CN102998973B - Multi-model adaptive controller and control method of nonlinear system - Google Patents
Multi-model adaptive controller and control method of nonlinear system Download PDFInfo
- Publication number
- CN102998973B CN102998973B CN201210496139.0A CN201210496139A CN102998973B CN 102998973 B CN102998973 B CN 102998973B CN 201210496139 A CN201210496139 A CN 201210496139A CN 102998973 B CN102998973 B CN 102998973B
- Authority
- CN
- China
- Prior art keywords
- model
- nonlinear
- adaptive
- controller
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开一种非线性系统的多模型自适应控制器及控制方法,采用一个非线性鲁棒间接自适应控制器和一个非线性神经网络间接自适应控制器,基于性能指标在每个采样时刻切换到最优控制器来实现控制。与传统的非线性多模型自适应控制器和控制方法相比,本发明将非线性系统的非线性项的界限放宽到零阶接近有界,可以有效的扩大多模型自适应控制器的适应性。
The invention discloses a multi-model adaptive controller and a control method for a nonlinear system. A nonlinear robust indirect adaptive controller and a nonlinear neural network indirect adaptive controller are adopted, and based on performance indicators at each sampling time Switch to the optimal controller for control. Compared with the traditional nonlinear multi-model adaptive controller and control method, the present invention relaxes the limit of the nonlinear term of the nonlinear system to zero-order close to bounded, which can effectively expand the adaptability of the multi-model adaptive controller .
Description
技术领域technical field
本发明涉及各行业生产过程中各种实际的被控对象,具体涉及一类零阶有界的非线性复杂控制系统的一类多模型自适应控制器及其控制方法。The invention relates to various actual controlled objects in the production process of various industries, in particular to a class of multi-model self-adaptive controller of a class of zero-order bounded nonlinear complex control system and its control method.
背景技术Background technique
由于现代工业向技术密集型转变,出现了由种类繁多的子系统和元件组成且内部关系复杂的复杂工业系统过程。这种系统往往具有强非线性、快时变、模型不确定等特点。现有的非线性处理方法虽然有一些应用,但是理论上不完善,对被控对象的要求高,并且不具有一般性。Due to the transformation of modern industry into technology-intensive, complex industrial system processes composed of a wide variety of subsystems and components with complex internal relationships have emerged. Such systems often have the characteristics of strong nonlinearity, fast time-varying, and uncertain models. Although the existing nonlinear processing methods have some applications, they are not perfect in theory, have high requirements on the controlled object, and are not general.
由于自适参数大量未知等特点,经典控制理论与现代控制理论中的方法很难解决这些特点,自适应控制可以处理一定程度不确定性系统的控制问题而被广泛应用于非线性系统的控制中。通过对系统辨识,自适应控制可以自动地补偿模型阶次、参数和输入信号方面的变化,可以得到较好的控制效果。但是对于时变较快,参数有跳变的被控对象,自适应控制系统辨识的效果不佳,从而导致系统的动态性能较差、暂态误差过大的情况。多模型自适应控制在自适应控制的基础上发展而来,可以有效减小系统的暂态误差。因此提出一种新的非线性系统的模型结构,这个模型结构由线性部分和非线性项部分组成更具有一般性,针对快时变、参数跳变对象,采用多个辨识模型,获得更好的控制效果。但是,传统的多模型自适应控制方法要求被控对象的非线性项部分全局有界,这一条件限制了多模型自适应控制方法在实际系统中的应用。Due to the characteristics of a large number of unknown adaptive parameters, it is difficult for the methods in classical control theory and modern control theory to solve these characteristics. Adaptive control can deal with the control problems of a certain degree of uncertainty system and is widely used in the control of nonlinear systems. . Through system identification, adaptive control can automatically compensate for changes in model order, parameters, and input signals, and better control effects can be obtained. However, for the controlled object with fast time-varying and parameter jumps, the identification effect of the adaptive control system is not good, resulting in poor dynamic performance of the system and excessive transient errors. Multi-model adaptive control is developed on the basis of adaptive control, which can effectively reduce the transient error of the system. Therefore, a new model structure of the nonlinear system is proposed. This model structure is composed of a linear part and a nonlinear part. Control effect. However, the traditional multi-model adaptive control method requires the nonlinear term of the plant to be partially globally bounded, which limits the application of the multi-model adaptive control method in practical systems.
