CN103007391B - Predictive adaptive control system for liquid medicament push-injecting - Google Patents
Predictive adaptive control system for liquid medicament push-injecting Download PDFInfo
- Publication number
- CN103007391B CN103007391B CN201210553849.2A CN201210553849A CN103007391B CN 103007391 B CN103007391 B CN 103007391B CN 201210553849 A CN201210553849 A CN 201210553849A CN 103007391 B CN103007391 B CN 103007391B
- Authority
- CN
- China
- Prior art keywords
- module
- time
- cardiac cycle
- medicinal liquid
- pressure value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003814 drug Substances 0.000 title claims abstract description 91
- 239000007788 liquid Substances 0.000 title claims abstract description 65
- 230000003044 adaptive effect Effects 0.000 title claims description 16
- 238000002347 injection Methods 0.000 claims abstract description 84
- 239000007924 injection Substances 0.000 claims abstract description 84
- 230000000747 cardiac effect Effects 0.000 claims abstract description 62
- 230000036772 blood pressure Effects 0.000 claims description 40
- 206010028980 Neoplasm Diseases 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 15
- 208000024891 symptom Diseases 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 5
- 210000001367 artery Anatomy 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000035487 diastolic blood pressure Effects 0.000 claims description 3
- 230000035488 systolic blood pressure Effects 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims 1
- 229940079593 drug Drugs 0.000 abstract description 39
- 210000000056 organ Anatomy 0.000 abstract description 3
- 238000010992 reflux Methods 0.000 abstract description 3
- 230000036632 reaction speed Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 12
- 210000004204 blood vessel Anatomy 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 201000011510 cancer Diseases 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- 230000003205 diastolic effect Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000036770 blood supply Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001710 bronchial artery Anatomy 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007103 stamina Effects 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
Landscapes
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
本发明公开了一种用于药液推注的预测自适应控制控制系统,涉及临床手术推药自控技术领域。系统包括包括主控制模块和药液推注模块,药液推注模块包括微控制器和医用注射器,微控制器连接于主控制模块的预测控制算法模块,预测控制算法模块将下一个心动周期的推注时刻发送至微控制器,微控制器控制微推进器进而控制医用注射器的推进速度、推注时刻和推注停止时刻。本发明中药液推注模块中的推药速度、推注时刻、推注停止时刻以及推药量通过主控制模块来控制,提高了药液推注模块的反应速度和实时控制能力,实现了科学、合理、安全用药,即以较少的药物剂量,在局部器官获得最大的药物浓度并停留足够长的时间而无返流,减少伤害健康组织。
The invention discloses a predictive self-adaptive control system for drug liquid injection, and relates to the technical field of automatic control of drug injection in clinical operations. The system includes a main control module and a drug injection module, the drug injection module includes a microcontroller and a medical syringe, the microcontroller is connected to the predictive control algorithm module of the main control module, and the predictive control algorithm module controls the time of the next cardiac cycle The bolus injection time is sent to the microcontroller, and the microcontroller controls the micro propeller to control the advancing speed, bolus injection time and bolus injection stop time of the medical syringe. In the present invention, the medicine pushing speed, the time of injection, the time of stopping the injection and the amount of pushing medicine in the Chinese medicine liquid injection module are controlled by the main control module, which improves the reaction speed and real-time control ability of the medicine liquid injection module, and realizes the Scientific, rational, and safe medication, that is, with a lower drug dose, obtain the maximum drug concentration in the local organs and stay for a long enough time without reflux, reducing damage to healthy tissues.
Description
技术领域 technical field
本发明涉及临床手术推药自控技术领域,特别涉及一种用于药液推注的预测自适应控制系统。 The invention relates to the technical field of automatic control of medicine pushing in clinical operations, in particular to a predictive self-adaptive control system for medicine liquid injection. the
背景技术 Background technique
