CN102969697B - Control method for overvoltage protection and control circuit for power supply controller - Google Patents
Control method for overvoltage protection and control circuit for power supply controller Download PDFInfo
- Publication number
- CN102969697B CN102969697B CN201110257478.9A CN201110257478A CN102969697B CN 102969697 B CN102969697 B CN 102969697B CN 201110257478 A CN201110257478 A CN 201110257478A CN 102969697 B CN102969697 B CN 102969697B
- Authority
- CN
- China
- Prior art keywords
- voltage
- power supply
- operating power
- supply voltage
- comparator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004224 protection Effects 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 230000008859 change Effects 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Protection Of Static Devices (AREA)
Abstract
Description
技术领域 technical field
本发明是相关于电源控制器中的控制电路以及控制方法,尤指对于电源控制器中过电压保护(over voltage protection)的控制电路以及控制方法。The present invention relates to a control circuit and a control method in a power controller, especially to a control circuit and a control method for over voltage protection in a power controller.
背景技术 Background technique
电源转换器(power converter)为电子产品中,不可或缺的一种电子装置,用来提供其它电子装置所需用的电压或是电流电源。电源转换器也必须设计有提供许多不同的防护,譬如说过负载保护(over load protection,OLP)、过高温保护(over temperature protection,OTP)、输出短路保护(output short protection)、过高压保护(over voltage protection)等等。这些保护,都是用来防止异常状态时,电源转换器可能导致的灾害。A power converter is an indispensable electronic device in electronic products, which is used to provide the voltage or current power required by other electronic devices. The power converter must also be designed to provide many different protections, such as over load protection (OLP), over temperature protection (OTP), output short protection (output short protection), over voltage protection ( over voltage protection) and so on. These protections are used to prevent disasters that may be caused by the power converter in abnormal conditions.
检测输出电压的反馈回路断开时,OVP可以预防输出电压因为电源转换器不断提高其输出功率而变高。过高的输出电压可能导致被供电的电子装置损害。When the feedback loop that senses the output voltage is broken, OVP prevents the output voltage from going high because the power converter keeps increasing its output power. Excessively high output voltages can cause damage to powered electronic devices.
图1显示已知的电源转换器8,其中包含有返驰架构(flybacktopology)10、操作电源供应器(operation power supply)12、以及电源控制器18。操作电源供应器12提供操作电源电压VCC,对电源控制器18供电。电源控制器18可以是一单晶集成电路。FIG. 1 shows a known power converter 8 including a flyback topology 10 , an operation power supply 12 , and a power controller 18 . The operating power supply 12 provides an operating power voltage V CC to supply power to the power controller 18 . The power controller 18 can be a monolithic integrated circuit.
当检测输出端OUT上的输出电压VOUT的反馈回路断开时,输出电压VOUT可能会不正常地飙高。连带地,操作电源供应器12所供应的操作电源电压VCC也会提高。当操作电源电压VCC高达一定程度时,电源控制器18将停止电源转换器8的电能转换,来达到OVP。When the feedback loop for detecting the output voltage V OUT on the output terminal OUT is broken, the output voltage V OUT may surge abnormally high. Correspondingly, the operating power voltage V CC supplied by the operating power supply 12 will also increase. When the operating power voltage V CC reaches a certain level, the power controller 18 will stop the power conversion of the power converter 8 to reach OVP.
图2例示电源控制器18,其中包含有振荡电路40、脉冲宽度调控器(pulse-width modulator)44、OVP控制电路30、以及逻辑电路(gate logiccontroller)42。振荡电路40提供电源控制器18的时钟。脉冲宽度调控器44决定当下的工作周期比例(duty cycle)。OVP控制电路30以电源备妥信号SPG,来告诉逻辑电路42操作电源电压VCC是否正常(power good)。逻辑电路42通过门端GATE,控制功率开关15。FIG. 2 illustrates the power controller 18 , which includes an oscillation circuit 40 , a pulse-width modulator 44 , an OVP control circuit 30 , and a gate logic controller 42 . The oscillator circuit 40 provides the clock for the power controller 18 . The pulse width regulator 44 determines the current duty cycle. The OVP control circuit 30 uses the power good signal S PG to tell the logic circuit 42 whether the operating power voltage V CC is normal (power good). The logic circuit 42 controls the power switch 15 through the gate terminal GATE.