发明内容Contents of the invention
本发明针对上述现有技术中存在的技术问题,提供一种非线性系统的多模型自适应控制器及控制方法。放宽非线性系统的限制条件,扩大多模型自适应控制方法的使用范围。该方法不仅将非线性项全局有界条件放宽到了零阶接近有界,并且减小了多模型自适应控制系统的稳态误差,提高了控制精度。The present invention aims at the technical problems existing in the above-mentioned prior art, and provides a multi-model adaptive controller and a control method for a nonlinear system. Relax the constraints of nonlinear systems and expand the scope of use of multi-model adaptive control methods. This method not only relaxes the global bounded condition of the nonlinear term to zero-order nearly bounded, but also reduces the steady-state error of the multi-model adaptive control system and improves the control precision.
为达到上述目的,本发明所采取的技术方案是:For achieving the above object, the technical scheme that the present invention takes is:
一种非线性系统的多模型自适应控制器,该控制器由一个非线性鲁棒间接自适应控制器、一个非线性神经网络自适应控制器和切换机构三部分组成,其中,一个控制器为非线性鲁棒间接自适应控制器,另一个是非线性神经网络间接自适应控制器,被控对象的输入由切换机构在两个控制器之间选择产生,被控对象的输出与两个控制器之间有一闭环负反馈,被控对象与两个间接自适应控制器的模型输出之间设置为相减关系,模型误差用于调整模型的参数与神经网络的权值。A multi-model adaptive controller for a nonlinear system, the controller is composed of a nonlinear robust indirect adaptive controller, a nonlinear neural network adaptive controller and a switching mechanism, wherein one controller is The nonlinear robust indirect adaptive controller, the other is the nonlinear neural network indirect adaptive controller, the input of the controlled object is generated by selecting between the two controllers by the switching mechanism, the output of the controlled object and the two controllers There is a closed-loop negative feedback between them, and the relationship between the controlled object and the model output of the two indirect adaptive controllers is set as a subtraction relationship, and the model error is used to adjust the parameters of the model and the weights of the neural network.
所述非线性鲁棒间接自适应控制器包括一个非线性鲁棒自适应模型和一个非线性控制器,非线性鲁棒自适应模型由线性和非线性两部分组成,线性部分对应系统线性化后的线性部分,非线性部分由带系数的回归向量的范数来表示,用以补偿系统线性化后的非线性部分。回归向量由系统过去时刻的输入和输出变量组成。自适应的参数为线性回归向量的系数,自适应律采用投影自适应律。非线性控制器采用一步超前控制器。The nonlinear robust indirect adaptive controller includes a nonlinear robust adaptive model and a nonlinear controller, the nonlinear robust adaptive model consists of two parts, linear and nonlinear, and the linear part corresponds to the system after linearization The linear part of , the nonlinear part is represented by the norm of the regression vector with coefficients, which is used to compensate the nonlinear part of the system after linearization. The regression vector consists of the input and output variables of the system at past moments. The adaptive parameter is the coefficient of the linear regression vector, and the adaptive law adopts the projection adaptive law. The nonlinear controller uses a one-step look-ahead controller.