目前,临床上对癌症的治疗,普遍采用的是经血管介入注药的化学疗法,即在数字减影X光机(DSA)的监控下穿刺、插管,将导管引入给肿瘤供血动脉分支入口,在导管入口端推注化疗药。该方法最先用于心血管疾病,以后很快应用到神经系统、肿瘤等全身各部位多种疾病诊断与治疗。在我国介入治疗用于肿瘤特别多,已占介入治疗大部分,已成为肿瘤综合治疗中一种常用的疗法。介入方式也从血管性介入到肺动肺介入、支气管动脉介入,腔内介入,肿瘤内直接介入。 At present, in the clinical treatment of cancer, chemotherapy through vascular intervention is commonly used, that is, puncture and catheterization under the monitoring of digital subtraction X-ray machine (DSA), and the catheter is introduced into the entrance of the branch of the tumor blood supply artery. , inject chemotherapy drugs at the inlet end of the catheter. This method was first used for cardiovascular diseases, and was soon applied to the diagnosis and treatment of various diseases in various parts of the body, such as the nervous system and tumors. In my country, interventional therapy is especially used for tumors, accounting for the majority of interventional therapy, and has become a commonly used therapy in comprehensive tumor therapy. The intervention methods also range from vascular intervention to pulmonary-pulmonary intervention, bronchial artery intervention, intracavitary intervention, and direct intratumoral intervention. the
当前临床上经血管介入推药时,普遍存在着只关注肿瘤病灶、癌细胞,因而采取了以消灭癌细胞为目标,用简单手推式注射器进行大剂量、高速灌注的攻击性推药化疗。但利用这种传统手工推药方式时,药液进入血管后便跟随着血管内血液流动方向流向全身各部,无法与病人的血压值、心率等会随着病人自身的调节机制做出反应而改变的参数相联系,使得药液只有部分进入病变肿瘤血管,造成该药液既杀了癌细胞、也杀了正常细胞的结果;并且推药过程中,药液的推进量过大或者速度过快还会引发诸多临床问题,不但增加病人的经济负担,也增加了医护人员的工作量。 At present, in the clinical practice of pushing drugs through blood vessels, it is common to only focus on tumor lesions and cancer cells. Therefore, aggressive drug pushing chemotherapy with large doses and high-speed perfusion is adopted with the goal of destroying cancer cells with a simple hand-push syringe. However, when using this traditional method of manually pushing the medicine, the medicine liquid will follow the blood flow direction in the blood vessel to all parts of the body after entering the blood vessel, which cannot be compared with the patient's blood pressure value, heart rate, etc., which will respond to the patient's own adjustment mechanism. The parameters are connected, so that only part of the liquid medicine enters the tumor blood vessels, resulting in the result that the liquid medicine kills both cancer cells and normal cells; It will also cause many clinical problems, which will not only increase the financial burden of patients, but also increase the workload of medical staff. the
发明内容 Contents of the invention
本发明的目的在于克服现有技术中所存在的上述不足,提供一种可减少伤害健康组织的用于药液推注的预测自适应控制系统。 The purpose of the present invention is to overcome the above-mentioned disadvantages in the prior art, and provide a predictive adaptive control system for drug fluid bolus injection that can reduce damage to healthy tissues. the
为了实现上述发明目的,本发明提供了以下技术方案: In order to realize the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
一种用于药液推注的预测自适应控制系统,包括主控制模块和药液推注模块,其特征在于,所述主控制模块包括用于采集人体血压值的检测模块,所述检测模块包括血压传感器;所述检测模块将该血压值传递至内存区进行储存,形成血压值数组,所述内存区连接有识别模块,所述识别模块识别内存区的血压值数组得到实时的心动周期及周期中的特征参数,所述识别模块还连接有预测控制算法模块,所述预测控制算法模块通过对特征参数的计算得到下一个心动周期的推注时刻; A predictive adaptive control system for medicinal liquid bolus injection, comprising a main control module and a medicinal liquid bolus injection module, characterized in that the main control module includes a detection module for collecting human blood pressure values, and the detection module Including a blood pressure sensor; the detection module transmits the blood pressure value to the memory area for storage to form an array of blood pressure values, the memory area is connected to an identification module, and the identification module identifies the blood pressure value array in the memory area to obtain real-time cardiac cycle and The characteristic parameters in the cycle, the identification module is also connected with a predictive control algorithm module, and the predictive control algorithm module obtains the injection time of the next cardiac cycle by calculating the characteristic parameters;
所述药液推注模块连接于主控制模块的预测控制算法模块,所述药液推注模块包括微控制器和医用注射器,所述药液推注模块通过微控制器连接于预测控制算法模块,所述预测控制算法模块将下一个心动周期的推注时刻发送至微控制器,所述微控制器连接有微推进器,所述微推进器连接有医用注射器,所述微控制器控制微推进器的推进速度、推注时刻和推注停止时刻,进而控制医用注射器的注射速度、推注时刻和推注停止时刻; The medicinal liquid bolus injection module is connected to the predictive control algorithm module of the main control module, the medicinal liquid bolus injection module includes a microcontroller and a medical syringe, and the medicinal liquid bolus injection module is connected to the predictive control algorithm module through the microcontroller , the predictive control algorithm module sends the bolus injection time of the next cardiac cycle to the microcontroller, the microcontroller is connected with a micro-propeller, the micro-propeller is connected with a medical injector, and the micro-controller controls the micro-propeller The propulsion speed, bolus injection time and bolus injection stop time of the propeller, and then control the injection speed, bolus injection time and bolus injection stop time of the medical syringe;
所述系统按照以下步骤处理信号: The system processes signals according to the following steps:
(1)采集血压值:通过主控制模块中的检测模块实时采集人体血压值,以递推的方式储存至主控制模块中的内存区形成血压值数组; (1) Collection of blood pressure values: real-time collection of human blood pressure values through the detection module in the main control module, and recursively stored in the memory area of the main control module to form an array of blood pressure values;
