[go: up one dir, main page]

CN102982311B - Based on automobile video frequency Feature Extraction System and the method for video structural description - Google Patents

Based on automobile video frequency Feature Extraction System and the method for video structural description Download PDF

Info

Publication number
CN102982311B
CN102982311B CN201210356556.5A CN201210356556A CN102982311B CN 102982311 B CN102982311 B CN 102982311B CN 201210356556 A CN201210356556 A CN 201210356556A CN 102982311 B CN102982311 B CN 102982311B
Authority
CN
China
Prior art keywords
vehicle
license plate
information
video
logo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210356556.5A
Other languages
Chinese (zh)
Other versions
CN102982311A (en
Inventor
胡传平
梅林�
王建
王文斐
齐力
刘云淮
吴轶轩
颜志国
蔡烜
刘伟豪
尚岩峰
程涛
徐磊
孙明霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Research Institute of the Ministry of Public Security
Original Assignee
Third Research Institute of the Ministry of Public Security
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Research Institute of the Ministry of Public Security filed Critical Third Research Institute of the Ministry of Public Security
Priority to CN201210356556.5A priority Critical patent/CN102982311B/en
Publication of CN102982311A publication Critical patent/CN102982311A/en
Application granted granted Critical
Publication of CN102982311B publication Critical patent/CN102982311B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于视频结构化描述的车辆视频特征提取系统及方法,属于视频处理技术领域。该系统包括视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器、车牌及车标识别器和视觉任务支撑服务器。该方法中,首先能够利用视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器实现交通监控视频中车辆特征的提取,进而视觉任务支撑服务器利用时间戳作为统一标识存储其它各模块输出的信息,实现信息的动态关联;并对所存储的信息进行装配,生成报文后输出,从而便于后续视频调阅与处理中的快速检索和定位,进而能够实现在道路管理中的机动车行为实时智能监管。

The invention relates to a vehicle video feature extraction system and method based on video structured description, and belongs to the technical field of video processing. The system includes a video stream encoding parser, a vehicle underlying feature extractor, a vehicle video standard feature extractor, a license plate and car logo segmenter, a license plate and car logo recognizer, and a visual task support server. In this method, firstly, the vehicle features in the traffic monitoring video can be extracted by using the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and vehicle logo segmenter, and the license plate and vehicle logo recognizer, and then The visual task support server uses the timestamp as a unified identifier to store the information output by other modules to realize the dynamic association of information; and assembles the stored information, generates a message and outputs it, so as to facilitate the subsequent video retrieval and processing. Retrieval and positioning can realize real-time intelligent supervision of motor vehicle behavior in road management.

Description

基于视频结构化描述的车辆视频特征提取系统及方法Vehicle Video Feature Extraction System and Method Based on Video Structured Description

技术领域 technical field

本发明涉及视频处理技术领域,特别涉及视频特征提取技术领域,具体是指一种基于视频结构化描述的车辆视频特征提取系统及方法。The present invention relates to the technical field of video processing, in particular to the technical field of video feature extraction, in particular to a vehicle video feature extraction system and method based on video structured description.

背景技术 Background technique

近些年来,汽车的大范围普及以及城市车辆的增加,给城市交通带来了巨大的压力。在给人们生活带来便利的同时,也导致道路拥堵、交通事故等问题愈发严重。各种车辆违章现象也屡见不鲜,因交通肇事造成的人员伤亡连年居高不下。In recent years, the large-scale popularization of automobiles and the increase of urban vehicles have brought enormous pressure to urban traffic. While bringing convenience to people's lives, it also leads to more serious problems such as road congestion and traffic accidents. Various vehicle violations are also common, and the casualties caused by traffic accidents have remained high year after year.

为了应对上述问题,对于重点道路和高速公路的交通流量进行统计,对超速、超载等交通违法行为以及路况信息进行监测、取证,成为交通管理的重要内容之一。建立面向车辆管理的自动监测系统可显著降低交通警察的劳动强度,并可增强突发事件的处理能力,震慑少数有违章驾驶习惯的司机,有力保障交通安全。而车辆自动监测系统的关键技术在于从视频数据中对车辆特征进行提取。In order to deal with the above problems, it has become one of the important contents of traffic management to collect statistics on the traffic flow of key roads and expressways, monitor and collect traffic violations such as speeding and overloading, as well as road condition information. The establishment of an automatic monitoring system for vehicle management can significantly reduce the labor intensity of traffic police, and can enhance the ability to deal with emergencies, deter a small number of drivers with illegal driving habits, and effectively guarantee traffic safety. The key technology of the automatic vehicle monitoring system is to extract the vehicle features from the video data.

现有技术中,王海燕在其发明专利申请“基于视频的车辆检测跟踪及系统”[CN200710163606.7]中,提出了一种基于视频的车辆检测跟踪系统,依据车辆的二值投影模型参数,从视频中判别出车辆,并采用MAD算法实现车辆跟踪。林卫慈等在其发明专利申请“基于智能视频识别技术的车辆跟踪方法与系统”[CN200810037793.9]中,提出一种基于视频识别技术的车辆跟踪系统,从视频的连续两帧图像中提取车辆模板进行匹配判别,当匹配成功时控制摄像机转动使车辆始终处于视频图像中心位置。高磊等在其发明专利“一种基于视频图像特征的车辆检测方法”[CN200710704558.9]中,提出一种基于视频图像特征的车辆检测方法,利用一个全景数字摄像机进行多车道视频监控图像采集,通过基于视频图像特征的车辆检测算法对全景数字摄像机所获取的每一帧数字视频图像进行分析,定位车辆位置与出现时间。杨梦婕在其硕士论文“监控视频中的车辆检测与跟踪技术研究”[南京邮电大学.2012]中,采用背景差法框架下的CodeBook方法进行目标前景检测,通过改进粒子重采样方法实现在现实环境中对大小可变单目标的车辆实时跟踪。刘汉艳在其硕士论文“监控视频中的车辆检测与跟踪技术研究”[南京邮电大学.2012]中,研究了白天和夜间两套跟踪与计数算法,并开发了基于视频的车辆检测与跟踪系统,根据视频帧平均亮度信息和系统时间信息进行算法切换。In the prior art, Wang Haiyan proposed a video-based vehicle detection and tracking system in her invention patent application "Video-based Vehicle Detection and Tracking System" [CN200710163606.7]. According to the vehicle's binary projection model parameters, from The vehicle is identified in the video, and the MAD algorithm is used to realize vehicle tracking. In their invention patent application "Vehicle Tracking Method and System Based on Intelligent Video Recognition Technology" [CN200810037793.9], Lin Weici proposed a vehicle tracking system based on video recognition technology, which extracts vehicle templates from two consecutive frames of video Carry out matching discrimination, when the matching is successful, control the rotation of the camera so that the vehicle is always at the center of the video image. In their invention patent "a vehicle detection method based on video image features" [CN200710704558.9], Gao Lei et al. proposed a vehicle detection method based on video image features, using a panoramic digital camera for multi-lane video surveillance image acquisition , through the vehicle detection algorithm based on the characteristics of the video image, analyze each frame of digital video image acquired by the panoramic digital camera, and locate the position and time of appearance of the vehicle. In her master thesis "Research on Vehicle Detection and Tracking Technology in Surveillance Video" [Nanjing University of Posts and Telecommunications. 2012], Yang Mengjie used the CodeBook method under the framework of the background difference method to detect the target foreground, and realized it in the real environment by improving the particle resampling method. Real-time vehicle tracking of variable-sized single targets. In her master thesis "Research on Vehicle Detection and Tracking Technology in Surveillance Video" [Nanjing University of Posts and Telecommunications. 2012], Liu Hanyan studied two sets of tracking and counting algorithms during the day and night, and developed a video-based vehicle detection and tracking system. Algorithm switching is performed according to the average brightness information of the video frame and the system time information.

现有技术中的上述系统和方法虽然对车辆检测与跟踪方法进行了探索与应用,但并未涉及功能完整的实用交通监管系统,也无法实现视频中的车辆属性与视频帧进行关联,因此在利用视频资料时,仍然需要耗费大量人力进行视频调阅和比对,限制了交通监管系统的扩展应用。Although the above-mentioned systems and methods in the prior art explore and apply vehicle detection and tracking methods, they do not involve a practical traffic supervision system with complete functions, and cannot realize the association of vehicle attributes in video with video frames. When using video data, it still needs to consume a lot of manpower for video retrieval and comparison, which limits the extended application of the traffic supervision system.

发明内容 Contents of the invention

本发明的目的是克服了上述现有技术中的缺点,提供一种能够实现交通监控视频中车辆特征的高效分阶段提取,并建立车辆特征与视频源数据的时空关联,便于后续视频调阅与处理中的快速检索和定位,进而实现在道路管理中的机动车行为实时智能监管,且结构简单,实现方法简便,应用成本低廉的基于视频结构化描述的车辆视频特征提取系统及方法。The purpose of the present invention is to overcome the above-mentioned shortcoming in the prior art, provide a kind of efficient stage-by-stage extraction of vehicle features in the traffic monitoring video, and establish the time-space correlation between vehicle features and video source data, which is convenient for subsequent video retrieval and retrieval. Rapid retrieval and positioning during processing, and then realize real-time intelligent supervision of motor vehicle behavior in road management, and a vehicle video feature extraction system and method based on video structured description with simple structure, simple implementation method, and low application cost.

为了实现上述的目的,本发明的基于视频结构化描述的车辆视频特征提取系统具有如下构成:In order to achieve the above object, the vehicle video feature extraction system based on video structured description of the present invention has the following components:

该系统包括视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器、车牌及车标识别器和视觉任务支撑服务器。The system includes a video stream encoding parser, a vehicle underlying feature extractor, a vehicle video standard feature extractor, a license plate and car logo segmenter, a license plate and car logo recognizer, and a visual task support server.