图3A显示一般OVP发生时,操作电源电压VCC以及电源备妥信号SPG。在图3A中,操作电源电压VCC一开始缓步地上升。在时间点t1时,操作电源电压VCC高过了过电压参考值VREF-OVP,比较器34重设(reset)SR记录器32,电源备妥信号SPG转态成为逻辑上的0,所以逻辑电路42认定当下操作电源电压VCC不对(not good),因此使功率开关15维持在关闭状态,停止电能转换。FIG. 3A shows the operating power voltage V CC and the power good signal S PG when a general OVP occurs. In FIG. 3A , the operating power supply voltage V CC initially rises slowly. At time point t1 , the operating power supply voltage V CC is higher than the overvoltage reference value V REF-OVP , the comparator 34 resets the SR recorder 32, and the power good signal S PG transitions to logic 0. , so the logic circuit 42 determines that the current operating power supply voltage V CC is not good (not good), so the power switch 15 is kept in the closed state, and the power conversion is stopped.
电能转换停止,操作电源电压VCC将因为电源控制器18的耗电,渐渐下降。如果操作电源电压VCC低过参考电压VREF-RSTRT,逻辑电路42重新启动(restart),开始进行电能转换,拉高操作电源电压VCC。但是,只有当操作电源电压VCC恢复高过参考电压VREF-UV时,如同时间点t2所示,比较器36以及单脉冲电路38才会使电源备妥信号SPG转态成为逻辑上的1,告知逻辑电路42目前的操作电源电压VCC是正常的(good)。The power conversion stops, and the operating power supply voltage V CC will gradually decrease due to the power consumption of the power controller 18 . If the operating power supply voltage V CC is lower than the reference voltage V REF-RSTRT , the logic circuit 42 restarts (restarts) to start power conversion, and pulls up the operating power supply voltage V CC . However, only when the operating power supply voltage V CC recovers to be higher than the reference voltage V REF-UV , as shown at time t2 , the comparator 36 and the one-shot circuit 38 will make the power good signal S PG transition to a logical state. 1, informs the logic circuit 42 that the current operating power supply voltage V CC is normal (good).
图3B显示的是有噪声短暂在操作电源端VCC出现时,操作电源电压VCC以及电源备妥信号SPG。如同图3B所示,在时间点t3,因为噪声的出现,操作电源电压VCC突然飙高,所以触发了OVP。尽管噪声很快地消失了,但是操作电源电压VCC还是跟图3A一样,需要慢慢地掉到参考电压VREF-RSTRT才会重新启动电能转换,然后恢复到高过参考电压VREF-UV的时间点t4,操作电源电压VCC才会被认定为正常。从图3B可知,图2的电源控制器18的电能转换,将会经历一段相当长久的停滞时段THOLD。FIG. 3B shows the operating power voltage V CC and the power good signal S PG when noise appears briefly at the operating power terminal VCC. As shown in FIG. 3B , at the time point t 3 , due to noise, the operating power supply voltage V CC suddenly rises, thus triggering the OVP. Although the noise disappears quickly, the operating power supply voltage V CC is still the same as in Figure 3A. It needs to slowly drop to the reference voltage V REF-RSTRT to restart the power conversion, and then recover to a value higher than the reference voltage V REF-UV At the time point t 4 , the operating power supply voltage V CC is considered normal. It can be seen from FIG. 3B that the power conversion of the power controller 18 in FIG. 2 will go through a rather long stagnation period T HOLD .
发明内容 Contents of the invention
本发明的实施例提供一种过电压防护的控制方法,包含有:检测一操作电源电压;比较该操作电源电压以及一过电压参考值;当该操作电源电压超过该过电压参考值时,停止一电源转换器的电能转换;检测该操作电源电压的一变化斜率;以及,当该变化斜率超过一下降斜率时,恢复该电源转换器的电能转换。An embodiment of the present invention provides a control method for overvoltage protection, including: detecting an operating power supply voltage; comparing the operating power supply voltage with an overvoltage reference value; when the operating power supply voltage exceeds the overvoltage reference value, stopping Power conversion of a power converter; detecting a change slope of the operating power supply voltage; and, when the change slope exceeds a falling slope, resuming power conversion of the power converter.