所述非线性神经网络自适应控制器包括一个非线性神经网络自适应模型和一个非线性神经网络自适应控制器。非线性神经网络自适应模型由线性部分和非线性神经网络部分组成。线性部分的系数作为自适应参数可以以任意方式进行更新。非线性神经网络采用BP网络,利用误差反向传播方法来训练。The nonlinear neural network adaptive controller includes a nonlinear neural network adaptive model and a nonlinear neural network adaptive controller. The nonlinear neural network adaptive model consists of a linear part and a nonlinear neural network part. The coefficients of the linear part can be updated in any way as adaptive parameters. The nonlinear neural network adopts BP network and uses the error backpropagation method to train.
在所述切换机构中,首先设计一个性能指标,该性能指标包含一个累积误差部分和一个暂态误差部分。在每一个控制时刻,计算各个控制器的性能指标,选择性能指标较小的控制器来产生下一时刻的控制输入,可以实现平稳的切换,且提高系统的暂态性能。In the switching mechanism, a performance index is first designed, and the performance index includes a cumulative error part and a transient error part. At each control moment, the performance index of each controller is calculated, and the controller with a smaller performance index is selected to generate the control input at the next moment, which can realize smooth switching and improve the transient performance of the system.
上述非线性系统的多模型自适应控制器的控制方法所包含的步骤如下:The steps included in the control method of the multi-model adaptive controller of the above-mentioned nonlinear system are as follows:
S1:系统初始化:随机初始化非线性鲁棒自适应模型的参数,随机初始化非线性神经网络模型的参数和神经网络的权值,这些参数可由一定的先验知识确定;S1: System initialization: Randomly initialize the parameters of the nonlinear robust adaptive model, randomly initialize the parameters of the nonlinear neural network model and the weights of the neural network, these parameters can be determined by certain prior knowledge;
S2:k=0时刻,对象的输出为0;k≠0时刻,对象的输出为系统的实际输出值,与系统设定值作差得到系统的控制误差ec;实际输出与非线性鲁棒自适应模型的输出作差得到模型误差e1,与非线性神经网络模型作差得到模型误差e2;S2: At k=0, the output of the object is 0; at k≠0, the output of the object is the actual output value of the system, and the control error e c of the system is obtained by making a difference with the system set value; the actual output and the nonlinear robustness The output of the adaptive model is subtracted to obtain the model error e 1 , and the output of the nonlinear neural network model is subtracted to obtain the model error e 2 ;
S3:将控制误差ec作为非线性鲁棒自适应控制器和非线性神经网络自适应控制器的输入,由两个控制器分别产生控制量u1和u2;S3: the control error e c is used as the input of the nonlinear robust adaptive controller and the nonlinear neural network adaptive controller, and the two controllers generate control quantities u 1 and u 2 respectively;
S4:根据模型误差e1和e2来计算性能指标C1和C2的值,选择性能指标值较小的控制器产生的输入ui,作为被控对象和两个模型的控制输入u;S4: Calculate the values of performance indicators C 1 and C 2 according to the model errors e 1 and e 2 , and select the input u i generated by the controller with a smaller performance index value as the control input u of the controlled object and the two models;
S5:利用模型误差e1和e2分别更新非线性鲁棒自适应模型和非线性神经网络自适应模型的参数和权值;S5: Using the model errors e1 and e2 to update the parameters and weights of the nonlinear robust adaptive model and the nonlinear neural network adaptive model respectively ;
S6:转到步骤S2。S6: go to step S2.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
从本发明的多模型自适应控制方法可以看出,非线性鲁棒自适应控制器中包含一个非线性鲁棒自适应模型,该模型在原线性自适应模型的基础上增加一个自适应的非线性补偿项,从而将被控对象的非线性项的限制条件由线性有界放宽到了零阶接近有界,大大的扩宽了多模型自适应控制器的适用范围。由非线性鲁棒自适应控制器单独控制的非线性系统可以被证明具有稳定性和收敛性。From the multi-model adaptive control method of the present invention, it can be seen that a nonlinear robust adaptive model is included in the nonlinear robust adaptive controller, and an adaptive nonlinear adaptive model is added to the original linear adaptive model. The compensation term relaxes the restriction of the nonlinear term of the controlled object from linear bounded to zero-order close to bounded, which greatly expands the scope of application of the multi-model adaptive controller. A nonlinear system controlled solely by a nonlinear robust adaptive controller can be shown to be stable and convergent.