其中,视频流编码解析器用以从所连接的外部视频采集设备获得视频流,根据预设的视频格式将所述的视频流进行转码及添加时间戳,并输出含有所述的时间戳的经转码视频流;车辆底层特征提取器连接所述的视频流编码解析器的输出端,用以从所述的经转码视频流中获取车辆底层特征信息,并输出;车辆视频标准特征提取器连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息获取车辆视频标准特征信息,并输出;车牌及车标分割器连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并输出;车牌及车标识别器连接所述的车牌及车标分割器的输出端,用以根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并输出;而视觉任务支撑服务器则分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以协调及控制所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的运行;利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,实现输出信息的动态关联;并将所存储的信息进行装配,生成可供网络通信传输的报文。Wherein, the video stream coder is used to obtain the video stream from the connected external video capture device, transcode the video stream according to the preset video format and add a time stamp, and output the video stream containing the time stamp Transcoded video stream; the vehicle bottom layer feature extractor is connected to the output end of the video stream encoding parser, in order to obtain the vehicle bottom layer feature information from the transcoded video stream, and output; the vehicle video standard feature extractor Connect the output end of the vehicle bottom layer feature extractor, in order to obtain the vehicle video standard feature information according to the vehicle bottom layer feature information, and output; the license plate and car logo segmenter connect the output of the vehicle bottom layer feature extractor The end is used to segment and obtain the license plate and car logo image of the vehicle according to the vehicle bottom layer feature information, and output it; License plate and car logo image recognition to obtain the license plate and car logo information of the vehicle, and output; and the visual task support server is respectively connected to the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and license plate and car logo recognizer, in order to coordinate and control the described video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and license plate and car Operation of the mark recognizer; Utilize the time stamp as a unified identification to store the described video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and license plate and car logo recognition The information output by the device realizes the dynamic association of the output information; and assembles the stored information to generate a message for network communication transmission.

该基于视频结构化描述的车辆视频特征提取系统中,所述的视频流编码解析器为提供视频点播功能支持的视频流编码解析器。In the vehicle video feature extraction system based on video structured description, the video stream encoding parser is a video stream encoding parser that provides support for video-on-demand functions.

该基于视频结构化描述的车辆视频特征提取系统中,所述的车辆底层特征提取器包括:视频流分析单元、摄像机景深标定及车速计算单元和路口拍照以及车辆ROI(regionofinterest,视频敏感区域)信息提取单元。其中,视频流分析单元连接所述的视频流编码解析器的输出端,用以进行背景建模和前景提取;摄像机景深标定及车速计算单元连接所述的视频流分析单元,用以基于背景和前景标定景深,实现车速计算;路口拍照以及车辆ROI信息提取单元连接所述的摄像机景深标定及车速计算单元,用以控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。In the vehicle video feature extraction system based on video structured description, the vehicle underlying feature extractor includes: video stream analysis unit, camera depth of field calibration and vehicle speed calculation unit, intersection photography and vehicle ROI (regionofinterest, video sensitive area) information Extract unit. Wherein, the video stream analysis unit is connected to the output end of the video stream encoding parser for background modeling and foreground extraction; the camera depth of field calibration and vehicle speed calculation unit is connected to the video stream analysis unit for background and foreground extraction. The depth of field is calibrated in the foreground to realize the calculation of the vehicle speed; the intersection camera and vehicle ROI information extraction unit is connected to the camera depth of field calibration and vehicle speed calculation unit to control the intersection camera to take pictures, extract vehicle ROI information, and perform traffic flow statistics.

该基于视频结构化描述的车辆视频特征提取系统中,所述的车辆底层特征信息包括车辆局部图片信息、车辆在图像帧中坐标位置信息、车辆类型信息、车身颜色信息、行驶方向信息和违章类型信息。In the vehicle video feature extraction system based on video structured description, the vehicle underlying feature information includes vehicle partial picture information, vehicle coordinate position information in the image frame, vehicle type information, body color information, driving direction information and violation type information.

该基于视频结构化描述的车辆视频特征提取系统中,所述的车辆视频标准特征提取器为车辆MPEG-7特征提取器,所述的车辆视频标准特征信息为车辆MPEG-7特征信息。所述的车辆MPEG-7特征信息包括:颜色布局信息、颜色空间信息、颜色结构信息、主颜色信息、边缘直方图信息、可扩展颜色信息、纹理浏览信息、GoFGoP颜色信息和颜色量化信息。In the vehicle video feature extraction system based on video structured description, the vehicle video standard feature extractor is a vehicle MPEG-7 feature extractor, and the vehicle video standard feature information is vehicle MPEG-7 feature information. The vehicle MPEG-7 feature information includes: color layout information, color space information, color structure information, main color information, edge histogram information, scalable color information, texture browsing information, GoFGoP color information and color quantization information.

该基于视频结构化描述的车辆视频特征提取系统中,所述的车牌及车标分割器包括:车牌及车标定位单元和车牌及车标图像变换单元。车牌及车标定位单元连接于所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息确定车牌位置及车标位置,获取车牌及车标图像;车牌及车标图像变换单元连接于所述的车牌及车标定位单元,根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出。In the vehicle video feature extraction system based on video structured description, the license plate and vehicle logo segmenter includes: a license plate and vehicle logo positioning unit and a license plate and vehicle logo image conversion unit. The license plate and car logo location unit is connected to the output end of the described vehicle bottom layer feature extractor, in order to determine the license plate position and the car logo position according to the described vehicle bottom layer feature information, obtain the license plate and the car logo image; the license plate and the car logo image The transformation unit is connected to the license plate and vehicle logo positioning unit, performs affine transformation according to the license plate and vehicle logo images, obtains a corrected standard view, and outputs it.

该基于视频结构化描述的车辆视频特征提取系统中,所述的车牌及车标识别器包括:车牌识别单元和车标识别单元。其中,车牌识别单元连接所述的车牌及车标分割器的输出端,用以对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出;车标识别单元连接所述的车牌及车标分割器的输出端,用以将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出。In the vehicle video feature extraction system based on video structured description, the license plate and vehicle logo recognizer includes: a license plate recognition unit and a vehicle logo recognition unit. Wherein, the license plate recognition unit is connected to the output end of the license plate and the car logo splitter, in order to divide the characters of the license plate image, identify the divided characters, obtain the vehicle license plate information, and output; the car logo recognition unit is connected to the The output end of the license plate and car logo splitter is used to match the car logo image with the data in the car logo image library to obtain the vehicle logo information and output it.

该基于视频结构化描述的车辆视频特征提取系统中,所述的视觉任务支撑服务器包括:混构信息存储池、网络通信控制器、报文解析分发器、支撑逻辑控制器和混构数据装配器。其中,混构信息存储池分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息;网络通信控制器用以连接以太网,实现网络报文收发;报文解析分发器连接所述的网络通信控制器的输出端,用以解析从网络通信控制器获得的控制报文,经解析后,获得控制信息或查询信息;支撑逻辑控制器连接所述的报文解析分发器的输出端,用以根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,输出数据装配指令;混构数据装配器分别连接所述的混构信息存储池和支撑逻辑控制器的输出端,并连接所述的网络通信控制器的输入端,用以根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文经所述的网络通信控制器发送至以太网。In the vehicle video feature extraction system based on video structured description, the visual task support server includes: a hybrid information storage pool, a network communication controller, a message parsing distributor, a support logic controller and a hybrid data assembler . Wherein, the hybrid information storage pool is respectively connected to the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer to utilize the described The timestamp is used as a unified identification to store the information output by the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter, and license plate and car logo recognizer; the network communication controller uses To connect the Ethernet to realize the sending and receiving of network messages; the message analysis distributor is connected to the output end of the network communication controller to analyze the control messages obtained from the network communication controller, and after analysis, obtain control information or query information; the support logic controller is connected to the output end of the message parsing distributor, so as to implement the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate according to the control information And the coordination and control of the car logo splitter and the license plate and car logo recognizer, and output data assembly instructions according to the query information; the hybrid data assembler is respectively connected to the hybrid information storage pool and the output end of the support logic controller , and connected to the input end of the network communication controller, to obtain corresponding information from the mixed-structure information storage pool according to the data assembly instruction, and assemble and generate a message for network communication transmission via the The network communication controller described above sends to Ethernet.

该基于视频结构化描述的车辆视频特征提取系统中,所述的网络通信控制器通过以太网连接外部的语义分析系统、流媒体服务器及多功能调试器。In the vehicle video feature extraction system based on video structured description, the network communication controller is connected to an external semantic analysis system, streaming media server and multi-function debugger through Ethernet.

本发明还提供一种利用所述的系统基于视频结构化描述实现车辆视频特征提取的方法,该方法包括以下步骤:The present invention also provides a method for realizing vehicle video feature extraction based on the video structured description using the system, the method comprising the following steps:

(1)所述的视频流编码解析器从所连接的外部视频采集设备获得视频流,并根据预设的视频格式将所述的视频流进行转码及添加时间戳后,向所述的车辆底层特征提取器和视觉任务支撑服务器输出含有所述的时间戳的经转码视频流;(1) The video stream encoding parser obtains the video stream from the connected external video acquisition device, transcodes the video stream according to the preset video format and adds a time stamp, and sends the video stream to the vehicle The underlying feature extractor and the visual task support server output the transcoded video stream containing the time stamp;

(2)所述的车辆底层特征提取器从所述的经转码视频流中获取车辆底层特征信息,并向所述的车辆视频标准特征提取器、车牌及车标分割器及视觉任务支撑服务器输出所述的车辆底层特征信息;(2) The vehicle bottom layer feature extractor obtains the vehicle bottom layer feature information from the transcoded video stream, and provides the vehicle video standard feature extractor, the license plate and car logo segmenter, and the visual task support server Outputting the vehicle bottom layer feature information;

(3)所述的车辆视频标准特征提取器根据所述的车辆底层特征信息获取车辆视频标准特征信息,并向所述的视觉任务支撑服务器输出所述的车辆视频标准特征信息;(3) The vehicle video standard feature extractor acquires vehicle video standard feature information according to the vehicle underlying feature information, and outputs the vehicle video standard feature information to the visual task support server;

(4)所述的车牌及车标分割器根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并向所述的车牌及车标识别器和所述的视觉任务支撑服务器输出所述的车牌和车标图像;(4) The license plate and logo splitter obtains the license plate and logo images of the vehicle according to the underlying feature information of the vehicle, and outputs them to the license plate and logo recognizer and the visual task support server The said license plate and logo image;

(5)所述的车牌及车标识别器根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并向所述的视觉任务支撑服务器输出所述的车牌及车标信息;(5) The license plate and logo recognizer acquires the license plate and logo information of the vehicle according to the license plate and logo image recognition, and outputs the license plate and logo information to the visual task support server;

(6)所述的视觉任务支撑服务器利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,进行动态关联;并根据通过外部以太网获得的查询信息对所存储的信息进行装配,生成可供网络通信传输的报文后通过以太网输出。(6) The visual task support server uses the time stamp as a unified identifier to store the video stream encoding parser, vehicle underlying feature extractor, vehicle video standard feature extractor, license plate and vehicle logo splitter, and license plate and the information output by the vehicle logo recognizer, and dynamically associate it; and assemble the stored information according to the query information obtained through the external Ethernet, generate a message that can be transmitted by network communication, and then output it through the Ethernet.

