的普适性。(a), (b), (c), and (d) in FIG. 2 are scanning electron micrographs of the zinc oxide nanowire/cotton fabric composite material prepared in Example 2. Although the surface structure of cotton fiber fabrics is more complicated than that of polyester fiber fabrics, as shown in Figure 2, the ZnO nanowires grown by this method can seamlessly cover the entire cotton fabric, which proves that this growth method is in Universal application on synthetic and natural fibres, simple and complex surfaces.
图3中(a)、(b)、(c)、(d)是实施例3中制备的氧化锌纳米线/碳纤维织物复合材料的扫描电子显微镜照片,证明了这一生长方法在导电织物和绝缘织物上应用的普适性。(a), (b), (c), and (d) in Figure 3 are scanning electron micrographs of the zinc oxide nanowire/carbon fiber fabric composite material prepared in Example 3, which proves that this growth method is in the conductive fabric and Universal application on insulating fabrics.
图4中(a)是实施例1中银纳米颗粒/氧化锌纳米线/涤纶织物复合材料的紫外-可见反射光谱图,在370nm附近处出现一个吸收边,在435nm处出现一个宽峰,分别对应氧化锌的吸收边和球形银纳米颗粒的表面等离子特征峰;(b)银纳米颗粒/氧化锌纳米线复合结构的透射电子显微镜照片,显示银纳米颗粒完全地附着在氧化锌纳米线上,同时没有发生任何团聚;(c)银纳米颗粒的尺寸分布图,其中d为银纳米颗粒的平均直径,σ是测量结果的标准差;(d)能量散射X射线谱进一步确认了采用本发明制备方法制备的纳米银抗菌织物中银元素的存在。Among Fig. 4 (a) is the ultraviolet-visible reflectance spectrogram of silver nanoparticle/zinc oxide nanowire/polyester fabric composite material in embodiment 1, an absorption edge appears near 370nm, and a broad peak appears at 435nm, corresponding to The absorption edge of zinc oxide and the surface plasmon characteristic peak of spherical silver nanoparticles; (b) transmission electron micrograph of the composite structure of silver nanoparticles/zinc oxide nanowires, showing that the silver nanoparticles are completely attached to the zinc oxide nanowires, while No agglomeration occurred; (c) the size distribution diagram of the silver nanoparticles, where d is the average diameter of the silver nanoparticles, and σ is the standard deviation of the measurement results; (d) the energy dispersive X-ray spectrum further confirms the use of the preparation method of the present invention The existence of silver element in the prepared nano-silver antibacterial fabric.
图5中(a)、(b)是实施例1中未生长任何材料的织物、氧化锌纳米线/织物复合材料、商品化的纳米银抗菌敷料“爱银康”ActicoatTM和银纳米颗粒/氧化锌纳米线/织物复合材料对于革兰氏阴性菌大肠杆菌和革兰氏阳性菌金黄色葡萄球菌在第36小时的溶出抑菌测试结果,显示本发明所述的纳米银抗菌织物的抑菌效果最好,对于大肠杆菌和金黄色葡萄球菌的抑菌环的宽度分别达到5.9mm和5.2mm,要优于商品化的纳米银抗菌敷料“爱银康”,且具有长效抑菌活性。(a) and (b) in Figure 5 are the fabrics without any materials grown in Example 1, the zinc oxide nanowire/fabric composite material, the commercialized nano-silver antibacterial dressing "Aiyinkang" Acticoat TM and silver nanoparticles/ Zinc oxide nanowire/fabric composite material shows the bacteriostasis of nano-silver antibacterial fabric of the present invention for gram-negative bacterium escherichia coli and gram-positive bacterium Staphylococcus aureus at the 36th hour dissolution bacteriostasis test result The effect is the best, the width of the antibacterial zone for Escherichia coli and Staphylococcus aureus reaches 5.9mm and 5.2mm respectively, which is better than the commercialized nano-silver antibacterial dressing "Aiyinkang", and has long-term antibacterial activity.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。The present invention will be further described in detail below in conjunction with specific embodiments, and the given examples are only for clarifying the present invention, not for limiting the scope of the present invention.