本发明的实施例还提供一种用于一电源控制器的控制电路。该电源控制器受一操作电源端供电。该操作电源端有一操作电源电压。当该操作电源电压超过一过电压参考值时,该电源控制器停止一电源转换器的电能转换。该控制电路包含有一斜率检测器。该斜率检测器检测该操作电源电压的一变化斜率。且当该变化斜率超过一下降斜率时,该斜率检测器恢复该电源转换器的电能转换。当该电源转换器的电能转换被恢复后,该电源控制器比较该操作电源电压以及该过电压参考值。The embodiment of the invention also provides a control circuit for a power controller. The power controller is powered by an operating power terminal. The operating power terminal has an operating power voltage. When the operating power supply voltage exceeds an overvoltage reference value, the power controller stops power conversion of a power converter. The control circuit includes a slope detector. The slope detector detects a change slope of the operating power supply voltage. And when the changing slope exceeds a falling slope, the slope detector resumes the power conversion of the power converter. After the power conversion of the power converter is resumed, the power controller compares the operating power voltage with the overvoltage reference value.
附图说明 Description of drawings
图1显示已知的电源转换器。Figure 1 shows a known power converter.
图2例示一电源控制器。Figure 2 illustrates a power controller.
图3A显示一般OVP发生时,图2的操作电源电压VCC以及电源备妥信号SPG。FIG. 3A shows the operating power voltage V CC and the power good signal S PG of FIG. 2 when a general OVP occurs.
图3B显示的是有噪声短暂在操作电源端VCC出现时,图2的操作电源电压VCC以及电源备妥信号SPG。FIG. 3B shows the operating power voltage V CC and the power good signal S PG in FIG. 2 when noise appears briefly at the operating power terminal VCC.
图4显示依据本发明所实施的一OVP控制电路。FIG. 4 shows an OVP control circuit implemented according to the present invention.
图5A显示一般OVP发生时,图4中操作电源电压VCC、反向过电压信号SOVP-B、设置信号SSET、以及电源备妥信号SPG。FIG. 5A shows the operating power voltage V CC , the reverse overvoltage signal S OVP-B , the set signal S SET , and the power good signal S PG in FIG. 4 when a general OVP occurs.
图5B显示的是有噪声短暂在操作电源端VCC出现时,图4中操作电源电压VCC、反向过电压信号SOVP-B、设置信号SSET、以及电源备妥信号SPG。FIG. 5B shows the operating power voltage V CC , the reverse overvoltage signal S OVP-B , the set signal S SET , and the power good signal S PG in FIG. 4 when noise appears temporarily at the operating power terminal VCC.
[主要元件标号说明][Description of main component labels]
8 电源转换器 10 返驰架构8 Power Converter 10 Flyback Architecture
12 操作电源供应器 15 功率开关12 Operating the power supply 15 Power switch
18 电源控制器 30 OVP控制电路18 Power Controller 30 OVP Control Circuit
32 SR记录器 34 比较器32 SR Recorder 34 Comparator
36 比较器 38 单脉冲电路36 Comparator 38 Single pulse circuit
40 振荡电路 42 逻辑电路40 oscillating circuit 42 logic circuit
44 脉冲宽度调控器 60 OVP控制电路44 Pulse Width Regulator 60 OVP Control Circuit
62 低通滤波器 64 比较器62 Low Pass Filter 64 Comparator
66 多工器 68 比较器66 Multiplexer 68 Comparator
70 与门 GATE 门端70 AND Gate GATE Gate End
OUT 输出端 SOVP-B 反向过电压信号OUT output terminal S OVP-B reverse overvoltage signal
SPG 电源备妥信号 SSET 设置信号S PG power ready signal S SET setting signal
t1、t2、t3、t4、t5、t6、t7、t8、t9、t10 时间点t 1 , t 2 , t 3 , t 4 , t 5 , t 6 , t 7 , t 8 , t 9 , t 10 time points
THOLD 停滞时段 VCC 操作电源电压T HOLD stagnation period V CC operating power supply voltage
VCC-LPF 滤波后电压 VOUT 输出电压V CC-LPF filtered voltage V OUT output voltage
VREF-OVP 过电压参考值 VREF-RSTRT 参考电压V REF-OVP overvoltage reference value V REF-RSTRT reference voltage
VREF-UV 参考电压V REF-UV reference voltage
具体实施方式 Detailed ways
图4显示依据本发明所实施的OVP控制电路60,可以取代图2中的OVP控制电路30。OVP控制电路60可以在短暂噪声消失后,快速地恢复电能转换,可以缩短图3B中过长的停滞时段THOLD。FIG. 4 shows an OVP control circuit 60 implemented according to the present invention, which can replace the OVP control circuit 30 in FIG. 2 . The OVP control circuit 60 can quickly resume power conversion after the short-term noise disappears, and can shorten the excessively long stagnation period T HOLD in FIG. 3B .