该基于视频结构化描述实现车辆视频特征提取的方法中,所述的车辆底层特征提取器包括视频流分析单元、摄像机景深标定及车速计算单元和路口拍照以及车辆ROI信息提取单元,所述的步骤(2)具体包括以下步骤:In the method for realizing vehicle video feature extraction based on video structured description, the vehicle bottom layer feature extractor includes a video stream analysis unit, camera depth of field calibration and vehicle speed calculation unit, intersection photographing and vehicle ROI information extraction unit, the steps (2) Specifically include the following steps:

(21)所述的视频流分析单元根据所述的经转码视频流进行背景建模和前景提取;(21) The video stream analysis unit performs background modeling and foreground extraction according to the transcoded video stream;

(22)所述的摄像机景深标定及车速计算单元基于背景和前景标定景深,进行车速计算;(22) The camera depth of field calibration and vehicle speed calculation unit calculates the vehicle speed based on the background and foreground calibration depth of field;

(23)所述的路口拍照以及车辆ROI信息提取单元控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。(23) The intersection photographing and vehicle ROI information extraction unit controls the intersection camera to photograph, extract vehicle ROI information, and perform traffic flow statistics.

该基于视频结构化描述实现车辆视频特征提取的方法中,所述的车牌及车标分割器包括:车牌及车标定位单元和车牌及车标图像变换单元,所述的步骤(4)包括以下步骤:In the method for realizing vehicle video feature extraction based on video structured description, the license plate and car logo segmenter includes: a license plate and car logo positioning unit and a license plate and car logo image conversion unit, and the step (4) includes the following step:

(41)所述的车牌及车标定位单元根据所述的车辆底层特征信息确定车牌位置及车标位置,并获取车牌及车标图像;(41) The license plate and vehicle logo positioning unit determines the position of the license plate and the vehicle logo according to the underlying characteristic information of the vehicle, and acquires the images of the license plate and the vehicle logo;

(42)所述的车牌及车标图像变换单元根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出至所述的车牌及车标识别器和所述的视觉任务支撑服务器。(42) The license plate and logo image conversion unit performs affine transformation according to the license plate and logo images to obtain a corrected standard view, and outputs it to the license plate and logo recognizer and the Vision task support server.

该基于视频结构化描述实现车辆视频特征提取的方法中,所述的车牌及车标识别器包括:车牌识别单元和车标识别单元,所述的步骤(5)具体包括以下步骤:In the method for extracting vehicle video features based on video structured description, the license plate and logo recognizer includes: a license plate recognition unit and a car logo recognition unit, and the step (5) specifically includes the following steps:

(51)所述的车牌识别单元对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出至所述的视觉任务支撑服务器;(51) The license plate recognition unit divides the license plate image into characters, recognizes the divided characters, obtains the vehicle license plate information, and outputs it to the visual task support server;

(52)所述的车标识别单元将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出至所述的视觉任务支撑服务器。(52) The vehicle logo recognition unit matches the car logo image with the data in the car logo image library, obtains the vehicle logo information, and outputs it to the visual task support server.

该基于视频结构化描述实现车辆视频特征提取的方法中,所述的视觉任务支撑服务器包括:混构信息存储池、网络通信控制器、报文解析分发器、支撑逻辑控制器和混构数据装配器,所述的步骤(6)具体包括以下步骤:In the method for extracting vehicle video features based on video structured description, the visual task support server includes: a hybrid information storage pool, a network communication controller, a message analysis distributor, a support logic controller, and a hybrid data assembly device, the step (6) specifically includes the following steps:

(61)所述的混构信息存储池利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,并进行动态信息关联;(61) The hybrid information storage pool uses the timestamp as a unified identifier to store the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and The information output by the license plate and logo recognizer, and dynamic information association;

(62)所述的网络通信控制器通过以太网接收到网络报文;(62) The network communication controller receives the network message through Ethernet;

(63)所述的报文解析分发器解析从网络通信控制器获得的控制报文后,获得控制信息或查询信息;(63) The message analysis distributor analyzes the control message obtained from the network communication controller to obtain control information or query information;

(64)所述的支撑逻辑控制器根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,向所述的混构数据装配器输出数据装配指令;(64) According to the control information, the supporting logic controller implements the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer coordination and control, and output data assembly instructions to the hybrid data assembler according to the query information;

(65)所述的混构数据装配器根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文后,经所述的网络通信控制器发送至以太网。(65) The hybrid data assembler obtains corresponding information from the hybrid information storage pool according to the data assembly instruction, assembles and generates a message for network communication transmission, and then passes through the network Communication controller sends to Ethernet.

采用了该发明的基于视频结构化描述的车辆视频特征提取系统,其包括视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器、车牌及车标识别器和视觉任务支撑服务器。利用该系统的车辆视频特征提取方法中,首先能够利用视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器实现交通监控视频中车辆特征的高效分阶段提取,进而视觉任务支撑服务器利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,基于时间戳实现信息的动态关联;并根据通过外部以太网获得的查询信息对所存储的信息进行装配,生成可供网络通信传输的报文后通过以太网输出,从而便于后续视频调阅与处理中的快速检索和定位,进而能够实现在道路管理中的机动车行为实时智能监管,且本发明的基于视频结构化描述的车辆视频特征提取系统及方法,其系统结构简单,方法实现过程简便,实现成本低廉,应用范围较为广泛。The vehicle video feature extraction system based on the video structured description of the invention is adopted, which includes a video stream encoding parser, a vehicle bottom layer feature extractor, a vehicle video standard feature extractor, a license plate and car logo splitter, and a license plate and car logo recognition server and vision task support server. In the vehicle video feature extraction method using this system, firstly, the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer can be used to realize traffic surveillance video. Efficient stage-by-stage extraction of vehicle features, and then the visual task support server uses the time stamp as a unified identifier to store the video stream encoding parser, vehicle underlying feature extractor, vehicle video standard feature extractor, license plate and vehicle logo The information output by the segmenter and the license plate and logo recognizer is dynamically correlated based on the time stamp; and the stored information is assembled according to the query information obtained through the external Ethernet to generate a message for network communication transmission. Through the Ethernet output, it is convenient for quick retrieval and positioning in subsequent video access and processing, and then can realize real-time intelligent supervision of motor vehicle behavior in road management, and the vehicle video feature extraction system based on video structured description of the present invention And the method, the system structure is simple, the method realization process is simple, the realization cost is low, and the application range is relatively wide.

附图说明 Description of drawings

图1为本发明的基于视频结构化描述的车辆视频特征提取系统的结构示意图。FIG. 1 is a schematic structural diagram of a vehicle video feature extraction system based on video structured description according to the present invention.

图2为本发明的基于视频结构化描述实现车辆视频特征提取的方法的步骤流程图。FIG. 2 is a flow chart of the steps of the method for extracting vehicle video features based on video structured description in the present invention.

图3为本发明的基于视频结构化描述的车辆视频特征提取系统中的视觉任务支撑服务器的结构示意图。FIG. 3 is a schematic structural diagram of a visual task support server in the vehicle video feature extraction system based on video structured description of the present invention.

具体实施方式 detailed description

为了能够更清楚地理解本发明的技术页面,特举以下实施例详细说明。In order to understand the technical aspects of the present invention more clearly, the following examples are given in detail.

请参阅图1所示,为本发明的基于视频结构化描述的车辆视频特征提取系统的结构示意图。Please refer to FIG. 1 , which is a schematic structural diagram of a vehicle video feature extraction system based on video structured description according to the present invention.

在一种实施方式中,该系统包括视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器、车牌及车标识别器和视觉任务支撑服务器。In one embodiment, the system includes a video stream code parser, a vehicle bottom layer feature extractor, a vehicle video standard feature extractor, a license plate and logo segmenter, a license plate and logo recognizer, and a visual task support server.

其中,视频流编码解析器为支持视频点播功能的视频流编码解析器,用以从所连接的外部视频采集设备获得视频流,根据预设的视频格式将所述的视频流进行转码及添加时间戳,并输出含有所述的时间戳的经转码视频流;车辆底层特征提取器连接所述的视频流编码解析器的输出端,用以从所述的经转码视频流中获取车辆底层特征信息,并输出;车辆视频标准特征提取器连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息获取车辆视频标准特征信息,并输出;车牌及车标分割器连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并输出;车牌及车标识别器连接所述的车牌及车标分割器的输出端,用以根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并输出;而视觉任务支撑服务器则分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以协调及控制所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的运行;利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,实现输出信息的动态关联;并将所存储的信息进行装配,生成可供网络通信传输的报文。Wherein, the video stream encoding parser is a video stream encoding parser that supports the video on demand function, and is used to obtain the video stream from the connected external video capture device, and transcode and add the video stream according to the preset video format. Timestamp, and output the transcoded video stream containing the timestamp; the vehicle bottom layer feature extractor is connected to the output end of the video stream encoding parser, in order to obtain the vehicle from the transcoded video stream Bottom layer feature information, and output; Vehicle video standard feature extractor connects the output end of described vehicle bottom layer feature extractor, in order to obtain vehicle video standard feature information according to described vehicle bottom layer feature information, and output; License plate and car logo The splitter is connected to the output end of the vehicle bottom layer feature extractor, in order to segment and obtain the license plate and the car logo image of the vehicle according to the described vehicle bottom layer feature information, and output; The output terminal of the car logo splitter is used to obtain the license plate and car logo information of the vehicle according to the license plate and car logo image recognition, and output; and the visual task support server is respectively connected to the video stream encoding parser, vehicle The underlying feature extractor, the vehicle video standard feature extractor, the license plate and vehicle logo segmenter and the license plate and vehicle logo recognizer are used to coordinate and control the video stream encoding parser, the vehicle bottom layer feature extractor, and the vehicle video standard feature Operation of the extractor, license plate and car logo splitter and license plate and car logo recognizer; using the time stamp as a unified identification to store the described video stream encoding parser, vehicle bottom layer feature extractor, and vehicle video standard feature extractor , the license plate and logo splitter and the information output by the license plate and logo recognizer to realize the dynamic association of the output information; and assemble the stored information to generate a message for network communication transmission.