实施例1Example 1
第一步,将涤纶纤维织物在丙酮和乙醇中顺序清洗后,使用氧等离子体处理,以获得亲水的表面;In the first step, after the polyester fiber fabric is sequentially cleaned in acetone and ethanol, it is treated with oxygen plasma to obtain a hydrophilic surface;
第二步,配制含有氧化锌纳米颗粒的溶液,将含有氧化锌纳米颗粒的溶液通过滴涂的方法转移到涤纶纤维织物表面,为了保证涂覆均匀,织物两面各滴涂3-5次;The second step is to prepare a solution containing zinc oxide nanoparticles, and transfer the solution containing zinc oxide nanoparticles to the surface of the polyester fiber fabric by drip coating. In order to ensure uniform coating, each side of the fabric is drip coated 3-5 times;
第三步,配制硝酸锌浓度为25mM、六次甲基四胺浓度为12.5mM、聚乙烯亚胺浓度为5mM的水溶液;The 3rd step, preparation zinc nitrate concentration is that 25mM, hexamethylenetetramine concentration are 12.5mM, polyethyleneimine concentration is the aqueous solution of 5mM;
第四步,向第三步所得水溶液中加入氨水,得到氨水浓度为0.35mM的混合水溶液;In the fourth step, ammonia water is added to the aqueous solution obtained in the third step to obtain a mixed aqueous solution with an ammonia concentration of 0.35 mM;
第五步,将第二步所得涤纶纤维织物浸没在第四步所得的溶液中,在65°C的条件下反应3小时,得到生长在涤纶纤维织物上的氧化锌纳米线,获得氧化锌纳米线/涤纶纤维织物复合材料;In the fifth step, the polyester fiber fabric obtained in the second step is immersed in the solution obtained in the fourth step, and reacted for 3 hours at 65° C. to obtain zinc oxide nanowires grown on the polyester fiber fabric, and obtain zinc oxide nanowires. Thread/polyester fiber fabric composite;
第六步,将第五步所得的氧化锌纳米线/涤纶纤维织物复合材料取出,漂洗干净后在100mM的硝酸银溶液中浸泡48小时,硝酸银溶液的溶剂为体积比为1:9的去离子水和乙醇;In the 6th step, the zinc oxide nanowire/polyester fiber fabric composite material obtained in the 5th step is taken out, soaked in the silver nitrate solution of 100mM for 48 hours after rinsing, and the solvent of the silver nitrate solution is a desiccant with a volume ratio of 1:9. Ionized water and ethanol;
将浸泡过的氧化锌纳米线/涤纶纤维织物复合材料取出后,通过300W氙灯照射2分钟,在氧化锌纳米线上获得银纳米颗粒,获得银纳米颗粒/氧化锌纳米线/涤纶纤维织物复合材料,即本发明所述的纳米银抗菌织物。After the soaked zinc oxide nanowire/polyester fiber fabric composite material is taken out, it is irradiated by a 300W xenon lamp for 2 minutes, and silver nanoparticles are obtained on the zinc oxide nanowire to obtain a silver nanoparticle/zinc oxide nanowire/polyester fiber fabric composite material , the nano-silver antibacterial fabric of the present invention.
以抑菌环实验测试第六步所获得的纳米银抗菌织物的溶出抑菌的能力,菌种为革兰氏阴性菌大肠杆菌以及革兰氏阳性菌金黄色葡萄球菌,具体步骤如下:Test the stripping and antibacterial ability of the nano-silver antibacterial fabric obtained in the sixth step with the antibacterial ring test. The bacterial species are Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. The specific steps are as follows:
(a)配制培养基:配制1L的Luria-Bertani液体培养基以及250mL的Luria-Bertani琼脂培养基并灭菌;(a) Preparation medium: prepare 1L of Luria-Bertani liquid medium and 250mL of Luria-Bertani agar medium and sterilize;
(b)菌液培养:将灭菌后的液体培养基分装到250mL锥形瓶中,随后在无菌操作台中向液体培养基内接种细菌,并在摇床中培养12-14小时(37°C,50-70转/分钟);(b) Bacteria culture: the sterilized liquid culture medium is divided into 250mL Erlenmeyer flasks, then bacteria are inoculated into the liquid culture medium in the aseptic operating table, and cultivated in a shaker for 12-14 hours (37 °C, 50-70 rpm);
(c)准备固体培养基:在无菌操作台中,将液态的Luria-Bertani琼脂培养基倒入平板中静置,待凝固后备用,凝固在平板外表面用记号笔划分为四部分,分别标记为I、II、III、IV;(c) Prepare solid medium: In the aseptic operating table, pour the liquid Luria-Bertani agar medium into the plate and let it stand until it is solidified for later use. The solidified surface of the plate is divided into four parts with a marker pen and marked separately is I, II, III, IV;
(d)实验设备灭菌:将100微升枪头装入枪头盒并灭菌,用75%酒精擦拭台面以及双手,将实验所需用具等放入无菌操作台,紫外灭菌半小时以上;(d) Sterilization of experimental equipment: put 100 microliters of tip into the tip box and sterilize it, wipe the countertop and hands with 75% alcohol, put the utensils required for the experiment into the sterile operating table, and sterilize with ultraviolet light for half an hour above;
(e)涂抹菌液:用移液枪在每个平板中加入100微升菌液,并用酒精灯灼烧灭菌后的涂抹棒将菌液涂匀;(e) Smear the bacteria solution: add 100 microliters of the bacteria solution to each plate with a pipette gun, and spread the bacteria solution evenly by burning the sterilized smear stick with an alcohol lamp;
(f)放置织物:用镊子将冲模得到的织物(直径11mm)轻放在I、II、III、IV区域的中心部位,轻压实以保证充分接触,未生长任何材料的织物、氧化锌纳米线/织物复合材料、商品化的纳米银抗菌敷料“爱银康”ActicoatTM和本发明所称的纳米银抗菌织物分别放入I、II、III、IV区域;(f) Place the fabric: use tweezers to lightly place the fabric (diameter 11mm) obtained by the die on the center of the I, II, III, and IV areas, and lightly compact it to ensure full contact. The fabric without any material, zinc oxide nano Thread/fabric composite material, commercialized nano-silver antibacterial dressing "Aiyinkang" Acticoat TM and the nano-silver antibacterial fabric of the present invention are put into I, II, III, and IV regions respectively;
(g)抑菌测试:将平板放在恒温培养箱中培养(37°C),每隔12小时拍照一次,连续6次,发现氧化锌纳米线/织物复合材料、爱银康、本发明所称的纳米银抗菌织物均有明显的抑菌环,表明其周围的细菌被杀灭,测量抑菌环的宽度W=(T-D)/2,其中T为抑菌环的总直径,D为样品的直径。试验结果如图5中(a)、(b)所示,本发明所述的纳米银抗菌织物的抑菌效果最好,对于大肠杆菌和金黄色葡萄球菌的抑菌环的宽度分别达到5.9mm和5.2mm,要优于商品化的纳米银抗菌敷料“爱银康”,且具有长效抑菌活性。(g) Bacteriostasis test: place the plate in a constant temperature incubator for cultivation (37°C), take pictures once every 12 hours, for 6 consecutive times, and find that zinc oxide nanowire/fabric composite material, Aiyinkang, and the present invention The nano-silver antibacterial fabrics have obvious antibacterial rings, indicating that the bacteria around them are killed. The width of the antibacterial ring is measured W=(T-D)/2, where T is the total diameter of the antibacterial ring, and D is the sample. diameter of. As shown in Fig. 5 (a), (b) of test result, the bacteriostasis effect of nano-silver antibacterial fabric of the present invention is the best, reaches 5.9mm respectively for the width of the bacteriostasis ring of escherichia coli and Staphylococcus aureus And 5.2mm, which is better than the commercial nano-silver antibacterial dressing "Aiyinkang", and has long-term antibacterial activity.
如图1中(a)、(b)、(c)、(d)所示,在织物表面覆盖了氧化锌纳米线之后,由于荷电效应减弱,绝缘的织物可以在电子束辐照下成像。氧化锌纳米线在每一根织物纤维表面均匀生长,其生长方向沿纤维表面向外。如图4中(a)、(b)、(c)、(d)所示,银纳米颗粒完全地附着在氧化锌纳米线上,同时没有发生任何团聚。As shown in (a), (b), (c), and (d) in Figure 1, after the surface of the fabric is covered with ZnO nanowires, the insulated fabric can be imaged under electron beam irradiation due to the weakened charging effect . Zinc oxide nanowires grow uniformly on the surface of each fabric fiber, and the growth direction is outward along the fiber surface. As shown in (a), (b), (c), and (d) in Figure 4, the silver nanoparticles are completely attached to the ZnO nanowires without any agglomeration.
实施例2Example 2
第一步,将棉布织物在丙酮和乙醇中顺序清洗后,使用紫外臭氧清洗,以获得亲水的表面;In the first step, after the cotton fabric is washed sequentially in acetone and ethanol, it is cleaned with ultraviolet ozone to obtain a hydrophilic surface;
第二步,配制含有氧化锌纳米颗粒的溶液,将所配制含有氧化锌纳米颗粒的溶液通过提拉的方法转移到棉布织物表面,为了保证涂覆均匀,提拉3-5次,在棉布织物表面附着氧化锌纳米颗粒;The second step is to prepare a solution containing zinc oxide nanoparticles, and transfer the prepared solution containing zinc oxide nanoparticles to the surface of the cotton fabric by pulling. Zinc oxide nanoparticles attached to the surface;
第三步,配制硫酸锌浓度为10mM、六次甲基四胺浓度为10mM、聚乙烯亚胺浓度为1mM的水溶液;The 3rd step, preparation zinc sulfate concentration is that 10mM, hexamethylenetetramine concentration are 10mM, polyethyleneimine concentration is the aqueous solution of 1mM;
第四步,在第三步的水溶液中加入氨水得到氨水浓度为0.35mM的混合水溶液;The 4th step, add ammoniacal liquor in the aqueous solution of the 3rd step and obtain the mixed aqueous solution that ammoniacal liquor concentration is 0.35mM;
第五步,将第二步所得棉布织物浸没在第四步所得的溶液中,在65°C的条件下反应5小时,得到生长在棉布织物上的氧化锌纳米线,获得氧化锌纳米线/棉布织物复合材料;In the fifth step, the cotton fabric obtained in the second step is immersed in the solution obtained in the fourth step, and reacted for 5 hours at 65° C. to obtain zinc oxide nanowires grown on the cotton fabric, and obtain zinc oxide nanowires/ Cotton fabric composites;
第六步,将第五步所得的氧化锌纳米线/棉布织物复合材料取出,漂洗干净后在10mM的硝酸银溶液中浸泡12小时,硝酸银溶液的溶剂为体积比为1:9的去离子水和乙醇;In the sixth step, the zinc oxide nanowire/cotton fabric composite material obtained in the fifth step is taken out, soaked in 10mM silver nitrate solution for 12 hours after rinsing, and the solvent of the silver nitrate solution is a deionized solution with a volume ratio of 1:9. water and ethanol;
将浸泡过的氧化锌纳米线/棉布织物复合材料取出后,在太阳光下照射10分钟,在氧化锌纳米线上获得银纳米颗粒,获得银纳米颗粒/氧化锌纳米线/棉布织物复合材料,即本发明所称的纳米银抗菌织物。After the soaked zinc oxide nanowire/cotton fabric composite material is taken out, it is irradiated under sunlight for 10 minutes, silver nanoparticles are obtained on the zinc oxide nanowire, and the silver nanoparticle/zinc oxide nanowire/cotton fabric composite material is obtained, That is the so-called nano-silver antibacterial fabric of the present invention.
以抑菌环实验测试所获得的纳米银抗菌织物的溶出抑菌的能力。本发明所称的纳米银抗菌织物的抑菌效果最好,对于大肠杆菌和金黄色葡萄球菌的抑菌环的宽度分别达到5.4mm和5.1mm,要优于商品化的纳米银抗菌敷料“爱银康”,持续抑菌时间超过72小时,并可重复使用4次,具有长效抑菌活性。The antibacterial ability of the obtained nano-silver antibacterial fabric was tested by the inhibition zone test. The antibacterial effect of the nano-silver antibacterial fabric claimed by the present invention is the best, and the width of the antibacterial ring for Escherichia coli and Staphylococcus aureus reaches 5.4mm and 5.1mm respectively, which is better than the commercialized nano-silver antibacterial dressing "love" "Yinkang" has a continuous antibacterial time of more than 72 hours and can be reused 4 times, with long-term antibacterial activity.
如图2中(a)、(b)、(c)、(d)所示,所生长的氧化锌纳米线可以无缝地覆盖整个棉布织物表面。As shown in (a), (b), (c), and (d) in Figure 2, the grown ZnO nanowires can seamlessly cover the entire cotton fabric surface.
实施例3Example 3
第一步,将碳纤维织物在丙酮和乙醇中顺序清洗后,使用氧等离子体处理,以获得亲水的表面;In the first step, after the carbon fiber fabric is sequentially cleaned in acetone and ethanol, it is treated with oxygen plasma to obtain a hydrophilic surface;
第二步,配制含有氧化锌纳米颗粒的溶液;将含有氧化锌纳米颗粒通过旋涂的方法转移到碳纤维织物表面,为了保证涂覆均匀,碳纤维织物两面各旋涂3-5次;The second step is to prepare a solution containing zinc oxide nanoparticles; transfer the zinc oxide nanoparticles to the surface of the carbon fiber fabric by spin coating. In order to ensure uniform coating, the carbon fiber fabric is spin-coated 3-5 times on both sides;
第三步,配制醋酸锌浓度为100mM、六次甲基四胺浓度为100mM、聚乙烯亚胺浓度为20mM的水溶液;The 3rd step, preparation zinc acetate concentration is that 100mM, hexamethylenetetramine concentration are 100mM, polyethyleneimine concentration is the aqueous solution of 20mM;
第四步,向第三步的水溶液中加入铵盐和氢氧化钠,直到溶液中铵盐浓度为0.2M,氢氧化钠的浓度为100mM,形成混合水溶液;The fourth step is to add ammonium salt and sodium hydroxide to the aqueous solution of the third step until the ammonium salt concentration in the solution is 0.2M, and the concentration of sodium hydroxide is 100mM to form a mixed aqueous solution;
第五步,将第二步所得碳纤维织物浸没在第四步所得的溶液中,在95°C的条件下反应24小时,得到生长在碳纤维织物上的氧化锌纳米线,获得氧化锌纳米线/碳纤维织物复合材料;In the fifth step, the carbon fiber fabric obtained in the second step is immersed in the solution obtained in the fourth step, and reacted for 24 hours at 95° C. to obtain zinc oxide nanowires grown on the carbon fiber fabric, and obtain zinc oxide nanowires/ Carbon fiber fabric composites;
第六步,将第五步所得的氧化锌纳米线/碳纤维织物复合材料取出,漂洗干净后在200mM的硝酸银溶液中浸泡72小时,硝酸银溶液的溶剂为体积比为1:9的去离子水和乙醇;In the sixth step, the zinc oxide nanowire/carbon fiber fabric composite material obtained in the fifth step is taken out, soaked in 200mM silver nitrate solution for 72 hours after rinsing, and the solvent of the silver nitrate solution is deionized with a volume ratio of 1:9. water and ethanol;
将第六步中浸泡过的氧化锌纳米线/棉布复合材料取出后,在氙灯下照射5分钟,在氧化锌纳米线上获得银纳米颗粒,获得银纳米颗粒/氧化锌纳米线/棉布复合材料,即本发明所述的纳米银抗菌织物。After taking out the zinc oxide nanowire/cotton composite material soaked in the sixth step, irradiate it under a xenon lamp for 5 minutes to obtain silver nanoparticles on the zinc oxide nanowire and obtain the silver nanoparticle/zinc oxide nanowire/cotton composite material , the nano-silver antibacterial fabric of the present invention.
以抑菌环实验测试第七步所获得的纳米银抗菌织物的溶出抑菌的能力。本发明所称的纳米银抗菌织物的抑菌效果最好,对于大肠杆菌和金黄色葡萄球菌的抑菌环的宽度分别达到5.7mm和5.4mm,要优于商品化的纳米银抗菌敷料“爱银康”,持续抑菌时间超过72小时,并可重复使用4次,具有长效抑菌活性。Test the stripping and antibacterial ability of the nano-silver antibacterial fabric obtained in the seventh step with the bacteriostatic zone test. The bacteriostatic effect of the nano-silver antibacterial fabric claimed by the present invention is the best, and the width of the bacteriostatic ring of Escherichia coli and Staphylococcus aureus reaches 5.7mm and 5.4mm respectively, which is better than the commercialized nano-silver antibacterial dressing "love" "Yinkang" has a continuous antibacterial time of more than 72 hours and can be reused 4 times, with long-term antibacterial activity.
如图3中(a)、(b)、(c)、(d)所示,证明了本发明提供的这一生长方法在导电织物和绝缘织物上应用的普适性。As shown in (a), (b), (c) and (d) in FIG. 3 , it is proved that the growth method provided by the present invention is universally applicable to conductive fabrics and insulating fabrics.
实施例4Example 4
采用与实施例3相同的织物及制备流程,只是在实施例3的第四步中加入到水溶液中的铵盐和氢氧化钠分别为:铵盐为硫酸铵,加入后溶液中硫酸铵浓度为0.3M,氢氧化钠的浓度为150mM。Adopt the same fabric and preparation process as in Example 3, except that the ammonium salt and sodium hydroxide added to the aqueous solution in the fourth step of Example 3 are respectively: the ammonium salt is ammonium sulfate, and the concentration of ammonium sulfate in the solution after adding is 0.3M, the concentration of sodium hydroxide is 150mM.
实施例5Example 5
采用与实施例3相同的织物及制备流程,只是在实施例3的第四步中加入到水溶液中的铵盐和氢氧化钠分别为:铵盐为硝酸铵,加入后溶液中铵盐浓度为0.24M,氢氧化钠的浓度为125mM。Adopt the same fabric and preparation process as in Example 3, except that the ammonium salt and sodium hydroxide added to the aqueous solution in the fourth step of Example 3 are respectively: the ammonium salt is ammonium nitrate, and the ammonium salt concentration in the solution after adding is 0.24M, the concentration of sodium hydroxide is 125mM.
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变型,但这些相应的改变和变形都应属于本发明权利要求的保护范围内。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and modifications according to the present invention, but these corresponding changes All changes and modifications should belong to the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210539675.4A CN103015166B (en) | 2012-12-13 | 2012-12-13 | Nano-silver antibacterial fabric and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210539675.4A CN103015166B (en) | 2012-12-13 | 2012-12-13 | Nano-silver antibacterial fabric and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103015166A true CN103015166A (en) | 2013-04-03 |
CN103015166B CN103015166B (en) | 2014-08-13 |
Family
ID=47964231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210539675.4A Expired - Fee Related CN103015166B (en) | 2012-12-13 | 2012-12-13 | Nano-silver antibacterial fabric and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103015166B (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343446A (en) * | 2013-06-27 | 2013-10-09 | 上海大学 | Method for preparing hydrophobic lipophilic cotton fabric material through structuring zinc oxide fine structure |
CN103866321A (en) * | 2014-03-14 | 2014-06-18 | 中国科学院合肥物质科学研究院 | Silver nanoparticle-zinc oxide porous nanosheet-carbon fiber cloth composite substrate as well as preparation method and use of substrate |
CN103898735A (en) * | 2014-04-11 | 2014-07-02 | 西南大学 | Preparation method and product of zinc oxide nanorod matrix modified silk |
CN103911853A (en) * | 2014-03-11 | 2014-07-09 | 何丽清 | Nano-silver microsphere emulsion, and preparation method and applications thereof |
CN104208949A (en) * | 2013-05-31 | 2014-12-17 | 古德里奇公司 | Silver-coated fabric for filter membrane integration |
CN104299723A (en) * | 2014-09-05 | 2015-01-21 | 中国科学院合肥物质科学研究院 | Method for preparing high-performance metal nanowire transparent conducting thin film |
CN104588014A (en) * | 2015-02-11 | 2015-05-06 | 济南大学 | Method for depositing gold nanoparticles on surface of one-dimensional ZnO material |
CN104594024A (en) * | 2015-01-30 | 2015-05-06 | 浙江汇千高飞新材料有限公司 | Antibacterial mildew-proof textile and method for preparing antibacterial mildew-proof textile |
CN105002614A (en) * | 2015-07-07 | 2015-10-28 | 宁波武田纺织有限公司 | Preparation method of composite yarn |
CN105040414A (en) * | 2015-05-25 | 2015-11-11 | 厦门大学 | Preparation method of sliver supporting fabric based on plant material and nanometer sliver synergetic antibacterial |
CN105220462A (en) * | 2015-10-30 | 2016-01-06 | 朱忠良 | A kind of textile nano function finishing agent and its preparation method and application |
CN105839410A (en) * | 2016-03-29 | 2016-08-10 | 腾科宝迪(厦门)生物科技有限公司 | Safety protection surgical gown |
CN106283607A (en) * | 2016-10-17 | 2017-01-04 | 新乡市新科防护科技有限公司 | A kind of production method of UV resistance antibacterial silk stocking fabric |
CN107142718A (en) * | 2017-07-05 | 2017-09-08 | 陕西科技大学 | Nano zine oxide/silver complex antimicrobials and preparation method thereof |
CN107630353A (en) * | 2017-09-17 | 2018-01-26 | 赵兵 | A kind of nano zine oxide/nano silver wire Multifunctional cotton fiber |
CN108138433A (en) * | 2015-09-30 | 2018-06-08 | 日本制纸株式会社 | Composite of cellulose fibers and inorganic particles |
CN108411614A (en) * | 2018-03-02 | 2018-08-17 | 华南理工大学 | A kind of flexible multi-functional sensing fiber and preparation method thereof based on zinc oxide/nano silver wire hybridization network |
CN108950211A (en) * | 2018-06-13 | 2018-12-07 | 珠海格力电器股份有限公司 | Method for recovering silver and copper from waste chips |
CN109235026A (en) * | 2018-08-23 | 2019-01-18 | 合肥普尔德医疗用品有限公司 | A kind of medical material preparation method based on antimicrobial nano silver chemical modification |
CN109221102A (en) * | 2018-10-30 | 2019-01-18 | 广东粤迪厚创科技发展有限公司 | A new antibacterial material |
CN109267337A (en) * | 2018-09-17 | 2019-01-25 | 海安启弘纺织科技有限公司 | A kind of preparation method and products thereof of antistatic/antibacterial and deodouring warp-knitted face fabric |
CN109647298A (en) * | 2019-01-31 | 2019-04-19 | 济南大学 | Polyethylene-zinc oxide micrometer nanometer hierarchical structure composite micro-sphere material and application |
CN109647052A (en) * | 2018-12-04 | 2019-04-19 | 山西绿建科技有限公司 | A kind of preparation method of antibacterial air conditioner filter element material |
CN109778528A (en) * | 2018-12-30 | 2019-05-21 | 福建省金怡丰工贸有限公司 | A kind of preparation method of environment-friendlyantibiotic antibiotic textile product |
CN110318252A (en) * | 2019-08-16 | 2019-10-11 | 四川轻化工大学 | Composite material with spiral carbon nanofiber surface loaded with zinc oxide particles and preparation method and application thereof |
CN110952305A (en) * | 2019-12-24 | 2020-04-03 | 福建恒安集团有限公司 | Solid fragrance type clothing cleaning additive |
CN111549521A (en) * | 2020-05-14 | 2020-08-18 | 深圳中科思莫特材料有限公司 | Preparation method of antibacterial fabric, antibacterial fabric and antibacterial product |
CN107617344B (en) * | 2017-09-01 | 2020-10-16 | 中国科学院宁波材料技术与工程研究所 | Nanowire-loaded polymer microporous membrane and preparation method thereof |
CN112314624A (en) * | 2020-11-04 | 2021-02-05 | 中国科学院新疆理化技术研究所 | Preparation method and application of silver-silicon antibacterial composite material |
CN112545073A (en) * | 2020-12-30 | 2021-03-26 | 河南省斯科赛斯科技发展有限公司 | Antibacterial breathable medical protective clothing |
CN112568522A (en) * | 2020-12-30 | 2021-03-30 | 河南省斯科赛斯科技发展有限公司 | Medical protective facial mask of antibiotic type |
CN112760977A (en) * | 2021-01-12 | 2021-05-07 | 浙江森马服饰股份有限公司 | Microcapsule temperature-regulating antibacterial fabric |
CN114369944A (en) * | 2022-01-12 | 2022-04-19 | 中原工学院 | A kind of treatment method and product for improving the performance of stab-proof fabric |
CN115058887A (en) * | 2022-07-22 | 2022-09-16 | 武汉纺织大学 | A kind of super-hydrophobic antibacterial textile and preparation method thereof |
CN115179379A (en) * | 2022-07-08 | 2022-10-14 | 西部金属材料股份有限公司 | Preparation method of food-grade antibacterial and mildewproof wood |
CN115636629A (en) * | 2022-10-12 | 2023-01-24 | 山东凯大新型材料科技有限公司 | Preparation process of antibacterial diatom plate |
CN116867940A (en) * | 2020-12-10 | 2023-10-10 | 克拉罗斯技术股份有限公司 | Antimicrobial and antiviral nanocomposite sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130619A (en) * | 1996-11-01 | 1998-05-19 | Mitsui Mining & Smelting Co Ltd | Composite with fine zinc oxide particle attached thereto and its production |
CN1568704A (en) * | 2004-04-29 | 2005-01-26 | 天津理工学院 | Composite nanometer antibiotic material, preparation method and products thereof |
CN1771807A (en) * | 2005-07-29 | 2006-05-17 | 西南交通大学 | Zinc oxide lattice silver-loaded inorganic antibacterial agent and preparation method thereof |
CN102503171A (en) * | 2011-10-31 | 2012-06-20 | 南京大学 | Preparation method of branched zinc oxide nanowire array film |
CN102543471A (en) * | 2012-01-17 | 2012-07-04 | 西安交通大学 | Method for preparing CdS and CdSe quantum dot sectional compound sensitized double-layer ZnO nanometer rod photo-anode |
-
2012
- 2012-12-13 CN CN201210539675.4A patent/CN103015166B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130619A (en) * | 1996-11-01 | 1998-05-19 | Mitsui Mining & Smelting Co Ltd | Composite with fine zinc oxide particle attached thereto and its production |
CN1568704A (en) * | 2004-04-29 | 2005-01-26 | 天津理工学院 | Composite nanometer antibiotic material, preparation method and products thereof |
CN1771807A (en) * | 2005-07-29 | 2006-05-17 | 西南交通大学 | Zinc oxide lattice silver-loaded inorganic antibacterial agent and preparation method thereof |
CN102503171A (en) * | 2011-10-31 | 2012-06-20 | 南京大学 | Preparation method of branched zinc oxide nanowire array film |
CN102543471A (en) * | 2012-01-17 | 2012-07-04 | 西安交通大学 | Method for preparing CdS and CdSe quantum dot sectional compound sensitized double-layer ZnO nanometer rod photo-anode |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104208949A (en) * | 2013-05-31 | 2014-12-17 | 古德里奇公司 | Silver-coated fabric for filter membrane integration |
CN104208949B (en) * | 2013-05-31 | 2017-08-18 | 古德里奇公司 | The fabric for scribbling silver integrated for filter membrane |
CN103343446A (en) * | 2013-06-27 | 2013-10-09 | 上海大学 | Method for preparing hydrophobic lipophilic cotton fabric material through structuring zinc oxide fine structure |
CN103343446B (en) * | 2013-06-27 | 2015-05-06 | 上海大学 | Method for preparing hydrophobic lipophilic cotton fabric material through structuring zinc oxide fine structure |
CN103911853A (en) * | 2014-03-11 | 2014-07-09 | 何丽清 | Nano-silver microsphere emulsion, and preparation method and applications thereof |
CN103866321A (en) * | 2014-03-14 | 2014-06-18 | 中国科学院合肥物质科学研究院 | Silver nanoparticle-zinc oxide porous nanosheet-carbon fiber cloth composite substrate as well as preparation method and use of substrate |
CN103898735B (en) * | 2014-04-11 | 2015-09-02 | 西南大学 | Zinc oxide nano rod matrix modifies preparation method of silk and products thereof |
CN103898735A (en) * | 2014-04-11 | 2014-07-02 | 西南大学 | Preparation method and product of zinc oxide nanorod matrix modified silk |
CN104299723A (en) * | 2014-09-05 | 2015-01-21 | 中国科学院合肥物质科学研究院 | Method for preparing high-performance metal nanowire transparent conducting thin film |
CN104594024B (en) * | 2015-01-30 | 2017-02-01 | 浙江汇千高飞新材料有限公司 | Method for preparing antibacterial mildew-proof textile |
CN104594024A (en) * | 2015-01-30 | 2015-05-06 | 浙江汇千高飞新材料有限公司 | Antibacterial mildew-proof textile and method for preparing antibacterial mildew-proof textile |
CN104588014A (en) * | 2015-02-11 | 2015-05-06 | 济南大学 | Method for depositing gold nanoparticles on surface of one-dimensional ZnO material |
CN105040414A (en) * | 2015-05-25 | 2015-11-11 | 厦门大学 | Preparation method of sliver supporting fabric based on plant material and nanometer sliver synergetic antibacterial |
CN105040414B (en) * | 2015-05-25 | 2017-05-03 | 厦门大学 | Preparation method of sliver supporting fabric based on plant material and nanometer sliver synergetic antibacterial |
CN105002614A (en) * | 2015-07-07 | 2015-10-28 | 宁波武田纺织有限公司 | Preparation method of composite yarn |
CN105002614B (en) * | 2015-07-07 | 2017-08-15 | 宁波武田纺织有限公司 | A kind of preparation method of complex yarn |
CN108138433A (en) * | 2015-09-30 | 2018-06-08 | 日本制纸株式会社 | Composite of cellulose fibers and inorganic particles |
CN105220462A (en) * | 2015-10-30 | 2016-01-06 | 朱忠良 | A kind of textile nano function finishing agent and its preparation method and application |
CN105839410A (en) * | 2016-03-29 | 2016-08-10 | 腾科宝迪(厦门)生物科技有限公司 | Safety protection surgical gown |
CN106283607A (en) * | 2016-10-17 | 2017-01-04 | 新乡市新科防护科技有限公司 | A kind of production method of UV resistance antibacterial silk stocking fabric |
CN107142718A (en) * | 2017-07-05 | 2017-09-08 | 陕西科技大学 | Nano zine oxide/silver complex antimicrobials and preparation method thereof |
CN107617344B (en) * | 2017-09-01 | 2020-10-16 | 中国科学院宁波材料技术与工程研究所 | Nanowire-loaded polymer microporous membrane and preparation method thereof |
CN107630353A (en) * | 2017-09-17 | 2018-01-26 | 赵兵 | A kind of nano zine oxide/nano silver wire Multifunctional cotton fiber |
CN108411614A (en) * | 2018-03-02 | 2018-08-17 | 华南理工大学 | A kind of flexible multi-functional sensing fiber and preparation method thereof based on zinc oxide/nano silver wire hybridization network |
CN108950211A (en) * | 2018-06-13 | 2018-12-07 | 珠海格力电器股份有限公司 | Method for recovering silver and copper from waste chips |
CN109235026A (en) * | 2018-08-23 | 2019-01-18 | 合肥普尔德医疗用品有限公司 | A kind of medical material preparation method based on antimicrobial nano silver chemical modification |
CN109267337A (en) * | 2018-09-17 | 2019-01-25 | 海安启弘纺织科技有限公司 | A kind of preparation method and products thereof of antistatic/antibacterial and deodouring warp-knitted face fabric |
CN109221102A (en) * | 2018-10-30 | 2019-01-18 | 广东粤迪厚创科技发展有限公司 | A new antibacterial material |
CN109647052A (en) * | 2018-12-04 | 2019-04-19 | 山西绿建科技有限公司 | A kind of preparation method of antibacterial air conditioner filter element material |
CN109778528A (en) * | 2018-12-30 | 2019-05-21 | 福建省金怡丰工贸有限公司 | A kind of preparation method of environment-friendlyantibiotic antibiotic textile product |
CN109647298A (en) * | 2019-01-31 | 2019-04-19 | 济南大学 | Polyethylene-zinc oxide micrometer nanometer hierarchical structure composite micro-sphere material and application |
CN109647298B (en) * | 2019-01-31 | 2021-04-06 | 济南大学 | Polyethylene-zinc oxide micro-nano multi-level structure composite microsphere material and its application |
CN110318252A (en) * | 2019-08-16 | 2019-10-11 | 四川轻化工大学 | Composite material with spiral carbon nanofiber surface loaded with zinc oxide particles and preparation method and application thereof |
CN110952305B (en) * | 2019-12-24 | 2022-05-10 | 福建恒安集团有限公司 | Solid fragrance type clothing cleaning additive |
CN110952305A (en) * | 2019-12-24 | 2020-04-03 | 福建恒安集团有限公司 | Solid fragrance type clothing cleaning additive |
CN111549521A (en) * | 2020-05-14 | 2020-08-18 | 深圳中科思莫特材料有限公司 | Preparation method of antibacterial fabric, antibacterial fabric and antibacterial product |
CN112314624A (en) * | 2020-11-04 | 2021-02-05 | 中国科学院新疆理化技术研究所 | Preparation method and application of silver-silicon antibacterial composite material |
CN116867940A (en) * | 2020-12-10 | 2023-10-10 | 克拉罗斯技术股份有限公司 | Antimicrobial and antiviral nanocomposite sheet |
CN112545073A (en) * | 2020-12-30 | 2021-03-26 | 河南省斯科赛斯科技发展有限公司 | Antibacterial breathable medical protective clothing |
CN112568522A (en) * | 2020-12-30 | 2021-03-30 | 河南省斯科赛斯科技发展有限公司 | Medical protective facial mask of antibiotic type |
CN112760977A (en) * | 2021-01-12 | 2021-05-07 | 浙江森马服饰股份有限公司 | Microcapsule temperature-regulating antibacterial fabric |
CN112760977B (en) * | 2021-01-12 | 2022-08-26 | 浙江森马服饰股份有限公司 | Microcapsule temperature-regulating antibacterial fabric |
CN114369944A (en) * | 2022-01-12 | 2022-04-19 | 中原工学院 | A kind of treatment method and product for improving the performance of stab-proof fabric |
CN115179379A (en) * | 2022-07-08 | 2022-10-14 | 西部金属材料股份有限公司 | Preparation method of food-grade antibacterial and mildewproof wood |
CN115058887A (en) * | 2022-07-22 | 2022-09-16 | 武汉纺织大学 | A kind of super-hydrophobic antibacterial textile and preparation method thereof |
CN115636629A (en) * | 2022-10-12 | 2023-01-24 | 山东凯大新型材料科技有限公司 | Preparation process of antibacterial diatom plate |
Also Published As
Publication number | Publication date |
---|---|
CN103015166B (en) | 2014-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103015166B (en) | Nano-silver antibacterial fabric and preparation method thereof | |
Sekar et al. | Electrospinning of Fe-doped ZnO nanoparticles incorporated polyvinyl alcohol nanofibers for its antibacterial treatment and cytotoxic studies | |
Soo et al. | Enhancing the antibacterial performance of titanium dioxide nanofibers by coating with silver nanoparticles | |
Patel et al. | Surface functionalization of electrospun PAN nanofibers with ZnO–Ag heterostructure nanoparticles: Synthesis and antibacterial study | |
JP5777337B2 (en) | Antibacterial material | |
Harikumar et al. | Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli bacteria | |
Malika et al. | Review on application of nanofluid/nano particle as water disinfectant | |
Tan et al. | Core–shell AgCl@ SiO2 nanoparticles: Ag (I)-based antibacterial materials with enhanced stability | |
Perelshtein et al. | Ultrasound radiation as a “throwing stones” technique for the production of antibacterial nanocomposite textiles | |
Długosz et al. | Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents | |
Li et al. | Electrospun Ag-doped SnO2 hollow nanofibers with high antibacterial activity | |
CN106577750A (en) | Preparing method for titanium-dioxide composite nanometer antibacterial material and product thereof | |
Wei et al. | Loose yarn of Ag-ZnO-PAN/ITO hybrid nanofibres: preparation, characterization and antibacterial evaluation | |
Guo et al. | Effect of the adhesion of Ag coatings on the effectiveness and durability of antibacterial properties | |
Wu et al. | Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: anexcellent system for antibacterial applications | |
Kim et al. | Antibacterial and biofilm-inhibiting cotton fabrics decorated with copper nanoparticles grown on graphene nanosheets | |
CN111418607A (en) | Composite nano-silver antiviral agent and preparation method and application thereof | |
CN106417275A (en) | Method for preparing chitosan encapsulated nano-silver graphene oxide composite antibacterial material | |
Sirotkin et al. | Applications of plasma synthesized ZnO, TiO2, and Zn/TiOx nanoparticles for making antimicrobial wound‐healing viscose patches | |
Dhandapani et al. | Bio-approach: preparation of RGO-AgNPs on cotton fabric and interface with sweat environment for antibacterial activity | |
Yue et al. | Incorporating charged Ag@ MOFs to boost the antibacterial and filtration properties of porous electrospinning polylactide films | |
JP2018153787A (en) | Photocatalyst coating liquid containing hypochlorous acid, method for producing base material with photocatalyst, and base material with photocatalyst | |
Zhang et al. | Biological influence and clinical applications of the unique flower shape of ZnO–ZnS@ SA superhydrophobic composite films grown on nanorods | |
Jana et al. | Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity—a review | |
Dong et al. | Investigation on the antibacterial micro-porous titanium with silver nano-particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140813 Termination date: 20161213 |