OVP控制电路60有比较器64、比较器68、多工器(multiplexer)66、低通滤波器62、以及与门(And Gate)70。The OVP control circuit 60 has a comparator 64 , a comparator 68 , a multiplexer (multiplexer) 66 , a low-pass filter 62 , and an AND gate (And Gate) 70 .
低通滤波器62检测操作电源电压VCC,进行低通滤波后,产生滤波后电压VCC-LPF。如同简单电路理论可得知的,低通滤波器62等于限制了滤波后电压VCC-LPF对于操作电源电压VCC的反应速度,而操作电源电压VCC与滤波后电压VCC-LPF之间的差,实质上对应到的是操作电源电压VCC的变化斜率。举例来说,当操作电源电压VCC下降的越快,滤波后电压VCC-LPF高过操作电源电压VCC的量,就会越多。The low-pass filter 62 detects the operating power supply voltage V CC and performs low-pass filtering to generate a filtered voltage V CC-LPF . As can be known from simple circuit theory, the low-pass filter 62 is equivalent to limiting the response speed of the filtered voltage V CC-LPF to the operating power supply voltage V CC , and the distance between the operating power supply voltage V CC and the filtered voltage V CC-LPF The difference substantially corresponds to the change slope of the operating power supply voltage V CC . For example, when the operation power supply voltage V CC drops faster, the filtered voltage V CC-LPF is higher than the operation power supply voltage V CC by more.
当比较器64所输出的反向过电压信号SOVP-B为逻辑上的1时,多工器66提供过电压参考值VREF-OVP至比较器64的非反向输入端。当反向过电压信号SOVP-B为逻辑上的0时,多工器66提供滤波后电压VCC-LPF至比较器64的非反向输入端。When the inverse overvoltage signal S OVP-B output by the comparator 64 is logic 1, the multiplexer 66 provides the overvoltage reference V REF-OVP to the non-inverting input terminal of the comparator 64 . When the reverse overvoltage signal S OVP-B is logic 0, the multiplexer 66 provides the filtered voltage V CC-LPF to the non-inverting input terminal of the comparator 64 .
因此,当反向过电压信号SOVP-B为逻辑上的1,意味着还没有发生过电压,比较器64比较的是被检测的操作电源电压VCC与过电压参考值VREF-OVP,检测看看过电压是否发生。当反向过电压信号SOVP-B为逻辑上的0,意味着已经发生了过电压,比较器64比较的是操作电源电压VCC与滤波后电压VCC-LPF,实质上比较器64等同是检测操作电源电压VCC的变化斜率。Therefore, when the reverse overvoltage signal S OVP-B is logically 1, which means that no overvoltage has occurred, the comparator 64 compares the detected operating power supply voltage V CC with the overvoltage reference value V REF-OVP , Check to see if overvoltage occurs. When the reverse overvoltage signal S OVP-B is logically 0, it means that an overvoltage has occurred, and the comparator 64 compares the operating power supply voltage V CC with the filtered voltage V CC-LPF . In essence, the comparator 64 is equivalent to is to detect the change slope of the operating power supply voltage V CC .