利用该实施方式所述的系统基于视频结构化描述实现车辆视频特征提取的方法,如图2所示,包括以下步骤:Utilize the system described in this embodiment to realize the method for vehicle video feature extraction based on video structured description, as shown in Figure 2, comprising the following steps:

(1)所述的视频流编码解析器从所连接的外部视频采集设备获得视频流,并根据预设的视频格式将所述的视频流进行转码及添加时间戳后,向所述的车辆底层特征提取器和视觉任务支撑服务器输出含有所述的时间戳的经转码视频流;(1) The video stream encoding parser obtains the video stream from the connected external video acquisition device, transcodes the video stream according to the preset video format and adds a time stamp, and sends the video stream to the vehicle The underlying feature extractor and the visual task support server output the transcoded video stream containing the time stamp;

(2)所述的车辆底层特征提取器从所述的经转码视频流中获取车辆底层特征信息,并向所述的车辆视频标准特征提取器、车牌及车标分割器及视觉任务支撑服务器输出所述的车辆底层特征信息;(2) The vehicle bottom layer feature extractor obtains the vehicle bottom layer feature information from the transcoded video stream, and provides the vehicle video standard feature extractor, the license plate and car logo segmenter, and the visual task support server Outputting the vehicle bottom layer feature information;

(3)所述的车辆视频标准特征提取器根据所述的车辆底层特征信息获取车辆视频标准特征信息,并向所述的视觉任务支撑服务器输出所述的车辆视频标准特征信息;(3) The vehicle video standard feature extractor acquires vehicle video standard feature information according to the vehicle underlying feature information, and outputs the vehicle video standard feature information to the visual task support server;

(4)所述的车牌及车标分割器根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并向所述的车牌及车标识别器和所述的视觉任务支撑服务器输出所述的车牌和车标图像;(4) The license plate and logo splitter obtains the license plate and logo images of the vehicle according to the underlying feature information of the vehicle, and outputs them to the license plate and logo recognizer and the visual task support server The said license plate and logo image;

(5)所述的车牌及车标识别器根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并向所述的视觉任务支撑服务器输出所述的车牌及车标信息;(5) The license plate and logo recognizer acquires the license plate and logo information of the vehicle according to the license plate and logo image recognition, and outputs the license plate and logo information to the visual task support server;

(6)所述的视觉任务支撑服务器利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,进行动态关联;并根据通过外部以太网获得的查询信息对所存储的信息进行装配,生成可供网络通信传输的报文后通过以太网输出。(6) The visual task support server uses the time stamp as a unified identifier to store the video stream encoding parser, vehicle underlying feature extractor, vehicle video standard feature extractor, license plate and vehicle logo splitter, and license plate and the information output by the vehicle logo recognizer, and dynamically associate it; and assemble the stored information according to the query information obtained through the external Ethernet, generate a message that can be transmitted by network communication, and then output it through the Ethernet.

在一种较优选的实施方式中,所述的车辆底层特征提取器包括:视频流分析单元、摄像机景深标定及车速计算单元和路口拍照以及车辆ROI信息提取单元。其中,视频流分析单元连接所述的视频流编码解析器的输出端,用以进行背景建模和前景提取;摄像机景深标定及车速计算单元连接所述的视频流分析单元,用以基于背景和前景标定景深,实现车速计算;路口拍照以及车辆ROI信息提取单元连接所述的摄像机景深标定及车速计算单元,用以控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。In a more preferred embodiment, the vehicle bottom layer feature extractor includes: a video stream analysis unit, a camera depth of field calibration and vehicle speed calculation unit, and an intersection photographing and vehicle ROI information extraction unit. Wherein, the video stream analysis unit is connected to the output end of the video stream encoding parser for background modeling and foreground extraction; the camera depth of field calibration and vehicle speed calculation unit is connected to the video stream analysis unit for background and foreground extraction. The depth of field is calibrated in the foreground to realize the calculation of the vehicle speed; the intersection camera and vehicle ROI information extraction unit is connected to the camera depth of field calibration and vehicle speed calculation unit to control the intersection camera to take pictures, extract vehicle ROI information, and perform traffic flow statistics.

利用该较优选的实施方式,基于视频结构化描述实现车辆视频特征提取的方法中,所述的步骤(2)具体包括以下步骤:Using this preferred embodiment, in the method for extracting vehicle video features based on video structured description, the step (2) specifically includes the following steps:

(21)所述的视频流分析单元根据所述的经转码视频流进行背景建模和前景提取;(21) The video stream analysis unit performs background modeling and foreground extraction according to the transcoded video stream;

(22)所述的摄像机景深标定及车速计算单元基于背景和前景标定景深,进行车速计算;(22) The camera depth of field calibration and vehicle speed calculation unit calculates the vehicle speed based on the background and foreground calibration depth of field;

(23)所述的路口拍照以及车辆ROI信息提取单元控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。(23) The intersection photographing and vehicle ROI information extraction unit controls the intersection camera to photograph, extract vehicle ROI information, and perform traffic flow statistics.

在另一种较优选的实施方式中,所述的车辆底层特征信息包括车辆局部图片信息、车辆在图像帧中坐标位置信息、车辆类型信息、车身颜色信息、行驶方向信息和违章类型信息。所述的车辆视频标准特征提取器为车辆MPEG-7特征提取器,所述的车辆视频标准特征信息为车辆MPEG-7特征信息。所述的车辆MPEG-7特征信息包括:颜色布局信息、颜色空间信息、颜色结构信息、主颜色信息、边缘直方图信息、可扩展颜色信息、纹理浏览信息、GoFGoP颜色信息和颜色量化信息。In another preferred embodiment, the vehicle bottom-level feature information includes vehicle partial picture information, vehicle coordinate position information in the image frame, vehicle type information, body color information, driving direction information, and violation type information. The vehicle video standard feature extractor is a vehicle MPEG-7 feature extractor, and the vehicle video standard feature information is vehicle MPEG-7 feature information. The vehicle MPEG-7 feature information includes: color layout information, color space information, color structure information, main color information, edge histogram information, scalable color information, texture browsing information, GoFGoP color information and color quantization information.

在又一种较优选的实施方式中,所述的车牌及车标分割器包括:车牌及车标定位单元和车牌及车标图像变换单元。车牌及车标定位单元连接于所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息确定车牌位置及车标位置,获取车牌及车标图像;车牌及车标图像变换单元连接于所述的车牌及车标定位单元,根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出。In another preferred embodiment, the license plate and logo segmenter includes: a license plate and logo positioning unit and a license plate and logo image conversion unit. The license plate and car logo location unit is connected to the output end of the described vehicle bottom layer feature extractor, in order to determine the license plate position and the car logo position according to the described vehicle bottom layer feature information, obtain the license plate and the car logo image; the license plate and the car logo image The transformation unit is connected to the license plate and vehicle logo positioning unit, performs affine transformation according to the license plate and vehicle logo images, obtains a corrected standard view, and outputs it.

利用该较优选的实施方式,基于视频结构化描述实现车辆视频特征提取的方法中,所述的步骤(4)包括以下步骤:Using this preferred embodiment, in the method for extracting vehicle video features based on video structured description, the step (4) includes the following steps:

(41)所述的车牌及车标定位单元根据所述的车辆底层特征信息确定车牌位置及车标位置,并获取车牌及车标图像;(41) The license plate and vehicle logo positioning unit determines the position of the license plate and the vehicle logo according to the underlying characteristic information of the vehicle, and acquires the images of the license plate and the vehicle logo;

(42)所述的车牌及车标图像变换单元根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出至所述的车牌及车标识别器和所述的视觉任务支撑服务器。(42) The license plate and logo image conversion unit performs affine transformation according to the license plate and logo images to obtain a corrected standard view, and outputs it to the license plate and logo recognizer and the Vision task support server.

在一种进一步优选的实施方式中,所述的车牌及车标识别器包括:车牌识别单元和车标识别单元。其中,车牌识别单元连接所述的车牌及车标分割器的输出端,用以对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出;车标识别单元连接所述的车牌及车标分割器的输出端,用以将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出。In a further preferred embodiment, the license plate and logo recognizer includes: a license plate recognition unit and a car logo recognition unit. Wherein, the license plate recognition unit is connected to the output end of the license plate and the car logo splitter, in order to divide the characters of the license plate image, identify the divided characters, obtain the vehicle license plate information, and output; the car logo recognition unit is connected to the The output end of the license plate and car logo splitter is used to match the car logo image with the data in the car logo image library to obtain the vehicle logo information and output it.

利用该进一步优选的实施方式,基于视频结构化描述实现车辆视频特征提取的方法中,所述的步骤(5)具体包括以下步骤:Using this further preferred embodiment, in the method for extracting vehicle video features based on video structured description, the step (5) specifically includes the following steps:

(51)所述的车牌识别单元对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出至所述的视觉任务支撑服务器;(51) The license plate recognition unit divides the license plate image into characters, recognizes the divided characters, obtains the vehicle license plate information, and outputs it to the visual task support server;

(52)所述的车标识别单元将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出至所述的视觉任务支撑服务器。(52) The vehicle logo recognition unit matches the car logo image with the data in the car logo image library, obtains the vehicle logo information, and outputs it to the visual task support server.