非线性神经网络自适应控制器中包含系统的一个非线性神经网络模型,根据神经网络的万能逼近定理,该模型可以以任意精度逼近系统的真实输出,这使得本发明的控制方法与传统多模型自适应控制方法相比具有更高的精度。控制器设计采用一步超前控制思想,计算量小,可提高系统的计算速度。A nonlinear neural network model of the system is included in the nonlinear neural network adaptive controller. According to the universal approximation theorem of the neural network, this model can approach the real output of the system with arbitrary precision, which makes the control method of the present invention different from the traditional multi-model Compared with the adaptive control method, it has higher precision. The design of the controller adopts the idea of one-step advanced control, and the calculation amount is small, which can improve the calculation speed of the system.
通过切换机构的设计,使得系统的控制器在非线性鲁棒自适应控制器和非线性神经网络自适应控制器之间进行切换,可以选择性能指标值较小的控制器作为当前系统的控制输入,这样可以减小系统的暂态误差。性能指标中包含一个误差的累积项,可以防止系统在两个控制器之间频繁切换,而且使得系统输出较为平滑。由于非线性鲁棒自适应控制系统具有稳定性,本发明采用非线性鲁棒自适应控制器与非线性神经网络自适应控制器进行切换,可以证明本发明的多模型自适应控制器具有稳定性和收敛性。Through the design of the switching mechanism, the controller of the system is switched between the nonlinear robust adaptive controller and the nonlinear neural network adaptive controller, and the controller with the smaller performance index value can be selected as the control input of the current system , which can reduce the transient error of the system. The performance index includes a cumulative term of error, which can prevent the system from frequently switching between two controllers and make the system output smoother. Due to the stability of the nonlinear robust adaptive control system, the present invention uses a nonlinear robust adaptive controller and a nonlinear neural network adaptive controller to switch, which can prove that the multi-model adaptive controller of the present invention has stability and convergence.
附图说明Description of drawings
图1为本发明设计多模型神经网络自适应控制器的闭反馈控制系统方框图;Fig. 1 is the closed feedback control system block diagram of the present invention's design multi-model neural network adaptive controller;
图2为非线性鲁棒间接自适应控制器结构框图;Fig. 2 is a structural block diagram of a nonlinear robust indirect adaptive controller;
图3为非线性神经网络间接自适应控制器结构框图;Fig. 3 is a structural block diagram of a nonlinear neural network indirect adaptive controller;
图4为神经网络的结构框图;Fig. 4 is the structural block diagram of neural network;
图5为切换机构的流程图;Fig. 5 is the flowchart of switching mechanism;
图6(1)和图6(2)分别为本发明控制器的输出曲线和输入曲线。Figure 6(1) and Figure 6(2) are the output curve and input curve of the controller of the present invention respectively.
具体的实现方法specific implementation method
以下结合附图和实例,进一步说明本发明。Below in conjunction with accompanying drawing and example, further illustrate the present invention.
如图1所示,本发明的多模型自适应控制方法所设计的控制器中,由一个非线性鲁棒自适应控制器、一个非线性神经网络自适应控制器和一个切换机构组成。图中,r(t+1)为系统的跟踪参考信号,u(t)为被控对象的输入,y(t+1)为被控对象的输出。非线性鲁棒间接自适应控制器包含非线性鲁棒自适应模型和非线性鲁棒自适应控制器是控制器的输出,是模型的输出。非线性神经网络间接自适应控制器包含非线性神经网络自适应模型和非线性神经网络自适应控制器是控制器的输出,是模型的输出。u(t)由切换机构在和之间选择产生。As shown in Fig. 1, the controller designed by the multi-model adaptive control method of the present invention is composed of a nonlinear robust adaptive controller, a nonlinear neural network adaptive controller and a switching mechanism. In the figure, r(t+1) is the tracking reference signal of the system, u(t) is the input of the controlled object, and y(t+1) is the output of the controlled object. Nonlinear Robust Indirect Adaptive Controllers Containing Nonlinear Robust Adaptive Models and nonlinear robust adaptive controller is the controller Output, is a model Output. Nonlinear Neural Network Indirect Adaptive Controller Contains Nonlinear Neural Network Adaptive Model and nonlinear neural network adaptive controller is the controller Output, is a model Output. u(t) is determined by the switching mechanism in and Choose between.
本发明针对如下结构的非线性离散时间系统The present invention is aimed at the nonlinear discrete-time system of the following structure
式中,u(t),y(t)∈R分别是系统的输入和输出,x(t)∈Rn是n维状态向量,F(·),G(·)是光滑的非线性函数。where u(t), y(t)∈R are the input and output of the system respectively, x(t)∈R n is an n-dimensional state vector, F( ), G( ) are smooth nonlinear functions .
在原点的一个邻域内系统可以由如下的非线性模型表示:The system in a neighborhood of the origin can be represented by the following nonlinear model:
式中,ai,i=0,…,na-1;bj,j=0,…,nb为系统未知的参数,na,nb为系统的阶次,w(t)=[y(t),…,y(t-na+1),u(t),…,u(t-nb)]T是由系统数据组成的回归向量。In the formula, a i , i=0,…,n a -1; b j ,j=0,…,n b are unknown parameters of the system, n a , n b are the order of the system, w(t)= [y(t),...,y(tn a +1),u(t),...,u(tn b )] T is a regression vector composed of system data.
对上述系统(2)进行如下的假设:The following assumptions are made for the above system (2):
A1.系统的阶次na和nb是已知的;A1. The order n a and n b of the system are known;
A2.参数ai,i=0,…,na-1,bj,j=0,…,nb,在一个紧集Ω中变化;A2. Parameters a i , i=0,...,n a -1, b j , j=0,...,n b change in a compact set Ω;
A3.系统具有全局一致渐近稳定的零动态系统,使得系统的任一输入序列的增长速度不超过其对应的输出序列的增长速度;A3. The system has a globally consistent and asymptotically stable zero dynamic system, so that the growth rate of any input sequence of the system does not exceed the growth rate of its corresponding output sequence;
A4.存在已知常数0≤μ<∞,使得函数f(w(t))对于是零阶接近有界的,即满足其中
图2所示非线性鲁棒间接自适应控制结构图。该控制器包括非线性鲁棒自适应模型和非线性自适应控制器两部分组成。首先,设计被控对象的非线性鲁棒自适应模型记为 Figure 2 shows the structure diagram of nonlinear robust indirect adaptive control. The controller consists of two parts: nonlinear robust adaptive model and nonlinear adaptive controller. First, the nonlinear robust adaptive model of the plant is designed as
(3) (3)
式中
式中,
在每一个系统时刻t,根据一步超前控制思想,由非线性鲁棒自适应模型的参数来设计非线性自适应控制器 At each system time t, according to the idea of one-step advance control, the parameters of the nonlinear robust adaptive model to design nonlinear adaptive controllers
式中,
图3所示非线性神经网络间接自适应控制器结构图。该控制器包括非线性神经网络自适应模型和非线性神经网络控制器两部分。Figure 3 shows the structure diagram of the nonlinear neural network indirect adaptive controller. The controller includes two parts: nonlinear neural network adaptive model and nonlinear neural network controller.
给非线性被控对象设计一个非线性神经网络辨识模型 Design a Nonlinear Neural Network Identification Model for Nonlinear Controlled Objects
式中,
式中,
根据非线性神经网络模型可得到系统的非线性控制律为:According to the nonlinear neural network model The nonlinear control law of the system can be obtained as:
式中,
图4所示神经网络的结构图,该神经网络是具有三层神经元的BP神经网络,包括输入层、隐层和输出层。上下层之间的各神经元全连接,同层神经元之间没有连接。输入层至中间层的连接权lij,i=1,2,…,na+nb-2,j=1,2,…,p;隐层至输出层的连接权vj1,j=1,2,…,p;隐层各单元的输出阈值τj,j=1,2,…,p;输出层单元的输出阈值为γ1;参数k=1,2,…,m。输入为
隐层各神经元的输入sj为:
利用输出误差与隐层各神经元的输出bj来修正连接权vj1和阈值γ1:use output error Use the output b j of each neuron in the hidden layer to modify the connection weight v j1 and threshold γ 1 :
j=1,2,…,p,0<κ<1j=1,2,...,p,0<κ<1
利用隐层神经元的误差dj(t),输入层的输入Using the error d j (t) of neurons in the hidden layer, the input of the input layer
τj=τj+σdj(t).τ j =τ j +σd j (t).
i=1,2,…,na+nb-2,j=1,2,…,p,0<σ<1i=1,2,...,n a +n b -2,j=1,2,...,p,0<σ<1
图5所示是切换机构的流程图,首先为非线性鲁棒间接自适应控制和非线性神经网络间接自适应控制分别设计性能指标和其计算方法如下:Figure 5 shows the flow chart of the switching mechanism. Firstly, performance indexes are designed for nonlinear robust indirect adaptive control and nonlinear neural network indirect adaptive control respectively. and Its calculation method is as follows:
式中
根据上面的讨论,本发明的多模型自适应控制方法的具体实时在线控制步骤如下:According to the above discussion, the specific real-time online control steps of the multi-model adaptive control method of the present invention are as follows:
S1:系统初始化:随机初始化模型和的参数和神经网络,可根据先验知识来确定;(神经网络设置为单隐层,隐层神经元个数通常设为6-10个);S1: System initialization: random initialization model and The parameters and neural network can be determined according to prior knowledge; (the neural network is set to a single hidden layer, and the number of neurons in the hidden layer is usually set to 6-10);
S2:t=0时刻,系统的输出为零,即y(0)=0;当t≠0时刻,由系统的被控对象给出系统的真实输出值y(t),由模型和分别给出模型的估计输出和计算模型的估计误差分别为和
S3:由系统的参考输入r(t)和系统的真实输出y(t)计算系统的控制误差e(t);S3: Calculate the control error e(t) of the system from the reference input r(t) of the system and the real output y(t) of the system;
S4:利用模型和的参数来设计控制器和根据式(5)(8),由系统的控制误差e(t)分别计算非线性鲁棒控制器和非线性神经网络控制器的输出值和 S4: Utilize the model and parameters to design the controller and According to equations (5) (8), the output values of the nonlinear robust controller and the nonlinear neural network controller are respectively calculated from the control error e(t) of the system and
S5:由模型估计误差计算各个控制器的性能指标和由切换机构(11)式选择性能指标的值较小的控制器ui(t)作为被控对象的控制输入u(t);S5: Calculate the performance index of each controller from the model estimation error and The controller u i (t) with a smaller value of the performance index is selected by the switching mechanism (11) as the control input u(t) of the controlled object;
S6:由模型估计误差和根据各自的自适应律(4)和(7),分别更新模型和的参数和神经网络的权值;S6: Estimated error by model and According to their respective adaptive laws (4) and (7), the models are updated separately and The parameters of and the weights of the neural network;
S7:回到步骤S2。S7: Go back to step S2.
图6(1)和(2)分别为本发明的控制系统的输入和输出曲线。可以看出,多模型自适应控制器可以很好的跟踪参考正弦曲线,控制输入比较平缓,易于实现。Figure 6 (1) and (2) are the input and output curves of the control system of the present invention respectively. It can be seen that the multi-model adaptive controller can track the reference sinusoid very well, and the control input is relatively gentle, which is easy to implement.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210496139.0A CN102998973B (en) | 2012-11-28 | 2012-11-28 | Multi-model adaptive controller and control method of nonlinear system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210496139.0A CN102998973B (en) | 2012-11-28 | 2012-11-28 | Multi-model adaptive controller and control method of nonlinear system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102998973A CN102998973A (en) | 2013-03-27 |
CN102998973B true CN102998973B (en) | 2016-11-09 |
Family
ID=47927675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210496139.0A Expired - Fee Related CN102998973B (en) | 2012-11-28 | 2012-11-28 | Multi-model adaptive controller and control method of nonlinear system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102998973B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103324091A (en) * | 2013-06-03 | 2013-09-25 | 上海交通大学 | Multi-model self-adaptive controller and control method of zero-order closely-bounded nonlinear multivariable system |
CN103324093B (en) * | 2013-06-08 | 2016-12-28 | 上海交通大学 | Multi-model self-adaptive control system and control method thereof |
CN103499982B (en) * | 2013-09-30 | 2016-04-06 | 北京工业大学 | A kind of sewage disposal process self-organization control method |
CN103823364B (en) * | 2014-02-28 | 2016-07-06 | 西安费斯达自动化工程有限公司 | Aircraft multiloop model bunch compound root locus compensates robust Controller Design method |
CN103955239B (en) * | 2014-05-05 | 2015-12-30 | 南昌华梦达航空科技发展有限公司 | A kind of depopulated helicopter Adaptive vibration-resistant control method |
CN104216286A (en) * | 2014-08-19 | 2014-12-17 | 上海交通大学 | Multi-model adaptive control method and system for nonlinear system with bounded growth rate |
CN104216285A (en) * | 2014-08-19 | 2014-12-17 | 上海交通大学 | Multi-model based self-adaptive mixed control method and system for nonlinear system |
CN104216403B (en) * | 2014-08-19 | 2017-06-09 | 上海交通大学 | Multi-model self-adaptive control method in visual servo robot |
CN104216287A (en) * | 2014-08-20 | 2014-12-17 | 上海交通大学 | Multi-model adaptive control method and system for non-minimum phase nonlinear systems |
CN105372994B (en) * | 2015-12-10 | 2017-12-15 | 中国人民解放军海军航空工程学院 | A kind of pilot guidance behavior description method based on robust adaptive optimum control |
CN105425593B (en) * | 2016-01-22 | 2018-05-08 | 东华理工大学 | The multi-model smooth steady method for handover control of state variable increase and decrease |
CN108279567B (en) * | 2017-12-29 | 2021-04-09 | 浙江中控软件技术有限公司 | System Identification Method for Robust Control |
CN111624954B (en) * | 2019-03-12 | 2021-06-04 | 妙微(杭州)科技有限公司 | Advanced process control machine learning system for flow type manufacturing industry |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5586033A (en) * | 1992-09-10 | 1996-12-17 | Deere & Company | Control system with neural network trained as general and local models |
CN1794120A (en) * | 2005-12-22 | 2006-06-28 | 安徽工业大学 | Indirect decoupling method of multi variable system based on nerve network reverse idontification and reverso control |
CN101598927A (en) * | 2009-05-15 | 2009-12-09 | 广东工业大学 | A neural network-based soda ash carbonization process control system and its control method |
CN102298315A (en) * | 2011-06-21 | 2011-12-28 | 河海大学常州校区 | Adaptive control system based on radial basis function (RBF) neural network sliding mode control for micro-electromechanical system (MEMS) gyroscope |
CN102540882A (en) * | 2012-03-01 | 2012-07-04 | 北京航空航天大学 | Aircraft track inclination angle control method based on minimum parameter studying method |
-
2012
- 2012-11-28 CN CN201210496139.0A patent/CN102998973B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5586033A (en) * | 1992-09-10 | 1996-12-17 | Deere & Company | Control system with neural network trained as general and local models |
CN1794120A (en) * | 2005-12-22 | 2006-06-28 | 安徽工业大学 | Indirect decoupling method of multi variable system based on nerve network reverse idontification and reverso control |
CN101598927A (en) * | 2009-05-15 | 2009-12-09 | 广东工业大学 | A neural network-based soda ash carbonization process control system and its control method |
CN102298315A (en) * | 2011-06-21 | 2011-12-28 | 河海大学常州校区 | Adaptive control system based on radial basis function (RBF) neural network sliding mode control for micro-electromechanical system (MEMS) gyroscope |
CN102540882A (en) * | 2012-03-01 | 2012-07-04 | 北京航空航天大学 | Aircraft track inclination angle control method based on minimum parameter studying method |
Non-Patent Citations (2)
Title |
---|
分导飞行器多模型自适应控制;李亚菲;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120715(第07期);正文部分第3.1-3.5节 * |
采用动态神经网络的多模型自适应重构控制方法;张敏等;《计算机测量与控制》;20120531;第20卷(第5期);正文部分第2-3节 * |
Also Published As
Publication number | Publication date |
---|---|
CN102998973A (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102998973B (en) | Multi-model adaptive controller and control method of nonlinear system | |
Jin et al. | Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy | |
Han et al. | Partial tracking error constrained fuzzy dynamic surface control for a strict feedback nonlinear dynamic system | |
CN109507885B (en) | Model-free self-adaptive AUV control method based on active disturbance rejection | |
CN103324093B (en) | Multi-model self-adaptive control system and control method thereof | |
CN110673472B (en) | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error | |
CN106774379B (en) | Intelligent supercoiled strong robust attitude control method | |
GB2471758A (en) | Methods and Apparatus to Compensate First Principle-Based Simulation Models | |
CN107168069B (en) | A Zero Error Tracking Control Method for Disturbed and Unknown Direction Nonlinear Systems | |
Wang et al. | Adaptive robust control based on single neural network approximation for a class of uncertain strict-feedback discrete-time nonlinear systems | |
CN113359445A (en) | Distributed output feedback asymptotic consistent control method for multi-agent hysteresis system | |
CN111650832A (en) | An underwater multi-legged walking robot mechanical foot attitude tracking control method | |
CN102540887A (en) | Control method of non-linear parameterization system | |
CN104730920A (en) | A Neural Network Adaptive Dynamic Surface Controller Structure and Design Method | |
CN102495547A (en) | Indirect adaptive fuzzy sliding mode control method of SISO discrete time system | |
CN108614435A (en) | Non-linear model-free forecast Control Algorithm | |
Narendra | Hierarchical adaptive control of rapidly time-varying systems using multiple models | |
CN111624882A (en) | Zero and differential game processing method for supply chain system based on reverse-thrust design method | |
CN110597055B (en) | Uncertainty-resistant 2D piecewise affine intermittent process minimum-maximum optimization prediction control method | |
CN114063458B (en) | A Preset Performance Control Method for Non-triangular Structure Systems Independent of Initial Conditions | |
CN104216403B (en) | Multi-model self-adaptive control method in visual servo robot | |
Tang et al. | Command filtered adaptive output feedback design with novel Lyapunov-based analysis for nonlinear systems with unmodeled dynamics | |
CN104749952B (en) | An Adaptive Dynamic Surface Controller Structure and Design Method | |
CN116755339A (en) | Self-adaptive non-backstepping control method and system for nonlinear strict feedback system | |
CN117283566A (en) | Multi-single-arm manipulator neural network self-adaptive pulse control method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161109 Termination date: 20191128 |
|
CF01 | Termination of patent right due to non-payment of annual fee |