在一实施例中,比较器64具有一迟滞效应(hysteresis effect)。当比较器64所输出的反向过电压信号SOVP-B为逻辑上的1时,操作电源电压VCC高于过电压参考值VREF-OVP,反向过电压信号SOVP-B才会转态成为0。当反向过电压信号SOVP-B为逻辑上的0时,当滤波后电压VCC-LPF高过操作电源电压VCC达一预设值(譬如说0.5V)后,反向过电压信号SOVP-B才会转态成为1。这个预设值,等于对应到操作电源电压VCC的一特定下降斜率。换言之,比较器64以及低通滤波器62一起构成一斜率检测器,检测操作电源电压VCC的变化斜率。当这变化斜率超过那特定下降斜率时,比较器64才会使反向过电压信号SOVP-B转态成为1。In one embodiment, the comparator 64 has a hysteresis effect. When the reverse overvoltage signal S OVP-B output by the comparator 64 is logic 1, the operating power supply voltage V CC is higher than the overvoltage reference value V REF-OVP , and the reverse overvoltage signal S OVP-B will be transition to 0. When the reverse overvoltage signal S OVP-B is logic 0, when the filtered voltage V CC-LPF is higher than the operating power supply voltage V CC by a preset value (for example, 0.5V), the reverse overvoltage signal S OVP-B will change to 1. This preset value is equal to a specific falling slope corresponding to the operating power supply voltage V CC . In other words, the comparator 64 and the low-pass filter 62 together form a slope detector for detecting the slope of the operating power supply voltage V CC . When the changing slope exceeds the specified falling slope, the comparator 64 makes the reverse overvoltage signal S OVP-B transition to 1.
比较器68比较操作电源电压VCC以及参考电压VREF-UV。当操作电源电压VCC低于参考电压VREF-UV时,比较器68会以设置信号SSET设置(set)比较器64,使反向过电压信号SOVP-B为逻辑上的1。换言之,强制使比较器64比较操作电源电压VCC与过电压参考值VREF-OVP。The comparator 68 compares the operating supply voltage V CC and the reference voltage V REF-UV . When the operating power supply voltage V CC is lower than the reference voltage V REF-UV , the comparator 68 sets the comparator 64 with the set signal S SET to make the reverse overvoltage signal S OVP-B logic 1. In other words, the comparator 64 is forced to compare the operating power supply voltage V CC with the overvoltage reference value V REF-OVP .
只有操作电源电压VCC介于过电压参考值VREF-OVP与参考电压VREF-UV之间时,与门70才会提供被致能的电源备妥信号SPG,告知逻辑电路42操作电源电压VCC为正常。否则,电源备妥信号SPG为逻辑上的0,表示操作电源电压VCC不正常。Only when the operating power supply voltage V CC is between the overvoltage reference value V REF-OVP and the reference voltage V REF-UV , the AND gate 70 will provide the enabled power ready signal S PG to inform the logic circuit 42 of the operating power supply voltage V CC is normal. Otherwise, the power good signal S PG is logic 0, indicating that the operating power voltage V CC is not normal.
图5A显示一般OVP发生时,图4中操作电源电压VCC、反向过电压信号SOVP-B、设置信号SSET、以及电源备妥信号SPG。在图5A中,可能基于检测输出电压反馈循环的断路,操作电源电压VCC一开始缓步的上升,反向过电压信号SOVP-B为逻辑上的1,表示操作电源电压VCC低于过电压参考值VREF-OVP。FIG. 5A shows the operating power voltage V CC , the reverse overvoltage signal S OVP-B , the set signal S SET , and the power good signal S PG in FIG. 4 when a general OVP occurs. In FIG. 5A , it may be based on detecting the disconnection of the output voltage feedback loop, the operating power supply voltage V CC initially rises slowly, and the reverse overvoltage signal S OVP-B is logic 1, indicating that the operating power supply voltage V CC is lower than Overvoltage reference value V REF-OVP .