在更优选的实施方式中,所述的视觉任务支撑服务器如图3所示包括:混构信息存储池、网络通信控制器、报文解析分发器、支撑逻辑控制器和混构数据装配器。其中,混构信息存储池分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息;网络通信控制器用以连接以太网,实现网络报文收发;报文解析分发器连接所述的网络通信控制器的输出端,用以解析从网络通信控制器获得的控制报文,经解析后,获得控制信息或查询信息;支撑逻辑控制器连接所述的报文解析分发器的输出端,用以根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,输出数据装配指令;混构数据装配器分别连接所述的混构信息存储池和支撑逻辑控制器的输出端,并连接所述的网络通信控制器的输入端,用以根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文经所述的网络通信控制器发送至以太网。该网络通信控制器通过以太网连接外部的语义分析系统、流媒体服务器及多功能调试器。In a more preferred embodiment, the visual task support server includes, as shown in FIG. 3 , a hybrid information storage pool, a network communication controller, a message parsing distributor, a supporting logic controller, and a hybrid data assembler. Wherein, the hybrid information storage pool is respectively connected to the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer to utilize the described The timestamp is used as a unified identification to store the information output by the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter, and license plate and car logo recognizer; the network communication controller uses To connect the Ethernet to realize the sending and receiving of network messages; the message analysis distributor is connected to the output end of the network communication controller to analyze the control messages obtained from the network communication controller, and after analysis, obtain control information or query information; the support logic controller is connected to the output end of the message parsing distributor, so as to implement the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate according to the control information And the coordination and control of the car logo splitter and the license plate and car logo recognizer, and output data assembly instructions according to the query information; the hybrid data assembler is respectively connected to the hybrid information storage pool and the output end of the support logic controller , and connected to the input end of the network communication controller, to obtain corresponding information from the mixed-structure information storage pool according to the data assembly instruction, and assemble and generate a message for network communication transmission via the The network communication controller described above sends to Ethernet. The network communication controller is connected with an external semantic analysis system, a streaming media server and a multifunctional debugger through Ethernet.

利用该更优选的实施方式,基于视频结构化描述实现车辆视频特征提取的方法中,所述的步骤(6)具体包括以下步骤:Using this more preferred embodiment, in the method for extracting vehicle video features based on video structured description, the step (6) specifically includes the following steps:

(61)所述的混构信息存储池利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,并进行动态信息关联;(61) The hybrid information storage pool uses the timestamp as a unified identifier to store the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and The information output by the license plate and logo recognizer, and dynamic information association;

(62)所述的网络通信控制器通过以太网接收到网络报文;(62) The network communication controller receives the network message through Ethernet;

(63)所述的报文解析分发器解析从网络通信控制器获得的控制报文后,获得控制信息或查询信息;(63) The message analysis distributor analyzes the control message obtained from the network communication controller to obtain control information or query information;

(64)所述的支撑逻辑控制器根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,向所述的混构数据装配器输出数据装配指令;(64) According to the control information, the supporting logic controller implements the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer coordination and control, and output data assembly instructions to the hybrid data assembler according to the query information;

(65)所述的混构数据装配器根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文后,经所述的网络通信控制器发送至以太网。(65) The hybrid data assembler obtains corresponding information from the hybrid information storage pool according to the data assembly instruction, assembles and generates a message for network communication transmission, and then passes through the network Communication controller sends to Ethernet.

在本发明的应用中,如图1所示,本发明的车辆视频特征提取系统包括视频流编码解析器102、车辆底层特征提取器103、车辆MPEG-7特征提取器104、车牌/车标分割器105、车牌/车标识别器106和视觉任务支撑服务器107。外围设备和系统包括视频采集设备101、语义分析系统108和流媒体服务器109。这些系统协作完成视频数据中的车辆特征提取与视频点播支撑功能。In the application of the present invention, as shown in Figure 1, the vehicle video feature extraction system of the present invention includes a video stream encoding parser 102, a vehicle bottom layer feature extractor 103, a vehicle MPEG-7 feature extractor 104, license plate/vehicle logo segmentation device 105, license plate/logo recognizer 106 and visual task support server 107. Peripheral devices and systems include video capture device 101 , semantic analysis system 108 and streaming media server 109 . These systems cooperate to complete the vehicle feature extraction and video-on-demand support functions in the video data.

视频采集设备101安装在交通道路监控点,对道路交通实况进行拍摄,产生实时视频流数据,附加上视频采集设备所在的监控地点GPS位置、道路名称、监控车道编号,一起发送给本发明设计的车辆视频特征提取系统中的视频流编码解析器模块102。Video acquisition equipment 101 is installed in traffic road monitoring point, road traffic live is photographed, produces real-time video flow data, adds the GPS position of the monitoring place where video acquisition equipment is located, road name, monitoring lane number, sends together to the design of the present invention The video stream encoding and analyzing module 102 in the vehicle video feature extraction system.

视频流编码解析器模块102解析来自视频采集设备的视频流,按照规定视频格式将采集到的数据进行转码,并根据当前时刻添加时间戳。以时间戳作为视频帧的全局统一标识符,提供视频点播功能支持。The video stream coder module 102 parses the video stream from the video capture device, transcodes the collected data according to a specified video format, and adds a time stamp according to the current time. The time stamp is used as the global uniform identifier of the video frame to provide support for the video on demand function.

车辆底层特征提取器模块103主要负责获得室外视频中车辆活动情况、基本特征,提取车辆底层特征(车辆局部图片、车辆在图像帧中坐标位置、车辆类型、车身颜色、行驶方向、违章类型)。主要包括以下功能:①视频流分析,背景建模和前景提取;②摄像机景深标定和车速计算;③路口拍照以及车辆ROI信息提取,车流量统计。车辆底层特征提取器的输出车辆底层特征并行分为三路,一路发送给视觉任务支撑服务器模块107中的混构数据存储池子模块302进行存储,一路发送给车辆MPEG-7特征提取器模块104进行MPEG-7特征提取,另一路发送给车牌/车标分割器105。The vehicle bottom-level feature extractor module 103 is mainly responsible for obtaining vehicle activity and basic features in outdoor videos, and extracting vehicle bottom-level features (partial pictures of vehicles, coordinate positions of vehicles in image frames, vehicle types, body colors, driving directions, and types of violations). It mainly includes the following functions: ① video stream analysis, background modeling and foreground extraction; ② camera depth of field calibration and vehicle speed calculation; ③ intersection photography, vehicle ROI information extraction, and traffic flow statistics. The output vehicle bottom layer features of the vehicle bottom layer feature extractor are divided into three paths in parallel, one path is sent to the hybrid data storage pool sub-module 302 in the visual task support server module 107 for storage, and one path is sent to the vehicle MPEG-7 feature extractor module 104 for further processing. MPEG-7 feature extraction, the other way is sent to the license plate/vehicle logo splitter 105.

车辆MPEG-7特征提取器模块104接收来自车辆底层特征提取器模块107输出的车辆底层特征信息,根据车辆ROI进行底层特征(MPEG-7)提取,并获得车辆MPEG-7特征(颜色布局、颜色空间、颜色结构、主颜色、边缘直方图、可扩展颜色、纹理浏览、GoFGoP颜色和颜色量化)。车辆MPEG-7特征输出给视觉任务支撑服务器模块107中的混构数据存储池子模块302进行存储。The vehicle MPEG-7 feature extractor module 104 receives the vehicle bottom layer feature information from the vehicle bottom layer feature extractor module 107 output, performs bottom layer feature (MPEG-7) extraction according to the vehicle ROI, and obtains the vehicle MPEG-7 feature (color layout, color Space, Color Structure, Primary Color, Edge Histogram, Scalable Color, Texture Browsing, GoFGoP Color and Color Quantization). The vehicle MPEG-7 feature is output to the hybrid data storage pool sub-module 302 in the visual task support server module 107 for storage.

车牌/车标分割器模块105接收来自车辆底层特征提取器模块107输出的车辆底层特征信息,负责根据车辆基础信息定位车牌ROI,根据车牌位置等信息获得车标位置,根据先验知识,将车牌和车标图像进行仿射变换,获得矫正后的标准视图。车牌/车标分割器模块105从车辆局部图片中分割出车牌和车标两张局部图片,并标注其在车辆图片中的坐标位置,车牌/车牌分割信息分为两路输出。一路输出给视觉任务支撑服务器模块107中的混构数据存储池子模块302进行存储,另一路发送给车牌/车标识别器模块106。The license plate/vehicle logo splitter module 105 receives the vehicle bottom layer feature information output from the vehicle bottom layer feature extractor module 107, is responsible for locating the license plate ROI according to the basic vehicle information, obtaining the position of the car logo according to the license plate position and other information, and dividing the license plate according to the prior knowledge. Perform affine transformation with the car logo image to obtain the corrected standard view. The license plate/vehicle logo splitter module 105 separates two partial pictures of the license plate and the car logo from the partial vehicle picture, and marks its coordinate position in the vehicle picture, and the license plate/license plate segmentation information is divided into two outputs. One output is sent to the hybrid data storage pool sub-module 302 in the visual task support server module 107 for storage, and the other is sent to the license plate/vehicle logo recognizer module 106 .

车牌/车标识别器模块106接收来自车牌/车标分割器模块105输出的车牌/车牌分割信息,负责从标准正视车牌中划分字符,并识别出每个字符,获得车牌信息;根据标准正视车标,从车标图像库中匹配获得车标的内容。车牌/车标识别器模块106输出车牌和车标信息(包括厂商标志、车牌文本、车牌颜色、车牌结构)以及识别过程信息(识别可靠度、车牌识别耗时、车标识别耗时),发送给视觉任务支撑服务器模块107中的混构数据存储池子模块302进行存储。The license plate/vehicle logo recognizer module 106 receives the license plate/license plate segmentation information output from the license plate/vehicle logo splitter module 105, is responsible for dividing characters from the standard face-to-face license plate, and recognizes each character to obtain the license plate information; The content of the car logo is obtained by matching the car logo image library. License plate/vehicle logo recognizer module 106 outputs license plate and car logo information (including manufacturer logo, license plate text, license plate color, license plate structure) and recognition process information (recognition reliability, license plate recognition time-consuming, car logo recognition time-consuming), and sends It is stored in the hybrid data storage pool sub-module 302 in the visual task support server module 107.