(2)得到相关参数:主控制模块中的识别模块通过识别血压值数组得到实时的心动周期及周期中的特征参数;通过体检得到患者的病征参数; (2) Obtain relevant parameters: the identification module in the main control module obtains the real-time cardiac cycle and the characteristic parameters in the cycle by identifying the array of blood pressure values; obtains the patient's symptom parameters through physical examination;
(3)计算推药时刻:根据病征参数设置推药时刻;主控制模块根据推药时刻、实时的心动周期及周期中的特征参数,通过预测控制算法计算出下一个心动周期中的推药时刻; (3) Calculating the time to push the medicine: set the time to push the medicine according to the symptom parameters; the main control module calculates the time to push the medicine in the next cardiac cycle through the predictive control algorithm according to the time to push the medicine, the real-time cardiac cycle and the characteristic parameters in the cycle ;
(4)启动药液推注模块:主控制模块将计算出的下一个心动周期中的推药时刻发送至药液推注模块中的微控制器,所述微控制器根据该推药时刻并提前tdelay,启动药液推注模块中微推注器进行药液推注,所述tdelay为药液推注模块的时延; (4) Start the medicinal solution injection module: the main control module sends the calculated drug pushing time in the next cardiac cycle to the microcontroller in the medicinal solution injection module, and the microcontroller calculates the drug pushing time according to the drug pushing time and Ahead of t delay , start the micro injector in the liquid medicine bolus injection module to carry out the liquid medicine bolus injection, and said t delay is the time delay of the liquid medicine bolus injection module;
(5)推注的自适应:检测模块采集新的血压值,将新得到的采样血压值、新识别出的心动周期及周期中的特征参数与之前采集的血压值、心动周期及周期中的特征参数加权平均,更新预测控制算法的参数,实现药液预测控制推注的自适应性; (5) Self-adaptation of bolus injection: the detection module collects new blood pressure values, and compares the newly obtained sampled blood pressure values, newly identified cardiac cycle and characteristic parameters in the cycle with the previously collected blood pressure value, cardiac cycle and the characteristic parameters in the cycle. The weighted average of the characteristic parameters updates the parameters of the predictive control algorithm to realize the adaptability of the predictive control bolus injection of medicinal liquid;
步骤(1)中,递推的方式是指采样新血压值进入血压值数组时,同时丢掉一组最早的采样血压值,使血压值数组的维数保持不变; In step (1), the recursive method means that when sampling a new blood pressure value into the blood pressure value array, a group of earliest sampled blood pressure values are discarded at the same time, so that the dimension of the blood pressure value array remains unchanged;
步骤(2)中,心动周期中的特征参数包括收缩压,舒张压,心舒张期时长、心收缩期时长;病征参数包括肿瘤直径、肿瘤供血动脉、肿瘤距预设的药液推注点距离; In step (2), the characteristic parameters in the cardiac cycle include systolic blood pressure, diastolic blood pressure, diastolic duration, and systolic duration; symptom parameters include tumor diameter, tumor blood supply artery, distance between the tumor and the preset drug injection point ;
步骤(3)中,推药时刻是指心动周期的特征参数中的一个时相的起始时刻;下一个心动周期中的推药时刻tr(k+1)通过等式tr(k+1)'=tr(k)+Tm(k)+ In step (3), the medicine pushing moment refers to the starting moment of a phase in the characteristic parameters of the cardiac cycle; the medicine pushing moment t r (k+1) in the next cardiac cycle is passed through the equation t r (k+ 1)'=t r (k)+T m (k)+
ξ[(tr(k)-tr(k)',tr(k-1)-tr(k-1)',Ltr(k-m)-tr(k=m)']T来计算,其中,tr(k)为当前心动周期中该时相的起始时刻,即当前的推药时刻;tr(k)'为预测控制算法根据上一次心动周期中的特征参数计算得出的当前心动周期中该时相的起始时刻;Tm(k)为灰色预测模型GM(1,1)根据之前的心动周期波动规律计算出的当前 心动周期的时长;m为预测时域长度,且m>0;ξ为误差系数向量,决定各误差分量的权重,ξ=[ξ1 ξ2 L ξn],0<ξn<1,n=1,2,3,…,m; ξ[(t r (k)-t r (k)',t r (k-1)-t r (k-1)',Lt r (km)-t r (k=m)'] T to Calculation, where, t r (k) is the initial moment of this phase in the current cardiac cycle, that is, the current drug pushing moment; t r (k)' is calculated by the predictive control algorithm based on the characteristic parameters in the last cardiac cycle T m (k) is the duration of the current cardiac cycle calculated by the gray prediction model GM(1,1) according to the fluctuation law of the previous cardiac cycle; m is the predicted time domain length, and m>0; ξ is the error coefficient vector, which determines the weight of each error component, ξ=[ξ 1 ξ 2 L ξ n ], 0<ξ n <1, n=1, 2, 3,..., m ;
灰色预测模型GM(1,1)的具体实现如下: The specific implementation of the gray prediction model GM(1,1) is as follows:
设心动周期原始数据列为T0(k)(k=1,2,Ln),T1(k)(k=1,2,Ln)为T0(k)一次累加和,即
灰度模型微分方程为T(0)(k)+aT(1)(k)=b k=1,2,Ln;n>0;令
令