在时间点t5时,操作电源电压VCC高过了过电压参考值VREF-OVP,比较器64使反向过电压信号SOVP-B转态成为逻辑上的0。所以,电源备妥信号SPG成为逻辑上的0,告知逻辑电路42当下操作电源电压VCC不对(not good),因此使功率开关15维持在关闭状态,停止电能转换。At time t 5 , the operating power supply voltage V CC is higher than the overvoltage reference value V REF-OVP , and the comparator 64 makes the reverse overvoltage signal S OVP-B transition to logic 0. Therefore, the power good signal S PG becomes logically 0, which informs the logic circuit 42 that the current operation power supply voltage V CC is not good (not good), thus keeps the power switch 15 in the off state, and stops the power conversion.
在时间点t5之后,因为操作电源电压VCC只是慢慢地下降,其变化斜率不大,所以反向过电压信号SOVP-B一直维持在逻辑上的0。After the time point t5 , because the operating power supply voltage V CC only drops slowly with a small slope, the reverse overvoltage signal S OVP-B remains at logic 0 all the time.
在时间点t6时,操作电源电压VCC低于参考电压VREF-UV,所以设置信号SSET转态为逻辑上的1,强迫比较器64比较操作电源电压VCC与过电压参考值VREF-OVP。也因为此时操作电源电压VCC低于过电压参考值VREF-OVP,所以反向过电压信号SOVP-B为逻辑上的1。此时,电源备妥信号SPG依然是逻辑上的0,电能转换依然被停止。At time point t6 , the operating supply voltage V CC is lower than the reference voltage V REF-UV , so the set signal S SET transitions to logic 1, forcing the comparator 64 to compare the operating supply voltage V CC with the overvoltage reference value V REF-OVP . Also because the operating power supply voltage V CC is lower than the overvoltage reference value V REF-OVP at this time, the reverse overvoltage signal S OVP-B is logic 1. At this time, the power good signal S PG is still logic 0, and the power conversion is still stopped.
等到操作电源电压VCC低过参考电压VREF-RSTRT,逻辑电路42重新启动(restart),开始进行电能转换,拉高操作电源电压VCC。When the operating power supply voltage V CC is lower than the reference voltage V REF-RSTRT , the logic circuit 42 restarts (restarts), starts power conversion, and pulls up the operating power supply voltage V CC .
在时间点t7时,操作电源电压VCC高过参考电压VREF-UV,所以设置信号SSET转态为逻辑上的0,电源备妥信号SPG成为逻辑上的1,告知逻辑电路42当下的操作电源电压VCC是对的。At time point t7 , the operating power supply voltage V CC is higher than the reference voltage V REF-UV , so the set signal S SET transitions to a logic 0, and the power ready signal S PG becomes a logic 1 to inform the logic circuit 42 The current operating supply voltage V CC is correct.
图5A具有与图3A大约相同的电源备妥信号SPG,因此可知,图4中的OVP控制电路60可以与图2中的OVP控制电路30一样,对于一般过电压提供正确的OVP机制。FIG. 5A has approximately the same power good signal S PG as that of FIG. 3A . Therefore, it can be seen that the OVP control circuit 60 in FIG. 4 can provide the correct OVP mechanism for general overvoltages as the OVP control circuit 30 in FIG. 2 .
图5B显示的是有噪声短暂在操作电源端VCC出现时,图4中操作电源电压VCC、反向过电压信号SOVP-B、设置信号SSET、以及电源备妥信号SPG。与图3B大为不同的,图5B中的电能转换停滞时段THOLD相当的短,意味着在噪声消失后,很快地让电能转换进入正常操作。因此,相较于图3B,图5B也显示比较平稳的操作电源电压VCC,具有较好的稳压效果。FIG. 5B shows the operating power voltage V CC , the reverse overvoltage signal S OVP-B , the set signal S SET , and the power good signal S PG in FIG. 4 when noise appears temporarily at the operating power terminal VCC. Very different from FIG. 3B , the stagnation period T HOLD of the power conversion in FIG. 5B is quite short, which means that the power conversion enters normal operation soon after the noise disappears. Therefore, compared to FIG. 3B , FIG. 5B also shows a relatively stable operating power supply voltage V CC , which has a better voltage stabilization effect.
在时间点t8之前,因为噪声的引入,所以操作电源电压VCC突然上升。在在时间点t8时,操作电源电压VCC超过过电压参考值VREF-OVP时,反向过电压信号SOVP-B立刻成为逻辑上的0,电源备妥信号SPG成为逻辑上的0,进入电能转换停滞时段THOLD。Before the time point t8 , the operating power supply voltage V CC suddenly rises due to the introduction of noise. At time point t8 , when the operating power supply voltage V CC exceeds the overvoltage reference value V REF-OVP , the reverse overvoltage signal S OVP-B immediately becomes logic 0, and the power ready signal S PG becomes logic logic 0. 0, entering the power conversion stagnation period T HOLD .
在时间点t8到t9之间的时段内,比较器64检测操作电源电压VCC的变化斜率。因为操作电源电压VCC不是上升,就是下降速度的不够快,所以比较器64所输出的反向过电压信号SOVP-B一直维持在逻辑上的0。During the period between time points t8 to t9 , the comparator 64 detects the change slope of the operating power supply voltage V CC . Because the operating power supply voltage V CC either rises or falls not fast enough, the reverse overvoltage signal S OVP-B output by the comparator 64 is always maintained at logic 0.
在时间点t9到t10之间的时段内,操作电源电压VCC的变化速度超过了比较器64与低通滤波器62所预设的下降速度,所以会使反向过电压信号SOVP-B从逻辑上的0转态为逻辑上的1,迫使比较器64比较操作电源电压VCC与过电压参考值VREF-OVPP。但是,此时操作电源电压VCC依然超过过电压参考值VREF-OVP,所以会使反向过电压信号SOVP-B又从逻辑上1转态回到逻辑上的0。因此,反向过电压信号SOVP-B会在逻辑上的0与1之间不断的转态。电源备妥信号SPG也是一样不断的转态,使电源转换器在停止或是恢复电能转换之间切换,如同图5B所示。During the period between time point t9 and t10 , the change speed of the operating power supply voltage V CC exceeds the preset drop speed of the comparator 64 and the low-pass filter 62, so the reverse overvoltage signal S OVP -B transitions from a logical 0 to a logical 1, forcing the comparator 64 to compare the operating supply voltage V CC with the overvoltage reference V REF-OVPP . However, at this time, the operating power supply voltage V CC still exceeds the overvoltage reference value V REF-OVP , so the reverse overvoltage signal S OVP-B will change from logic 1 to logic 0 again. Therefore, the reverse overvoltage signal S OVP-B will continuously transition between logic 0 and 1. The power good signal S PG also continuously transitions to make the power converter switch between stopping and resuming power conversion, as shown in FIG. 5B .
直到时间点t10,操作电源电压VCC确定低于过电压参考值VREF-OVP,所以反向过电压信号SOVP-B会稳定于逻辑上的1,而电源备妥信号SPG也会随之停留在逻辑上的1,让电能转换正常的操作。Until the time point t 10 , the operating power supply voltage V CC is determined to be lower than the overvoltage reference value V REF-OVP , so the reverse overvoltage signal S OVP-B will be stable at logic 1, and the power good signal S PG will also be Then it stays at a logical 1, allowing the power conversion to operate normally.
从图5B可以发现,电源备妥信号SPG在噪声消失后几乎就很快地回到逻辑上的1,因此电能转换停滞时段THOLD是非常地短的。如此,相较于图3B的结果,图5B的结果证明了图4的OVP控制电路60有较佳的稳压效果。It can be seen from FIG. 5B that the power good signal S PG returns to logic 1 almost immediately after the noise disappears, so the power conversion hold-up period T HOLD is very short. Thus, compared with the result of FIG. 3B , the result of FIG. 5B proves that the OVP control circuit 60 of FIG. 4 has a better voltage stabilizing effect.
在另一实施例中,可以采用一高通滤波器来检测操作电源电压VCC的变化斜率,然后以一比较器来判断此变化斜率是否超过一下降斜率,来做出类似图4中所要达成的恢复电能转换的功能。In another embodiment, a high-pass filter can be used to detect the change slope of the operating power supply voltage V CC , and then a comparator can be used to determine whether the change slope exceeds a falling slope, so as to achieve a similar effect as shown in FIG. 4 Restoring the functionality of electrical energy conversion.
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110257478.9A CN102969697B (en) | 2011-09-02 | 2011-09-02 | Control method for overvoltage protection and control circuit for power supply controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110257478.9A CN102969697B (en) | 2011-09-02 | 2011-09-02 | Control method for overvoltage protection and control circuit for power supply controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102969697A CN102969697A (en) | 2013-03-13 |
CN102969697B true CN102969697B (en) | 2015-07-15 |
Family
ID=47799660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110257478.9A Expired - Fee Related CN102969697B (en) | 2011-09-02 | 2011-09-02 | Control method for overvoltage protection and control circuit for power supply controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102969697B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104426125B (en) * | 2013-08-23 | 2019-03-26 | 深圳市海洋王照明工程有限公司 | A kind of overvoltage crowbar and the lamps and lanterns with over-voltage protecting function |
CN104934944B (en) * | 2014-03-21 | 2018-09-07 | 绿达光电股份有限公司 | Overvoltage protection control method and related power supply controller |
CN106549578B (en) * | 2016-12-21 | 2019-10-11 | 湖南国科微电子股份有限公司 | Multi-mode power source managing system |
CN109596956B (en) * | 2019-01-08 | 2021-04-20 | 中国恩菲工程技术有限公司 | DC series arc detection method and device |
CN112615529B (en) * | 2020-11-26 | 2021-11-09 | 苏州美思迪赛半导体技术有限公司 | Output voltage state detection method of switching power supply system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1862935A (en) * | 2005-05-09 | 2006-11-15 | 崇贸科技股份有限公司 | Output power compensation method and switching control device |
CN101667772A (en) * | 2008-09-04 | 2010-03-10 | 绿达光电股份有限公司 | Digital overcurrent protection device for power supply and related power supply |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1274163A1 (en) * | 2001-07-03 | 2003-01-08 | Hewlett-Packard Company (a Delaware corporation) | Circuit for a switch-mode power supply unit |
US8624571B2 (en) * | 2009-12-24 | 2014-01-07 | Mediatek Singapore Pte. Ltd. | DC-DC converters with pulse generators shared between PWM and PFM modes |
-
2011
- 2011-09-02 CN CN201110257478.9A patent/CN102969697B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1862935A (en) * | 2005-05-09 | 2006-11-15 | 崇贸科技股份有限公司 | Output power compensation method and switching control device |
CN101667772A (en) * | 2008-09-04 | 2010-03-10 | 绿达光电股份有限公司 | Digital overcurrent protection device for power supply and related power supply |
Also Published As
Publication number | Publication date |
---|---|
CN102969697A (en) | 2013-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109687398B (en) | Switching power supply circuit | |
TWI643436B (en) | Switching regulator and electronic apparatus | |
CN102969697B (en) | Control method for overvoltage protection and control circuit for power supply controller | |
TWI407657B (en) | Over current protection circuit | |
JP5011828B2 (en) | Power supply | |
JP2010151458A (en) | Temperature detecting circuit | |
CN107342683B (en) | DCDC converter | |
KR101025535B1 (en) | Switch control circuit with short circuit protection | |
EP2804285B1 (en) | Power arbitration method and apparatus having a control logic circuit for assessing and selecting power supplies | |
JP6168491B2 (en) | Circuit breaker undervoltage trip device and overvoltage / undervoltage trip device | |
KR20180110586A (en) | Power supply apparatus with soft―start and protection | |
TWI487231B (en) | Control methods for over voltage protection and control circuits for a power supply | |
CN108767944B (en) | Switch charging circuit | |
KR101148240B1 (en) | Reset circuit | |
JP6561484B2 (en) | Switching power supply | |
JP2014021634A (en) | Rush current suppression circuit | |
JP7461253B2 (en) | Step-up switching regulator | |
CN119009890A (en) | Over-temperature and under-voltage detection protection system device | |
CN106374421B (en) | Surge eliminating circuit, surge eliminating method and short circuit protection device | |
CA3038145C (en) | Power management integrated circuit | |
JP5144292B2 (en) | Switching power supply circuit and vehicle equipped with the same | |
JP2017051054A (en) | regulator | |
JP6712899B2 (en) | Power control device | |
JP6519498B2 (en) | Switching power supply | |
JP4215778B2 (en) | Accumulated charge discharge circuit in power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150715 |