视觉任务支撑服务器模块107负责将其他模块有机的结合在一起,并提供各模块的分步调试功能:①与语义分析系统108实现网络通信,执行报文命令或配置;②根据命令要求对混构数据进行检索,生成查询结果并返回给语义分析系统108;③独立/联合测试各视觉任务模块;④手工辅助标记调试;⑤同步显示源图像与解析结果。视觉任务支撑服务器107,如图3所示,由支撑逻辑控制器301、混构数据存储池302、混构数据装配器303、报文解析分发器304、网络通信控制器305和多功能调试器306六个子模块构成。其中,支撑逻辑控制器301子模块实现整个视觉任务支撑服务器107的主进程,调度控制视觉任务支撑服务器107各功能模块的运行时序与功能匹配。支撑逻辑控制器301主要功能包括:①执行配置命令;②控制(或调试)视频流编码解析器102、车辆底层特征提取器103、车辆MPEG-7特征提取器104、车牌/车标分割器105和车牌/车标识别器106各功能模块的运行;③根据报文要求对混构数据存储池302中的混构数据进行查询,生成所需发送数据子集推入混构数据存储池302的发送缓冲区;④向混构数据装配器303发送应答报文数据(错误消息和执行回馈信息);⑤通知混构数据装配器303进行数据发送。混构数据存储池子模块302负责以视频帧的时间戳为全局统一标识符来存储源视频流经过视频流编码解析器102、车辆底层特征提取器103、车辆MPEG-7特征提取器104、车牌/车标分割器105及车牌/车标识别器106处理后产生的输出,包括:带时间戳的规范格式的压缩视频、车辆底层特征、车辆MPEG-7特征、车牌车标分割信息及车牌车标识别结果。混构数据装配器子模块303负责按照通信协议对来自混构数据存储池302和支撑逻辑控制器301的混构数据进行装配,生成可供网络通信控制器305发送的报文体。报文解析分发器子模块304按自定义通信协议对网络通信控制器接收的报文进行解析,生成报文序列,发送给支撑逻辑控制器处理。网络通信控制器子模块305负责接收来自外围系统(语义分析系统108、流媒体服务器109)或多功能调试器模块306的TCP请求命令,并传送给报文解析分发器304去解析处理,然后将来自混构数据装配器303的响应结果回送给外围系统或多功能调试器模块306。The visual task support server module 107 is responsible for organically combining other modules and providing the step-by-step debugging function of each module: ① realize network communication with the semantic analysis system 108, execute message commands or configuration; Retrieve the data, generate query results and return them to the semantic analysis system 108; ③ Independently/jointly test each visual task module; ④ Manually assist mark debugging; ⑤ Simultaneously display the source image and the analysis result. The visual task support server 107, as shown in Figure 3, consists of a support logic controller 301, a mixed data storage pool 302, a mixed data assembler 303, a message analysis distributor 304, a network communication controller 305 and a multifunctional debugger 306 consists of six sub-modules. Among them, the sub-module of the support logic controller 301 implements the main process of the entire visual task support server 107, and dispatches and controls the running sequence and function of each functional module of the visual task support server 107 to match. The main functions of the supporting logic controller 301 include: ①Execute configuration commands; ②Control (or debug) the video stream encoding parser 102, the vehicle underlying feature extractor 103, the vehicle MPEG-7 feature extractor 104, and the license plate/logo splitter 105 and the operation of each functional module of the license plate/vehicle logo recognizer 106; ③ query the mixed data in the mixed data storage pool 302 according to the message requirements, generate the required sending data subset and push it into the mixed data storage pool 302 Send buffer; ④ Send response message data (error message and execution feedback information) to the hybrid data assembler 303; ⑤ Notify the hybrid data assembler 303 to send data. The mixed structure data storage pool sub-module 302 is responsible for storing the source video stream with the time stamp of the video frame as the global unified identifier. The output generated after the processing of the vehicle logo segmenter 105 and the license plate/vehicle logo recognizer 106 includes: compressed video in a standardized format with a time stamp, vehicle bottom layer features, vehicle MPEG-7 features, license plate and car logo segmentation information, and license plate and car logo recognition result. The hybrid data assembler sub-module 303 is responsible for assembling the hybrid data from the hybrid data storage pool 302 and the supporting logic controller 301 according to the communication protocol, and generating a message body that can be sent by the network communication controller 305 . The message analysis distributor sub-module 304 analyzes the message received by the network communication controller according to the self-defined communication protocol, generates a message sequence, and sends it to the supporting logic controller for processing. The network communication controller submodule 305 is responsible for receiving the TCP request command from the peripheral system (semantic analysis system 108, streaming media server 109) or the multi-function debugger module 306, and sends it to the message analysis distributor 304 to analyze and process, and then The response result from the hybrid data assembler 303 is sent back to the peripheral system or the multi-function debugger module 306 .

采用了该发明的基于视频结构化描述的车辆视频特征提取系统,其包括视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器、车牌及车标识别器和视觉任务支撑服务器。利用该系统的车辆视频特征提取方法中,首先能够利用视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器实现交通监控视频中车辆特征的高效分阶段提取,进而视觉任务支撑服务器利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,基于时间戳实现信息的动态关联;并根据通过外部以太网获得的查询信息对所存储的信息进行装配,生成可供网络通信传输的报文后通过以太网输出,从而便于后续视频调阅与处理中的快速检索和定位,进而能够实现在道路管理中的机动车行为实时智能监管,且本发明的基于视频结构化描述的车辆视频特征提取系统及方法,其系统结构简单,方法实现过程简便,实现成本低廉,应用范围较为广泛。The vehicle video feature extraction system based on the video structured description of the invention is adopted, which includes a video stream encoding parser, a vehicle bottom layer feature extractor, a vehicle video standard feature extractor, a license plate and car logo splitter, and a license plate and car logo recognition server and vision task support server. In the vehicle video feature extraction method using this system, firstly, the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer can be used to realize traffic surveillance video. Efficient stage-by-stage extraction of vehicle features, and then the visual task support server uses the time stamp as a unified identifier to store the video stream encoding parser, vehicle underlying feature extractor, vehicle video standard feature extractor, license plate and vehicle logo The information output by the segmenter and the license plate and logo recognizer is dynamically correlated based on the time stamp; and the stored information is assembled according to the query information obtained through the external Ethernet to generate a message for network communication transmission. Through the Ethernet output, it is convenient for quick retrieval and positioning in subsequent video access and processing, and then can realize real-time intelligent supervision of motor vehicle behavior in road management, and the vehicle video feature extraction system based on video structured description of the present invention And the method, the system structure is simple, the method realization process is simple, the realization cost is low, and the application range is relatively wide.

在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。In this specification, the invention has been described with reference to specific embodiments thereof. However, it is obvious that various modifications and changes can be made without departing from the spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded as illustrative rather than restrictive.

Claims (11)

