CN103011185B - Preparation method for mica flakes having nanostructure - Google Patents
Preparation method for mica flakes having nanostructure Download PDFInfo
- Publication number
- CN103011185B CN103011185B CN201110279528.3A CN201110279528A CN103011185B CN 103011185 B CN103011185 B CN 103011185B CN 201110279528 A CN201110279528 A CN 201110279528A CN 103011185 B CN103011185 B CN 103011185B
- Authority
- CN
- China
- Prior art keywords
- mica
- atomic force
- flakes
- mica flakes
- force microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims description 40
- 239000002086 nanomaterial Substances 0.000 title abstract description 41
- 241001251094 Formica Species 0.000 title 1
- 239000010445 mica Substances 0.000 claims abstract description 136
- 229910052618 mica group Inorganic materials 0.000 claims abstract description 136
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000007787 solid Substances 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 239000002390 adhesive tape Substances 0.000 claims description 8
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052627 muscovite Inorganic materials 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 7
- 230000001070 adhesive effect Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052626 biotite Inorganic materials 0.000 claims description 3
- 229910052628 phlogopite Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000002985 plastic film Substances 0.000 claims description 2
- 229920006255 plastic film Polymers 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 40
- 239000002356 single layer Substances 0.000 abstract description 13
- 230000007547 defect Effects 0.000 abstract description 2
- 238000003672 processing method Methods 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000000377 silicon dioxide Substances 0.000 description 11
- 238000005459 micromachining Methods 0.000 description 9
- 238000000089 atomic force micrograph Methods 0.000 description 7
- 239000002070 nanowire Substances 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011505 plaster Substances 0.000 description 6
- 229910021389 graphene Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000004299 exfoliation Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- QYFRTHZXAGSYGT-UHFFFAOYSA-L hexaaluminum dipotassium dioxosilane oxygen(2-) difluoride hydrate Chemical compound O.[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O QYFRTHZXAGSYGT-UHFFFAOYSA-L 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
技术领域 technical field
本发明涉及利用原子力显微镜微机械加工制备具有纳米结构的云母薄片的方法。The invention relates to a method for preparing mica flakes with nanostructures by means of atomic force microscope micromachining.
背景技术 Background technique
近年来以石墨烯为代表的单层或少数层的层状晶体二维材料由于其具有优良的性能和广阔的应用前景,引起了人们的广泛关注。云母作为一种层状材料,具有完美解理性,是二维材料的优良来源。由于云母具有化学惰性,热绝缘性和电绝缘性,完全不同于石墨烯,因而在某些领域具有独特的重要应用价值。基于单层或少数层的二维材料的纳米结构的制备技术目前都集中在导电的石墨烯上,石墨烯的研究展现了二维材料在纳米结构,尤其是超薄非对称纳米孔领域的独特优势(Garaj,S.;Hubbard,W.;Reina,A.;Kong,J.;Branton,D.;Golovchenko,J.A.Nature 2010,467,190)。然而,基于绝缘单层或少数层的层状晶体二维材料的纳米结构的制备方法仍然鲜有报道,且制备其它二维材料的纳米结构的方法主要是电子束或离子束刻蚀(Dekker,C.Nature Nanotechnology 2007,2,209),上述方法的工艺复杂、成本高昂。寻找简便有效、成本低廉的方法制备二维材料的纳米结构,尤其是基于绝缘单层或少数层的层状晶体的二维材料的纳米结构仍然是一大难点。In recent years, single-layer or few-layer layered crystal two-dimensional materials represented by graphene have attracted widespread attention due to their excellent properties and broad application prospects. As a layered material with perfect cleavability, mica is an excellent source of 2D materials. Because mica has chemical inertness, thermal insulation and electrical insulation, which are completely different from graphene, it has unique and important application value in some fields. The nanostructure preparation technology of two-dimensional materials based on a single layer or a few layers is currently concentrated on conductive graphene. The research on graphene shows the uniqueness of two-dimensional materials in the field of nanostructures, especially ultra-thin asymmetric nanopores. Advantages (Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Nature 2010, 467, 190). However, there are still few reports on the preparation of nanostructures of layered crystal two-dimensional materials based on insulating monolayers or few layers, and the methods for preparing nanostructures of other two-dimensional materials are mainly electron beam or ion beam etching (Dekker, C.Nature Nanotechnology 2007, 2, 209), the process of the above method is complex and expensive. Finding a simple, effective and low-cost method to prepare nanostructures of two-dimensional materials, especially nanostructures of two-dimensional materials based on insulating monolayer or layered crystals with a few layers, is still a major difficulty.
原子力显微镜微机械加工的方法具有制备工艺简单有效、成本低廉,可精确控制制备二维材料的纳米结构的厚度、位置和形状,制备图案化纳米结构,除云母外,该方法也适用于其它二维材料。The method of atomic force microscope micromachining has the advantages of simple and effective preparation process and low cost. It can precisely control the thickness, position and shape of the nanostructure of two-dimensional materials, and prepare patterned nanostructures. In addition to mica, this method is also applicable to other two-dimensional materials. dimensional material.
发明内容 Contents of the invention
本发明的目的是提供一种利用原子力显微镜微机械加工制备具有纳米结构的云母薄片的方法。The purpose of the present invention is to provide a method for preparing mica flakes with nanostructures by means of atomic force microscope micromachining.
本发明的方法中涉及采用机械剥离法制备单层或少数层的云母薄片,并可用此云母薄片为基底,利用原子力显微镜微机械加工的方法在所得云母薄片上制备纳米结构。The method of the present invention involves the preparation of single-layer or few-layer mica flakes by mechanical exfoliation, and the mica flakes can be used as a base to prepare nanostructures on the obtained mica flakes by means of atomic force microscope micromachining.
本发明的利用原子力显微镜微机械加工制备具有纳米结构的云母薄片的方法:将云母薄片置于固体基底上,使原子力显微镜的工作处在接触模式下,控制原子力显微镜的针尖与云母薄片接触的作用力,以控制在云母薄片上得到的纳米结构。The method for preparing mica flakes with nanostructures by using atomic force microscope micromachining of the present invention: place the mica flakes on a solid substrate, make the work of the atomic force microscope in contact mode, and control the contact between the needle tip of the atomic force microscope and the mica flakes force to control the resulting nanostructures on mica flakes.
所述的纳米结构的形状和位置的控制是由原子力显微镜的针尖扫描云母薄片的位置和扫描云母薄片的面积的大小控制。The shape and position of the nanostructure are controlled by scanning the position of the mica flakes with the tip of the atomic force microscope and the size of the area of the mica flakes.
所述的云母薄片上得到的纳米结构选自纳米孔、纳米线、边数大于或等于三的多边形、圆形等中的一种以上。The nanostructures obtained on the mica flakes are selected from at least one of nanoholes, nanowires, polygons with sides greater than or equal to three, circles, and the like.
所述的云母薄片选自人工合成的云母的薄片、自然生长的金云母的薄片、自然生长的白云母的薄片、自然生长的黑云母的薄片等中的一种。The mica flakes are selected from one of artificially synthesized mica flakes, naturally grown phlogopite mica flakes, naturally grown muscovite mica flakes, and naturally grown biotite flakes.
所述的云母薄片的层数是1~100层。The number of layers of the mica flakes is 1-100 layers.
所述的云母薄片的层数中的层是指一层云母分子结构单元。The layer in the number of layers of mica flakes refers to a layer of mica molecular structure unit.
本发明中所述的云母薄片可通过以下方法获得:将一片云母的两面分别粘在胶带上,撕开胶带,将一片云母剥离成两片云母片,再将剥离得到的云母片的两面分别粘在胶带上,撕开胶带,将云母片再剥离成两片云母片;重复以上步骤,可得到所需层数的云母薄片,优选得到层数是1~100层的云母薄片。所需层数的云母薄片的挑选是将胶带上的云母薄片转移到固体基底上,利用光学显微镜结合原子力显微镜表征云母薄片的厚度及层数,挑选出所需层数的云母薄片。The mica flakes described in the present invention can be obtained by the following method: stick the two sides of a piece of mica on the adhesive tape respectively, tear off the tape, peel off a piece of mica into two mica sheets, and then stick the two sides of the mica sheets obtained by peeling On the adhesive tape, the adhesive tape is torn off, and the mica sheet is peeled off into two mica sheets; the above steps are repeated to obtain a mica sheet with the required number of layers, preferably a mica sheet with 1 to 100 layers. The selection of the mica flakes with the required number of layers is to transfer the mica flakes on the adhesive tape to a solid substrate, use an optical microscope combined with an atomic force microscope to characterize the thickness and the number of layers of the mica flakes, and select the mica flakes with the required number of layers.
所述的利用光学显微镜结合原子力显微镜表征云母薄片的厚度及层数的方法是在云母薄片转移到固体基底上后,用光学显微镜记录下云母薄片的特征颜色或云母薄片与周围固体基底的光强对比度,然后利用原子力显微镜测量以记录云母薄片的厚度,得到云母薄片的光学特征与厚度的对应关系,便于以后方便的根据光学特征寻找所需层数的云母薄片。The method for characterizing the thickness and the number of layers of the mica flakes by using an optical microscope in combination with an atomic force microscope is to record the characteristic color of the mica flakes or the light intensity of the mica flakes and the surrounding solid substrates with an optical microscope after the mica flakes are transferred to a solid substrate Contrast, and then use the atomic force microscope to record the thickness of the mica flakes, and obtain the corresponding relationship between the optical characteristics and thickness of the mica flakes, so that it is convenient to find the mica flakes with the required number of layers according to the optical characteristics in the future.
所述的云母选自人工合成的云母、自然生长的金云母、自然生长的白云母、自然生长的黑云母等中的一种。The mica is selected from one of artificially synthesized mica, naturally grown phlogopite, naturally grown muscovite, and naturally grown biotite.
所述的胶带包括各种涂有粘性橡胶的布料或塑料薄膜。Said tapes include various cloth or plastic films coated with sticky rubber.
所述的云母薄片的层数中的层是指一层云母分子结构单元。The layer in the number of layers of mica flakes refers to a layer of mica molecular structure unit.
所述的固体基底的材料选自硅、镁、铝、铁、铜、镍、锌、金、银或它们的氧化物或氮化物中的一种或几种,或选自碳,或选自上述材料中的任意两种或多种。The material of the solid substrate is selected from one or more of silicon, magnesium, aluminum, iron, copper, nickel, zinc, gold, silver or their oxides or nitrides, or selected from carbon, or selected from Any two or more of the above materials.
本发明方法中涉及的利用机械剥离法制备云母薄片的操作方法简单,方便易行,缺陷少。本发明方法中涉及的原子力显微镜微机械加工法制备得到的纳米结构的厚度可控,精度达到原子层级,纳米结构的形状、位置可控,并可制备得到图案化的纳米结构,除云母外,本发明也适用于其它二维材料。The operation method of preparing mica flakes by using the mechanical peeling method involved in the method of the present invention is simple, convenient and easy to implement, and has few defects. The thickness of the nanostructure prepared by the atomic force microscope micromachining method involved in the method of the present invention is controllable, the precision reaches the atomic level, the shape and position of the nanostructure are controllable, and a patterned nanostructure can be prepared. In addition to mica, The invention is also applicable to other two-dimensional materials.
以下结合附图及实施例对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1.为机械剥离制备单层或少数层的云母薄片,以及利用原子力显微镜微机械加工制备纳米结构的示意图。Figure 1. Schematic illustration of the preparation of single-layer or few-layer mica flakes for mechanical exfoliation, and the preparation of nanostructures by AFM micromachining.
图2.本发明实施例1、2、3、4的机械剥离法制备得到8层、28层、9层、6层云母薄片的光学显微镜及原子力显微镜的照片,分别如图中第二行(图2a-c)、第一行(图2d-f)、第三行(图2g-i)、第四行(图2j-1)所示,其中第二行图中的固体基底是250nm二氧化硅/硅(即250纳米厚的二氧化硅覆盖在硅基底上),第一行图中的固体基底是硅基底,第三行图中的固体基底是300nm二氧化硅/硅(即300纳米厚的二氧化硅覆盖在硅基底上),第四行图中的固体基底是500nm二氧化硅/硅(即500纳米厚的二氧化硅覆盖在硅基底上),以上每行图中的第一列是光学照片,第二列是原子力显微镜照片,第三列是原子力高度图。Fig. 2. the mechanical exfoliation method of the embodiment of the present invention 1, 2, 3, 4 prepares the photo of optical microscope and atomic force microscope of 8 layers, 28 layers, 9 layers, 6 layers of mica flakes, as shown in the second row ( Figure 2a-c), the first row (Figure 2d-f), the third row (Figure 2g-i), the fourth row (Figure 2j-1), where the solid substrate in the second row is 250nm Silicon oxide/silicon (i.e. 250nm thick silicon dioxide covered on a silicon substrate), the solid substrate in the first row is a silicon substrate, and the solid substrate in the third row is a 300nm silicon dioxide/silicon (i.e. 300 nanometer-thick silicon dioxide over a silicon substrate), the solid substrate in the fourth row is 500nm silica/silicon (i.e., 500nm thick silicon dioxide over a silicon substrate), and the solid substrate in each row above The first column is an optical photo, the second column is an atomic force microscope photo, and the third column is an atomic force height map.
图3.本发明实施例1的用原子力微机械加工法在250nm二氧化硅/硅的固体基底上的10层的云母薄片上制备得到的超薄非对称纳米孔的光学及原子力显微镜照片;a图是其原子力显微镜照片;b图是其光学照片,b图右上角插图是固体基底的光学照片,制备得到的超薄非对称纳米孔的小口端约为68纳米,孔深9.6纳米;c图是超薄非对称纳米孔的形状示意图,纳米孔为方形。Fig. 3. the optical and atomic force microscope photos of the ultrathin asymmetric nanohole prepared on the 10-layer mica sheet on the solid substrate of 250nm silicon dioxide/silicon by atomic force micromachining method of the embodiment of the present invention; a The picture is its atomic force microscope photo; picture b is its optical picture, the inset in the upper right corner of picture b is the optical picture of the solid substrate, the small end of the prepared ultra-thin asymmetric nanopore is about 68 nanometers, and the hole depth is 9.6 nanometers; picture c is a schematic diagram of the shape of an ultrathin asymmetric nanopore, and the nanopore is a square.
图4.本发明实施例1、6的控制施加原子力显微镜的针尖与云母薄片接触的不同作用力时,得到的不同深度的超薄非对称纳米孔的原子力三维显微照片,当作用力分别为863纳牛(nN)、1613纳牛(nN)、2363纳牛(nN)、3112纳牛(nN)、3863纳牛(nN),得到一系列深度的纳米孔,其深度分别为2、4、7、8、9层云母分子结构单元,如图4a-e中所示,图4f是图4a-e的统计图。Fig. 4. When controlling the application of different forces in which the tip of the atomic force microscope contacts the mica flakes in Examples 1 and 6 of the present invention, the three-dimensional atomic force micrographs of the ultra-thin asymmetric nanopores of different depths obtained, when the forces are respectively 863 nanonew (nN), 1613 nanonew (nN), 2363 nanonew (nN), 3112 nanonew (nN), 3863 nanonew (nN), a series of nanopores with a depth of 2, 4 , 7, 8, and 9 layers of mica molecular structure units, as shown in Figure 4a-e, and Figure 4f is the statistical diagram of Figure 4a-e.
图5.本发明实施例1的控制原子力显微镜的针尖扫描区域为120纳米×120纳米,得到大口端约为120纳米×120纳米,小口端约为20纳米×20纳米的超薄不对称纳米孔,a图是原子力显微俯视图,b图是倒置的原子力显微三维图。Fig. 5. The tip scanning area of the control atomic force microscope in Example 1 of the present invention is 120 nanometers × 120 nanometers, and the ultra-thin asymmetric nanopore with a large mouth end of about 120 nanometers × 120 nanometers and a small mouth end of about 20 nanometers × 20 nanometers is obtained , Figure a is a top view of an atomic force microscope, and Figure b is an inverted three-dimensional image of an atomic force microscope.
图6.本发明实施例1、5的控制原子力显微镜的针尖扫描区域分别为15纳米×15纳米、30纳米×30纳米、60纳米×60纳米、80纳米×80纳米、100纳米×100纳米、120纳米×120纳米、180纳米×180纳米、250纳米×250纳米、300纳米×300纳米、500纳米×500纳米,得到一系列不同形状和尺寸的超薄非对称纳米孔,分别如图6a、b、c、d、e、f、g、h、i、j、k所示。Fig. 6. The tip scanning areas of the control atomic force microscopes of Examples 1 and 5 of the present invention are 15 nanometers × 15 nanometers, 30 nanometers × 30 nanometers, 60 nanometers × 60 nanometers, 80 nanometers × 80 nanometers, 100 nanometers × 100 nanometers, 120nm×120nm, 180nm×180nm, 250nm×250nm, 300nm×300nm, 500nm×500nm, a series of ultra-thin asymmetric nanopores with different shapes and sizes are obtained, as shown in Figure 6a, b, c, d, e, f, g, h, i, j, k.
图7.本发明实施例12-16的控制原子力显微镜的针尖扫描区域和扫描位置的多次扫描得到的不同形状的图案化的纳米结构的示意图,其中a-e图分别为阵列方形、阵列三角形、阵列圆形、纳米线、十字交叉纳米线的纳米结构示意图。Figure 7. A schematic diagram of patterned nanostructures of different shapes obtained by controlling the tip scanning area and scanning position of the atomic force microscope for multiple scans of Examples 12-16 of the present invention, wherein the a-e diagrams are array square, array triangle, array Schematic diagram of nanostructures of circles, nanowires, and crossed nanowires.
具体实施方式 Detailed ways
实施例1.Example 1.
1)、云母薄片的制备1), preparation of mica flakes
将一片自然生长的白云母的两面分别粘在胶布上,撕开胶布,将一片所述的白云母剥离成两片白云母片,再将剥离得到的白云母片的两面分别粘在胶布上,撕开胶布,将前次剥离得到的白云母片再剥离成两片白云母片;重复以上步骤若干次,可得到所需层数的云母薄片;Stick the two sides of a piece of naturally growing muscovite on the adhesive plaster respectively, tear off the adhesive plaster, peel off one piece of muscovite into two muscovite sheets, and then stick the two sides of the obtained muscovite sheet on the adhesive plaster respectively, Tear off the adhesive tape, and then peel off the muscovite flakes obtained in the previous peeling into two muscovite flakes; repeat the above steps several times to obtain mica flakes with the required number of layers;
2)、转移和寻找所需层数的云母薄片2), transfer and find the mica flakes with the required number of layers
将步骤1)得到的胶布粘到250nm二氧化硅/硅的固体基底上,撕下胶布,胶布上的云母薄片即被转移到250nm二氧化硅/硅的固体基底上,将此固体基底置于光学显微镜下观察,可观察到微米尺度的片状云母薄片,云母薄片的颜色随其厚度而变化,记录下观察到的云母薄片的特征颜色或其与周围固体基底(即上方没有云母的250nm二氧化硅/硅)的光强对比度,然后用原子力显微镜测量此云母薄片的厚度并记录,以建立该云母薄片的光学特征与厚度的对应关系,根据光学特征寻找所需层数的云母薄片,请参见图2中的第二行,e图中的云母薄片的特征颜色和光强对比度与f图、g图中该云母薄片的厚度(8层)建立了一一对应关系,以后利用光学显微镜观察时遇到相同颜色或光学对比度的云母薄片就可以在不经过原子力显微镜观察的条件下确定其厚度,然后利用上述同样的先联用光学显微镜和原子力显微镜观察确定光学特征与厚度的对应关系、再用光学显微镜单独寻找的方法可以找到如图3所示的10层的云母薄片;Stick the adhesive plaster obtained in step 1) on the solid substrate of 250nm silica/silicon, tear off the adhesive plaster, and the mica flakes on the adhesive plaster are transferred to the solid substrate of 250nm silica/silicon, and place the solid substrate on Observed under an optical microscope, micron-scale flaky mica flakes can be observed, and the color of the mica flakes changes with its thickness. Record the characteristic color of the observed mica flakes or their relationship with the surrounding solid substrate (that is, there is no mica above the 250nm two Silicon oxide/silicon) light intensity contrast, and then use the atomic force microscope to measure the thickness of this mica flake and record it, so as to establish the corresponding relationship between the optical characteristics and thickness of the mica flake, and find the mica flake with the required number of layers according to the optical characteristics, please See the second line in Figure 2, the characteristic color and light intensity contrast of the mica flakes in the e picture and the thickness (8 layers) of the mica flakes in the f picture and the g picture establish a one-to-one correspondence, and then use an optical microscope to observe When encountering mica flakes of the same color or optical contrast, their thickness can be determined without the observation of the atomic force microscope, and then the corresponding relationship between the optical characteristics and the thickness can be determined by using the same above-mentioned optical microscope and atomic force microscope observation, and then A 10-layer mica flake as shown in Figure 3 can be found by using an optical microscope to search alone;
3)、利用原子力显微镜微机械加工制备具有纳米结构的云母薄片3) Preparation of mica flakes with nanostructures using atomic force microscope micromachining
使用接触模式下的原子力显微镜,原子力显微镜的针尖使用包覆有氮化硅或金刚石等较硬材料的针尖,将步骤2)得到的云母薄片置于250nm二氧化硅/硅的固体基底上,使原子力显微镜的工作处在接触模式下,控制原子力显微镜的针尖与云母薄片接触的作用力,逐步加大作用力,由原子力显微镜的针尖扫描步骤2)得到的10层的云母薄片,以制备超薄非对称纳米孔。控制原子力显微镜的针尖与云母薄片的作用力大小以控制超薄非对称纳米孔的厚度,在控制作用力为3863纳牛,制备得到的超薄方形非对称纳米孔的孔深约为9.6纳米(9层云母分子结构单元),小口端约为68纳米,如图3a所示的原子力显微图和图3b所示的光学显微图,超薄非对称纳米孔的三维形状如图3c所示的形状示意图,超薄非对称纳米孔的深度如图4e中所示。Using the atomic force microscope in contact mode, the tip of the atomic force microscope uses a tip coated with harder materials such as silicon nitride or diamond, and the mica flakes obtained in step 2) are placed on a solid substrate of 250nm silicon dioxide/silicon, so that The work of the atomic force microscope is in the contact mode, and the force of the contact between the tip of the atomic force microscope and the mica sheet is controlled, and the force is gradually increased. The 10-layer mica sheet obtained in step 2) is scanned by the tip of the atomic force microscope to prepare ultra-thin Asymmetric nanopores. The force between the tip of the atomic force microscope and the mica sheet is controlled to control the thickness of the ultra-thin asymmetric nanopore. When the control force is 3863 nanonewtons, the prepared ultra-thin square asymmetric nanopore has a depth of about 9.6 nanometers ( 9-layer mica molecular structure unit), the small mouth end is about 68 nanometers, the atomic force micrograph shown in Figure 3a and the optical micrograph shown in Figure 3b, and the three-dimensional shape of the ultrathin asymmetric nanopore is shown in Figure 3c The schematic diagram of the shape and the depth of the ultrathin asymmetric nanopore are shown in Fig. 4e.
控制原子力显微镜的针尖的扫描位置和区域以控制在云母薄片上制备超薄非对称纳米孔的尺寸,如控制扫描区域为120纳米×120纳米,得到大口端约为120纳米×120纳米,小口端约为20纳米×20纳米的超薄方形非对称纳米孔,如图5a所示的原子力显微图、图5b所示的倒置的原子力显微三维图,如图6f中所示的原子力显微图。Control the scanning position and area of the tip of the atomic force microscope to control the size of the ultra-thin asymmetric nanopores prepared on the mica sheet. For example, the scanning area is controlled to be 120 nm × 120 nm, and the large end is about 120 nm × 120 nm, and the small end is about 120 nm × 120 nm. Ultrathin square asymmetric nanopores of approximately 20 nm × 20 nm, as shown in the atomic force micrograph in Figure 5a, the inverted three-dimensional image of the atomic force microscope in Figure 5b, and the atomic force micrograph in Figure 6f picture.
实施例2.制备基于云母薄片的超薄非对称纳米孔Example 2. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:采用硅片为固体基底,在其上得到的云母薄片如图2a的光学照片、图2b的原子力显微图和图2c的高度图所示。The preparation method is basically the same as in Example 1, except that a silicon wafer is used as a solid substrate, and the mica flakes obtained on it are shown in the optical photo of Figure 2a, the atomic force micrograph of Figure 2b and the height map of Figure 2c.
实施例3.制备基于云母薄片的超薄非对称纳米孔Example 3. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:采用300nm二氧化硅/硅的固体基底,在其上得到的云母薄片如图2h的光学照片、图2i的原子力显微图和图2j的高度图所示。The preparation method is basically the same as that in Example 1, the difference is: a solid substrate of 300nm silica/silicon is used, and the mica flakes obtained on it are as shown in the optical photo of Figure 2h, the atomic force micrograph of Figure 2i and the height of Figure 2j As shown in the figure.
实施例4.制备基于云母薄片的超薄非对称纳米孔Example 4. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:采用500nm二氧化硅/硅的固体基底,在其上得到的云母薄片如图2k的光学照片、图21的原子力显微图和图2m的高度图所示。The preparation method is basically the same as in Example 1, the difference is: a solid substrate of 500nm silicon dioxide/silicon is used, and the mica flakes obtained on it are as shown in the optical photo of Figure 2k, the atomic force micrograph of Figure 21 and the height of Figure 2m As shown in the figure.
实施例5.制备基于云母薄片的超薄非对称纳米孔Example 5. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:控制扫描区域分别为15纳米×15纳米、30纳米×30纳米、60纳米×60纳米、80纳米×80纳米、100纳米×100纳米、180纳米×180纳米、250纳米×250纳米、300纳米×300纳米、500纳米×500纳米,得到一系列不同形状和尺寸的超薄非对称纳米孔,如图6中的图a、b、c、d、e、g、h、i、j、k所示,由此可见纳米孔的形状和尺寸可由扫描区域准确控制。The preparation method is basically the same as that in Example 1, except that the control scanning area is 15 nanometers × 15 nanometers, 30 nanometers × 30 nanometers, 60 nanometers × 60 nanometers, 80 nanometers × 80 nanometers, 100 nanometers × 100 nanometers, and 180 nanometers × 180 nm, 250 nm × 250 nm, 300 nm × 300 nm, 500 nm × 500 nm, to obtain a series of ultra-thin asymmetric nanopores of different shapes and sizes, as shown in Figure 6 a, b, c, d , e, g, h, i, j, k, it can be seen that the shape and size of the nanopore can be accurately controlled by the scanning area.
实施例6.制备基于云母薄片的超薄非对称纳米孔Example 6. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:逐渐加大原子力显微镜的针尖对云母薄片的作用力,作用力从863纳牛到1613纳牛、2363纳牛、3112纳牛,层层剥离云母制备超薄非对称纳米孔,得到一系列深度的纳米孔,其深度分别为2、4、7、8层云母分子结构单元,分别如图4a-d中所示。The preparation method is basically the same as in Example 1, the difference is: gradually increase the force of the tip of the atomic force microscope on the mica flakes, the force is from 863 nanonew to 1613 nanonew, 2363 nanonew, 3112 nanonew, and the mica is peeled off layer by layer The ultrathin asymmetric nanopores were fabricated to obtain a series of nanopores with depths of 2, 4, 7, and 8 layers of mica molecular structural units, as shown in Fig. 4a-d, respectively.
实施例7.制备基于云母薄片的超薄非对称纳米孔Example 7. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:所用的云母薄片为100层。The preparation method is basically the same as in Example 1, except that the number of mica flakes used is 100 layers.
实施例8.制备基于单层云母薄片的超薄非对称纳米孔Example 8. Preparation of ultrathin asymmetric nanopores based on single-layer mica flakes
制备方法基本同实施例1,不同之处为:所用的云母薄片为单层。The preparation method is basically the same as in Example 1, except that the mica flake used is a single layer.
实施例9.制备基于云母薄片的超薄非对称纳米孔Example 9. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例1,不同之处为:所用的云母选自人工合成云母。The preparation method is basically the same as in Example 1, except that the mica used is selected from artificially synthesized mica.
实施例10.制备基于云母薄片的超薄非对称纳米孔Example 10. Preparation of ultrathin asymmetric nanopores based on mica flakes
制备方法基本同实施例7,不同之处为:所用的云母选自人工合成云母。The preparation method is basically the same as in Example 7, except that the mica used is selected from artificially synthesized mica.
实施例11.制备基于单层云母薄片的超薄非对称纳米孔Example 11. Preparation of ultrathin asymmetric nanopores based on single-layer mica flakes
制备方法基本同实施例8,不同之处为:所用的云母选自人工合成云母。The preparation method is basically the same as in Example 8, except that the mica used is selected from artificially synthesized mica.
实施例12.制备基于云母薄片的纳米结构和图案化纳米结构Example 12. Preparation of mica flake-based nanostructures and patterned nanostructures
制备方法基本同实施例1,不同之处为:步骤3)中控制原子力显微镜的针尖在预先选定的不同位置扫描,得到阵列的三角形、方形、圆形、纳米线、十字交叉纳米线图案化的纳米结构,如图7a-e所示。The preparation method is basically the same as in Example 1, except that in step 3), the tip of the atomic force microscope is controlled to scan at different pre-selected positions to obtain arrays of triangles, squares, circles, nanowires, and cross-shaped nanowires. nanostructures, as shown in Fig. 7a-e.
实施例13.制备基于云母薄片的纳米结构和图案化纳米结构Example 13. Preparation of mica flake-based nanostructures and patterned nanostructures
制备方法基本同实施例12,不同之处为:所用的云母薄片为100层。The preparation method is basically the same as in Example 12, except that 100 layers of mica flakes are used.
实施例14.制备基于单层云母薄片的纳米结构和图案化纳米结构Example 14. Preparation of nanostructures and patterned nanostructures based on single-layer mica flakes
制备方法基本同实施例13,不同之处为:所用的云母薄片为单层。The preparation method is basically the same as in Example 13, except that the mica flake used is a single layer.
实施例15.制备基于单层云母薄片的纳米结构和图案化纳米结构Example 15. Preparation of nanostructures and patterned nanostructures based on single-layer mica flakes
制备方法基本同实施例14,不同之处为:所用的云母选自人工合成云母。The preparation method is basically the same as in Example 14, except that the mica used is selected from artificially synthesized mica.
实施例16.制备基于单层云母薄片的纳米结构和图案化纳米结构Example 16. Preparation of nanostructures and patterned nanostructures based on single-layer mica flakes
制备方法基本同实施例15,不同之处为:步骤3)中控制原子力显微镜的针尖在预先选定的不同位置扫描,得到阵列的三角形、方形、圆形、纳米线、十字交叉纳米线图案化的纳米结构,如图7a-e所示。The preparation method is basically the same as in Example 15, except that in step 3), the tip of the atomic force microscope is controlled to scan at different pre-selected positions to obtain arrays of triangles, squares, circles, nanowires, and cross-shaped nanowires. nanostructures, as shown in Fig. 7a-e.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110279528.3A CN103011185B (en) | 2011-09-20 | 2011-09-20 | Preparation method for mica flakes having nanostructure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110279528.3A CN103011185B (en) | 2011-09-20 | 2011-09-20 | Preparation method for mica flakes having nanostructure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103011185A CN103011185A (en) | 2013-04-03 |
CN103011185B true CN103011185B (en) | 2014-12-10 |
Family
ID=47960367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110279528.3A Expired - Fee Related CN103011185B (en) | 2011-09-20 | 2011-09-20 | Preparation method for mica flakes having nanostructure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103011185B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104445235B (en) * | 2014-12-05 | 2016-06-01 | 武汉理工大学 | The preparation method of a kind of two-dimensional nano white mica |
CN106976887A (en) * | 2017-04-19 | 2017-07-25 | 合肥工业大学 | A kind of a large amount of methods for preparing two-dimensional nano mica sheet of utilization liquid phase ultrasound |
WO2019071499A1 (en) * | 2017-10-12 | 2019-04-18 | 深圳先进技术研究院 | Method for preparing mica film |
CN110455317A (en) * | 2019-07-05 | 2019-11-15 | 华南师范大学 | A kind of high temperature resistant flexible sensor and preparation method thereof |
CN111716548B (en) * | 2020-06-08 | 2021-11-12 | 安徽锐光电子科技有限公司 | Thick mica sheet stripping device for mica sheet production and using method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101143708A (en) * | 2007-08-17 | 2008-03-19 | 中国科学技术大学 | A method for preparing ultra-thin two-dimensional graphite sheet |
WO2010120809A1 (en) * | 2009-04-14 | 2010-10-21 | Nanoink, Inc. | Conducting lines, nanoparticles, inks, and patterning |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87101580A (en) * | 1987-06-24 | 1988-02-10 | 高步 | Ultrasonic wave is peeled off the method for mica |
CN1558424B (en) * | 2004-01-16 | 2010-04-07 | 中国科学院长春应用化学研究所 | A kind of gold film substrate fabrication method for scanning probe microscope |
-
2011
- 2011-09-20 CN CN201110279528.3A patent/CN103011185B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101143708A (en) * | 2007-08-17 | 2008-03-19 | 中国科学技术大学 | A method for preparing ultra-thin two-dimensional graphite sheet |
WO2010120809A1 (en) * | 2009-04-14 | 2010-10-21 | Nanoink, Inc. | Conducting lines, nanoparticles, inks, and patterning |
Non-Patent Citations (2)
Title |
---|
吴国运.基于原子力显微镜机械刻蚀构筑纳米结构和纳米图案.《河南大学硕士学位论文》.2011,第24-31页. * |
基于原子力显微镜机械刻蚀构筑纳米结构和纳米图案;吴国运;《河南大学硕士学位论文》;20110815;第24-31页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103011185A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103011185B (en) | Preparation method for mica flakes having nanostructure | |
CN104973585B (en) | The preparation method of carbon nano-tube film | |
US9630849B2 (en) | Method for transferring carbon nanotube array and method for forming carbon nanotube structure | |
US9469540B2 (en) | Method for transferring carbon nanotube array and method for forming carbon nanotube structure | |
TWI571434B (en) | Methods for transferring carbon nanotube arry and making carbon nanotube structure | |
TWI617507B (en) | Method for making carbon nanotube film | |
CN105399044B (en) | The preparation method of carbon nano-tube film | |
CN105197875A (en) | Method for preparing patterned carbon nano tube array and carbon nano tube device | |
TW201037051A (en) | A high aspect ratio adhesive structure and a method of forming the same | |
CN103613064B (en) | Flat-plate-restraint evaporation-induced nanoparticle line self-assembly method | |
CN104973587B (en) | Preparation method of carbon nano-tube film | |
US9843869B2 (en) | Thermoacoustic device | |
CN104505148A (en) | Method for preparing flexible-substrate three-dimensional conformal graphene film | |
CN104944407A (en) | Transferring method of carbon nano-tube array and preparation method of carbon nano-tube structure | |
CN104944408B (en) | The transfer method of carbon nano pipe array and the preparation method of carbon nano tube structure | |
CN110092350A (en) | Utilize the method for carbon nano-tube compound film transfer two-dimension nano materials | |
CN102423722B (en) | Microfluidic channel and preparation method thereof | |
JP5002778B2 (en) | Method for producing transparent conductive film substrate and method for producing transparent laminate | |
Xiong et al. | Directed assembly of high density single-walled carbon nanotube patterns on flexiblepolymer substrates | |
KR101827380B1 (en) | Fabrication method of freestanding nanofilm without polymer residue | |
CN109368627B (en) | Methods for directional assembly of two-dimensional nanomaterials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141210 Termination date: 20190920 |
|
CF01 | Termination of patent right due to non-payment of annual fee |