优选的,上述用于药液推注的预测自适应控制系统中,所述药液推注模块中的微控制器连接于主控制模块的预测控制算法模块;所述微推进器包括外壳和步进电机,所述步进电机通过联轴器连接有丝杆,所述丝杆另一端固定于与步进电机相对的一侧,所述丝杆连接有针筒顶头;所述医用注射器固定于所述微推进器的外壳,所述医用注射器的活塞杆尾端与所述针筒顶头的位置相适配。步进电机通过联轴器带动针筒顶头运动,丝杆可将联轴器的旋转运动转换为针 筒顶头的直线运动,从而使针筒顶头可推动活塞杆推注药液。 Preferably, in the above-mentioned predictive adaptive control system for medicinal liquid bolus injection, the microcontroller in the medicinal liquid bolus injection module is connected to the predictive control algorithm module of the main control module; The stepping motor is connected to a screw rod through a coupling, and the other end of the screw rod is fixed on the side opposite to the stepping motor, and the screw rod is connected to a syringe plug; the medical syringe is fixed on The shell of the micro propeller, the tail end of the piston rod of the medical syringe is adapted to the position of the top of the syringe. The stepper motor drives the head of the syringe to move through the coupling, and the screw rod can convert the rotational motion of the coupling into the linear motion of the head of the syringe, so that the head of the syringe can push the piston rod to inject the liquid medicine. the
优选的,上述用于药液推注的预测自适应控制系统中,所述微推进器外壳上还设置有用于限制针筒顶头移动的第一限位开关和第二限位开关,当针筒内活塞与针筒顶端接触时,所述第一限位开关与针筒顶头接触,所述第一限位开关与第二限位开关之间的距离小于针筒长度,且第二限位开关位于活塞杆的运动方向并远离针筒的一侧。 Preferably, in the above-mentioned predictive adaptive control system for bolus injection of medicinal liquid, the housing of the micro-propeller is also provided with a first limit switch and a second limit switch for limiting the movement of the syringe head, when the syringe When the inner piston is in contact with the top of the syringe, the first limit switch is in contact with the top of the syringe, the distance between the first limit switch and the second limit switch is less than the length of the syringe, and the second limit switch Located in the direction of movement of the piston rod and away from the side of the barrel. the
优选的,上述用于药液推注的预测自适应控制系统中,所述第一限位开关和第二限位开关连接有报警装置。第一限位开关在与针筒顶头接触时进行报警,通知医护人员针筒内药液注射完毕,可提醒医护人员及时更换针筒。第二限位开关与针筒顶头接触时进行报警,提醒医护人员针筒内的活塞杆已到达最后位置。 Preferably, in the above-mentioned predictive adaptive control system for bolus injection of medicinal fluid, the first limit switch and the second limit switch are connected with an alarm device. When the first limit switch is in contact with the top of the syringe, an alarm is issued to notify the medical staff that the injection of the medicinal liquid in the syringe is completed, and the medical staff can be reminded to replace the syringe in time. When the second limit switch is in contact with the top of the syringe, an alarm is given to remind the medical personnel that the piston rod in the syringe has reached the final position. the
优选的,上述用于药液推注的预测自适应控制系统中,所述针筒顶头与所述活塞杆尾端之间还设置有压力应变片。微控制器通过压力应变片感知的压力进行计算,并控制步进电机的速度,使得步进电机的推进力与血压回推力相平衡,在不进行药液推注时,可避免药液被推出针筒且血液也不会回流,处于压力平衡状态。 Preferably, in the above-mentioned predictive adaptive control system for bolus injection of medicinal liquid, a pressure strain gauge is further provided between the top of the syringe and the tail end of the piston rod. The microcontroller calculates the pressure sensed by the pressure strain gauge, and controls the speed of the stepping motor, so that the thrust of the stepping motor is balanced with the back thrust of the blood pressure, and the liquid medicine can be prevented from being pushed out when the liquid medicine is not injected. The needle barrel and the blood will not flow back, and it is in a state of pressure balance. the
药液推注模块中的推药速度以及推药量通过主控制模块来控制,提高了药液推注模块的反应速度和实时控制能力,并能实现在血流速度缓慢的心舒张期时相进行药液的推注,使得药液进入人体血管时不被高速的血流迅速稀释,从而保持较高浓度,更利于药液杀死癌细胞,因而实现了科学、合理、安全用药,即以较少的药物剂量,在局部器官获得最大的药物浓度并停留足够长的时间而无返流,减少伤害健康组织。不仅改变了当前经血管介入推药中靠手工推注不 可忽视的不规范、高速、大剂量注药而引发的诸多临床问题,还极大地减轻了国家和病人的经济负担、减少了医务人员体力和精力。 The speed and amount of drug pushing in the drug injection injection module are controlled by the main control module, which improves the reaction speed and real-time control ability of the drug injection injection module, and can realize the diastolic phase phase when the blood flow velocity is slow. The bolus injection of the medicinal liquid prevents the medicinal liquid from being rapidly diluted by the high-speed blood flow when it enters the blood vessels of the human body, thereby maintaining a higher concentration, which is more conducive to the medicinal liquid killing cancer cells, thus realizing scientific, rational and safe drug use, that is, with With less drug dose, the maximum drug concentration can be obtained in local organs and stay long enough without reflux, reducing damage to healthy tissues. Not only has it changed many clinical problems caused by non-standard, high-speed, and large-dose injections that cannot be ignored by manual bolus injections in the current transvascular interventional drug push, it has also greatly reduced the economic burden on the country and patients, and reduced the number of medical staff. stamina and energy. the
与现有技术相比,本发明的有益效果: Compared with prior art, beneficial effect of the present invention:
1、本发明中药液推注模块中的推药速度以及推药量通过主控制模块来控制,提高了药液推注模块的反应速度和实时控制能力,并能实现在血流速度缓慢的心舒张期时相进行药液的推注,使得药液进入人体血管时不被高速的血流迅速稀释,从而保持较高浓度,更利于药液杀死癌细胞,因而实现了科学、合理、安全用药,即以较少的药物剂量,在局部器官获得最大的药物浓度并停留足够长的时间而无返流,减少伤害健康组织。 1. The drug pushing speed and the drug pushing amount in the Chinese medicine liquid injection module of the present invention are controlled by the main control module, which improves the response speed and real-time control ability of the medicinal liquid injection module, and can realize that the blood flow speed is slow. The injection of the medicinal solution during the diastolic phase prevents the medicinal solution from being rapidly diluted by the high-speed blood flow when it enters the blood vessels of the human body, thereby maintaining a higher concentration, which is more conducive to the medicinal solution to kill cancer cells, thus achieving a scientific, reasonable, and Safe drug use, that is, to obtain the maximum drug concentration in local organs with a small drug dose and stay for a long enough time without reflux, so as to reduce damage to healthy tissues. the
2、本发明使用微控制器、微推进器和医用注射器等组成药液推注模块,不仅改变了当前经血管介入推药中靠手工推注不可忽视的不规范、高速、大剂量注药而引发的诸多临床问题,还极大地减轻了国家和病人的经济负担、减少了医务人员体力和精力。 2. The present invention uses microcontrollers, micro-propellers, and medical syringes to form a drug injection module, which not only changes the non-standard, high-speed, and large-dose drug injection that cannot be ignored in the current transvascular interventional drug injection. Many clinical problems have also greatly reduced the economic burden on the country and patients, and reduced the physical strength and energy of medical staff. the
3、由于本发明采用预测控制算法进行心动周期及周期中的特征参数的计算,依据解算出的心动周期及周期中的特征参数,预测在下一心动周期中推出的药液进入血管入口处的时相,提前启动药液推注模块,可即时调整推药时刻,避免造成患者的不适而影响治疗后果。 3. Since the present invention uses a predictive control algorithm to calculate the cardiac cycle and the characteristic parameters in the cycle, according to the calculated cardiac cycle and the characteristic parameters in the cycle, the time when the medicinal solution released in the next cardiac cycle enters the blood vessel entrance is predicted. In contrast, starting the drug injection module in advance can adjust the time of pushing the drug in real time, so as to avoid causing discomfort to the patient and affecting the treatment outcome. the
4、由于本发明的推药时刻是根据患者的血压值、心动周期及周期中的特征参数计算的,医护人员在观察推药情况的同时还可看到病人血压的动态波形,可方便医护人员快速处理突发状况。 4. Since the medicine pushing time of the present invention is calculated according to the patient's blood pressure value, cardiac cycle and characteristic parameters in the cycle, the medical staff can also see the dynamic waveform of the patient's blood pressure while observing the medicine pushing situation, which is convenient for the medical staff Quickly handle emergencies. the
附图说明: Description of drawings:
图1为本发明用于药液推注的预测自适应控制系统原理示意图。 Fig. 1 is a schematic diagram of the principle of the predictive adaptive control system for medicinal liquid bolus injection according to the present invention. the
图2为本发明中药液推注模块的结构示意图。 Fig. 2 is a schematic structural view of the traditional Chinese medicine liquid injection module of the present invention. the
图3为本发明用于药液推注的预测自适应控制方法的流程图。 Fig. 3 is a flow chart of the predictive adaptive control method for bolus injection of medicinal liquid according to the present invention. the
图中标记:1-外壳,2-步进电机,3-联轴器,4-第一限位开关,5-第二限位开关,6-丝杆,7-针筒顶头,8-压力应变片,9-活塞杆,10-针筒。 Marks in the figure: 1-housing, 2-stepper motor, 3-coupling, 4-first limit switch, 5-second limit switch, 6-screw, 7-syringe head, 8-pressure Strain gauge, 9-piston rod, 10-needle. the
具体实施方式 Detailed ways
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。 The present invention will be further described in detail below in conjunction with test examples and specific embodiments. However, it should not be understood that the scope of the above subject matter of the present invention is limited to the following embodiments, and all technologies realized based on the content of the present invention belong to the scope of the present invention. the
实施例 Example
一种用于药液推注的预测自适应控制系统,如图1所示,包括主控制模块和药液推注模块,所述主控制模块包括用于采集人体血压值的检测模块,所述检测模块将该血压值传递至内存区进行储存,形成血压值数组,所述内存区连接有识别模块,所述识别模块识别内存区的血压值数组得到实时的心动周期及周期中的特征参数,所述识别模块还连接有预测控制算法模块,所述预测控制算法模块通过对特征参数的计算得到下一个心动周期的推注时刻; A predictive adaptive control system for medicinal liquid bolus injection, as shown in Figure 1, includes a main control module and a medicinal liquid bolus injection module, the main control module includes a detection module for collecting human blood pressure values, the The detection module transmits the blood pressure value to the memory area for storage to form an array of blood pressure values. The memory area is connected to an identification module, and the identification module identifies the blood pressure value array in the memory area to obtain real-time cardiac cycle and characteristic parameters in the cycle. The identification module is also connected with a predictive control algorithm module, and the predictive control algorithm module obtains the bolus injection time of the next cardiac cycle by calculating the characteristic parameters;
所述药液推注模块连接于主控制模块的预测控制算法模块,所述药液推注模块包括微控制器和医用注射器,所述药液推注模块通过微控制器连接于预测控制算法模块,所述预测控制算法模块将下一个心动周期的推注时刻发送至微控制器,所述微控制器连接有微推进器,所述微推进器连接有医用注射器,所述微控制器控制微推进器的推进速度、推注时刻和推注停止时刻,进而控制医 用注射器的注射速度、推注时刻和推注停止时刻。 The medicinal liquid bolus injection module is connected to the predictive control algorithm module of the main control module, the medicinal liquid bolus injection module includes a microcontroller and a medical syringe, and the medicinal liquid bolus injection module is connected to the predictive control algorithm module through the microcontroller , the predictive control algorithm module sends the bolus injection time of the next cardiac cycle to the microcontroller, the microcontroller is connected with a micro-propeller, the micro-propeller is connected with a medical injector, and the micro-controller controls the micro-propeller The propulsion speed, injection timing and injection stop timing of the propeller, and then control the injection speed, injection injection timing and injection stop timing of the medical syringe. the
药液推注模块包括微控制器、微推进器和医用注射器,所述微控制器连接于主控制模块的预测控制算法模块;如图2所示,所述微推进器包括外壳1和步进电机2,所述步进电机2通过联轴器3连接有丝杆6,所述丝杆6另一端固定于与步进电机2相对的一侧,所述丝杆6连接有针筒顶头7;所述医用注射器固定于所述微推进器的外壳1,所述医用注射器的活塞杆9尾端与所述针筒顶头7的位置相适配,所述针筒顶头7与所述活塞杆9尾端之间还设置有压力应变片8;所述微推进器外壳1内还设置有用于限制针筒顶头7移动的第一限位开关4和第二限位开关5,当针筒10内活塞与针筒顶端接触时,所述第一限位开关4与针筒顶头7接触,所述第一限位开关4与第二限位开关5之间的距离小于针筒10长度,且第二限位开关5位于活塞杆9的运动方向并远离针筒10的一侧; The medicinal solution bolus injection module includes a microcontroller, a micro-propeller and a medical injector, and the microcontroller is connected to the predictive control algorithm module of the main control module; as shown in Figure 2, the micro-propeller includes a housing 1 and a stepper Motor 2, the stepper motor 2 is connected with a screw rod 6 through a coupling 3, the other end of the screw rod 6 is fixed on the side opposite to the stepper motor 2, and the screw rod 6 is connected with a syringe plug 7 The medical syringe is fixed on the shell 1 of the micro-propeller, the piston rod 9 tail end of the medical syringe is adapted to the position of the syringe top 7, and the syringe top 7 and the piston rod A pressure strain gauge 8 is also provided between the 9 tail ends; a first limit switch 4 and a second limit switch 5 for limiting the movement of the syringe top 7 are also provided in the micro-propeller housing 1, when the syringe 10 When the inner piston is in contact with the top of the syringe, the first limit switch 4 is in contact with the top of the syringe 7, the distance between the first limit switch 4 and the second limit switch 5 is less than the length of the syringe 10, and The second limit switch 5 is located in the direction of movement of the piston rod 9 and away from the side of the syringe 10;
当主控制模块通过预测控制算法模块向药液推注模块发送下一个心动周期的推药时刻时,微控制器启动步进电机带动联轴器旋转,并通过丝杆将旋转运动转变为直线运动,带动针筒顶头使活塞杆运动,推动针筒内的药液进入人体;压力应变片用于感应推注药液时所遇的阻力,并将该阻力发送至微控制器,通过推力的大小判断药液进入人体时血管遇到的阻力;当针筒顶头接触第一限位开关时,发出警报通知医护人员注射完毕,当针筒顶头接触第二限位开关时,发出警报通知医护人员活塞杆到达最后位置。步进电机在药液推注任务开始后,不进行药液推注时,处于低速状态,微控制器通过压力应变片感知的压力进行计算,并控制步进电机的速度,使得步进电机的推进力与血压回推力相平衡,在不进行药液推注时,可避免药液被推出针筒且血液也不会回流,处于压力平衡状态。 When the main control module sends the medicine pushing time of the next cardiac cycle to the medicine injection module through the predictive control algorithm module, the microcontroller starts the stepping motor to drive the coupling to rotate, and converts the rotational movement into a linear movement through the screw rod. Drive the top of the syringe to move the piston rod, and push the medicinal liquid in the syringe into the human body; the pressure strain gauge is used to sense the resistance encountered when injecting the medicinal liquid, and send the resistance to the microcontroller, and judge by the magnitude of the thrust The resistance encountered by blood vessels when the liquid medicine enters the human body; when the top of the syringe touches the first limit switch, an alarm will be sent to inform the medical staff that the injection is completed; when the top of the syringe touches the second limit switch, an alarm will be issued to notify the medical staff of the piston rod Reach the last position. The stepper motor is in a low-speed state when the drug solution injection task starts, and when the drug solution injection is not performed, the microcontroller calculates the pressure sensed by the pressure strain gauge and controls the speed of the stepper motor so that the stepper motor The propulsion force is balanced with the blood pressure return thrust. When the liquid medicine is not injected, it can prevent the liquid medicine from being pushed out of the syringe and the blood will not flow back, and it is in a state of pressure balance. the
如图3所示,上述用于药液推注的预测自适应控制系统按照以下步骤处理 信号: As shown in Figure 3, the above-mentioned predictive adaptive control system for the injection of medicinal liquid processes the signal according to the following steps:
(1)采集血压值:通过主控制模块中的检测模块实时采集人体血压值,以递推的方式储存至主控制模块中的内存区形成血压值数组; (1) Collection of blood pressure values: real-time collection of human blood pressure values through the detection module in the main control module, and recursively stored in the memory area of the main control module to form an array of blood pressure values;
(2)得到相关参数:主控制模块中的识别模块通过识别血压值数组得到实时的心动周期及周期中的特征参数;通过体检得到患者的病征参数; (2) Obtain relevant parameters: the identification module in the main control module obtains the real-time cardiac cycle and the characteristic parameters in the cycle by identifying the array of blood pressure values; obtains the patient's symptom parameters through physical examination;
(3)计算推药时刻:根据病征参数设置推药时刻;主控制模块根据推药时刻、实时的心动周期及周期中的特征参数,通过预测控制算法计算出下一个心动周期中的推药时刻; (3) Calculating the time to push the medicine: set the time to push the medicine according to the symptom parameters; the main control module calculates the time to push the medicine in the next cardiac cycle through the predictive control algorithm according to the time to push the medicine, the real-time cardiac cycle and the characteristic parameters in the cycle ;
(4)启动药液推注模块:主控制模块将计算出的下一个心动周期中的推药时刻发送至药液推注模块中的微控制器,所述微控制器根据该推药时刻并提前tdelay,启动药液推注模块中微推注器进行药液推注,所述tdelay为药液推注模块的时延; (4) Start the medicinal solution injection module: the main control module sends the calculated drug pushing time in the next cardiac cycle to the microcontroller in the medicinal solution injection module, and the microcontroller calculates the drug pushing time according to the drug pushing time and Ahead of t delay , start the micro injector in the liquid medicine bolus injection module to carry out the liquid medicine bolus injection, and said t delay is the time delay of the liquid medicine bolus injection module;
(5)推注的自适应:检测模块采集新的血压值,将新得到的采样血压值、新识别出的心动周期及周期中的特征参数与之前采集的血压值、心动周期及周期中的特征参数加权平均,更新预测控制算法的参数,实现药液预测控制推注的自适应性。 (5) Self-adaptation of bolus injection: the detection module collects new blood pressure values, and compares the newly obtained sampled blood pressure values, newly identified cardiac cycle and characteristic parameters in the cycle with the previously collected blood pressure value, cardiac cycle and the characteristic parameters in the cycle. The weighted average of the characteristic parameters is used to update the parameters of the predictive control algorithm to realize the adaptability of the predictive control bolus injection of medicinal liquid. the
推药时刻根据患者的血压值、心动周期及周期中的特征参数相关联,可即时调整推药时刻,避免造成患者的不适而影响治疗后果。 The medicine pushing time is related to the patient's blood pressure value, cardiac cycle and the characteristic parameters in the cycle, and the medicine pushing time can be adjusted in real time to avoid causing discomfort to the patient and affecting the treatment outcome. the
步骤(1)中,检测模块包括血压传感器;递推的方式是指采样新血压值进入血压值数组时,同时丢掉一组最早的采样血压值,使血压值数组的维数保持不变。 In step (1), the detection module includes a blood pressure sensor; the recursive method means that when sampling a new blood pressure value into the blood pressure value array, a group of earliest sampled blood pressure values are discarded at the same time, so that the dimension of the blood pressure value array remains unchanged. the
步骤(2)中,心动周期中的特征参数包括收缩压,舒张压,心舒张期时长、心收缩期时长等;病征参数包括肿瘤直径、肿瘤供血动脉、肿瘤距预设的药液推注点距离等。 In step (2), the characteristic parameters in the cardiac cycle include systolic blood pressure, diastolic blood pressure, diastolic period duration, systolic period duration, etc.; symptom parameters include tumor diameter, tumor blood supply artery, tumor distance from the preset drug injection point distance etc. the
步骤(3)中,推药时刻是指心动周期的特征参数中的一个时相的起始时刻;下一个心动周期中的推药时刻tr(k+1)通过等式tr(k+1)'=tr(k)+Tm(k)+ In step (3), the medicine pushing moment refers to the starting moment of a phase in the characteristic parameters of the cardiac cycle; the medicine pushing moment t r (k+1) in the next cardiac cycle is passed through the equation t r (k+ 1)'=t r (k)+T m (k)+
ξ[(tr(k)-tr(k)',tr(k-1)-tr(k-1)',Ltr(k-m)-tr(k=m)']T来计算,其中,tr(k)为当前心动周期中该时相的起始时刻,即当前的推药时刻;tr(k)'为预测控制算法根据上一次心动周期中的特征参数计算得出的当前心动周期中该时相的起始时刻;Tm(k)为灰色预测模型GM(1,1)根据之前的心动周期波动规律计算出的当前心动周期的时长;m为预测时域长度,且m>0;ξ为误差系数向量,决定各误差分量的权重,ξ=[ξ1 ξ2 L ξn],0<ξn<1,n=1,2,3,…,m。 ξ[(t r (k)-t r (k)',t r (k-1)-t r (k-1)',Lt r (km)-t r (k=m)'] T to Calculation, where, t r (k) is the initial moment of this phase in the current cardiac cycle, that is, the current drug pushing moment; t r (k)' is calculated by the predictive control algorithm based on the characteristic parameters in the last cardiac cycle T m (k) is the duration of the current cardiac cycle calculated by the gray prediction model GM(1,1) according to the fluctuation law of the previous cardiac cycle; m is the predicted time domain length, and m>0; ξ is the error coefficient vector, which determines the weight of each error component, ξ=[ξ 1 ξ 2 L ξ n ], 0<ξ n <1, n=1, 2, 3,..., m .
灰色预测模型GM(1,1)的具体实现如下: The specific implementation of the gray prediction model GM(1,1) is as follows:
设心动周期原始数据列为T0(k)(k=1,2,Ln),T1(k)(k=1,2,Ln)为T0(k)一次累加和,即
灰度模型微分方程为T(0)(k)+aT(1)(k)=b k=1,2,Ln;n>0;令
令
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210553849.2A CN103007391B (en) | 2012-12-19 | 2012-12-19 | Predictive adaptive control system for liquid medicament push-injecting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210553849.2A CN103007391B (en) | 2012-12-19 | 2012-12-19 | Predictive adaptive control system for liquid medicament push-injecting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103007391A CN103007391A (en) | 2013-04-03 |
CN103007391B true CN103007391B (en) | 2014-12-03 |
Family
ID=47956846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210553849.2A Expired - Fee Related CN103007391B (en) | 2012-12-19 | 2012-12-19 | Predictive adaptive control system for liquid medicament push-injecting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103007391B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107224635A (en) * | 2017-07-01 | 2017-10-03 | 苏州能斯达电子科技有限公司 | A kind of injection of insulin is pumped monitoring device |
CN108992743B (en) * | 2018-08-06 | 2022-01-07 | 广州友沃医疗设备有限公司 | Injection method and device for automatically generating injection plan |
CN112741706B (en) * | 2019-10-29 | 2024-05-14 | 北京大学第三医院(北京大学第三临床医学院) | Method and device for preparing diffusion source and method for measuring physiological parameters of extracellular space of solid tissue |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2065486U (en) * | 1989-02-27 | 1990-11-14 | 罗建明 | Micro automatic syringe |
CN1482927A (en) * | 2000-12-22 | 2004-03-17 | DCA��ƹ�������˾ | Injection device with replaceable medicament cartridge |
CN1561241A (en) * | 2001-07-31 | 2005-01-05 | 斯科特实验室公司 | Apparatuses and methods for titrating drug delivery |
CN201643200U (en) * | 2010-05-17 | 2010-11-24 | 中国人民解放军南京军区南京总医院 | Infusion speed adjustment device |
CN102247638A (en) * | 2011-04-12 | 2011-11-23 | 四川大学 | Haemodynamics-based forecast self-adaptive injection device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19756872B4 (en) * | 1997-12-19 | 2005-06-02 | Siemens Ag | Device for administering an infusion and / or perfusion to a patient |
-
2012
- 2012-12-19 CN CN201210553849.2A patent/CN103007391B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2065486U (en) * | 1989-02-27 | 1990-11-14 | 罗建明 | Micro automatic syringe |
CN1482927A (en) * | 2000-12-22 | 2004-03-17 | DCA��ƹ�������˾ | Injection device with replaceable medicament cartridge |
CN1561241A (en) * | 2001-07-31 | 2005-01-05 | 斯科特实验室公司 | Apparatuses and methods for titrating drug delivery |
CN201643200U (en) * | 2010-05-17 | 2010-11-24 | 中国人民解放军南京军区南京总医院 | Infusion speed adjustment device |
CN102247638A (en) * | 2011-04-12 | 2011-11-23 | 四川大学 | Haemodynamics-based forecast self-adaptive injection device |
Also Published As
Publication number | Publication date |
---|---|
CN103007391A (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6449483B2 (en) | Ischemic preconditioning treatment device, its use, and method of using it to determine vascular health | |
US20100160854A1 (en) | Integrated patient management and control system for medication delivery | |
CN102247638A (en) | Haemodynamics-based forecast self-adaptive injection device | |
CN103007391B (en) | Predictive adaptive control system for liquid medicament push-injecting | |
CN110770843A (en) | System and method for split-bolus regimen generation | |
CN204839438U (en) | Head end has angioscope of sacculus | |
US9050400B2 (en) | Remote sensing catheter system and methods | |
CN108815642A (en) | A kind of opacifying injection system | |
CN205339754U (en) | Novel insulin injection device | |
CN104825233B (en) | Experimental device for frog heart perfusion | |
CN111790025A (en) | A skin test injection mechanism and its control method | |
CN208756688U (en) | A kind of opacifying injection system | |
CN216021044U (en) | Blood glucose meter capable of continuously and dynamically monitoring | |
CN202822343U (en) | Dedicated syringe for treating diabetes mellitus | |
CN201283161Y (en) | Disposal cotton swab for nasal administration | |
CN114129825A (en) | Intelligent anesthesia control system | |
CN201668848U (en) | Novel arterial indwelling needle | |
CN209187764U (en) | A device for vascular interventional therapy | |
CN112704577A (en) | Quantitative continuous anti-biting drencher for veterinarian | |
CN202027999U (en) | Automatic injection device with tension spring | |
CN112120708A (en) | Blood glucose monitoring intelligent device for developing and glucose-regulating 18F-FDG PET surviving cardiac muscle | |
CN204581449U (en) | The diacan of improvement | |
CN215231089U (en) | Cardiovascular intervention injector | |
CN204468880U (en) | One is applicable to infant negative-pressure type quiet/needle of retaining on artery | |
US20230355871A1 (en) | Minimally Invasive and Semi-Automated Myocardial Injection Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141203 |