1.一种基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的系统包括:1. A vehicle video feature extraction system based on video structured description, is characterized in that, described system comprises: 视频流编码解析器,用以从所连接的外部视频采集设备获得视频流,根据预设的视频格式将所述的视频流进行转码及添加时间戳,并输出含有所述的时间戳的经转码视频流;A video stream encoding parser, used to obtain a video stream from the connected external video capture device, transcode the video stream according to a preset video format and add a time stamp, and output the video containing the time stamp Transcode the video stream; 车辆底层特征提取器,连接所述的视频流编码解析器的输出端,用以从所述的经转码视频流中获取车辆底层特征信息,并输出;The vehicle bottom layer feature extractor is connected to the output end of the video stream coder and parser, in order to obtain the vehicle bottom layer feature information from the transcoded video stream, and output it; 车辆视频标准特征提取器,连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息获取车辆视频标准特征信息,并输出;The vehicle video standard feature extractor is connected to the output end of the vehicle bottom layer feature extractor, in order to obtain the vehicle video standard feature information according to the vehicle bottom layer feature information, and output it; 车牌及车标分割器,连接所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并输出;License plate and car logo splitter, connected to the output of the vehicle bottom layer feature extractor, in order to segment and obtain the license plate and car logo image of the vehicle according to the vehicle bottom layer feature information, and output; 车牌及车标识别器,连接所述的车牌及车标分割器的输出端,用以根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并输出;以及The license plate and car logo recognizer is connected to the output end of the license plate and car logo splitter, and is used for obtaining the license plate and car logo information of the vehicle according to the described license plate and car logo image recognition, and outputting it; and 视觉任务支撑服务器,分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以协调及控制所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的运行;利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,实现输出信息的动态关联;并将所存储的信息进行装配,生成可供网络通信传输的报文;所述的视频流编码解析器为提供视频点播功能支持的视频流编码解析器;The visual task support server is respectively connected to the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer to coordinate and control the The operation of the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and the car logo splitter and the license plate and the car logo recognizer; use the time stamp as a unified identification to store the video Stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter, and license plate and car logo recognizer output information to realize dynamic association of output information; and assemble the stored information , generating a message available for network communication transmission; the video stream encoding parser is a video stream encoding parser that provides video-on-demand function support; 所述的视觉任务支撑服务器包括:Described visual task supporting server comprises: 混构信息存储池,分别连接所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器,用以利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息;The hybrid information storage pool is respectively connected to the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter and the license plate and car logo recognizer, in order to use the described The time stamp is used as a unified identification to store the information output by the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer; 网络通信控制器,用以连接以太网,实现网络报文收发;The network communication controller is used to connect to the Ethernet to realize the sending and receiving of network messages; 报文解析分发器,连接所述的网络通信控制器的输出端,用以解析从网络通信控制器获得的控制报文,经解析后,获得控制信息或查询信息;The message parsing distributor is connected to the output end of the network communication controller to analyze the control message obtained from the network communication controller, and obtain control information or query information after analysis; 支撑逻辑控制器,连接所述的报文解析分发器的输出端,用以根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,输出数据装配指令;The supporting logic controller is connected to the output end of the message parsing distributor, so as to implement the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and the vehicle according to the control information. Coordination and control of the logo splitter and the license plate and car logo recognizer, and output data assembly instructions according to the query information; 混构数据装配器,分别连接所述的混构信息存储池和支撑逻辑控制器的输出端,并连接所述的网络通信控制器的输入端,用以根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文经所述的网络通信控制器发送至以太网;The hybrid data assembler is respectively connected to the output of the hybrid information storage pool and the support logic controller, and connected to the input of the network communication controller, so as to obtain from the Obtain corresponding information from the mixed-structure information storage pool, and assemble and generate a message that can be transmitted by network communication and send it to Ethernet through the network communication controller; 所述的网络通信控制器通过以太网连接外部的语义分析系统、流媒体服务器及多功能调试器。The network communication controller is connected to an external semantic analysis system, a streaming media server and a multi-function debugger through Ethernet. 2.根据权利要求1所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车辆底层特征提取器包括:2. the vehicle video feature extraction system based on video structured description according to claim 1, is characterized in that, described vehicle bottom layer feature extractor comprises: 视频流分析单元,连接所述的视频流编码解析器的输出端,用以进行背景建模和前景提取;A video stream analysis unit, connected to the output end of the video stream encoding parser, for background modeling and foreground extraction; 摄像机景深标定及车速计算单元,连接所述的视频流分析单元,用以基于背景和前景标定景深,实现车速计算;The camera depth of field calibration and vehicle speed calculation unit is connected to the video stream analysis unit to calibrate the depth of field based on the background and foreground to realize the vehicle speed calculation; 路口拍照以及车辆ROI信息提取单元,连接所述的摄像机景深标定及车速计算单元,用以控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。The intersection camera and vehicle ROI information extraction unit is connected to the camera depth of field calibration and vehicle speed calculation unit to control the intersection camera to take pictures, extract vehicle ROI information, and perform traffic flow statistics. 3.根据权利要求2所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车辆底层特征信息包括车辆局部图片信息、车辆在图像帧中坐标位置信息、车辆类型信息、车身颜色信息、行驶方向信息和违章类型信息。3. The vehicle video feature extraction system based on video structured description according to claim 2, wherein the vehicle bottom layer feature information includes vehicle partial picture information, vehicle coordinate position information in the image frame, vehicle type information , body color information, driving direction information and violation type information. 4.根据权利要求1所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车辆视频标准特征提取器为车辆MPEG-7特征提取器,所述的车辆视频标准特征信息为车辆MPEG-7特征信息。4. the vehicle video feature extraction system based on video structured description according to claim 1, wherein said vehicle video standard feature extractor is a vehicle MPEG-7 feature extractor, and said vehicle video standard feature extractor The information is vehicle MPEG-7 characteristic information. 5.根据权利要求4所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车辆MPEG-7特征信息包括:颜色布局信息、颜色空间信息、颜色结构信息、主颜色信息、边缘直方图信息、可扩展颜色信息、纹理浏览信息、GoFGoP颜色信息和颜色量化信息。5. The vehicle video feature extraction system based on video structured description according to claim 4, wherein said vehicle MPEG-7 feature information comprises: color layout information, color space information, color structure information, main color Information, Edge Histogram Information, Scalable Color Information, Texture Browsing Information, GoFGoP Color Information, and Color Quantization Information. 6.根据权利要求1所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车牌及车标分割器包括:6. The vehicle video feature extraction system based on video structured description according to claim 1, wherein said license plate and car logo segmenter include: 车牌及车标定位单元,连接于所述的车辆底层特征提取器的输出端,用以根据所述的车辆底层特征信息确定车牌位置及车标位置,获取车牌及车标图像;The license plate and car logo positioning unit is connected to the output end of the vehicle bottom layer feature extractor, in order to determine the license plate position and the car logo position according to the described vehicle bottom layer feature information, and obtain the license plate and car logo images; 车牌及车标图像变换单元,连接于所述的车牌及车标定位单元,根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出。The license plate and vehicle logo image transformation unit is connected to the license plate and vehicle logo positioning unit, performs affine transformation according to the license plate and vehicle logo images, obtains a corrected standard view, and outputs it. 7.根据权利要求1所述的基于视频结构化描述的车辆视频特征提取系统,其特征在于,所述的车牌及车标识别器包括:7. The vehicle video feature extraction system based on video structured description according to claim 1, wherein said license plate and vehicle logo recognizer comprises: 车牌识别单元,连接所述的车牌及车标分割器的输出端,用以对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出;The license plate recognition unit is connected to the output end of the license plate and the car logo divider, and is used to divide the license plate image into characters, recognize the divided characters, obtain the vehicle license plate information, and output it; 车标识别单元,连接所述的车牌及车标分割器的输出端,用以将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出。The vehicle logo recognition unit is connected to the output end of the license plate and the car logo splitter, and is used to match the car logo image with the data in the car logo image database, obtain the vehicle logo information, and output it. 8.一种利用权利要求1所述的系统基于视频结构化描述实现车辆视频特征提取的方法,其特征在于,所述的方法包括以下步骤:8. A method utilizing the system according to claim 1 to realize vehicle video feature extraction based on video structured description, characterized in that said method comprises the following steps: (1)所述的视频流编码解析器从所连接的外部视频采集设备获得视频流,并根据预设的视频格式将所述的视频流进行转码及添加时间戳后,向所述的车辆底层特征提取器和视觉任务支撑服务器输出含有所述的时间戳的经转码视频流;(1) The video stream encoding parser obtains the video stream from the connected external video acquisition device, and transcodes the video stream according to the preset video format and adds a time stamp to the vehicle The underlying feature extractor and the visual task support server output the transcoded video stream containing the time stamp; (2)所述的车辆底层特征提取器从所述的经转码视频流中获取车辆底层特征信息,并向所述的车辆视频标准特征提取器、车牌及车标分割器及视觉任务支撑服务器输出所述的车辆底层特征信息;(2) The vehicle bottom layer feature extractor obtains the vehicle bottom layer feature information from the transcoded video stream, and provides the vehicle video standard feature extractor, license plate and car logo splitter and visual task support server Outputting the vehicle bottom layer feature information; (3)所述的车辆视频标准特征提取器根据所述的车辆底层特征信息获取车辆视频标准特征信息,并向所述的视觉任务支撑服务器输出所述的车辆视频标准特征信息;(3) The vehicle video standard feature extractor obtains the vehicle video standard feature information according to the vehicle bottom layer feature information, and outputs the vehicle video standard feature information to the visual task support server; (4)所述的车牌及车标分割器根据所述的车辆底层特征信息分割获取车辆的车牌和车标图像,并向所述的车牌及车标识别器和所述的视觉任务支撑服务器输出所述的车牌和车标图像;(4) The license plate and car logo splitter obtains the license plate and car logo images of the vehicle according to the bottom layer feature information of the vehicle, and outputs them to the license plate and car logo recognizer and the visual task support server The said license plate and logo image; (5)所述的车牌及车标识别器根据所述的车牌和车标图像识别获取车辆的车牌及车标信息,并向所述的视觉任务支撑服务器输出所述的车牌及车标信息;(5) The license plate and logo recognizer obtains the license plate and logo information of the vehicle according to the license plate and logo image recognition, and outputs the license plate and logo information to the visual task support server; (6)所述的视觉任务支撑服务器利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,进行动态关联;并根据通过外部以太网获得的查询信息对所存储的信息进行装配,生成可供网络通信传输的报文后通过以太网输出;(6) The visual task support server uses the time stamp as a unified identifier to store the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and vehicle logo splitter, and the license plate and the information output by the vehicle logo recognizer to dynamically correlate; and assemble the stored information according to the query information obtained through the external Ethernet, generate a message that can be transmitted through the network communication, and then output it through the Ethernet; 所述的视觉任务支撑服务器包括:混构信息存储池、网络通信控制器、报文解析分发器、支撑逻辑控制器和混构数据装配器,所述的步骤(6)具体包括以下步骤:The visual task support server includes: a mixed-structure information storage pool, a network communication controller, a message parsing distributor, a support logic controller and a mixed-structure data assembler, and the step (6) specifically includes the following steps: (61)所述的混构信息存储池利用所述的时间戳作为统一标识存储所述的视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器输出的信息,并进行动态信息关联;(61) The hybrid information storage pool uses the time stamp as a unified identifier to store the video stream encoding parser, vehicle bottom layer feature extractor, vehicle video standard feature extractor, license plate and car logo splitter and The information output by the license plate and logo recognizer, and dynamic information association; (62)所述的网络通信控制器通过以太网接收到网络报文;(62) The network communication controller receives the network message through the Ethernet; (63)所述的报文解析分发器解析从网络通信控制器获得的控制报文后,获得控制信息或查询信息;(63) After the message analysis distributor analyzes the control message obtained from the network communication controller, it obtains control information or query information; (64)所述的支撑逻辑控制器根据所述的控制信息实现对于视频流编码解析器、车辆底层特征提取器、车辆视频标准特征提取器、车牌及车标分割器和车牌及车标识别器的协调及控制,并根据查询信息,向所述的混构数据装配器输出数据装配指令;(64) According to the control information, the support logic controller implements the video stream encoding parser, the vehicle bottom layer feature extractor, the vehicle video standard feature extractor, the license plate and car logo splitter, and the license plate and car logo recognizer coordination and control, and output data assembly instructions to the hybrid data assembler according to the query information; (65)所述的混构数据装配器根据所述的数据装配指令从所述的混构信息存储池获取相应的信息,并装配生成可供网络通信传输的报文后,经所述的网络通信控制器发送至以太网。(65) The hybrid data assembler obtains corresponding information from the hybrid information storage pool according to the data assembly instruction, assembles and generates a message for network communication transmission, and then passes through the network Communication controller sends to Ethernet. 9.根据权利要求8所述的基于视频结构化描述实现车辆视频特征提取的方法,其特征在于,所述的车辆底层特征提取器包括视频流分析单元、摄像机景深标定及车速计算单元和路口拍照以及车辆ROI信息提取单元,所述的步骤(2)具体包括以下步骤:9. The method for realizing vehicle video feature extraction based on video structured description according to claim 8, wherein the vehicle bottom layer feature extractor includes a video stream analysis unit, camera depth of field calibration and vehicle speed calculation unit and intersection photographing And vehicle ROI information extracting unit, described step (2) specifically comprises the following steps: (21)所述的视频流分析单元根据所述的经转码视频流进行背景建模和前景提取;(21) The video stream analysis unit performs background modeling and foreground extraction according to the transcoded video stream; (22)所述的摄像机景深标定及车速计算单元基于背景和前景标定景深,进行车速计算;(22) The camera depth of field calibration and vehicle speed calculation unit is based on background and foreground calibration depth of field, and performs vehicle speed calculation; (23)所述的路口拍照以及车辆ROI信息提取单元控制路口摄像机拍照,提取车辆ROI信息,并进行车流量统计。(23) The intersection photographing and vehicle ROI information extraction unit controls the intersection camera to take photographs, extract vehicle ROI information, and perform traffic flow statistics. 10.根据权利要求8所述的基于视频结构化描述实现车辆视频特征提取的方法,其特征在于,所述的车牌及车标分割器包括:车牌及车标定位单元和车牌及车标图像变换单元,所述的步骤(4)包括以下步骤:10. The method for realizing vehicle video feature extraction based on video structured description according to claim 8, characterized in that, said license plate and car logo segmenter comprises: a license plate and car logo positioning unit and a license plate and car logo image transformation unit, described step (4) comprises the following steps: (41)所述的车牌及车标定位单元根据所述的车辆底层特征信息确定车牌位置及车标位置,并获取车牌及车标图像;(41) The license plate and vehicle logo positioning unit determines the license plate position and the vehicle logo position according to the vehicle bottom layer feature information, and obtains the license plate and vehicle logo images; (42)所述的车牌及车标图像变换单元根据所述的车牌及车标图像进行仿射变换,获得矫正后的标准视图,并输出至所述的车牌及车标识别器和所述的视觉任务支撑服务器。(42) The license plate and logo image conversion unit performs affine transformation according to the license plate and logo images to obtain a corrected standard view, and outputs it to the license plate and logo recognizer and the Vision task support server. 11.根据权利要求8所述的基于视频结构化描述实现车辆视频特征提取的方法,其特征在于,所述的车牌及车标识别器包括:车牌识别单元和车标识别单元,所述的步骤(5)具体包括以下步骤:11. The method for realizing vehicle video feature extraction based on video structured description according to claim 8, wherein said license plate and vehicle logo recognizer comprises: a license plate recognition unit and a car logo recognition unit, and said steps (5) Concretely include the following steps: (51)所述的车牌识别单元对车牌图像进行字符划分,识别划分后的字符,获得车辆车牌信息,并输出至所述的视觉任务支撑服务器;(51) The license plate recognition unit divides the license plate image into characters, recognizes the divided characters, obtains the vehicle license plate information, and outputs it to the visual task support server; (52)所述的车标识别单元将车标图像与车标图像库中的数据进行匹配,获得车辆车标信息,并输出至所述的视觉任务支撑服务器。(52) The vehicle logo recognition unit matches the car logo image with the data in the car logo image library, obtains the vehicle logo information, and outputs it to the visual task support server.
CN201210356556.5A 2012-09-21 2012-09-21 Based on automobile video frequency Feature Extraction System and the method for video structural description Active CN102982311B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210356556.5A CN102982311B (en) 2012-09-21 2012-09-21 Based on automobile video frequency Feature Extraction System and the method for video structural description

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210356556.5A CN102982311B (en) 2012-09-21 2012-09-21 Based on automobile video frequency Feature Extraction System and the method for video structural description

Publications (2)

Publication Number Publication Date
CN102982311A CN102982311A (en) 2013-03-20
CN102982311B true CN102982311B (en) 2016-03-30

Family

ID=47856298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210356556.5A Active CN102982311B (en) 2012-09-21 2012-09-21 Based on automobile video frequency Feature Extraction System and the method for video structural description

Country Status (1)

Country Link
CN (1) CN102982311B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092926A (en) * 2019-08-28 2020-05-01 北京大学 Digital retina multivariate data rapid association method
TWI713338B (en) 2018-02-27 2020-12-11 凌群電腦股份有限公司 License plate return coding method and device for low power consumption wide area network of Internet of Things

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379266B (en) * 2013-07-05 2016-01-20 武汉烽火众智数字技术有限责任公司 A kind of high-definition network camera with Video Semantic Analysis function
CN103617735B (en) * 2013-12-20 2016-07-06 深圳市捷顺科技实业股份有限公司 Vehicle identification method and system
CN103646454A (en) * 2013-12-24 2014-03-19 深圳市捷顺科技实业股份有限公司 Parking lot management system and method
CN104754290A (en) * 2013-12-30 2015-07-01 南京理工大学常熟研究院有限公司 Network video monitoring device
CN104122604B (en) * 2014-07-31 2017-02-15 公安部第三研究所 Reversal motion simulation device for detecting security inspection system for bottom prohibited goods and realizing method
CN104378539B (en) * 2014-11-28 2017-08-08 华中科技大学 The video structural extraction of semantics video camera and its method of scene adaptive
CN106210612A (en) * 2015-04-30 2016-12-07 杭州海康威视数字技术股份有限公司 Method for video coding, coding/decoding method and device thereof
CN106446150B (en) * 2016-09-21 2019-10-29 北京数字智通科技有限公司 A kind of method and device of vehicle precise search
CN106504542A (en) * 2016-09-30 2017-03-15 北京中星微电子有限公司 Speed intelligent monitoring method and system
CN106504540B (en) * 2016-12-12 2020-10-20 浙江宇视科技有限公司 Method and device for analyzing vehicle information
US10438089B2 (en) * 2017-01-11 2019-10-08 Hendricks Corp. Pte. Ltd. Logo detection video analytics
CN107194006A (en) * 2017-06-19 2017-09-22 深圳警翼智能科技股份有限公司 A kind of video features structural management method
CN107770487B (en) * 2017-09-12 2020-06-16 深圳英飞拓科技股份有限公司 Feature extraction and optimization method, system and terminal equipment
CN108446620A (en) * 2018-03-13 2018-08-24 成都蓉兴伟业科技有限公司 A kind of Intelligent target method for tracing based on video
CN108470195B (en) * 2018-05-11 2021-01-26 东方网力科技股份有限公司 Video identity management method and device
CN109615864A (en) * 2018-12-29 2019-04-12 深圳英飞拓科技股份有限公司 Vehicle congestion analysis method, system, terminal and storage medium based on video structural
CN110121060A (en) * 2019-05-27 2019-08-13 中国电子科技网络信息安全有限公司 A kind of intelligence enhancing device and method for IP Camera
CN110659333B (en) * 2019-08-23 2022-04-22 杭州未名信科科技有限公司 Multi-level visual feature description method and visual retrieval system
CN113284350B (en) * 2021-05-21 2022-08-16 深圳市大道至简信息技术有限公司 Laser-based illegal parking detection method and system
CN114172871A (en) * 2021-12-13 2022-03-11 以萨技术股份有限公司 Data processing system, method and storage medium based on video violation detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334677A (en) * 2000-05-17 2002-02-06 三菱电机株式会社 Dynamic extraction of feature from compressed digital video signals by video reproducing system
CN101196980A (en) * 2006-12-25 2008-06-11 四川川大智胜软件股份有限公司 Accurate recognition method of high-speed moving vehicle signs based on video
CN101216996A (en) * 2007-12-28 2008-07-09 云南澜博科技有限公司 A method for monitoring vehicle offences by video
CN101739829A (en) * 2009-12-03 2010-06-16 北京中星微电子有限公司 Video-based vehicle overspeed monitoring method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736618B1 (en) * 2005-10-10 2007-07-09 엘지전자 주식회사 TSD detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334677A (en) * 2000-05-17 2002-02-06 三菱电机株式会社 Dynamic extraction of feature from compressed digital video signals by video reproducing system
CN101196980A (en) * 2006-12-25 2008-06-11 四川川大智胜软件股份有限公司 Accurate recognition method of high-speed moving vehicle signs based on video
CN101216996A (en) * 2007-12-28 2008-07-09 云南澜博科技有限公司 A method for monitoring vehicle offences by video
CN101739829A (en) * 2009-12-03 2010-06-16 北京中星微电子有限公司 Video-based vehicle overspeed monitoring method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713338B (en) 2018-02-27 2020-12-11 凌群電腦股份有限公司 License plate return coding method and device for low power consumption wide area network of Internet of Things
CN111092926A (en) * 2019-08-28 2020-05-01 北京大学 Digital retina multivariate data rapid association method
CN111092926B (en) * 2019-08-28 2021-10-22 北京大学 A Fast Correlation Method for Multivariate Data of Digital Retina

Also Published As

Publication number Publication date
CN102982311A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
CN102982311B (en) Based on automobile video frequency Feature Extraction System and the method for video structural description
CN108509912B (en) License plate recognition method and system for multi-channel network video stream
CN102610102B (en) Suspect vehicle inspection and control method and system
CN103294829B (en) System and method of achieving light-weight video structuralization description based on Android operation system
CN102724485B (en) Dual core processor is adopted input video to be carried out to the apparatus and method of structural description
JP2018060511A (en) Simulation system, simulation program, and simulation method
WO2022116545A1 (en) Interaction method and apparatus based on multi-feature recognition, and computer device
CN106340179A (en) Pedestrian crossing signal lamp system with red light running evidence obtaining function and method
CN112804188B (en) A scalable visual computing system
CN112153334B (en) Intelligent video box device for security management and corresponding intelligent video analysis method
CN104239309A (en) Video analysis retrieval service side, system and method
CN109905423B (en) Intelligent management system
CN202352075U (en) Five-in-one electronic police system
CN112581769A (en) Non-motor vehicle illegal video analysis system based on artificial intelligence recognition technology
CN109326125B (en) Picture quality diagnosis system and method based on embedded system
CN102457483A (en) Video monitoring front end and method for reporting data to Internet of things
CN110855947B (en) Image snapshot processing method and device
CN108986144B (en) Vehicle identification tracking method, system and device based on ARM and FPGA
CN100573616C (en) A kind of view data supplemental characteristic mixed method based on electronic police
CN215186950U (en) Pedestrian red light running behavior evidence acquisition device based on face recognition technology
CN112351259A (en) Traffic monitoring system based on Internet of things
CN110930703A (en) Intelligent static traffic control service system and method
CN117274955A (en) Multi-scene traffic target detection method and system based on lightweight network
CN102708375A (en) High-definition integrated license plate snapshot recognition equipment and method
CN117649644A (en) Vehicle multi-attribute detection method based on deep learning

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant