CN103012036B - Aromatic hydrocarbon purifying method - Google Patents
Aromatic hydrocarbon purifying method Download PDFInfo
- Publication number
- CN103012036B CN103012036B CN201210498962.5A CN201210498962A CN103012036B CN 103012036 B CN103012036 B CN 103012036B CN 201210498962 A CN201210498962 A CN 201210498962A CN 103012036 B CN103012036 B CN 103012036B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- aromatics
- catalyst
- acid
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 116
- 238000006243 chemical reaction Methods 0.000 claims abstract description 50
- 239000011973 solid acid Substances 0.000 claims abstract description 38
- 238000007670 refining Methods 0.000 claims abstract description 23
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 101
- 239000002808 molecular sieve Substances 0.000 claims description 99
- 239000002131 composite material Substances 0.000 claims description 66
- 239000000203 mixture Substances 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000011964 heteropoly acid Substances 0.000 claims description 21
- 238000011068 loading method Methods 0.000 claims description 21
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 20
- 239000011258 core-shell material Substances 0.000 claims description 19
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- 238000001179 sorption measurement Methods 0.000 claims description 14
- 239000012153 distilled water Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 11
- 239000004927 clay Substances 0.000 claims description 11
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000003463 adsorbent Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 150000004682 monohydrates Chemical class 0.000 claims description 8
- 238000004230 steam cracking Methods 0.000 claims description 8
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 8
- HSNVNALJRSJDHT-UHFFFAOYSA-N P(=O)(=O)[Mo] Chemical compound P(=O)(=O)[Mo] HSNVNALJRSJDHT-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 7
- 238000002407 reforming Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004327 boric acid Substances 0.000 claims description 5
- 150000007522 mineralic acids Chemical class 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- 229910021555 Chromium Chloride Inorganic materials 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 claims description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 3
- 239000003456 ion exchange resin Substances 0.000 claims description 3
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000008096 xylene Substances 0.000 claims description 3
- 239000011592 zinc chloride Substances 0.000 claims description 3
- 235000005074 zinc chloride Nutrition 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001593 boehmite Inorganic materials 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical group O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 2
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 15
- 238000011069 regeneration method Methods 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 230000008929 regeneration Effects 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 150000001336 alkenes Chemical class 0.000 description 34
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 26
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 26
- 229910052794 bromium Inorganic materials 0.000 description 26
- 239000002994 raw material Substances 0.000 description 22
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- 239000011268 mixed slurry Substances 0.000 description 9
- GGKNTGJPGZQNID-UHFFFAOYSA-N (1-$l^{1}-oxidanyl-2,2,6,6-tetramethylpiperidin-4-yl)-trimethylazanium Chemical compound CC1(C)CC([N+](C)(C)C)CC(C)(C)N1[O] GGKNTGJPGZQNID-UHFFFAOYSA-N 0.000 description 8
- 101710194905 ARF GTPase-activating protein GIT1 Proteins 0.000 description 8
- 102100029217 High affinity cationic amino acid transporter 1 Human genes 0.000 description 8
- 101710081758 High affinity cationic amino acid transporter 1 Proteins 0.000 description 8
- 239000006004 Quartz sand Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 3
- 229910000024 caesium carbonate Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- CPWPJLJWUXOOAB-UHFFFAOYSA-N benzene;bromine Chemical compound [Br].C1=CC=CC=C1 CPWPJLJWUXOOAB-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- RFVVBBUVWAIIBT-UHFFFAOYSA-N beryllium nitrate Chemical compound [Be+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O RFVVBBUVWAIIBT-UHFFFAOYSA-N 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 102100021392 Cationic amino acid transporter 4 Human genes 0.000 description 1
- 101710195194 Cationic amino acid transporter 4 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 241000237509 Patinopecten sp. Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- WLQXPAUZYVXSNE-UHFFFAOYSA-N [Ca].O[N+]([O-])=O Chemical compound [Ca].O[N+]([O-])=O WLQXPAUZYVXSNE-UHFFFAOYSA-N 0.000 description 1
- WNPMJIKMURUYFG-UHFFFAOYSA-N [N+](=O)([O-])[O-].[Ge+2].[N+](=O)([O-])[O-] Chemical compound [N+](=O)([O-])[O-].[Ge+2].[N+](=O)([O-])[O-] WNPMJIKMURUYFG-UHFFFAOYSA-N 0.000 description 1
- AZFUOHYXCLYSQJ-UHFFFAOYSA-N [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [V+5].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O AZFUOHYXCLYSQJ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical class [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- WFLYOQCSIHENTM-UHFFFAOYSA-N molybdenum(4+) tetranitrate Chemical compound [N+](=O)([O-])[O-].[Mo+4].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] WFLYOQCSIHENTM-UHFFFAOYSA-N 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- YQMWDQQWGKVOSQ-UHFFFAOYSA-N trinitrooxystannyl nitrate Chemical compound [Sn+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YQMWDQQWGKVOSQ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种芳烃的精制方法,所述的方法为:在温度50~400℃、压力0.1~12MPa、进料质量空速0.1~15小时-1的条件下,将芳烃与固体酸催化剂接触反应,获得精制后的芳烃;本发明工艺流程简单,不消耗氢气,装置投资和操作费用低;催化剂活性稳定性好,装置稳定操作时间长,芳烃损失少,可避免反应器反应和再生频繁切换操作,催化剂可再生,可避免大量废催化剂堆埋处理,对环境影响小。The invention discloses a method for refining aromatic hydrocarbons. The method is as follows: under the conditions of temperature 50-400°C, pressure 0.1-12MPa, and feed mass space velocity 0.1-15 hours -1 , aromatic hydrocarbons and solid acid catalyst Contact reaction to obtain refined aromatics; the invention has a simple process flow, does not consume hydrogen, and has low equipment investment and operating costs; the catalyst has good activity stability, long stable operation time of the equipment, less loss of aromatics, and frequent reactor reactions and regenerations can be avoided By switching operation, the catalyst can be regenerated, which can avoid landfill disposal of a large number of spent catalysts, and has little impact on the environment.
Description
(一)技术领域 (1) Technical field
本发明涉及一种芳烃的精制方法,尤其是一种采用核壳结构分子筛催化剂进行酸催化反应脱除芳烃中微量烯烃的方法。The invention relates to a method for refining aromatic hydrocarbons, in particular to a method for removing trace olefins in aromatic hydrocarbons by using a core-shell molecular sieve catalyst for acid-catalyzed reaction.
(二)背景技术 (2) Background technology
芳烃是重要的化工基础原料,石油化工工业通过石脑油重整和蒸汽裂解等工艺来生产芳烃。在这些工艺的芳烃产品中均存在一定量的烯烃杂质(小于1%),这部分烯烃杂质影响芳烃产品质量,且对一些后续化工工艺过程有不良影响。因此,为了得到合格的芳烃原料并保证后续工艺的顺利进行,必须将芳烃中的烯烃杂质进行深度脱除。目前,国内外炼油厂广泛采用的脱除芳烃产品中烯烃杂质的方法主要有加氢精制和白土精制两种。Aromatic hydrocarbons are important chemical basic raw materials, and the petrochemical industry produces aromatic hydrocarbons through processes such as naphtha reforming and steam cracking. A certain amount of olefin impurities (less than 1%) exist in the aromatic products of these processes. This part of olefin impurities affects the quality of aromatic products and has adverse effects on some subsequent chemical processes. Therefore, in order to obtain qualified aromatic hydrocarbon raw materials and ensure the smooth progress of subsequent processes, it is necessary to deeply remove the olefin impurities in aromatic hydrocarbons. At present, the methods widely used by refineries at home and abroad to remove olefin impurities in aromatics products mainly include hydrorefining and clay refining.
加氢精制主要是利用氧化铝载体负载铂或钯催化剂,在重整反应器后面进行“后加氢”过程以实现烯烃饱和从而达到脱除烯烃的目的。加氢精制脱烯烃杂质的效率高,从而被国内外炼油厂所广泛使用。对于苯馏分来说不论用铂或钯为其活性组元效果都较好,但是对于苯、甲苯和二甲苯等的芳烃较宽馏分来说,加氢反应深度难以全面兼顾,并造成芳烃较显著的损失。且其流程较复杂,必须设有许多临氢高压设备,加上某些贵金属催化剂,造成投资和操作费用高。Hydrofining mainly uses platinum or palladium catalyst supported by alumina carrier, and carries out a "post-hydrogenation" process behind the reforming reactor to achieve olefin saturation and achieve the purpose of removing olefins. The efficiency of hydrotreating to remove olefin impurities is high, so it is widely used by domestic and foreign refineries. For the benzene fraction, whether platinum or palladium is used as the active component, the effect is better, but for the wide fraction of aromatics such as benzene, toluene and xylene, it is difficult to fully consider the depth of hydrogenation reaction, and the aromatics are more significant. Loss. And its process is more complicated, it must be equipped with many hydrogen-facing high-pressure equipment, plus some noble metal catalysts, resulting in high investment and operating costs.
白土精制是利用酸处理的白土,主要通过吸附或部分烯烃叠合及烷基化反应,从而达到脱除芳烃中烯烃的目的。白土精制方法虽然已经得到广泛的工业应用,但是脱除烯烃的效果较差;在实际处理过程中,白土失活快、使用周期短、用量大,失活后的白土不能再生,大约1个月就需要更换新白土,频繁更换增加了芳烃损失和工作量,大量的废白土需堆埋处理,造成环境污染。Clay refining is the use of acid-treated clay to remove olefins from aromatics mainly through adsorption or partial olefin stacking and alkylation reactions. Although the refining method of clay has been widely used in industry, the effect of removing olefins is relatively poor; in the actual treatment process, clay deactivation is fast, the use period is short, and the dosage is large, and the clay after deactivation cannot be regenerated, about 1 month Just need to replace new clay, frequent replacement increases the loss of aromatics and workload, and a large amount of waste clay needs to be dumped, causing environmental pollution.
微孔分子筛由于具有较强的表面酸性和水热稳定性,可以用作脱除芳烃中微量烯烃的催化剂。只是因为其孔径太小,烯烃叠合等反应生成较大分子的内扩散阻力较大,导致催化剂结焦失活速率较大,催化剂活性稳定性较差。而SBA-15型介孔分子筛因其具有高度有序的介孔结构,提高了大分子反应物在其孔道内的扩散速率,得到人们的广泛关注。但是由于这种介孔分子筛的水热稳定性和酸性较差,阻碍了其在石油化工中的应用。将微孔分子筛和介孔分子筛复合具有现实意义,可以发挥微孔分子筛较强表面酸性和水热稳定性,以及介孔分子筛较强扩散性能。以微孔分子筛为内核,而SBA-15相则生长在微孔分子筛内核的外表面,形成核壳型多级孔结构的复合分子筛。由于介微孔两相共生,导致介孔孔壁变厚,使得介孔分子筛的热和水热稳定性提高。微孔-介孔复合分子筛由于既具有微孔分子筛孔壁结构的强酸性,又具有较大的介孔孔径,增强分子筛间的协同作用,克服由于微孔分子筛孔道限制引起的催化剂失活问题,提高催化剂的活性稳定性。Microporous molecular sieves can be used as catalysts for removing trace olefins in aromatics due to their strong surface acidity and hydrothermal stability. Just because the pore size is too small, the internal diffusion resistance of larger molecules generated by reactions such as olefin superposition is relatively large, resulting in a high rate of coking and deactivation of the catalyst, and poor stability of the catalyst activity. The SBA-15 type mesoporous molecular sieve has attracted widespread attention because of its highly ordered mesoporous structure, which can increase the diffusion rate of macromolecular reactants in its channels. However, due to the poor hydrothermal stability and acidity of this mesoporous molecular sieve, its application in petrochemical industry is hindered. Combining microporous molecular sieves and mesoporous molecular sieves has practical significance, and can exert the strong surface acidity and hydrothermal stability of microporous molecular sieves, and the strong diffusion performance of mesoporous molecular sieves. The microporous molecular sieve is used as the core, and the SBA-15 phase grows on the outer surface of the microporous molecular sieve core, forming a composite molecular sieve with a core-shell multi-level pore structure. Due to the symbiosis of the two phases of mesoporous pores, the wall of the mesoporous pores becomes thicker, which improves the thermal and hydrothermal stability of the mesoporous molecular sieves. The microporous-mesoporous composite molecular sieve has both the strong acidity of the microporous molecular sieve wall structure and the large mesoporous aperture, which enhances the synergy between molecular sieves and overcomes the problem of catalyst deactivation caused by the channel limitation of microporous molecular sieves. Improve the activity and stability of the catalyst.
(三)发明内容 (3) Contents of the invention
本发明目的是提供一种环境友好、催化剂活性稳定性好、稳定操作时间长的脱除芳烃中微量烯烃的方法。The purpose of the present invention is to provide a method for removing trace olefins in aromatic hydrocarbons which is environmentally friendly, has good catalyst activity stability and long stable operation time.
本发明采用的技术方案是:The technical scheme adopted in the present invention is:
一种芳烃的精制方法,所述方法为:在温度50~400℃、压力0.1~12MPa、进料质量空速0.1~15小时-1的条件下,将芳烃与固体酸催化剂接触反应,使芳烃中的微量烯烃发生吸附、叠合和烷基化反应,脱除芳烃中的微量烯烃,从而对芳烃进行精制,获得精制后的芳烃;所述固体酸催化剂为壳层包裹着内核的核壳型复合分子筛催化剂或核壳型复合分子筛催化剂负载改性化合物得到的复合型固体酸催化剂;A method for refining aromatic hydrocarbons, the method comprising: contacting and reacting aromatic hydrocarbons with a solid acid catalyst under the conditions of a temperature of 50-400°C, a pressure of 0.1-12 MPa, and a feed mass space velocity of 0.1-15 hours -1 , to make the aromatic hydrocarbons Trace olefins in the catalyst undergo adsorption, stacking and alkylation reactions to remove trace olefins in aromatics, thereby refining aromatics and obtaining refined aromatics; the solid acid catalyst is a core-shell type in which the shell wraps the core Composite molecular sieve catalysts or composite solid acid catalysts obtained by loading modified compounds on core-shell composite molecular sieve catalysts;
所述核壳型复合分子筛催化剂按如下方法制得:按照固液质量比1:5~100(优选1:10),将内核微孔分子筛与水搅拌混合,形成混合物A;以三嵌段聚合物EO20PO70EO20(P123)为模板剂,按照EO20PO70EO20:MOn/2:SiO2:无机酸:H2O=1:0.1~40:40~150:80~800:5000~18000(优选1:1.3~25.8:62.5~125.3:100~500:8000~15000)的物质的量配比,将一定量的EO20PO70EO20、H2O、无机酸混合均匀,加入取代元素M的前身物和硅源,搅拌混合均匀,形成混合物B;所述H2O或水均为蒸馏水或去离子水,将混合物A加到混合物B中,搅拌混合均匀,在10~200℃条件下晶化反应0~72小时,经过滤和洗涤后得到晶化产物,再将晶化产物经干燥及450~600℃焙烧2~30h处理脱除模板剂,得到所述核壳型复合分子筛催化剂;所述硅源为硅溶胶、正硅酸乙酯或正硅酸甲酯;所述n为取代元素M的价电子数;The core-shell composite molecular sieve catalyst is prepared as follows: according to the solid-to-liquid mass ratio of 1:5 to 100 (preferably 1:10), the core microporous molecular sieve is stirred and mixed with water to form a mixture A; EO 20 PO 70 EO 20 (P123) is a template, according to EO 20 PO 70 EO 20 :MO n/2 :SiO 2 :Inorganic acid:H 2 O=1:0.1~40:40~150:80~800 :5000~18000 (preferably 1:1.3~25.8:62.5~125.3:100~500:8000~15000) material ratio, mix a certain amount of EO 20 PO 70 EO 20 , H 2 O and inorganic acid evenly , adding the precursor of element M and silicon source, stirring and mixing uniformly to form mixture B; the H 2 O or water is distilled water or deionized water, adding mixture A to mixture B, stirring and mixing uniformly, at 10 Crystallization reaction at ~200°C for 0-72 hours, filtering and washing to obtain the crystallized product, then drying and roasting the crystallized product at 450-600°C for 2-30 hours to remove the template agent to obtain the core-shell Type composite molecular sieve catalyst; the silicon source is silica sol, ethyl orthosilicate or methyl orthosilicate; the n is the number of valence electrons of the substituting element M;
所述取代元素M为下列一种或两种以上任意比例的混合物:(1)铍、(2)镁、(3)钙、(4)锶、(5)硼、(6)铝、(7)镓、(8)锰、(9)铁、(10)钴、(11)镍、(12)铜、(13)锌、(14)钛、(15)钒、(16)铬、(17)锗、(18)锆、(19)铌、(20)钼、(21)锡或(22)钨;The substituting element M is the following one or a mixture of two or more in any proportion: (1) beryllium, (2) magnesium, (3) calcium, (4) strontium, (5) boron, (6) aluminum, (7) ) gallium, (8) manganese, (9) iron, (10) cobalt, (11) nickel, (12) copper, (13) zinc, (14) titanium, (15) vanadium, (16) chromium, (17) ) germanium, (18) zirconium, (19) niobium, (20) molybdenum, (21) tin or (22) tungsten;
所述内核微孔分子筛为下列一种或两种以上任意比例的混合物:(1)HZSM-5分子筛、(2)HY分子筛、(3)Hβ分子筛、(4)HUSY分子筛、(5)HMOR分子筛、(6)HMCM-22分子筛;所述内核微孔分子筛投加量占核壳型复合分子筛催化剂的质量分数为0.1~50.0%;所述各种类型内核微孔分子筛的硅铝摩尔比最优选为HZSM-5(其n(SiO2)/n(Al2O3)=38)、Hβ(其n(SiO2)/n(Al2O3)=30)、HY(其n(SiO2)/n(Al2O3)=9.6)、HUSY(其n(SiO2)/n(Al2O3)=10)、HMOR(其n(SiO2)/n(Al2O3)=23)、HMCM-22(其n(SiO2)/n(Al2O3)=28.5)。The core microporous molecular sieve is a mixture of one or more of the following in any proportion: (1) HZSM-5 molecular sieve, (2) HY molecular sieve, (3) Hβ molecular sieve, (4) HUSY molecular sieve, (5) HMOR molecular sieve , (6) HMCM-22 molecular sieve; the dosage of the core microporous molecular sieve accounts for 0.1-50.0% of the mass fraction of the core-shell composite molecular sieve catalyst; the silicon-aluminum molar ratio of the various types of core microporous molecular sieves is the most preferred HZSM-5 (its n(SiO 2 )/n(Al 2 O 3 )=38), Hβ (its n(SiO 2 )/n(Al 2 O 3 )=30), HY (its n(SiO 2 ) )/n(Al 2 O 3 )=9.6), HUSY (with n(SiO 2 )/n(Al 2 O 3 )=10), HMOR (with n(SiO 2 )/n(Al 2 O 3 )= 23), HMCM-22 (n(SiO 2 )/n(Al 2 O 3 )=28.5).
所述改性化合物为下列一种或两种以上任意比例的混合物:(1)磷酸、(2)氢氟酸、(3)氟化铵、(4)磷钨杂多酸、(5)硅钨杂多酸、(6)磷钼杂多酸、(7)磷钨杂多酸铯盐、(8)硅钨杂多酸铯盐、(9)磷钼杂多酸铯盐、(10)氯化铝、(11)氯化锌、(12)氯化铁、(13)氯化铜、(14)氯化铬、(15)硼酸;所述改性化合物的负载量以核壳型复合分子筛质量计为0.01~60wt%。The modified compound is a mixture of one or more of the following in any proportion: (1) phosphoric acid, (2) hydrofluoric acid, (3) ammonium fluoride, (4) phosphotungstic heteropoly acid, (5) silicon Tungsten heteropoly acid, (6) phosphomolybdenum heteropoly acid, (7) phosphotungstic heteropoly acid cesium salt, (8) silicotungstic heteropoly acid cesium salt, (9) phosphomolybdenum heteropoly acid cesium salt, (10) Aluminum chloride, (11) zinc chloride, (12) ferric chloride, (13) copper chloride, (14) chromium chloride, (15) boric acid; The mass of molecular sieve is 0.01-60wt%.
所述无机酸优选为下列之一:盐酸、硝酸或硫酸。The mineral acid is preferably one of the following: hydrochloric acid, nitric acid or sulfuric acid.
所述取代元素M的前身物为氧化物、酸、氢氧化物或盐。The precursors of the substituting element M are oxides, acids, hydroxides or salts.
所述M为Al时,所述M的前身物为:异丙醇铝、勃姆石、拟薄水铝石、一水合氧化铝、硝酸铝、铝溶胶、铝凝胶或硫酸铝。When the M is Al, the precursor of M is: aluminum isopropoxide, boehmite, pseudoboehmite, alumina monohydrate, aluminum nitrate, aluminum sol, aluminum gel or aluminum sulfate.
所述复合型固体酸催化剂按如下方法制得:按照改性化合物负载量计算改性化合物用量,用改性化合物溶于溶剂中得到的溶液对核壳型复合分子筛进行浸渍处理,然后经干燥、或/和焙烧,即得到改性化合物负载量为0.01~60wt%的复合型固体酸催化剂;所述的溶剂为下列之一:水、丙酮、四氯化碳或无水乙醇。The composite solid acid catalyst is prepared as follows: calculate the dosage of the modified compound according to the load of the modified compound, impregnate the core-shell type composite molecular sieve with a solution obtained by dissolving the modified compound in a solvent, and then dry, or/and roasting to obtain a composite solid acid catalyst with a modified compound loading of 0.01-60wt%; the solvent is one of the following: water, acetone, carbon tetrachloride or absolute ethanol.
进一步,优选所述的反应温度100~300℃、压力0.2~4.0MPa、进料总质量空速0.5~10.0小时-1,最优选为反应温度180~220℃、压力1.0~2.5MPa、进料质量空速0.5~2.0小时-1。Further, it is preferred that the reaction temperature is 100-300°C, the pressure is 0.2-4.0MPa, the total mass space velocity of the feed is 0.5-10.0 hours- 1 , and the most preferred is the reaction temperature 180-220°C, the pressure The mass space velocity is 0.5 to 2.0 hours -1 .
所述芳烃为重整装置生成的芳烃、蒸汽裂解装置生成的芳烃。The aromatics are aromatics generated by a reforming unit and aromatics generated by a steam cracking unit.
进一步,所述芳烃为重整装置或蒸汽裂解装置生成的芳烃分离后的苯、甲苯或二甲苯,所述分离方法为本领域技术人员公知方法,通常为蒸馏分离方法。Further, the aromatics are benzene, toluene or xylene after separation of aromatics generated by a reforming unit or a steam cracking unit, and the separation method is a method well known to those skilled in the art, usually a distillation separation method.
本发明所述精制方法还包括芳烃预处理,所述芳烃预处理是芳烃经过吸附剂床层的吸附后再与固体酸催化剂接触进行脱烯烃反应;所述的吸附预处理条件为:温度0~200℃、压力0.1~6.0MPa、质量空速0.2~15小时-1,所述吸附剂为下列一种或两种以上任意比例混合物:13X分子筛、HY分子筛、活性白土、活性炭、HUSY分子筛或酸性离子交换树脂。The refining method of the present invention also includes aromatic hydrocarbon pretreatment. The aromatic hydrocarbon pretreatment is that the aromatic hydrocarbon is adsorbed by the adsorbent bed and then contacted with a solid acid catalyst to carry out the deolefination reaction; the adsorption pretreatment condition is: temperature 0~ 200°C, pressure 0.1-6.0MPa, mass space velocity 0.2-15 hours -1 , the adsorbent is a mixture of one or more of the following in any proportion: 13X molecular sieve, HY molecular sieve, activated clay, activated carbon, HUSY molecular sieve or acidic ion exchange resin.
所述的芳烃精制方法中所述反应是在两个或两个以上串联或并联构成的反应器内进行。The reaction in the aromatics refining method is carried out in two or more reactors connected in series or in parallel.
反应所采用的反应器可选固定床、膨胀床、流化床、搅拌釜式反应器,以及催化蒸馏反应器。反应装置可以有多个反应器并联或串联操作。反应器中的流体可以采取上行式,也可以采用下行式。The reactors used in the reaction can be selected from fixed bed, expanded bed, fluidized bed, stirred tank reactor, and catalytic distillation reactor. The reaction unit can have multiple reactors operating in parallel or in series. The fluid in the reactor can adopt upward flow or downward flow.
在芳烃精制过程中可以采用两个反应器串联操作,第一个反应器作为预处理反应器,第二个反应器作为精制反应器。在反应中,当第二个反应器的精制芳烃烯烃含量超标,如其溴指数大于100mgBr/100g,将第二个反应器切换为第一个反应器;当第一个反应器流出芳烃的烯烃含量超标,如其溴指数大于300mgBr/100g,就对第一个反应器中的催化剂进行再生。再生方法之一是停止进芳烃,用甲醇、乙醇、丙酮、二氯甲烷、四氯化碳、聚乙二醇、二甘醇、三甘醇、四氢呋喃、苯甲酸、苯酚等极性溶剂对失活催化剂进行洗涤再生;再生方法之二是用含氧气体对失活催化剂进行烧焦再生;再生方法之三是先用极性溶剂洗涤再生,然后用含氧气体对失活催化剂进行烧焦再生。In the refining process of aromatics, two reactors can be operated in series, the first reactor is used as a pretreatment reactor, and the second reactor is used as a refining reactor. During the reaction, when the content of refined aromatics and olefins in the second reactor exceeds the standard, such as its bromine index is greater than 100mgBr/100g, switch the second reactor to the first reactor; Exceeding the standard, if the bromine index is greater than 300mgBr/100g, regenerate the catalyst in the first reactor. One of the regeneration methods is to stop the aromatics, and use polar solvents such as methanol, ethanol, acetone, methylene chloride, carbon tetrachloride, polyethylene glycol, diethylene glycol, triethylene glycol, tetrahydrofuran, benzoic acid, phenol, etc. The active catalyst is washed and regenerated; the second regeneration method is to regenerate the deactivated catalyst with an oxygen-containing gas; the third regeneration method is to wash and regenerate the deactivated catalyst with an oxygen-containing gas first, and then regenerate the deactivated catalyst with an oxygen-containing gas .
本发明所述的一种脱除芳烃中微量烯烃的方法的有益效果主要体现在:The beneficial effects of a method for removing trace olefins in aromatics of the present invention are mainly reflected in:
(1)工艺流程简单,不消耗氢气,装置投资和操作费用低;(1) The process flow is simple, no hydrogen is consumed, and the device investment and operation costs are low;
(2)催化剂活性稳定性好,装置稳定操作时间长,芳烃损失少,可避免反应器反应和再生频繁切换操作;(2) The catalyst has good activity and stability, the stable operation time of the device is long, and the loss of aromatics is small, which can avoid frequent switching operations of reactor reaction and regeneration;
(3)催化剂可再生,可避免大量废催化剂堆埋处理,对环境影响小。(3) The catalyst can be regenerated, which can avoid landfill disposal of a large number of spent catalysts, and has little impact on the environment.
(四)具体实施方式 (4) Specific implementation methods
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but protection scope of the present invention is not limited thereto:
实施例中所用的三嵌段聚合物P123来源于Aldrich公司,一水合氧化铝来源于山东铝业集团公司;微孔分子筛 HZSM-5(其n(SiO2)/n(Al2O3)=38)、Hβ(其n(SiO2)/n(Al2O3)=30)来源于南开大学催化剂厂, HY(其n(SiO2)/n(Al2O3)=9.6)和HUSY(其n(SiO2)/n(Al2O3)=10)来源于温州华华集团公司,HMOR(其n(SiO2)/n(Al2O3)=23)来源于江苏奥科石油化学技术有限公司,HMCM-22(其n(SiO2)/n(Al2O3)=28.5)来源于姜堰市化工助剂厂。The triblock polymer P123 used in the examples comes from Aldrich Company, and the alumina monohydrate comes from Shandong Aluminum Group Company; the microporous molecular sieve HZSM-5 (its n(SiO 2 )/n(Al 2 O 3 )= 38), Hβ (n(SiO 2 )/n(Al 2 O 3 )=30) from Nankai University Catalyst Factory, HY (n(SiO 2 )/n(Al 2 O 3 )=9.6) and HUSY (with n(SiO 2 )/n(Al 2 O 3 )=10) from Wenzhou Huahua Group Company, HMOR (with n(SiO 2 )/n(Al 2 O 3 )=23) from Jiangsu Aoke Petrochemical Technology Co., Ltd., HMCM-22 (with n(SiO 2 )/n(Al 2 O 3 )=28.5) comes from Jiangyan Chemical Auxiliary Factory.
催化剂挤条成型过程是将30克合成的M-SBA-15介孔/微孔复合分子筛粉末与9克一水合氧化铝、0.75克田菁粉混合均匀,加入36克蒸馏水和55克质量含量为10%的硝酸水溶液,捏合成泥团,挤条成型,晾干后程序升温到550℃焙烧4小时。The catalyst extrusion molding process is to mix 30 grams of synthetic M-SBA-15 mesoporous/microporous composite molecular sieve powder with 9 grams of alumina monohydrate and 0.75 gram of turnip powder, add 36 grams of distilled water and 55 grams of mass content of 10% nitric acid aqueous solution, kneaded into mud balls, extruded into strips, dried and then heated to 550°C for 4 hours.
对比例comparative example
Al-SBA-15介孔分子筛催化剂的合成Synthesis of Al-SBA-15 Mesoporous Molecular Sieve Catalyst
按照原料摩尔配比P123:Al2O3:SiO2:HCl:H2O为1:3.1:62.5:300:10000计算,称取20克P123,与计算量的蒸馏水及盐酸混合,在40℃温度下搅拌混合1.0小时,加入1.3克一水合氧化铝继续搅拌混合1.0小时;然后,加入45.0克正硅酸乙酯继续搅拌混合5.0小时,得到混合浆料。将该混合浆料置于塑料容器中,在100℃和自生压力条件下晶化反应48小时,经过滤、洗涤、干燥处理,在550℃焙烧5.0小时脱除模板剂,得到Al-SBA-15介孔分子筛催化剂粉末13.8克。将10克该催化剂粉末与3克一水合氧化铝、0.25克田菁粉混合均匀,加入12克蒸馏水和18.3克质量含量为10%的硝酸水溶液,捏合成泥团,挤条成型,晾干后程序升温到550℃焙烧4小时,再经破碎,得到20~40目催化剂颗粒,记为CAT-0。将该催化剂用于芳烃脱烯烃反应实验,反应实验结果见表3。According to the calculation of the molar ratio of raw materials P123:Al 2 O 3 :SiO 2 :HCl:H 2 O is 1:3.1:62.5:300:10000, weigh 20 grams of P123, mix it with the calculated amount of distilled water and hydrochloric acid, and heat it at 40°C Stir and mix at high temperature for 1.0 hour, add 1.3 g of alumina monohydrate and continue to stir and mix for 1.0 hour; then, add 45.0 g of tetraethyl orthosilicate and continue to stir and mix for 5.0 hours to obtain a mixed slurry. The mixed slurry was placed in a plastic container, crystallized at 100°C and autogenous pressure for 48 hours, filtered, washed and dried, and fired at 550°C for 5.0 hours to remove the template agent to obtain Al-SBA-15 13.8 grams of mesoporous molecular sieve catalyst powder. Mix 10 grams of the catalyst powder with 3 grams of alumina monohydrate and 0.25 grams of scallop powder, add 12 grams of distilled water and 18.3 grams of 10% nitric acid aqueous solution, knead into a mud ball, extrude into strips, and dry The temperature was programmed to rise to 550°C for 4 hours, and then crushed to obtain catalyst particles of 20-40 mesh, which were designated as CAT-0. The catalyst was used in the deolefination reaction experiment of aromatic hydrocarbons, and the results of the reaction experiment are shown in Table 3.
实施例1:Example 1:
Al-SBA-15介孔/Hβ微孔复合分子筛催化剂的合成Synthesis of Al-SBA-15 Mesoporous/Hβ Microporous Composite Molecular Sieve Catalyst
将5克Hβ微孔分子筛粉末作为内核,与50克蒸馏水搅拌混合1.0小时,得到混合物A。按照原料摩尔配比P123:Al2O3:SiO2:HCl:H2O为1:3.1:62.5:300:10000计算,称取20克P123,与计算量的蒸馏水及盐酸混合,在40℃温度下搅拌混合1.0小时,加入1.3克一水合氧化铝继续搅拌混合1.0小时;在搅拌条件下加入45.0克正硅酸乙酯,得到混合物B。然后,将混合物A加到混合物B中,在40℃温度下继续搅拌混合5.0小时,得到混合浆料。将该混合浆料置于塑料容器中,在100℃和自生压力条件下晶化反应48小时,经过滤、洗涤、干燥处理,在550℃焙烧5.0小时脱除模板剂,得到内核微孔分子筛占催化剂总质量27.8%的Al-SBA-15介孔/Hβ微孔核壳型复合分子筛催化剂粉末18.7克,经挤条成型与破碎,得到20~40目催化剂颗粒,记为CAT-1。5 g of Hβ microporous molecular sieve powder was used as the inner core, and stirred and mixed with 50 g of distilled water for 1.0 hour to obtain a mixture A. According to the calculation of the molar ratio of raw materials P123:Al 2 O 3 :SiO 2 :HCl:H 2 O is 1:3.1:62.5:300:10000, weigh 20 grams of P123, mix it with the calculated amount of distilled water and hydrochloric acid, and heat it at 40°C Stir and mix at high temperature for 1.0 hour, add 1.3 g of alumina monohydrate and continue to stir and mix for 1.0 hour; add 45.0 g of ethyl orthosilicate while stirring to obtain mixture B. Then, the mixture A was added to the mixture B, and the mixture was stirred and mixed at a temperature of 40° C. for 5.0 hours to obtain a mixed slurry. The mixed slurry was placed in a plastic container, crystallized at 100°C and autogenous pressure for 48 hours, filtered, washed, and dried, and fired at 550°C for 5.0 hours to remove the template agent to obtain the inner core microporous molecular sieve 18.7 grams of Al-SBA-15 mesoporous/Hβ microporous core-shell composite molecular sieve catalyst powder with a total catalyst mass of 27.8% was extruded and crushed to obtain 20-40 mesh catalyst particles, which were designated as CAT-1.
实施例2~6:Embodiment 2~6:
采用与实施例1相同的合成方法,不同的是分别用HZSM-5分子筛、HY分子筛、HUSY分子筛、HMOR分子筛、HMCM-22分子筛作为内核,经过水热合成、挤条成型,得到内核微孔分子筛占催化剂总质量27.8%的Al-SBA-15介孔/微孔核壳型复合分子筛催化剂,列于表1。Using the same synthesis method as in Example 1, the difference is that HZSM-5 molecular sieves, HY molecular sieves, HUSY molecular sieves, HMOR molecular sieves, and HMCM-22 molecular sieves are used as cores, and the core microporous molecular sieves are obtained through hydrothermal synthesis and extrusion molding. The Al-SBA-15 mesoporous/microporous core-shell composite molecular sieve catalyst, which accounts for 27.8% of the total mass of the catalyst, is listed in Table 1.
表1Table 1
实施例7~25:Embodiment 7~25:
采用与实施例1相同的合成方法,不同的是以三嵌段聚合物P123为模板剂,分别用钛酸丁酯、硝酸钴、硝酸锌、硝酸镓、硝酸锰、硝酸锶、硝酸锆、硝酸钙、硝酸铍、硝酸铁、硝酸镍、硝酸钒、硝酸铬、硝酸锗、硝酸锡、硝酸钼、铌酸、硝酸铜、钨酸作为取代元素M的前身物,按照P123:MOn/2:SiO2:HCl:H2O为1:6.25:62.5:300:10000的原料摩尔配比合成含取代元素的M-SBA-15分子筛粉末,经挤条成型与破碎,得到20~40目催化剂颗粒,列于表2。Using the same synthesis method as in Example 1, the difference is that the three-block polymer P123 is used as a template, and butyl titanate, cobalt nitrate, zinc nitrate, gallium nitrate, manganese nitrate, strontium nitrate, zirconium nitrate, nitric acid Calcium, beryllium nitrate, iron nitrate, nickel nitrate, vanadium nitrate, chromium nitrate, germanium nitrate, tin nitrate, molybdenum nitrate, niobic acid, copper nitrate, tungstic acid as the precursor of the substitution element M, according to P123:MO n/2 : SiO 2 :HCl:H 2 O is 1:6.25:62.5:300:10000 molar ratio of raw materials to synthesize M-SBA-15 molecular sieve powder containing substituting elements, and then extruded and crushed to obtain 20-40 mesh catalyst particles , listed in Table 2.
表2Table 2
实施例26:Example 26:
B-Mg-SBA-15介孔/Hβ微孔复合分子筛催化剂的合成Synthesis of B-Mg-SBA-15 Mesoporous/Hβ Microporous Composite Molecular Sieve Catalyst
将5克Hβ微孔分子筛粉末与50克蒸馏水搅拌混合1.0小时,得到混合物A。按照原料摩尔配比P123:B2O3:MgO:SiO2:HCl:H2O为1:3.1:6.5:62.5:350:11000计算,称取20克P123,与计算量的蒸馏水及盐酸混合,在40℃温度下搅拌混合1.0小时,加入计算量的硼酸,继续搅拌混合1.0小时;在搅拌条件下加入计算量的乙酸镁和正硅酸乙酯,得到混合物B。然后,将混合物A加到混合物B中,在40℃温度下继续搅拌混合5.0小时,得到混合浆料。将该混合浆料置于塑料容器中,在60℃和自生压力条件下晶化反应12小时,经过过滤、洗涤、干燥处理,在550℃焙烧5.0小时脱除模板剂,得到内核微孔分子筛占催化剂总质量26.3%的B-Mg-SBA-15介孔/Hβ微孔核壳型复合分子筛催化剂粉末,经挤条成型与破碎,得到20~40目催化剂颗粒,记为CAT-26。5 g of Hβ microporous molecular sieve powder was mixed with 50 g of distilled water for 1.0 hour to obtain mixture A. According to the calculation of the molar ratio of raw materials P123:B 2 O 3 :MgO:SiO 2 :HCl:H 2 O is 1:3.1:6.5:62.5:350:11000, weigh 20 grams of P123 and mix it with the calculated amount of distilled water and hydrochloric acid , stirred and mixed at 40° C. for 1.0 hour, added the calculated amount of boric acid, and continued to stir and mixed for 1.0 hour; Then, the mixture A was added to the mixture B, and the mixture was stirred and mixed at a temperature of 40° C. for 5.0 hours to obtain a mixed slurry. The mixed slurry was placed in a plastic container, crystallized at 60°C and autogenous pressure for 12 hours, filtered, washed, and dried, and fired at 550°C for 5.0 hours to remove the template agent to obtain the inner core microporous molecular sieve B-Mg-SBA-15 mesoporous/Hβ microporous core-shell type composite molecular sieve catalyst powder with 26.3% of the total catalyst mass was extruded and crushed to obtain 20-40 mesh catalyst particles, which were designated as CAT-26.
实施例27~41:Embodiment 27~41:
对实施例1的Al-SBA-15介孔/Hβ微孔复合分子筛催化剂进行负载改性制备复合型固体酸催化剂Preparation of composite solid acid catalyst by loading and modifying the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve catalyst of Example 1
将实施例1所制备20~40目的Al-SBA-15介孔/Hβ微孔复合分子筛颗粒用于后续(1)~(14)制备负载型催化剂的操作:The 20-40 mesh Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve particles prepared in Example 1 were used in the following operations (1)-(14) to prepare supported catalysts:
(1)用100毫升浓度为0.143mol/L的磷酸水溶液对10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛进行室温浸渍处理24小时,接着进行110℃干燥3小时和400℃焙烧处理3小时,得到P2O5负载量为10.0Wt%的P/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-27催化剂(实施例27)。(1) 10 grams of the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve obtained in Example 1 was impregnated with 100 ml of phosphoric acid aqueous solution with a concentration of 0.143 mol/L for 24 hours at room temperature, followed by drying at 110°C for 3 hours Calcined at 400°C for 3 hours to obtain a P/Al-SBA-15/Hβ composite solid acid catalyst with a P 2 O 5 loading of 10.0 wt%, which was designated as CAT-27 catalyst (Example 27).
(2)将5.0克硼酸溶于30克丙酮溶剂中,溶解均匀后加入10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛,在室温下搅拌15分钟,加热蒸发掉丙酮,120℃干燥3小时,得到硼酸负载量为50wt%的B/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-28催化剂(实施例28)。(2) Dissolve 5.0 grams of boric acid in 30 grams of acetone solvent, dissolve evenly, add 10 grams of the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve obtained in Example 1, stir at room temperature for 15 minutes, and heat to evaporate Acetone was dried at 120°C for 3 hours to obtain a B/Al-SBA-15/Hβ composite solid acid catalyst with a boric acid loading of 50 wt%, which was designated as CAT-28 catalyst (Example 28).
(3)用100毫升浓度为0.167mol/L的氢氟酸水溶液对10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛进行室温浸渍处理24小时,接着进行110℃干燥3小时和200℃焙烧处理3小时,得到F负载量为3.0Wt%的F/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-29催化剂(实施例29)。(3) 10 grams of the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve obtained in Example 1 was impregnated with 100 ml of hydrofluoric acid aqueous solution with a concentration of 0.167 mol/L for 24 hours at room temperature, followed by drying at 110°C After 3 hours and 200°C calcination treatment for 3 hours, a F/Al-SBA-15/Hβ composite solid acid catalyst with a F loading of 3.0wt% was obtained, which was designated as CAT-29 catalyst (Example 29).
(4)按照实施例29的方法,制备氟化铵负载量为3.0wt%的负载改性的NH4F/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-30(实施例30)。(4) According to the method of Example 29, a modified NH 4 F/Al-SBA-15/Hβ composite solid acid catalyst with a loaded ammonium fluoride loading of 3.0 wt% was prepared, denoted as CAT-30 (Example 30).
(5)用磷钨杂多酸(上海化学试剂公司)制备磷钨杂多酸负载改性的PW12/Al-SBA-15/Hβ复合型固体酸催化剂。用100毫升浓度为0.008mol/L的磷钨杂多酸水溶液对10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛进行室温浸渍处理24小时,接着进行110℃干燥3小时和200℃焙烧处理3小时,得到PW12负载量为20wt%的PW12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-31(实施例31)。(5) Prepare PW 12 /Al-SBA-15/Hβ composite solid acid catalyst loaded with phosphotungstic heteropolyacid (Shanghai Chemical Reagent Company) by using phosphotungstic heteropolyacid. The phosphotungstic heteropolyacid aqueous solution of 0.008mol/L with 100 milliliters of concentration is carried out room temperature impregnation treatment 24 hours to the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve that 10 grams of embodiment 1 gains, then carry out 110 ℃ of drying 3 hour and 200°C for 3 hours to obtain a PW 12 /Al-SBA-15/Hβ composite solid acid catalyst with a PW 12 loading of 20 wt%, which is designated as CAT-31 (Example 31).
(6)用硅钨杂多酸(沈阳成晟试剂厂)制备硅钨杂多酸负载改性的SiW12/Al-SBA-15/Hβ复合型固体酸催化剂。用100毫升浓度为0.013mol/L的硅钨杂多酸水溶液对10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛进行室温浸渍处理24小时,接着进行110℃干燥3小时和200℃焙烧处理3小时,得到SiW12负载量为30wt%的SiW12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-32(实施例32)。(6) SiW 12 /Al-SBA-15/Hβ composite solid acid catalyst loaded with silicotungstic heteropoly acid (Shenyang Chengsheng Reagent Factory) was used to prepare SiW 12 /Al-SBA-15/Hβ composite solid acid catalyst. With 100 milliliters of concentrations of 0.013mol/L silicotungstic heteropoly acid aqueous solution, 10 grams of Al-SBA-15 mesoporous/Hβ microporous composite molecular sieves obtained in Example 1 were impregnated at room temperature for 24 hours, followed by drying at 110°C for 3 hour and 200°C for 3 hours, and a SiW 12 /Al-SBA-15/Hβ composite solid acid catalyst with a SiW 12 loading of 30wt% was obtained, which was designated as CAT-32 (Example 32).
(7)用磷钼杂多酸(沈阳新兴试剂厂)制备磷钼杂多酸负载改性的PMo12/Al-SBA-15/Hβ复合型固体酸催化剂。用100毫升浓度为0.025mol/L的磷钼杂多酸水溶液对10克实施例1所得的Al-SBA-15介孔/Hβ微孔复合分子筛进行室温浸渍处理24小时,接着进行110℃干燥3小时和200℃焙烧处理3小时,得到PMo12负载量为30wt%的PMo12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-33(实施例33)。(7) PMo 12 /Al-SBA-15/Hβ composite solid acid catalyst modified by phosphomolybdenum heteropoly acid (Shenyang Xinxing Reagent Factory) was prepared. With 100 milliliters of concentrations being 0.025mol/L phosphomolybdenum heteropolyacid aqueous solution, the Al-SBA-15 mesoporous/Hβ microporous composite molecular sieve that 10 grams of embodiment 1 gains is carried out room temperature immersion treatment 24 hours, then carries out 110 ℃ of drying 3 hour and 200°C for 3 hours to obtain a PMo 12 /Al-SBA-15/Hβ composite solid acid catalyst with a PMo 12 loading of 30 wt%, which is designated as CAT-33 (Example 33).
(8)制备磷钨杂多酸铯盐负载改性的Cs2.5H0.5PW12/Al-SBA-15/Hβ复合型固体酸催化剂。(8) Preparation of Cs 2.5 H 0.5 PW 12 /Al-SBA-15/Hβ composite solid acid catalyst modified by cesium salt of phosphotungstic acid.
分别将0.48克Cs2CO3和3.49克H3PW12O40·6H2O配成0.1mol/L和0.08mol/L的水溶液。首先向碳酸铯水溶液中加入10克Al-SBA-15/Hβ复合分子筛,室温下搅拌3小时,于80℃温度下蒸干水分,于500℃温度下焙烧3小时;接着将焙烧的样品与磷钨酸水溶液混合,室温下搅拌12小时,于80℃温度下蒸干水分,于120℃温度下干燥5小时,于200℃温度下焙烧2小时,得到Cs2.5H0.5PW12负载量为30wt%的Cs2.5H0.5PW12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-34(实施例34)。0.48 g of Cs 2 CO 3 and 3.49 g of H 3 PW 12 O 40 ·6H 2 O were formulated into 0.1 mol/L and 0.08 mol/L aqueous solutions, respectively. First, add 10 grams of Al-SBA-15/Hβ composite molecular sieve to the cesium carbonate aqueous solution, stir at room temperature for 3 hours, evaporate the moisture at 80°C, and roast at 500°C for 3 hours; Mix tungstic acid aqueous solution, stir at room temperature for 12 hours, evaporate water at 80°C, dry at 120°C for 5 hours, and roast at 200°C for 2 hours to obtain Cs 2.5 H 0.5 PW 12 with a loading capacity of 30wt% The Cs 2.5 H 0.5 PW 12 /Al-SBA-15/Hβ composite solid acid catalyst is designated as CAT-34 (Example 34).
(9)制备硅钨杂多酸铯盐负载改性的Cs2.5H0.5SiW12/Al-SBA-15/Hβ复合型固体酸催化剂。(9) Preparation of Cs 2.5 H 0.5 SiW 12 /Al-SBA-15/Hβ composite solid acid catalyst supported by cesium salt of silicotungstic heteropolyacid.
分别将0.48克Cs2CO3和3.49克H3SiW12O40·6H2O配成0.1mol/L和0.08mol/L的水溶液。首先向碳酸铯水溶液中加入10克Al-SBA-15/Hβ复合分子筛,室温下搅拌3小时,于80℃温度下蒸干水分,于500℃温度下焙烧3小时;接着将焙烧的样品与硅钨酸水溶液混合,室温下搅拌12小时,于80℃温度下蒸干水分,于120℃温度下干燥5小时,于200℃温度下焙烧2小时,得到Cs2.5H0.5SiW12负载量为30wt%的Cs2.5H0.5SiW12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-35(实施例35)。0.48 g of Cs 2 CO 3 and 3.49 g of H 3 SiW 12 O 40 ·6H 2 O were formulated into 0.1 mol/L and 0.08 mol/L aqueous solutions, respectively. First, add 10 grams of Al-SBA-15/Hβ composite molecular sieve to the cesium carbonate aqueous solution, stir at room temperature for 3 hours, evaporate the moisture at 80°C, and roast at 500°C for 3 hours; Mix tungstic acid aqueous solution, stir at room temperature for 12 hours, evaporate to dryness at 80°C, dry at 120°C for 5 hours, and roast at 200°C for 2 hours to obtain Cs 2.5 H 0.5 SiW 12 with a loading capacity of 30wt% The Cs 2.5 H 0.5 SiW 12 /Al-SBA-15/Hβ composite solid acid catalyst is designated as CAT-35 (Example 35).
(10)制备磷钼杂多酸铯盐负载改性的Cs2.5H0.5PMo12/Al-SBA-15/Hβ复合型固体酸催化剂。(10) Preparation of modified Cs 2.5 H 0.5 PMo 12 /Al-SBA-15/Hβ composite solid acid catalyst loaded with cesium salt of phosphomolybdenum heteropolyacid.
分别将0.81克Cs2CO3和3.83克H3PMo12O40·6H2O配成0.1mol/L和0.08mol/L的水溶液。首先向碳酸铯水溶液中加入10克Al-SBA-15 /Hβ复合分子筛,室温下搅拌3小时,于80℃温度下蒸干水分,于500℃温度下焙烧3小时;接着将焙烧的样品与磷钼酸水溶液混合,室温下搅拌12小时,于80℃温度下蒸干水分,于120℃温度下干燥5小时,于200℃温度下焙烧2小时,得到Cs2.5H0.5PMo12负载量为30wt%的Cs2.5H0.5PMo12/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-36(实施例36)。0.81 g of Cs 2 CO 3 and 3.83 g of H 3 PMo 12 O 40 ·6H 2 O were formulated into 0.1 mol/L and 0.08 mol/L aqueous solutions, respectively. First, add 10 grams of Al-SBA-15/Hβ composite molecular sieve to the cesium carbonate aqueous solution, stir at room temperature for 3 hours, evaporate the moisture at 80°C, and roast at 500°C for 3 hours; then the roasted sample is mixed with phosphorus Molybdic acid aqueous solution was mixed, stirred at room temperature for 12 hours, evaporated to dryness at 80°C, dried at 120°C for 5 hours, and calcined at 200°C for 2 hours to obtain Cs 2.5 H 0.5 PMo 12 with a loading capacity of 30wt% The Cs 2.5 H 0.5 PMo 12 /Al-SBA-15/Hβ composite solid acid catalyst is designated as CAT-36 (Example 36).
(11)制备氯化铝负载改性的AlCl3/Al-SBA-15 /Hβ复合型固体酸催化剂。(11) Preparation of aluminum chloride-supported modified AlCl 3 /Al-SBA-15 /Hβ composite solid acid catalyst.
将10克实施例1所得的Al-SBA-15/Hβ复合分子筛和250毫升干燥的CCl4加到500毫升的三口烧瓶中,油浴加热回流1.5小时,然后加入2克氯化铝,继续加热回流3小时;过滤,并用热CCl4洗涤2次,得到的固体在120℃温度下干燥5小时,得到氯化铝负载量为20wt%的AlCl3/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-37(实施例37)。The Al-SBA-15/Hβ composite molecular sieve that 10 grams of embodiment 1 gained and 250 milliliters of dry CCl 4 are added in the there-necked flask of 500 milliliters, oil bath heating reflux 1.5 hours, then add 2 grams of aluminum chloride, continue heating Refluxed for 3 hours; filtered and washed twice with hot CCl4 , the resulting solid was dried at 120°C for 5 hours to obtain AlCl3 /Al-SBA-15/Hβ composite solid acid with a loading of aluminum chloride of 20wt% Catalyst, designated CAT-37 (Example 37).
(12)按照实施例37的方法,制备氯化锌负载量为20wt%的负载改性的ZnCl2/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-38(实施例38)。(12) According to the method of Example 37, prepare a loaded modified ZnCl 2 /Al-SBA-15/Hβ composite solid acid catalyst with a zinc chloride loading of 20wt%, denoted as CAT-38 (Example 38) .
(13)按照实施例37的方法,制备氯化铁负载量为20wt%的负载改性的FeCl3/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-39(实施例39)。(13) According to the method in Example 37, prepare a loaded modified FeCl 3 /Al-SBA-15/Hβ composite solid acid catalyst with a ferric chloride loading of 20 wt%, which is designated as CAT-39 (Example 39) .
(14)按照实施例37的方法,制备氯化铜负载量为20wt%的负载改性的CuCl2/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-40(实施例40)。(14) According to the method of Example 37, a modified CuCl 2 /Al-SBA-15/Hβ composite solid acid catalyst with a copper chloride loading of 20 wt% was prepared, denoted as CAT-40 (Example 40) .
(15)按照实施例37的方法,制备氯化铬负载量为20wt%的负载改性的CrCl2/Al-SBA-15/Hβ复合型固体酸催化剂,记为CAT-41(实施例41)。(15) According to the method in Example 37, prepare a loaded modified CrCl 2 /Al-SBA-15/Hβ composite solid acid catalyst with a loading capacity of chromium chloride of 20 wt%, denoted as CAT-41 (Example 41) .
实施例42:Example 42:
用硝酸合成Al-SBA-15介孔/Hβ微孔复合分子筛催化剂Synthesis of Al-SBA-15 Mesoporous/Hβ Microporous Composite Molecular Sieve Catalyst with Nitric Acid
将0.4克Hβ微孔分子筛粉末作为内核,与50克蒸馏水搅拌混合1.0小时,得到混合物A。按照原料摩尔配比P123:Al2O3:SiO2:HNO3:H2O为1:25.8:125.3:500:15000计算,称取20克P123,与计算量的蒸馏水及硝酸混合,在40℃温度下搅拌混合1.0小时,加入计算量的硝酸铝继续搅拌混合1.0小时;在搅拌条件下加入计算量的正硅酸乙酯,得到混合物B。然后,将混合物A加到混合物B中,在40℃温度下继续搅拌混合5.0小时,得到混合浆料。将该混合浆料置于塑料容器中,在100℃和自生压力条件下晶化反应72小时,经过过滤、洗涤、干燥处理,在550℃焙烧5.0小时脱除模板剂,得到内核微孔分子筛占催化剂总质量1.4%的Al-SBA-15介孔/Hβ微孔核壳型复合分子筛催化剂粉末,经挤条成型与破碎,得到20~40目催化剂颗粒,记为CAT-42。0.4 g of Hβ microporous molecular sieve powder was used as the inner core, and stirred and mixed with 50 g of distilled water for 1.0 hour to obtain a mixture A. Calculate according to the raw material molar ratio P123:Al 2 O 3 :SiO 2 :HNO 3 :H 2 O is 1:25.8:125.3:500:15000, weigh 20 grams of P123, mix it with the calculated amount of distilled water and nitric acid, and mix it at 40 Stir and mix at ℃ for 1.0 hour, add the calculated amount of aluminum nitrate and continue to stir and mix for 1.0 hour; Then, the mixture A was added to the mixture B, and the mixture was stirred and mixed at a temperature of 40° C. for 5.0 hours to obtain a mixed slurry. The mixed slurry was placed in a plastic container, crystallized at 100°C and autogenous pressure for 72 hours, filtered, washed and dried, and fired at 550°C for 5.0 hours to remove the template agent to obtain the inner core microporous molecular sieve Al-SBA-15 mesoporous/Hβ microporous core-shell composite molecular sieve catalyst powder with a total mass of 1.4% of the catalyst was extruded and crushed to obtain 20-40 mesh catalyst particles, which were designated as CAT-42.
实施例43:Example 43:
用硫酸合成Al-SBA-15介孔/Hβ微孔复合分子筛催化剂Synthesis of Al-SBA-15 Mesoporous/Hβ Microporous Composite Molecular Sieve Catalyst with Sulfuric Acid
将12.2克Hβ微孔分子筛粉末作为内核,与50克蒸馏水搅拌混合1.0小时,得到混合物A。按照原料摩尔配比P123:Al2O3:SiO2:H2SO4:H2O为1:1.3:76.5:100:8000计算,称取20克P123,与计算量的蒸馏水及硫酸混合,在40℃温度下搅拌混合1.0小时,加入计算量的一水合氧化铝继续搅拌混合1.0小时;在搅拌条件下加入计算量的正硅酸乙酯,得到混合物B。然后,将混合物A加到混合物B中,在40℃温度下继续搅拌混合5.0小时,得到混合浆料;经过过滤、洗涤、干燥处理,在550℃焙烧5.0小时脱除模板剂,得到内核微孔分子筛占催化剂总质量42.1%的Al-SBA-15介孔/Hβ微孔核壳型复合分子筛催化剂粉末,经挤条成型与破碎,得到20~40目催化剂颗粒,记为CAT-43。12.2 g of Hβ microporous molecular sieve powder was used as the inner core, and stirred and mixed with 50 g of distilled water for 1.0 hour to obtain a mixture A. According to the calculation of the molar ratio of raw materials P123:Al 2 O 3 :SiO 2 :H 2 SO 4 :H 2 O is 1:1.3:76.5:100:8000, weigh 20 grams of P123, mix it with the calculated amount of distilled water and sulfuric acid, Stir and mix at 40° C. for 1.0 hour, add the calculated amount of alumina monohydrate and continue to stir and mix for 1.0 hour; Then, add mixture A to mixture B, continue to stir and mix at 40°C for 5.0 hours to obtain a mixed slurry; after filtering, washing, and drying, bake at 550°C for 5.0 hours to remove the templating agent and obtain inner core micropores The Al-SBA-15 mesoporous/Hβ microporous core-shell type composite molecular sieve catalyst powder whose molecular sieve accounts for 42.1% of the total mass of the catalyst is extruded and crushed to obtain 20-40 mesh catalyst particles, which are designated as CAT-43.
实施例44~86:Embodiment 44~86:
用固体酸催化剂进行芳烃脱除烯烃反应。Aromatics removal of olefins using a solid acid catalyst.
采用固定床反应装置,反应器为长100cm、内径1.0cm的不锈钢管,将5.0克催化剂装填在反应器中部,反应器两端填满石英砂。在压力1.0MPa、温度180℃、质量空速2.0h-1条件下,对某石油化工企业的重整芳烃进行持续脱除烯烃反应实验,用江苏江环分析仪器有限公司生产的RPA-100Br型溴指数测定仪测定反应原料和精制产物的溴指数,芳烃原料溴指数的测定结果为865.5mgBr/100g,精制产物溴指数的实验结果列于表3。A fixed-bed reaction device was adopted, and the reactor was a stainless steel tube with a length of 100 cm and an inner diameter of 1.0 cm. 5.0 grams of catalyst was packed in the middle of the reactor, and both ends of the reactor were filled with quartz sand. Under the conditions of pressure 1.0MPa, temperature 180°C, and mass space velocity 2.0h -1 , a continuous olefin removal experiment was carried out on the reformed aromatics of a petrochemical enterprise. The RPA-100Br type produced by Jiangsu Jianghuan Analytical Instrument Co., Ltd. The bromine index measuring instrument measures the bromine index of the reaction raw material and the refined product. The measurement result of the bromine index of the aromatic hydrocarbon raw material is 865.5mgBr/100g, and the experimental results of the bromine index of the refined product are listed in Table 3.
比较表3数据可知,由于对比例所制备催化剂CAT-0无内核微孔分子筛,其催化活性较低,导致芳烃精制产物溴指数较大。Comparing the data in Table 3, it can be seen that the catalyst CAT-0 coreless microporous molecular sieve prepared in the comparative example has a lower catalytic activity, resulting in a higher bromine index of the aromatics refined product.
表3table 3
实施例87:Example 87:
考察反应温度对芳烃脱除烯烃的影响。The effect of reaction temperature on the removal of olefins from aromatics was investigated.
采用固定床反应装置,反应器为长100cm、内径1.0cm的不锈钢管,将5.0克实施例1所制备的CAT-1催化剂装填在反应器中部,反应器两端填满石英砂。在压力3.0MPa、质量空速2.0h-1条件下,对某石油化工企业的重整芳烃进行脱除烯烃反应实验,用RPA-100Br型溴指数测定仪测定反应原料和精制产物的溴指数,芳烃原料溴指数的测定结果为865.5mgBr/100g,将不同温度的精制产物溴指数测定结果列于表4。从表4数据可知,脱烯率随着反应温度提高而增大,这说明适当提高反应温度有利于芳烃脱烯烃。A fixed bed reaction device was adopted, and the reactor was a stainless steel tube with a length of 100 cm and an inner diameter of 1.0 cm. 5.0 grams of the CAT-1 catalyst prepared in Example 1 was packed in the middle of the reactor, and both ends of the reactor were filled with quartz sand. Under the conditions of pressure 3.0MPa and mass space velocity 2.0h -1 , the reaction experiment of removing olefins from reformed aromatics in a petrochemical enterprise was carried out, and the bromine index of the reaction raw materials and refined products was measured with the RPA-100Br bromine index tester. The measurement result of the bromine index of the aromatic hydrocarbon raw material is 865.5mgBr/100g, and the measurement results of the bromine index of the refined products at different temperatures are listed in Table 4. From the data in Table 4, it can be seen that the deolefination rate increases with the increase of the reaction temperature, which shows that an appropriate increase in the reaction temperature is beneficial to the deolefination of aromatic hydrocarbons.
表4Table 4
实施例88:Example 88:
考察质量空速对芳烃脱除烯烃的影响。The effect of mass space velocity on the removal of olefins from aromatics was investigated.
采用固定床反应装置,反应器为长100cm、内径1.0cm的不锈钢管,将5.0克实施例1所制备的CAT-1催化剂装填在反应器中部,反应器两端填满石英砂。在压力1.5MPa、温度180℃的条件下,对某石油化工企业的重整芳烃进行脱除烯烃反应实验,用RPA-100Br型溴指数测定仪测定反应原料和精制产物的溴指数,芳烃原料溴指数的测定结果为865.5mgBr/100g,将不同质量空速的精制产物溴指数测定结果列于表5。从表5数据可以看出,脱烯率随着质量空速降低而增大,这说明适当降低质量空速有利于提高芳烃脱烯率。A fixed bed reaction device was adopted, and the reactor was a stainless steel tube with a length of 100 cm and an inner diameter of 1.0 cm. 5.0 grams of the CAT-1 catalyst prepared in Example 1 was packed in the middle of the reactor, and both ends of the reactor were filled with quartz sand. Under the conditions of pressure 1.5MPa and temperature 180°C, the reaction experiment of removing olefins from reformed aromatics in a petrochemical enterprise was carried out, and the bromine index of the reaction raw materials and refined products was measured with the RPA-100Br bromine index tester. The measurement result of the index is 865.5mgBr/100g, and the measurement results of the bromine index of the refined products with different mass space velocities are listed in Table 5. It can be seen from the data in Table 5 that the deolefination rate increases with the decrease of the mass space velocity, which shows that a proper reduction of the mass space velocity is beneficial to increase the deolefination rate of aromatics.
表5table 5
实施例89:Example 89:
芳烃经过吸附预处理与催化脱烯烃反应的串联操作。Aromatics undergo a cascade operation of adsorption pretreatment and catalytic deolefination reaction.
分别采用抚顺石化公司生产的活性白土、温州华华集团公司生产的HY分子筛、上海国药集团化学试剂有限公司的13X分子筛和活性炭、丹东明珠特种树脂有限公司生产的D005型酸性离子交换树脂作为吸附剂。将两个固定床反应器串联,第一个反应器作为吸附处理床,第二个反应器作为催化剂床层。分别将10.0克吸附剂和5.0克催化剂CAT-1装填在第一个和第二个反应器中,两个反应器的两端均填满石英砂。在压力1.0MPa、第一个反应器温度50℃、第二个反应器温度180℃、重整芳烃进料量5.0g/h的条件下进行持续芳烃脱除烯烃的反应实验,芳烃原料溴指数的测定结果为865.5mgBr/100g,将不同持续反应时间的精制产物溴指数测定结果列于表6。Activated clay produced by Fushun Petrochemical Company, HY molecular sieve produced by Wenzhou Huahua Group Co., Ltd., 13X molecular sieve and activated carbon produced by Shanghai Sinopharm Chemical Reagent Co., Ltd., and D005 acidic ion exchange resin produced by Dandong Mingzhu Special Resin Co., Ltd. were used as adsorbents. . Two fixed-bed reactors are connected in series, the first reactor is used as an adsorption treatment bed, and the second reactor is used as a catalyst bed. 10.0 grams of adsorbent and 5.0 grams of catalyst CAT-1 were loaded in the first and second reactors respectively, and both ends of the two reactors were filled with quartz sand. Under the conditions of pressure 1.0MPa, first reactor temperature 50°C, second reactor temperature 180°C, reformed aromatics feed rate 5.0g/h, the reaction experiment of continuous aromatics removal of olefins was carried out, and the bromine index of aromatics raw materials The measurement result of Br is 865.5mgBr/100g, and the bromine index measurement results of refined products with different duration of reaction are listed in Table 6.
表6Table 6
从表6数据可知,经过100天的持续芳烃脱烯烃反应,精制芳烃溴指数小于40 mgBr/100g,脱烯率始终在95.0%以上,表明该操作条件下催化剂具有良好的活性稳定性。It can be seen from the data in Table 6 that after 100 days of continuous aromatics deolefination reaction, the bromine index of refined aromatics is less than 40 mgBr/100g, and the deolefination rate is always above 95.0%, indicating that the catalyst has good activity and stability under this operating condition.
实施例90:Example 90:
芳烃经过不同条件的吸附预处理与催化脱烯烃反应的串联操作。Aromatics were subjected to a series operation of adsorption pretreatment and catalytic deolefination reaction under different conditions.
采用上海国药集团化学试剂有限公司的13X分子筛作为吸附剂,将两个固定床反应器串联,第一个反应器作为吸附处理床,第二个反应器作为催化剂床层,分别将吸附剂和催化剂CAT-1装填在第一个和第二个反应器中,两个反应器的两端均填满石英砂。在压力6.0MPa、第一个反应器温度10~200℃和质量空速0.2~15小时-1、第二个反应器温度180℃和质量空速1.0小时-1的条件下进行重整芳烃脱除烯烃的反应实验,芳烃原料溴指数的测定结果为865.5mgBr/100g,将不同条件吸附预处理与确定条件催化脱烯烃反应的精制产物溴指数测定结果列于表7。Using 13X molecular sieve from Shanghai Sinopharm Chemical Reagent Co., Ltd. as the adsorbent, two fixed-bed reactors were connected in series, the first reactor was used as an adsorption treatment bed, and the second reactor was used as a catalyst bed, and the adsorbent and catalyst were respectively CAT-1 is loaded in the first and second reactors, both ends of which are filled with quartz sand. Under the conditions of pressure 6.0MPa, first reactor temperature 10-200°C and mass space velocity 0.2-15 hours- 1 , second reactor temperature 180°C and mass space velocity 1.0 hours -1 , carry out reforming aromatics removal In the olefin removal reaction experiment, the bromine index of the aromatic raw material was 865.5 mgBr/100g. The results of the bromine index measurement of the refined product of the adsorption pretreatment under different conditions and the catalytic de-olefin reaction under certain conditions are listed in Table 7.
表7Table 7
从表7数据可以看出,关于芳烃经过不同条件的吸附预处理与确定条件的催化脱烯烃反应串联操作,随着吸附温度提高或吸附质量空速降低,精制芳烃的溴指数逐渐减小,脱烯烃效果逐渐提高,表明适当提高吸附温度或降低吸附质量空速有利于提高芳烃精制效果。From the data in Table 7, it can be seen that the bromine index of the refined aromatics gradually decreases with the increase of the adsorption temperature or the decrease of the adsorption mass space velocity after the adsorption pretreatment under different conditions and the catalytic deolefination reaction under certain conditions are operated in series. The effect of olefins gradually increased, indicating that appropriately increasing the adsorption temperature or reducing the space velocity of the adsorption mass was beneficial to improving the refining effect of aromatics.
实施例91:Example 91:
采用两个反应器串联反应装置的芳烃脱除烯烃反应。Aromatics removal of olefins using a two-reactor series reaction unit.
分别将5.0克催化剂CAT-1和5.0克催化剂CAT-4装填在第一个反应器和第二个反应器中部,两个反应器的两端均填满石英砂。在压力1.0MPa、第一个反应器温度100℃、第二个反应器温度180℃、重整芳烃进料量10.0g/h的条件下进行持续芳烃脱除烯烃的反应实验,芳烃原料溴指数的测定结果为865.5mgBr/100g,将不同持续反应时间的精制产物溴指数测定结果列于表8。用安捷伦科技上海分析仪器有限公司生产的具有50米OV-101毛细管柱、FID检测器的1790型气相色谱仪对芳烃原料和精制产物进行组成分析,结果见表9。5.0 grams of catalyst CAT-1 and 5.0 grams of catalyst CAT-4 were packed in the middle of the first reactor and the second reactor respectively, and both ends of the two reactors were filled with quartz sand. Under the conditions of pressure 1.0MPa, temperature of the first reactor 100°C, temperature of the second reactor 180°C, and feed rate of reformed aromatics 10.0g/h, the reaction experiment of continuous aromatics removal of olefins was carried out, and the bromine index of aromatics raw materials The determination result of Br is 865.5mgBr/100g, and the determination results of the bromine index of refined products with different duration of reaction are listed in Table 8. A 1790 gas chromatograph equipped with a 50-meter OV-101 capillary column and FID detector produced by Agilent Technologies Shanghai Analytical Instrument Co., Ltd. was used to analyze the composition of aromatic hydrocarbon raw materials and refined products. The results are shown in Table 9.
表8Table 8
从表8数据可知,经过100天的持续芳烃脱烯烃反应,脱烯率始终在96.0%以上,表明该操作条件下催化剂具有良好的活性稳定性,装置稳定操作时间长。From the data in Table 8, it can be seen that after 100 days of continuous aromatics deolefination reaction, the deolefination rate is always above 96.0%, indicating that the catalyst has good activity stability under this operating condition, and the stable operation time of the device is long.
表9Table 9
从表9可以看出,经过催化剂处理的芳烃产品在产品组成上与原料基本保持相同,芳烃产品在组成上基本没有发生的变化,说明该催化剂可以满足工业生产对产品质量的要求。It can be seen from Table 9 that the product composition of the aromatic product treated with the catalyst is basically the same as that of the raw material, and there is basically no change in the composition of the aromatic product, indicating that the catalyst can meet the product quality requirements of industrial production.
实施例92:Example 92:
进行苯脱除烯烃的反应实验。The reaction experiment of benzene to remove olefins was carried out.
采用固定床反应装置,将5.0克实施例1所制备的CAT-1催化剂装填在反应器中部,反应器两端填满石英砂。在压力2.5MPa、温度200℃、质量空速2.0h-1的条件下,对某石油化工企业重整混合芳烃经蒸馏分离得到的苯进行脱除烯烃反应实验,用RPA-100Br型溴指数测定仪测定反应原料和精制产物的溴指数,原料苯溴指数的测定结果为348.6mgBr/100g,经过持续90天的反应,精制苯溴指数的测定结果小于38.0mgBr/100g。A fixed-bed reaction device was used, and 5.0 grams of the CAT-1 catalyst prepared in Example 1 was packed in the middle of the reactor, and both ends of the reactor were filled with quartz sand. Under the conditions of pressure 2.5MPa, temperature 200℃, and mass space velocity 2.0h -1 , the benzene obtained by distillation and separation of reformed mixed aromatics in a petrochemical enterprise was tested for the removal of olefins, and the bromine index was determined by RPA-100Br The bromine index of the reaction raw material and the refined product was measured by an instrument. The measurement result of the benzene bromine index of the raw material was 348.6mgBr/100g. After 90 days of continuous reaction, the measurement result of the refined benzene bromine index was less than 38.0mgBr/100g.
实施例93:Example 93:
进行蒸汽裂解芳烃脱除烯烃的反应实验。The reaction experiment of steam cracking aromatics to remove olefins was carried out.
采用固定床反应装置,将5.0克实施例1所制备的CAT-1催化剂装填在反应器中部,反应器两端填满石英砂。在压力2.0MPa、温度220℃、质量空速2.0h-1的条件下,对某石油化工企业的蒸汽裂解芳烃进行脱除烯烃反应实验,用RPA-100Br型溴指数测定仪测定反应原料和精制产物的溴指数,原料芳烃溴指数的测定结果为1127.5mgBr/100g,经过持续90天的反应,精制蒸汽裂解芳烃溴指数的测定结果小于81.0mgBr/100g。A fixed-bed reaction device was used, and 5.0 grams of the CAT-1 catalyst prepared in Example 1 was packed in the middle of the reactor, and both ends of the reactor were filled with quartz sand. Under the conditions of pressure 2.0MPa, temperature 220℃, and mass space velocity 2.0h -1 , the reaction experiment of removing olefins from steam cracking aromatics in a petrochemical enterprise was carried out, and the reaction raw materials and refined The bromine index of the product is 1127.5mgBr/100g as the raw material aromatic hydrocarbon. After 90 days of reaction, the bromine index of the refined steam cracking aromatic hydrocarbon is less than 81.0mgBr/100g.
上述表明,本发明提供的催化剂具有很高的催化活性、反应选择性和活性稳定性,本发明提供的脱除芳烃中微量烯烃的方法有良好的应用前景。The above shows that the catalyst provided by the invention has high catalytic activity, reaction selectivity and activity stability, and the method for removing trace olefins in aromatics provided by the invention has a good application prospect.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210498962.5A CN103012036B (en) | 2012-11-28 | 2012-11-28 | Aromatic hydrocarbon purifying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210498962.5A CN103012036B (en) | 2012-11-28 | 2012-11-28 | Aromatic hydrocarbon purifying method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103012036A CN103012036A (en) | 2013-04-03 |
CN103012036B true CN103012036B (en) | 2014-12-17 |
Family
ID=47961204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210498962.5A Active CN103012036B (en) | 2012-11-28 | 2012-11-28 | Aromatic hydrocarbon purifying method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103012036B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107760358A (en) * | 2016-08-23 | 2018-03-06 | 中国石油化工股份有限公司 | Reform oil-off olefin process for refining process |
CN107059137B (en) * | 2017-03-31 | 2019-02-15 | 武汉纺织大学 | Ramie processes Wiring technology |
CN107118076B (en) * | 2017-04-12 | 2020-12-11 | 天津大学 | A kind of method for preparing 1,6-hexanediol by gas-phase hydrogenation of dimethyl adipate |
CN110813370B (en) * | 2019-10-29 | 2022-05-24 | 浙江工业大学 | A method for refining aromatic hydrocarbons by using microporous mesoporous core-shell structure composite molecular sieve |
CN110813371B (en) * | 2019-10-29 | 2022-06-21 | 浙江工业大学 | A kind of method that utilizes solid acid catalyst to remove trace olefin in aromatic hydrocarbon |
CN111548247B (en) * | 2020-05-15 | 2022-06-21 | 浙江工业大学 | Method for preparing toluene and p-xylene by alkylation reaction of benzene and methanol |
CN111905778A (en) * | 2020-08-24 | 2020-11-10 | 浙江工业大学台州研究院 | Supported catalyst, preparation method thereof and application thereof in synthesis of ethylbenzyl chloride |
CN116060108B (en) * | 2021-10-29 | 2024-05-07 | 中国石油化工股份有限公司 | Diesel oil hydro-upgrading catalyst and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618932A (en) * | 2004-10-01 | 2005-05-25 | 曹炳铖 | Refining method of reforming aromatic oil |
CN1834013A (en) * | 2006-04-06 | 2006-09-20 | 辽宁石油化工大学 | Synthetic process of Beta zeolite and MAPO-5 two-structure molecular sieve |
CN101289358A (en) * | 2008-05-23 | 2008-10-22 | 浙江工业大学 | A kind of synthetic method of linear alkylbenzene |
-
2012
- 2012-11-28 CN CN201210498962.5A patent/CN103012036B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1618932A (en) * | 2004-10-01 | 2005-05-25 | 曹炳铖 | Refining method of reforming aromatic oil |
CN1834013A (en) * | 2006-04-06 | 2006-09-20 | 辽宁石油化工大学 | Synthetic process of Beta zeolite and MAPO-5 two-structure molecular sieve |
CN101289358A (en) * | 2008-05-23 | 2008-10-22 | 浙江工业大学 | A kind of synthetic method of linear alkylbenzene |
Non-Patent Citations (2)
Title |
---|
介孔材料改性及其脱除芳烃中微量烯烃的考察;陈昌伟等;《石油炼制与化工》;20101231;第41卷(第1期);36-39 * |
核壳型分子筛的合成、表征与应用;孔德金等;《化学通报》;20081231(第4期);249-255 * |
Also Published As
Publication number | Publication date |
---|---|
CN103012036A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102992932B (en) | Method for removing olefin in aromatic hydrocarbon by M-SBA-15 type mesoporous molecular sieve | |
CN103012034B (en) | Method for removing micro-quantity alkene in aromatic hydrocarbon | |
CN103012036B (en) | Aromatic hydrocarbon purifying method | |
CN103012035B (en) | Method for removing trace hydrocarbon out of aromatic hydrocarbon by utilizing HMCM-41 type mesoporous molecular sieve | |
CN101289358B (en) | A kind of synthetic method of linear alkylbenzene | |
Kikhtyanin et al. | Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites | |
CN110813371B (en) | A kind of method that utilizes solid acid catalyst to remove trace olefin in aromatic hydrocarbon | |
CN102343249A (en) | Hydrocarbon oil desulphurization adsorbent, its preparation method and its application | |
CN104557388A (en) | Deep desulfurization method of refinery C4 | |
CN105669347B (en) | A kind of method for reducing linear alkylbenzene (LAB) unsaturated hydrocarbons content | |
CN109201072B (en) | Catalytic cracking gasoline pre-hydrogenation catalyst and preparation method thereof | |
CN103372416A (en) | Adsorbent composition for desulfuration of hydrocarbon oil and preparation method thereof | |
CN102500409A (en) | Gasoline aromatization and isomerization reforming catalyst and preparation method and applications thereof | |
CN102233274B (en) | Catalyst for reducing alkene content in aromatic hydrocarbon, and a preparation method thereof | |
JP2023547894A (en) | Silicon-aluminum molecular sieve catalyst and its preparation and utilization | |
CN103013556A (en) | Method for removing trace olefins in aromatic hydrocarbons by using AlPO4-5 aluminum phosphorus molecular sieve | |
SG189377A1 (en) | Catalyst for selective paraffin isomerization and preparation method and use thereof | |
CN103769076A (en) | Method for preparing olefin-removal catalyst by taking clay as raw materials | |
CN105601463B (en) | A kind of method of linear alkylbenzene (LAB) Hydrobon | |
CN109097096B (en) | A kind of catalytic cracking gasoline pre-hydrogenation method | |
CN103012037B (en) | Method for removing trace olefin from aromatic hydrocarbon | |
CN103861644B (en) | A kind of modified clay Catalysts and its preparation method for deolefination | |
CN105268473B (en) | A kind of method of desulfurization of hydrocarbon oil catalyst and preparation method thereof and desulfurization of hydrocarbon oil | |
CN105732284A (en) | Selective hydrogenation method of carbon three-fraction | |
TW202224764A (en) | Adsorbent composition, and preparation method therefor and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |